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Abstract
Structural variants (SVs) are a class of genetic alterations that play
a crucial role in cancer development. Detecting somatic SVs is
challenging, as it requires distinguishing between germline and
somatic events and dealing with subclonal variants and the com-
presence of tumor and normal cells in patient-derived samples.
SVs callers based on single-molecule sequencing technologies have
emerged as a powerful tool in detecting SVs, thanks to the ability
of long reads to span large genomic regions, allowing the detec-
tion of more complex rearrangements. However, these tools are still
affected by low precision and/or recall, especially in determining so-
matic SVs. To overcome these limitations, we propose an ensemble
method that combines the results of three long-read variant callers
with evidence extracted from accompanying short-read alignments.
We evaluate our method on a curated truth set provided by the
Espejo Valle-Inclan benchmark and show that it can leverage the
strengths of each tool while mitigating their weaknesses to produce
a ranked list of somatic deletions, useful to prioritize downstream
analysis and experimental validation. We also provide insights into
the performance of the individual tools and discuss future directions
for the extension of our method.

CCS Concepts
• Applied computing→ Bioinformatics.
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1 Introduction
Genomic instability, alongside small somatic alterations, is consid-
ered one of the hallmarks of cancer [14]. Despite advancements in
our knowledge of their abundance and functional role, with esti-
mates of 55% of the driver events being structural variants (SVs) [4],
our ability to detect them from sequencing data is still far from the
level of confidence reached for small variants. This is due both to
biological issues and to technical limitations, mainly driven by the
fact that short-read sequencing is often not able to directly capture
these large events [18].

The need to distinguish somatic from germline variants, the
presence of subclonal variants, and the compresence of tumor cells
alongside normal ones in patients-derived samples are all issues
that have been faced while developing calling procedures for small
alterations but that are more complex to solve for structural vari-
ants [23]. This is mainly due to limits in determining breakpoints
at single base levels and in the difficulties faced when aligning
short reads to regions of the human genome harboring repetitive
elements. Such hindrances could be overcome thanks to single mol-
ecule sequencing technologies that result in longer reads (23kb [29]
vs 150/300), such as Oxford Nanopore [29] and PacBio [22].

While several efforts have been made to develop long-read align-
ers and callers for SVs [2], we are still far from having definite
gold standards such as GATK/Mutect [19] and DRAGEN [13], with
known sensitivity and well-defined, portable, reproducible, and scal-
able pipelines. Although the majority of the proposed approaches
are focused on general single-sample calling, some long-read SV
callers have been proposed for the specific task of somatic events
detection and can be divided into three main categories: callers that
only use a tumor sample, such as Sniffles2 [25] and DeBreak [3]
that have special modes to account for the low allele-frequency of
somatic events, or SHARC [26] that proposes a pipeline to filter
out germline SVs; callers like CAMPHOR [12], that compare the
SVs obtained independently from the tumor sample with those
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obtained from the normal one, to determine which events are so-
matic; and callers that use both the tumor and normal long reads
simultaneously to call somatic events, such as NanomonSV [24] and
SAVANA [7]. Methods that compare reads or SV calls from tumor
and normal tissue samples can allow for more precise differentia-
tion of somatic SVs from germline SVs without the need for deep
sequencing [2].

Another path adopted to increase the quality of the results is
the use of ensemble methods, that have been applied to small alter-
ations [11, 28], as well as to general SVs detection using long reads,
such as NextSV [10], a meta-caller that integrates three aligners and
three SV callers, and combiSV [6], that combines the results from
six SV callers into a call set with increased recall and precision.

Following these ideas, we developed an ensemble method specif-
ically designed for somatic structural variants, aiming at combining
the strengths and weaknesses of different algorithms for SVs calling
using long reads. Our approach also exploits pieces of evidence
coming from short reads, to complement those coming from the
most recent and still developing long-read technologies, and results
in a ranked list of the detected somatic events, from the ones with
most support to the least. This should ease manual examinations
of the results and experimental validation efforts. In this initial
work, we focused on deletions considering that they are the most
abundant well-defined SVs in the majority of cancers [17], and that
short-read sequencing can be efficiently exploited to complement
the rank defined with long reads. Integrative efforts such as this
will be instrumental in reaching the maturity level that we have
for small alterations for SVs, supporting future single [1, 21] and
pan-cancer efforts to define their overall landscape and functional
consequences. The scientific community will then be able to fruit-
fully integrate them into multi-omics studies.

The remainder of the paper is organized as follows. We first
describe the pipeline we have designed, the variant callers we used,
and the scripts we implemented for the ensembling, validation,
and ranking of deletions. We then present the results obtained
by running our pipeline with the Espejo Valle-Inclan benchmark,
comparing our ranked list to the provided truth set. We close with
a discussion of our approach, the performance of the variant callers,
and the future developments of our pipeline.

2 Methods
The general workflow of our approach is shown in Figure 1. It
requires a tumor-normal pair, sequenced with both long-read and
short-read technologies and aligned to the reference genome. The
aligned long-read data is used as the input for three long-read vari-
ant callers, that produce a set of VCF files. These are then combined
into a single VCF using an ensemble approach, and filtered to keep
only the deletions. Next, the resulting VCF file goes through a vali-
dation step using the aligned short-read data. Finally, the deletions
in the VCF file are ranked based on a set of scores calculated from
the calling, ensemble, and validation results.

Two software modules have been created, one containing the
source code for the scripts developed in this work and one contain-
ing the pipeline that integrates these scripts with the third-party
software used. Parameters for the custom scripts and for the third-
party tools (such as the minimum length of the SVs to call) are
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Figure 1: General workflow.
From a tumor-normal pair it generates a set of somatic deletions, ranked
according to the evidence found during the calling, ensemble and valida-
tion steps. Blue lines represent the flow of normal-sample data, red lines
represent the flow of tumor-sample data, and yellow lines that of somatic
data. Third-party software is marked with a red circle labeled 3P.

managed by the pipeline and can be customized by the user from
a configuration file. The scripts have been developed in Python,
version 3.10.4. We used pysam (version 0.22.0) and cyvcf2 [20] (ver-
sion 0.30.22) for the manipulation of BAM, FASTA and VCF files.
The pipeline has been written in Nextflow [5] version 23.04 and
nf-core [9] version 2.9, using the templates, modules and guidelines
provided by the nf-core community.

2.1 Alignment
For the alignment of Nanopore long reads to the reference genome
we used the epi2me-labs wf-alignment workflow, available at
GitHub1. This workflow uses minimap2 [16], with the -x map-ont
option to choose the Nanopore presets. We used version v0.1.3,
which ships with version 2.26-r1175 of minimap2.

For the alignment of Illumina short reads we used
BWA-MEM2 [27] version 2.2.1 with default parameters.

1https://github.com/epi2me-labs/wf-alignment
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2.2 Somatic variants calling
We used three different tools for the identification of somatic SVs in
the tumor-normal pair: NanomonSV and SAVANA which are specif-
ically designed to use both samples simultaneously, and CuteSV
which supports only one sample at a time.

NanomonSV is a somatic SV caller for ONT and PacBio data that
uses a matched tumor-normal pair. It performs a clustering proce-
dure in which the reads from the tumor sample that presumably
cover the same SV are grouped, unless apparent supporting reads in
the normal samples are found, in which case the cluster is discarded.
The remaining clusters are then refined to improve the accuracy of
the breakpoints, and validated to confirm that the putative SV seg-
ment sequence is observed in the tumor and not in the normal reads
[24]. We installed NanomonSV version 0.7.1 and ran the parse com-
mand in the normal and tumor samples independently. We then
ran the get command to obtain the somatic SVs. We included the
--use_racon option to enable the error-correction step, as advised
in the documentation, and the --min_indel_size option to set the
minimum size of the SVs. The rest of the parameters were left as
default. Finally, we filtered the results using bcftools view to keep
only the deletions with FILTER = "PASS" set.

SAVANA is a somatic SV caller for long-read data. It takes as
input long-read WGS data from a tumor and normal sample pair
and scans it to detect split reads and gapped alignments, which
are then clustered to define putative SVs. Next, it applies a ma-
chine learning-informed set of heuristics to remove false positives
arising from mapping errors and sequencing artifacts [7]. We in-
stalled SAVANA version 1.0.4 and ran it with the --length option
to set the minimum length of the SVs. The rest of the parame-
ters were left as default. SAVANA classifies somatic variants using
a random-forest classifier, trained on a range of somatic Oxford
Nanopore data labeled with true somatic variants (as determined
by supporting Illumina data). During the evaluation of the results,
we found that this classifier is too stringent and filters out some
true SVs. Therefore we also considered the unclassified output of
SAVANA and then filtered it using bcftools view to keep only
the deletions with TUMOUR_SUPPORT>=3, NORMAL_SUPPORT<=1 and
ORIGIN_STARTS_STD_DEV<150. We end up with two distinct VCF

files, that we name SAVANA-classified and SAVANA-filtered. Their
use will be explained in subsection 2.3.

CuteSV is a sensitive, fast, and scalable long-read-based SV detec-
tion approach that uses tailored methods to collect the signatures
of various types of SVs and employs a clustering-and-refinement
method to implement sensitive SV detection [15]. We installed
CuteSV version 2.0.3 and ran it independently for the normal
and tumor samples, using as parameters --genotype, --min_size,
--max_size 1500000 and --min_support 2. We then ran a custom
script that compares each SV in the tumor sample against SVs of
the same type in the normal sample located within the same contig.
If no overlapping SV is found in the normal sample, the SV from
the tumor sample is considered somatic. Two SVs are considered to
be overlapping if at least 75% of their sequence overlap. We call the
resulting procedure CuteSV-sub.

2.3 Ensemble of long-read variant callers
Ensembling is performed using a custom script that takes as input
two VCF files to produce a new one. For each deletion in the first
VCF file, we search for overlapping deletions in the second one. If
an overlapping deletion is found, we save its characteristics in the
first VCF, using the custom information fields described in Table 1.
If multiple deletions from the second VCF file overlap with the
same deletion from the first one, we consider only the one with the
highest overlap. The overlap criteria is the same as the one used in
the CuteSV-sub tool.

Table 1: Custom information fields for ensemble

Field name Description
<CALLER>_ID Unique identifier of the variant
<CALLER>_POS Position of the variant
<CALLER>_LEN Length of the variant
<CALLER>_TUMOR No. of supporting reads in tumor sample
<CALLER>_NORMAL No. of supporting reads in normal sample
<CALLER>_INDEX Index indicating the level of overlap

The script gives the possibility to keep only the deletions found
by the first tool, with eventual overlaps (validation mode), or to keep
the deletions found by either one of the two tools (union mode).

DEL

For small deletions, the short reads are aligned with a gap

Short reads spanning 
the DEL identified 
with long reads

Reference Genome

Sample with deletion

(a)

Short reads spanning 
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with long reads

DEL
Reference Genome

Sample with deletion

For large 
deletions, the 
short reads are 
aligned with 
soft-clipping

The soft-clipped sequence can be remapped 
at the other BP, resembling a gapped alignment

(b)

Figure 2: (a) Short deletion resulting in gapped alignment. (b) Long deletion resulting in soft-clipping.
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Mapping the short paired-end reads to the genome results in 

an increase in their insert size equal to the length of the DEL
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The increase in insert size produced by a short DEL makes it
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considering the variable nature of the insert size within a sample
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Figure 3: (a) Increase in insert size. (b) Short deletion results in no significant increase.

We start with the output of NanomonSV and SAVANA-classified
as these are the tools specifically designed for somatic detection,
using the tool in union mode. We then add the output of CuteSV-sub
to the ensemble, using the tool in validation mode. This is because
CuteSV is not a somatic caller, so deletions found only with the
custom subtraction procedure are not as reliable as those found
by other tools that use the tumor-normal pair simultaneously [24].
Similarly, we add the output of SAVANA-filtered to the ensemble,
again in validation mode. The filtered method is not as stringent
as the classified one, so we consider the deletions found only by
SAVANA-filtered as less reliable. At the end of this procedure, we
obtain a VCF file with the deletions found either by NanomonSV ,
SAVANA-classified, or both, validated with the deletions found by
CuteSV-sub and SAVANA-filtered.

2.4 Validation using short reads
For samples that have been sequenced using short-read technolo-
gies, like Illumina, we can use the .bam alignment files to extract
evidence that supports the deletions found by the long-read vari-
ant callers. Supporting evidence in the tumor sample increases the
confidence that the deletion is real and somatic while supporting
evidence in the normal sample decreases it.

We devised two methods, one based on gaps and soft-clipped
bases and another on the insert size of paired-end reads. We applied
them independently to each deletion in the VCF file resulting from
the ensemble step, to obtain a new VCF with additional custom
information fields, the most relevant described in Table 2. The two
methods are described in the following subsections.

Table 2: Custom information fields for short-read validation

Field name Description Acronym
NUM_GAP_READS No. of reads with gap NGR
AVG_GAP_SIM Avg. gap similarity AGS
NUM_SC_READS_<BP> No. of reads with S.C. NSR<BP>
AVG_AL_SCORE_<BP> Avg. alignment score of S.C. bases AAS<BP>
AVG_GAP_SIM_SC_<BP> Avg. reconstructed gap similarity AGS<BP>
NUM_PE_PASS_READS No. of pairs with valid insert size NPR
<BP> is either LEFT (L) or RIGHT (R), indicating the breakpoint.
S.C. stands for soft-clipping or soft-clipped.

2.4.1 Evidence from gaps and soft-clipped bases. When mapping
short reads coming from a sample that contains a deletion, some
of the short reads spanning the deletion will be mapped to the
reference genome with a gap if the deletion is short enough, or
at one of the two breakpoints, with a soft-clipped part, for longer
deletions (Figure 2).

We extract (among other metrics) the number of reads with a
gap in the same location as the deletion and the average similarity
of such gaps with the deletion’s position and length.

For the soft-clipped reads, we observe that the soft-clipped bases
should match the sequence on the other side of the other breakpoint,
and as can be seen in Figure 2b, remapping these bases results in
an alignment resembling that with a gap. We extract the number
of reads with soft-clipped bases, the average score of realigning
the soft-clipped bases (obtained with a standard pairwise aligner),
and the average similarity of the resulting gaps with the deletion’s
position and length.

2.4.2 Evidence from insert size variation. This method leverages
the expected insert size and is applicable for cases where the short
reads are paired-end. When aligning short reads from a sample
that contains a deletion, some pairs will map around the deletion,
resulting in a larger-than-usual insert size. The increase in insert
size should correspond to the length of the deletion (Figure 3a).

As the method relies on the expected insert size, which is not
the same for all pairs, we take into consideration its distribution
within the sample. We use the samtools stat command to ob-
tain the insert size average and standard deviation values. Only
deletions that are longer than the average insert size plus three
times the standard deviation are considered for this method, as
shorter deletions would not result in a significant increase in insert
size to be distinguishable (Figure 3b). For each deletion passing the
length criteria, we get the pairs that map around it and adjust their
insert size by subtracting the length of the deletion. We consider
supporting pairs those whose adjusted insert size falls within 2
standard deviations of the average expected value.

2.5 Ranking of deletions
We use the VCF file augmented with the information from the
ensemble and short-read validation steps to calculate a set of score
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values for each deletion as indicated in the following list, and obtain
a final score by tallying the evidence for and against the deletion
(plus and minus signs respectively):
+ The support value from each of the SV callers that found the
deletion. For NanomonSV and SAVANA we calculate it by sub-
tracting the number of long reads supporting the deletion in the
tumor sample from those supporting it in the normal sample. For
CuteSV-sub, we use the support in the tumor sample.

+ Overlapping index calculated during the ensemble step, which is
a measure of how much two variant callers agree on the length
and location of each deletion.

+ Unified gap and soft-clipping evidence from the short-read vali-
dation step in the tumor sample. We calculate a single gap score
for each deletion and two soft-clipping scores, one for each break-
point, that are added together, as described in Equation (1).

- Unified gap and soft-clipping evidence in the normal sample
(calculated as described for the tumor sample).

+ Insert-size evidence from the short-read validation step in the
tumor sample. We use the number of read pairs that have passed
the insert-size validation check described in the previous section.

- Insert-size evidence in the normal sample (calculated as described
for the tumor sample).

𝑢𝑛𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 = 𝑔𝑎𝑝_𝑠𝑐𝑜𝑟𝑒 + 𝑠𝑐_𝑠𝑐𝑜𝑟𝑒_𝑙 + 𝑠𝑐_𝑠𝑐𝑜𝑟𝑒_𝑟
𝑔𝑎𝑝_𝑠𝑐𝑜𝑟𝑒 = 𝑁𝐺𝑅 ×𝐴𝐺𝑆

𝑠𝑐_𝑠𝑐𝑜𝑟𝑒_𝑙 = 𝑁𝑆𝑅𝐿 ×𝐴𝐴𝑆𝐿 ×𝐴𝐺𝑆𝐿 (1)
𝑠𝑐_𝑠𝑐𝑜𝑟𝑒_𝑟 = 𝑁𝑆𝑅𝑅 ×𝐴𝐴𝑆𝑅 ×𝐴𝐺𝑆𝑅︸                        ︷︷                        ︸

Refer to Table 2 for the meaning of these acronyms

Finally, we normalize each of the calculated score values, re-
moving outliers and scaling them to a range between 0 and 1. We
then add these normalized values to obtain the final score of each
deletion. The deletions are then sorted, with the highest-ranking
deletions being the most likely somatic events.

3 Results
To evaluate the efficacy of our pipeline we used the
Espejo Valle-Inclan benchmark and compared the results with
the truth set provided by the authors, consisting of a curated set
of somatic SVs obtained from a paired melanoma and normal
lymphoblastoid COLO829 cell line, using four different sequencing
technologies, four tools for SV calling and three experimental
validation methods [8].

Besides the truth set, the benchmark provides .bam align-
ment files for the Nanopore and Illumina samples obtained with
NGMLR and BWA-MEM, respectively. However the NanomonSV
and SAVANA callers prefer the output of minimap2, so we have re-
run the alignment step for the ONT reads. The Illumina alignments
were used as is. During the analysis of results, we have also used
intermediate raw VCF files provided by the benchmark, with the
deletions detected by individual variant callers. We configured the
pipeline to run with a minimum SV length of 30 BP, and to use
GRCh37 as reference genome, to match the choices made in the
Espejo Valle-Inclan benchmark.
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Figure 4: Results for the Espejo Valle-Inclan benchmark.
From bottom to top: Upset plot with intersections between the tools and the
truth set. Swarm plot with the ranking score of each deletion, by intersection
subset. Swarm plot with the length of each deletion, by intersection subset.
The three plots are colored to represent: true positives (green), false positives
(blue), and false negatives (red). False positives with a score higher than the
lowest ranking true positive are labeled, as well as the false negatives.

3.1 Obtained deletions
Figure 4 summarizes the results of our pipeline for the
Espejo Valle-Inclan benchmark. The Upset plot shows the intersec-
tions between the tools and the truth set. We highlight NanomonSV
and SAVANA as these are the tools that are used in union mode. The
two swarm plots show the length and ranking score for each of
the deletions in the data, organized by intersection subset. We use
green to represent true positives (deletions in the truth set found
by the pipeline), blue for false positives (deletions not in the truth
set found by the pipeline) and red for false negatives (deletions in
the truth set not found by the pipeline).

True positives. Out of the 38 deletions in the truth set, the pipeline
found 35. 15 of them are common to all methods, 13 to all except
CuteSV-sub, 4 to all except SAVANA, 1 to all except NanomonSV ,
and 2 were missing in two or more of the tools. The ranking score
of these deletions falls in the range of 0.33 to 1, and their length
ranges from 30 BP (minimum set in the configuration) to 73 KBP.
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False positives. There is a total of 71 deletions found by the pipeline
that are not in the truth set. However, 39 of these deletions are found
only by NanomonSV , 27 by NanomonSV and SAVANA-filtered, 1 by
NanomonSV and CuteSV , and 1 by SAVANA, leading to a ranking
score lower than the threshold set by the lowest ranking true posi-
tive, of 0.33. Interestingly, the deletions in these four subsets are
short, most of them being under 100 BP.

We focus our attention on the three remaining false positives,
that have a score higher than 0.33. DEL-32 and DEL-37 are 32 and 31
BP long, respectively, and are found by NanomonSV with very good
support. Additionally, they are supported by the gap/soft-clipping
method. A manual visual inspection using IGV shows that there is
support for the deletions in both long and short reads. Finally, from
verification of raw VCF files from the benchmark, we have found
that the deletions are present, with a length of 29, which points to
the deletions being filtered out by some of the tools and from the
final truth set due to their length.

DEL-34 on the other hand is 53,090 BP long and was found
by SAVANA and CuteSV-sub with medium read support. Visual
inspection with IGV shows that in the tumor sample, there are no
reads mapped in the region, for both short and long reads, and in the
long reads there is evidence of soft-clipping around the breakpoints.
In the normal sample, there is a decrease in coverage in the region
and there is evidence of soft-clipping around the breakpoints. By
examining the raw VCF files from the benchmark, we have found
that a nearby deletion is detected on both the tumor and normal
samples and therefore it is probably filtered out as a germline event.

False negatives. Three of the deletions in the truth set were
not found by our pipeline, as they were not reported by either
NanomonSV or SAVANA-classified. We have run the short valida-
tion step for these deletions using their description obtained from
the benchmark and these results are also reported in Figure 4.

MISS-1 (truthset_13 in the benchmark) is 71,459 BP long. The
benchmark reports that it was found only in the Illumina reads
and validated by PCR and Capture probes. From our results, it is
detected only by SAVANA-filtered and the gap/soft-clipping method,
with low support. Visual inspection does not reveal much as there
is no obvious evidence of a deletion in the region.

MISS-2 (truthset_41) is 2,732,608 BP long and in the benchmark
it was found and validated by the same methods as MISS-1. From
our results, only the gap/soft-clipping method detects it, with very
low support. SAVANA reports a BND event at the same position
(C]10:33386465]), that has a BND mate at another chromosome
(C]1:87337010]), indicating a more complex rearrangement.

MISS-3 (truthset_62) is 49 BP long. The benchmark reports that
it was found in the ONT and PacBio reads and validated only by
PCR. From our results, it is not detected by any of the tools, but
CuteSV-sub reports a deletion of 36 BP in the proximity of MISS-3
(70 BP apart) with very good support. From visual inspection with
IGV, there is very good evidence in the tumor long reads of the
deletion found by CuteSV-sub (reads with gapped alignment). In the
normal sample, there is evidence of a smaller deletion in the region,
which may have caused the other tools to not call the larger deletion
as somatic. Indeed, in the benchmark the deletion is annotated as
clear depth change, nested with a germline deletion.

3.2 Performance of individual tools
Figure 5 shows the ranking score against the support given by each
tool, colorized to distinguish between true and false positives, and
sized to represent the length of the deletion.

NanomonSV is the tool that produces more false positives (69
in total), but it is also the tool that supports more true positives,
missing only one. Most of the false positives are small deletions,
with less than 10 supporting reads. The true positives vary in length,
most of them having more than 10 supporting reads. DEL-13 (truth-
set_50 in the benchmark), the true positive that NanomonSV misses
is 56 BP long and has good support from the other tools (over 40
reads). From visual inspection with IGV, there is very clear evi-
dence of the deletion being somatic and present in both long and
short reads. Interestingly, this deletion together with truthset_37
(which SAVANA-classified misses) are the only ones reported as
NOT VALIDATED in the truth set. These two deletions were not
validated by any targeted assay but were supported by multiple
technologies and manually verified from raw sequencing data [8].

To visualize the behavior of the two SAVANA outputs, the plot
utilizes two different markers and color shades. SAVANA-classified
is more stringent in its output, and although it only reports two
false positives, it misses six true positives. Adding the output from
SAVANA-filtered to the ensemble step (in validation mode) recovers
the six true positives, but also adds 27 false positives that intersect
with those by NanomonSV to form a cluster of small deletions with
low support and ranking score close to the threshold. Regarding
the six deletions that SAVANA-classified misses (DEL-<02, 07, 08,
19, 35, 38>, truthset_<17, 37, 68, 47, 32, 42> in the benchmark), all
of them are filtered by the classifier as likely noise, including the
first four in the list which have good support (32, 27, 35, 15 reads
respectively). Visual inspection with IGV reveals that at least for
these four deletions, there is very good evidence of them being
somatic and present in both long and short reads.

CuteSV-sub produces only two false positives (when used in
validation mode), but it is the tool that misses more true positives
found by all other tools. This suggests that the subtraction process
is too stringent, but in any case useful to increase the confidence in
the deletions that it does report.

For the short validation step, we have used two markers to differ-
entiate between the two methods used. The insert size approach re-
ports no false positives, partially because the method is not applied
for small deletions, and most of the false positives (that originate
from NanomonSV ) are small events. It reports support for all true
positives that are large enough for the method to be applicable, with
very good support, thanks to the high sequencing depth of the short
reads in the tumor sample (mean depth of 97). The gap/soft-clipping
method reports only two false positives with considerable support,
and as discussed before these two events are likely somatic deletions
filtered due to their size (DEL-32, DEL-37 ). It misses four true posi-
tives, but for three of these, the insert-size method reports support.
This results in an overall short-validation process that leverages the
strengths of both methods and provides a very low false positive
rate with very good support for true positives.

In table 3 we report a summary of the described results for
the somatic SV callers, NanomonSV and SAVANA-classified, and
the ensemble pipeline. Besides the threshold-based approach, that
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Figure 5: Individual tools results for the Espejo Valle-Inclan benchmark.
Ranking score vs supporting reads, for each tool. In green tones, the true positives; in blue tones, the false positives. A dashed line indicates the threshold of
0.33. The size of the markers is proportional to the log of the deletion length. For SAVANA, two marker styles are used to differentiate between deletions found
by SAVANA-classified and SAVANA-filtered. Similarly for the short-validation plot, to differentiate between the gap/soft-clipping and Insert size methods.

has the drawback of working only for evaluation w.r.t. a truth set,
we also present results for a more general rule-based approach
that considers a deletion as somatic only if it is supported by at
least three of the tools, and at least one of them is NanomonSV or
SAVANA-classified. This rule-based approach results in an increased
precision at the cost of a decreased recall when compared to the
threshold-based method.

Table 3: Performance metrics for the somatic SV tools and
the ensemble pipeline

Method Total TP FP FN Precis. Recall
NanomonSV 103 34 69 4 0.33 0.89
SAVANA-classified 31 29 2 9 0.93 0.76
Ensemble (thold) 38 35 3 3 0.92 0.92
Ensemble (rule) 34 34 0 4 1.00 0.89

4 Discussion and Future Works
We have presented our ensemble approach to detect and rank so-
matic deletions from long reads, supported by evidence in short
reads. We have shown that our method can detect and rank somatic
deletions with high precision and recall, in agreement with the
Espejo Valle-Inclan benchmark results, even if using only two tech-
nologies, ONT and Illumina. We have also shown that the ensemble
approach can compensate for the weaknesses of the individual tools
and that the ranking order can be used to prioritize the events and
distinguish between true and false positives.

Besides the functional pipeline, our work has also discussed the
strengths and weaknesses of the individual tools.NanomonSV is the
tool that reported most of the true positives, but it also has a high
number of false positives, that could nonetheless be real somatic
events that have been filtered by other tools and the truth set
due to their small size. SAVANA has demonstrated some weakness
with its classifier mode, which misses real events; this issue can be
mitigated with the careful usage of its legacy mode, filtering the raw
breakpoints output. CuteSV , even though is not a somatic variant
caller, can be used with the subtraction approach as a reinforcement

method for the outputs of the somatic variant callers. We have
also shown that our short-validationmethods, gap/soft-clipping and
insert-size, compensate each other to support deletions of different
sizes, resulting in a reliable approach to validate the events detected
by the long-read variant callers.

Even though our pipeline is functional and our approach has
shown promising results, there are still some improvements that
we can implement. We should perform more testing with different
benchmarks, to improve the characterization and tuning of the
individual variant callers and the ensemble, validation and ranking
methods. This however is not trivial, as benchmarks for somatic
structural variants with tumor-normal pairs and availability of long
and short reads are scarce.

Separating true from false positives is a crucial step in the anal-
ysis of SVs. In our approach, we have used the rank to prioritize
the events, and we have set a threshold value based on the truth
set. This approach needs to be improved to support the analysis of
real data, where the truth set is not available. A possible strategy
lies in the identification of the intersection of tools that provides
a high confidence in precision and recall, taking into account the
performance of each tool. For now we have briefly introduced a
simple rule-based approach, that needs to be refined with the results
obtained from more extensive benchmarking.

Currently, our approach is focused on deletions, but to transform
it into a complete tool for somatic SVs ensemble and ranking, we
need to extend it to support other types of SVs, such as insertions.
Unfortunately, insertions are harder to characterize than deletions
as there is less agreement between SVs callers, and they are harder
to validate using short-read approaches [18]. Additionally, there
is less benchmarking information for insertions; for instance, the
Espejo Valle-Inclan truth set only contains three of them.

We have shown that our ensemble approach can produce a high-
quality ranked list of somatic deletions, thanks to the exploitation
of long and short-read sequencing technologies and the use of mul-
tiple variant callers. The ranking is useful for downstream analysis
and the experimental validation of events, allowing the user to
focus on the most promising candidates. The comparison of our
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ranked list with the output of other tools should help in determining
the strengths and weaknesses of each of them, giving insights into
how to proceed with further refinements of the calling algorithms.
Ideally, the same procedure could be carried out for PacBio sequenc-
ing data, to determine if also different technologies matter in the
quality of the resulting calls and pointing at the calling algorithms
best suited for each one.
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