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1. Introduction

Recent years have seen progress in the intersection of computer science and biomedicine,
progress that has led to significant advancements in healthcare diagnostics, treatment, and
patient care. The application of machine learning (ML) and computational modeling in
biomedicine is revolutionizing the way various clinical conditions are understood, diagnosed,
and treated. This Special Issue presents a collection of seven articles that showcase the latest
research and technological innovations in this interdisciplinary field. These papers highlight
new approaches and methodologies that promise to enhance medical outcomes and improve
the quality of patient care.

2. This Special Issue

This Special Issue consists of seven papers covering a few topics within a wide range
of research fields of interest.

In order to predict low bone mineral density (BMD) in older women without the
need for dual-energy X-ray absorptiometry (DXA), different ML approaches (i.e., logistic
regression, decision trees, random forests, gradient boosting trees, and lightGBM) are
used in [1]. They were assessed using the medical records of 2541 female patients. The
model with the highest accuracy (83.4%) and area under the curve (AUC = 0.961) was
the lightGBM. Three main factors that affected the prediction were age, BMI, and alanine
transaminase levels. This methodology raises the possibility of non-invasive osteoporosis
screening techniques and is consistent with related research endeavors centered around
predictive modeling in the medical field [2,3].

Addressing the variability in microbiome data, a method is proposed in [4] to improve
the generalizability of ML models for predicting different diseases, including colorectal
cancer and Crohn’s disease, as well as immunotherapy response. By integrating datasets
from multiple studies, the authors enhanced model performance, particularly with random
forest models, through strategic data combination and feature selection. This methodology
is critical in addressing the challenges of cross-study variability, as demonstrated in other
works focusing on microbiome data integration and disease prediction [5,6].

In [7], a novel computational strategy is introduced to create patient-specific statistical
reconstructions of healthy anatomical structures from computed tomography (CT) scans of
damaged structures. Focusing on hip arthroplasty, the study demonstrates significant mor-
phological differences between traditional prostheses and reconstructed healthy anatomy,
emphasizing the potential for more accurate prosthetic designs. This approach aligns with
current trends in personalized medicine and computational modeling for surgical planning
and prosthetic development [8,9].

A deep learning algorithm for detecting atrial fibrillation (AF) from ECG data is
introduced in [10]. By preprocessing ECG signals and employing a fine-tuned EfficientNet
B0 model, the method achieved an impressive F-1 score of 88.2% and an accuracy value
of 97.3%. This work underscores the growing role of artificial intelligence (AI) in cardiology,
complementing other research efforts on automated arrhythmia detection [11–13].
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Empirical mode decomposition (EMD) is used in [14] to classify Parkinson’s disease
(PD) patients based on balance control data. By extracting temporal and spectral features
from stabilometric signals, the authors achieved high classification accuracy (92%) through
using a support vector machine (SVM) classifier. This innovative approach enhances the
process for diagnosing PD, aligning with similar advances of signal processing applied to
neurodegenerative diseases [15–18].

A comprehensive review of various methodologies for analyzing EEG data to un-
derstand brain connectivity is described in [19]. The authors categorize different metrics
and emerging trends, such as high-order interactions and graph theory tools, providing
a detailed account of the current state and future directions in EEG connectivity analysis.
Functional connectivity, combined with topological indexes from graph theory, is finding
many different applications, ranging from the investigation of neuronal networks in vitro
with micro-electrode arrays [20] to the diagnosis of pathological conditions based on EEG
data [21,22]. This work complements the existing literature on brain network analysis and
connectivity [23,24].

Finally, this Special Issue also contains a review exploring the application of EEG-based
brain–machine interfaces (BMI) to assist older adults, focusing on technical and user-related
aspects [25]. The authors highlight the potential of BMIs to improve the quality of life of
elderly individuals, particularly those with cognitive impairments. This aligns with broader
research on assistive technologies and neurorehabilitation for aging populations [26]. Many
recent results on the estimation of the human will from the cortical activity measured by
EEG have been obtained [27–29] and can hopefully contribute in the future to support
healthy aging.

In summary, the seven papers featured in this Special Issue showcase a variety of
methodologies to advance computer methods in biomedicine. These methodologies range
from ML techniques [1,4,10,14] to computational modeling and signal processing [7,19].
Two papers provide comprehensive reviews, summarizing existing methodologies and
their applications in biomedicine [19,25].

3. Future Perspectives

This Special Issue, focusing on computer methods in biomedicine, describes significant
advances in the application of computational techniques to medical scenarios. However,
these studies also indicate several future directions that could be further explored:

• An important objective could be the use of enhanced ML and AI approaches to develop
more personalized models [30].

• Enhancing the interpretability of AI models could ensure that they become trusted
and fully understood by clinicians [31].

• The integration of multimodal data from multiple sources, such as data derived from
imaging, genomics, and proteomics, as well as clinical data, is another important
direction that needs to be investigated further in order to provide a comprehensive
view of patient health [32].

• Real-Time data processing is fundamental to supporting timely clinical decisions [33].
• Improving algorithms for EEG and ECG analysis is important for better capturing the

complexity of these physiological signals [34].
• Translation into clinical applications requires the resolution of technical issues related

to the difference between research settings and clinical practice [35]. Moreover, regula-
tory and ethical challenges related to the use of AI and ML in healthcare should be
carefully addressed [36].

• Most of the above issues can only be resolved by promoting collaboration between
computer scientists, biomedical researchers, and clinicians to foster innovation.

The future of computer methods in biomedicine is promising, and such methods
have the potential to revolutionize healthcare through improved data analysis, tailored
treatments, and better diagnostic tools. Advancements in ML, data integration, signal
processing, clinical implementation, and interdisciplinary collaboration will be crucial in
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driving this field forward. By addressing current limitations and exploring new frontiers,
researchers can further enhance the impact of computational methods on patient outcomes
and overall healthcare quality.

4. Conclusions

This Special Issue illustrates the potential of computer methods in biomedicine. From
enhancing diagnostic accuracy with ML to developing patient-specific treatments and un-
derstanding complex brain connectivity, these studies represent significant advancements
in the field. With the continued integration of computational tools in biomedical research,
the future holds great promise for more personalized and effective healthcare solutions.

Acknowledgments: I would like to thank all authors who contributed to this work, the reviewers for
their help in refining the papers for providing me the opportunity to serve as a Guest Editor for this
Special Issue.
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