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Summary—This work presents the preliminary results of off-
line and on-line tests of a robust algorithm for the generation of 
optical time scales. The algorithm is applied to experimental data 
from a hydrogen maser and an ytterbium optical clock. The off-
line test, where the optical time scale is obtained in post-
processing, covers a period of about two months during which 
the time scale shows a sub-nanosecond accuracy; the on-line test, 
where the optical time scale is a physical signal obtained in the 
time laboratory, covers a period of about 1 month and shows an 
accuracy in line with the results of the off-line test. The future 
developments of our work, including the integration of the 
optical clock in the architecture for the generation of the Italian 
time scale UTC(IT), are also discussed. 
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I. INTRODUCTION 
The unbeaten accuracy and stability reached by optical 

clocks is paving the way towards a redefinition of the second 
which could be based on an optical transition, and to the 
possibility to generate a continuous time scale based on an 
optical clock, henceforth referred to as an optical time scale 
(OTS). However, considering that optical clocks are usually 
only capable of intermittent operation, a practical way to 
generate a robust and continuous OTS is to use the optical 
clock as a steering reference for a flywheel oscillator, such as 
an active hydrogen maser (AHM). The performances which 
could be reached by an OTS, with a sub-nanosecond accuracy 
over periods of some months, have been already demonstrated 
by several recent studies, based both on simulated [1] and real 
experimental data [2, 3]. In this work we apply the robust 
steering algorithm proposed in [1] to the experimental data 
collected at the Italian National Institute of Metrological 
Research (INRiM), by measuring an AHM with respect to the 
ytterbium optical lattice clock IT-Yb1 [4]. We present the 
results of an off-line test, where the OTS is a paper time scale 
obtained by post-processing experimental data collected over 
a period of about two months (at the beginning of 2022), and 
of an on-line test, where the OTS is a physical signal obtained 
in the laboratory by steering the AHM through a micro-
stepper, driven by the steering algorithm running 
automatically on a dedicated server since December 2022. 

Finally, we discuss the future developments of our work, 
such as the integration of IT-Yb1 in the robust architecture for 
the automated generation of the Italian time scale UTC(IT) 

[5], where the optical clock will be used as one of the 
available frequency steering references within the time scale 
algorithm presented in [6]. 

II. STEERING ALGORITHM 
The applied steering algorithm has been extensively 

described in [1], where we distinguished between an original 
and a refined version, the latter more suited for scenarios with 
a high up-time of the optical clock. For the tests discussed in 
this work, where the up-time is still low, we used the original 
version of the algorithm, so that the main component of the 
frequency steering correction, ∆f0, is computed by a linear 
extrapolation based on a batch of past frequency offset data. 
The total steering correction, ∆f, is the sum of ∆f0 and a 
second component, ∆f2, correcting the residual time offset of 
the generated time scale with respect to a reference time scale, 
such as UTC or UTCr. 

III. OFF-LINE TEST RESULTS 
For the off-line test we used data collected from February 

to April 2022. During this period IT-Yb1 has been operated 
for some hours during the working days, so that the days with 
a measurement are almost the 60% of the total. However, the 
actual total up-time is lower, about 40%, since each daily 
measurement lasts only a fraction of a day. Due to the 
relatively short duration of the test, the ∆f2 component of the 
steering correction has been computed by using UTCr (new 
data available once per week) rather than the more stable time 
reference UTC (new data available only once per month 
through the Circular T). Fig. 1 shows the accumulated phase 
offset between UTC and the off-line OTS: the grey line with 
empty circles represents the time scale obtained by steering 
the AHM with ∆f0 only, showing a peak-to-peak variation of 
about 1.5 ns, whereas the red line with dots represents the 
OTS obtained by steering the AHM with the total correction 
including ∆f2, exhibiting a similar peak-to-peak variation but 
also showing the effect of ∆f2 in keeping the OTS phase-
aligned to UTC, with a time accuracy at the sub-nanosecond 
level over the considered two-month period (95th percentile of 
|UTC − OTS| ≈ 700 ps). 



 
Fig. 1.  Phase offset between UTC and the off-line OTS, for a time scale 
steered with ∆f0 only (grey line with empty circles) and for the one steered 
with the total correction ∆f. 

IV. ON-LINE TEST RESULTS 
For the on-line test we used data collected from December 

2022. The preliminary results here presented cover a period of 
about one month, and the phase offset of the on-line OTS is 
plotted versus UTCr, as UTC, through the relevant Circular T, 
is not yet available at the time of writing. During this initial 
one-month period IT-Yb1 has been operated for a few hours 
on 10 randomly distributed days, so that the days with a 
measurement are around the 35% of the total. Fig. 2 shows the 
accumulated phase offset between UTCr and the on-line OTS. 
Note that, for this on-line test, the time scale has been 
obtained by steering the AHM with ∆f0 only. The peak-to-
peak variation of the accumulated phase offset versus UTCr is 
about 1 ns and the time scale does not show any significant 
drift, therefore the results are in line with those obtained in the 
off-line test. 

V. WAY FORWARD 
The results obtained in the preliminary tests described in 

the present work are compatible, or even better than the results 
expected from the simulations presented in [1]. While the on-
line test is still running, with a new IT-Yb1 measurement 
campaign expected in the next months, we will proceed with 
an optimization of the steering algorithm for the low up-time 
scenarios, giving proper weight to the latest measurements, 
and with the integration of IT-Yb1 in the robust architecture 
for the generation of UTC(IT): the optical clock will be used 
along with the other available steering references, namely the 
cesium fountain ITCsF2 and UTC/UTCr, in order to improve 

 
Fig. 2.  Phase offset between UTCr and the on-line OTS, for a time scale 
steered with ∆f0 only. 

reliability, stability and accuracy of UTC(IT). In particular, 
the proper combination of measurements from the 
intermittently running IT-Yb1 and ITCsF2 clocks will reduce 
the dead times and hence improve the quality of the steering 
corrections applied to the master clock, i.e., the quality of 
UTC(IT). 
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