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Abstract: Remote Sensing (RS) and Geographic Information Science (GIS) techniques are powerful
tools for spatial data collection, analysis, management, and digitization within cultural heritage
frameworks. Despite their capabilities, challenges remain in automating data semantic classification
for conservation purposes. To address this, leveraging airborne Light Detection And Ranging
(LiDAR) point clouds, complex spatial analyses, and automated data structuring is crucial for
supporting heritage preservation and knowledge processes. In this context, the present contribution
investigates the latest Artificial Intelligence (AI) technologies for automating existing LiDAR data
structuring, focusing on the case study of Sardinia coastlines. Moreover, the study preliminary
addresses automation challenges in the perspective of historical defensive landscapes mapping.
Since historical defensive architectures and landscapes are characterized by several challenging
complexities—including their association with dark periods in recent history and chronological
stratification—their digitization and preservation are highly multidisciplinary issues. This research
aims to improve data structuring automation in these large heritage contexts with a multiscale
approach by applying Machine Learning (ML) techniques to low-scale 3D Airborne Laser Scanning
(ALS) point clouds. The study thus develops a predictive Deep Learning Model (DLM) for the
semantic segmentation of sparse point clouds (<10 pts/m2), adaptable to large landscape heritage
contexts and heterogeneous data scales. Additionally, a preliminary investigation into object-detection
methods has been conducted to map specific fortification artifacts efficiently.

Keywords: machine learning; airborne LiDAR; point clouds; semantic segmentation; object-detection;
historical defensive heritage; coastal landscapes

1. Introduction

Since the conservation of landscape and built heritage is a well-known global issue [1],
the frameworks for documenting and digitizing Cultural Heritage (CH), though extensively
discussed, remain crucial [2]. The necessities and questions of these specific research frame-
works are thus increasingly leading to developing and addressing new methodological
strategies for enhancing mapping processes of widespread CH. In this sense, the proposed
contribution applies Machine Learning (ML) methodologies to support documentation in
extended heritage contexts. The historical defensive heritage conservation theme is increas-
ingly important nowadays, as from the 12th century, territorial defense has been a primary
concern throughout history [3]. Since military offensive technologies have continuously
evolved over the centuries, the defensive systems have been characterized by a parallel
and constant adaptation to address the territory fortification. In fact, the focus on territorial
defense has led to the development of a complex, rich, and stratified landscape whose
preservation is crucial for its historical, social, and anthropogenic significance [4]. Given
the memory of tragic events and the chronotypological stratification of diverse elements,
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the identification of these architectures is highly significant. In fact, these structures are
increasingly oriented toward touristic and economic exploitation.

Within the disciplinary framework, the notion of military archaeology [5] arises from
the need to conduct investigations beyond merely mapping individual artifacts. Under-
standing the continuously evolving relationships between these heterogeneous heritage
assets and their context (Figure 1) is a crucial issue [4]. For this reason, documenting activi-
ties are requested to provide sufficiently accurate and extended data to support complex
CH analyses and investigations.

 

Figure 1. Defensive heritage artifacts. Capo Boi tower, Sinnai—Cagliari (a). Sant’Ignazio fortress,
Calamosca—Cagliari (b). Position no. 5 of Stronghold V, Porto Ferro—Alghero (c). Position no. 2
(hypothesis) of Stronghold XI, Alghero (d).

Integrating remotely sensed data for documentation workflows is increasingly es-
sential in such a widespread and complex heritage [6]. In this sense, satellite imagery,
airborne Light Detection And Ranging (LiDAR), and digital photogrammetry techniques
influenced the built and landscape heritage domain. These represent an alternative to or a
supplement for ground-based 3D metric survey approaches, where the study is conducted
with a multi-scale approach [7]. Specifically, Airborne Laser Scanning (ALS) data are con-
sidered significantly valuable for many specific applications. In fact, in recent decades,
the development of Airborne LiDAR technology has provided significant advancements
for echo information and extension coverage. Furthermore, technologies nowadays allow
densities up to 100 points/m2, depending on the Above-Ground Level (AGL), flight speed,
and scanner type [8]. In this framework, Unmanned Aerial System (UAS) LiDAR solutions
could provide ultra-high-scale data that reach 800 points/m2 [9].

However, it is worth mentioning that existing airborne datasets do not easily reach
average densities higher than 10 points per square meter when the final results are carto-
graphical products at a standard regional scale (usually 1:10,000/1:5000). In fact, providing
low-resolution airborne LiDAR surveys is often sufficient for generating altimetric and
geometric information through Digital Elevation Models (DEMs). These models can be
exploited for cartographical, geomorphological, hydraulic, and general engineering appli-
cations, as well as for creating orthoimages [10]. Although such data are generally used for
standard applications, dense elevation models and LiDAR/photogrammetric primary data
are particularly valuable in the context of built and landscape heritage preservation strate-
gies. This is especially true at a territorial scale, which concerns large areas characterized
by a high number of artifacts.

Given an overall framework, the research aims have been addressed starting from two
primary considerations:

• Is it possible to provide efficient and automatic data structuring pipelines for existing
regional low-scale datasets even though they have not been acquired for heritage
documentation and detection purposes?

• Is it possible to enrich semantically unstructured 3D datasets through ML techniques
in the context of widespread heritage?

Starting from these specific yet significantly complex questions, the present contribution
has been developed to address 3D data structuring and semantic content enhancement
related to widespread heritage conservation processes. This article explores the solutions
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offered by Remote Sensing (RS) and Deep Learning (DL) techniques and their application
for data acquisition and structuring [11]. In this sense, the research gaps that the proposed
contribution addresses are related to the provision of efficient data structuring methodologies
for heritage contexts. Specifically, one of the objectives is to leverage the existing low-scale
ALS datasets to train a predictive Deep Learning Model (DLM) for semantic segmentation.
In this sense, the focus is to provide a data structuring method that is adaptable to large
heritage contexts where chronological stratification generates a complex landscape context.

The proposed research represents an applied development of a previous study that
began with analyzing and examining high-resolution DEMs and geomorphological clas-
sification methodologies for the landscape and archaeological heritage context in Como,
Italy [12]. The initial study focused on the ground-level identification of anthropic shape fea-
tures using ML techniques, leveraging Digital Terrain Models (DTMs) and geomorphologi-
cal raster analyses obtained from a helicopter LiDAR survey. Building on this, a subsequent
study [13] extended the approach to a comprehensive user-oriented ML methodology for
airborne point clouds and geomorphological analysis classification. Specifically, this second
study provided an exhaustive comparison between supervised DLM and unsupervised
geometric filters for macro-class point cloud segmentation (point cloud density: 75 pts/m2).
Moreover, the research also integrated several composite geomorphological layers for an
Object-Based Image Analysis (OBIA) using Machine Learning Classifiers (MLCs).

This article aims to fill the gap of a transferable methodological approach that varies
by primary data density, addressing low-density applications. Furthermore, in addition to
the continuous development of tailored methods for structuring 3D data in specific heritage
contexts, it is possible to forward the investigation of DL object-detection methods applied
to the identification of artifacts related to historical defensive heritage.

Finally, it is essential to underline that the research investigates accessible and easy-to-
use solutions via Graphical User Interfaces (GUIs), such as the Esri Python Environment
and Anaconda. This novel approach aims to discuss and develop the main issues of
geomatics methodologies related to the CH framework, such as mapping automation
enhancement and technological accessibility for heritage domain experts.

1.1. Research Background and Related Works
1.1.1. Heritage Research Framework

In this context, the island of Sardinia (Italy) represents a significant example of territo-
rial defense development over time. From the 12th century to the 20th century, Sardinian
fortification has been directed towards constructing and improving its defensive structure,
especially along the coastal strips. However, despite the severe risk of obliteration of these
artifacts, there are no established documentation and conservation plans [3], as well as
consolidated methodologies for the recognition and mapping of the multiple historical
defensive systems. It is thus important to underline the plurality of architectural systems
that have been built and developed over the centuries. However, in this contribution,
a particular focus has been given to two different systems. The coastal tower systems
that have been commissioned by the Spanish Crown (16th–19th centuries) and the coastal
defensive containment arch of World War II (1939–1943).

Concerning the coastal tower system, starting from the 16th century, the Spanish Crown
has been particularly committed to the construction of coastal towers and bastions to be
protected against Saracen raids. Active until their dissolution in the 19th century, the Spanish
administration maintained an integrated defense network of fixed towers and mobile units.

Furthermore, concerning the WWII coastal containment arch, particular attention
has been given to the construction of concrete pillbox bunkers and strongholds as part
of a system designed for the most vulnerable coastal urban centers of Sardinia. These
architectures are referred to as “difficult heritage” since they have been neglected for a
long time due to their association with war traumatic events [14]. Moreover, it should
be underlined that after losing their defensive function, some of these artifacts have been



Heritage 2024, 7 5524

completely obliterated, while the remaining “modern ruins” are awaiting appropriate
documentation, preservation, and possibly reuse processes.

These defensive heritage systems have been locally studied from historical and land-
scape perspectives, while a more comprehensive census is missing. Consequently, the
present contribution focuses on a mapping automation approach development from a
knowledge base of specific domain datasets related to localized censuses produced by
University of Cagliari research groups [3] and authors [15].

1.1.2. Integration of Passive and Active Sensors for Landscape Context Mapping
and Documentation

As briefly introduced, in recent decades, RS and ML technologies have significantly
advanced the field of CH documentation [16,17]. The integration of these technologies allows
for detailed, efficient, and non-invasive methods of recording and analyzing CH sites [11].
This section provides an overview of the state-of-the-art in RS and ML as they apply to
the CH domain. Since sensed data have revolutionized data acquisition by offering both
far-distance and close-range approaches, methods can be categorized into passive and active
technologies, which could also be described as spaceborne, airborne, and terrestrial [18]. So
on, spaceborne multi-spectral imagery and airborne LiDAR scanning systems will be focused
on the perspective of multi-sensor data acquisition for large heritage contexts.

In recent decades, spaceborne and airborne imagery techniques have been interested
in the advent of multispectral and hyperspectral imaging [19]. In this context, several
applications have been developed for the CH domain to detect land or subsurface features
and monitor site conditions at a landscape scale. For example, [20] has applied multispec-
tral imagery enhancement and analysis to investigate potential buried structures in the
medieval monastic settlement of San Vincenzo al Volturno, Italy. Furthermore, the potential
for data fusion between point clouds and multispectral UAS photogrammetry has been
demonstrated in [21]. Specifically, the integration of Mobile Mapping System (MMS) data
and multispectral imagery has allowed for an extended and comprehensive mapping and
understanding of military heritage.

Following this multi-sensory approach, active RS technologies, including Terrestrial
Laser Scanning (TLS), MMS, and airborne LiDAR, have become essential tools in CH
domain study. In fact, multi-sensory and multi-scale acquisition methodologies have been
particularly adopted in heritage documentation processes, as in [22]. Airborne LiDAR,
in particular, has shown great potential in densely vegetated extended areas where other
survey methods are less effective [18]. Such systems can penetrate forest canopies to reveal
underlying archaeological or landscape features [23], making them an invaluable tool for
extended CH sites’ mapping, study, and analysis [11]. For instance, in [24], ALS data
in several heritage case studies have been conducted and analyzed, demonstrating the
airborne LiDAR capabilities in specific heritage contexts, specifically mapping unknown
features and detecting landforms in dense woodland areas. Among others, Golden et al. [25]
collected 331 km2 of high-resolution airborne LiDAR data, demonstrating ALS point clouds
to be suitable for extended heritage contexts, such as the detection of unmapped rural
Centro-American heritage artifacts and infrastructures.

Moreover, it is worth mentioning that Unmanned Aerial Systems (UAS) equipped
with LiDAR and photogrammetric sensors offer flexible and high-resolution data acqui-
sition capabilities [26], enhancing the documentation of both large and small sites. An
instance of this is represented by the work of Mazzacca et al. [27], where a UAS LiDAR
system was used to detect ground-level archaeological features in a densely vegetated area
using point cloud ML approaches. Furthermore, these systems have proven particularly
effective in dense urban areas, as described in [9], where a VHR (Very-High resolution)
point cloud was used to generate a semantic segmentation benchmark dataset for urban
contexts. However, it should be underlined that one of the critical challenges in using
airborne LiDAR data derives from interpolation processing to generate accurate DEMs.
In [28], the spatial accuracy of raster interpolation techniques is evaluated, demonstrating
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how the density and context of input data affect the accuracy of interpolation. Moreover,
in [29], it is underlined how interpolation techniques directly impact the utility of the data
for archaeological analysis. Furthermore, the recent advancements in full-waveform Li-
DAR [30] and improved classification algorithms have enhanced the pulse return accuracy,
facilitating better analysis of micro-topographic features [31].

1.1.3. Semantic Enrichment and Structuring: Data Fusion and ML Approaches for Point
Cloud Segmentation and Object Detection

In the framework of semantic enrichment, the classification and segmentation of 3D
data have been proven to be crucial aspects of the RS technique. Furthermore, it should
be underlined that a multi-sensor data fusion approach leads to the generation of more
comprehensive and informative datasets in CH contexts [32].

Furthermore, innovations in data processing and analysis, such as the development
of multiple spectral indices [33] and machine learning algorithms [34], have improved
the efficiency and effectiveness of these techniques. These advancements allow for better
visualization and interpretation of the data, facilitating the identification of features crucial
for 3D data structuring in the CH research framework [18].

The application of ML and DL techniques in analyzing remotely sensed data has
opened new avenues for the analysis and interpretation of CH sites. The classification and
segmentation of point clouds are essential for generating semantic content and extracting
meaningful information from unstructured data [35].

In this context, semantic segmentation involves dividing a point cloud into meaningful
parts or objects, a critical step in automated analysis. Several methods, such as clustering
and unsupervised filters [36], rely on geometric properties, but ML approaches use data-
derived features [37] to improve performance accuracy. Techniques such as supervised
learning, where algorithms are trained on labeled datasets, have shown great promise in
accurately classifying and segmenting point clouds or mesh [38].

Moreover, DL algorithms, specifically artificial Neural Networks (NNs), are increas-
ingly used for object detection and semantic labeling in several application fields [39].
These techniques, being applied both on 2D and 3D data [37], allow for the automated
identification of particular elements, artifacts, and other features, enhancing the efficiency
of the automatic identification process. However, it is essential to note that point cloud
object detection is predominantly developed for applications in autonomous driving and
indoor modeling [40,41]. Therefore, most of the benchmark datasets, such as KITTI [42] and
H3D [43], have been designed and generated for these purposes, consisting of tens of thou-
sands of labels, making them less directly applicable to heritage contexts without significant
adaptation [44]. In this framework, deep NNs that exploit LiDAR data can be divided into
three main categories, relating to the point cloud representation. Projection-based methods
apply 2D Convolutional Neural Networks (CNNs) on a 2D projection of the point cloud,
such as MV3D and Scanet [45,46]. Voxel-based methods [47,48] are designed to structure
the disordered point clouds into a 3D voxel structure, forming multiple bird’s eye view
(BEV) feature maps, where 2D CNNs are applied. Point-set methods extract point-wise
features from the unstructured point clouds by neighbor cluster aggregation [49,50].

Finally, the integration of RS and ML segmentation approaches thus leads to significant
advancements in processing automation for large CH contexts, providing powerful tools for
preserving and understanding heritage. However, concerning point cloud deep learning
object-detection methodologies for heritage mapping, it is worth mentioning that these
represent an unexplored domain. Furthermore, the correlation of geometries in spatial
unstructured data with semantic ontologies plays a significant role in structuring 3D data
in heritage contexts, as highlighted in [51].

In this context, while heritage-tailored mapping and digitization methodologies have
been widely discussed, the challenges and issues related to adaptable ML approaches for
unstructured 3D data semantic segmentation are still discussed and not consolidated. For
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this reason, the present research focuses on the training and application of a transferable
DL predictive model for extended landscape contexts.

This manuscript is organized as follows: in Section 2, Materials and Methods, Section 2.1
describes the case studies and the primary open data from the Sardinia Region, while
Sections 2.2.1 and 2.2.2 present the methodologic approach to ML classification and object-
detection pipelines. Section 3 describes and discusses the issue concerning data preparation
for trained DLM and the results of the DLM itself. Conclusions and future perspectives
follow in Section 4.

2. Materials and Methods

The present contribution thus explores data fusion techniques and innovative ML
approaches for the semantic structuring of existing low-scale point cloud data. Therefore,
the semantic structuring of 3D data should be intended as part of an integrated methodol-
ogy that addresses the mapping and detection of historical defensive artifacts in extended
landscape heritage contexts. Despite Section 1.1.2 highlighting how several research studies
have used high spatial-resolution UAS datasets [9], the challenge remains the employment
of already available data that have been acquired for more general purposes.

2.1. Case Studies and Airborne LiDAR Sardinia Datasets

This research proposes a methodologically transferable workflow for Sardinia defensive
heritage mapping by considering two distinct case studies (Figure 2). One focuses on a portion
of the southern main city (Cagliari), while the other is located in a northwest coastal urban
center with a strong tourism vocation (Alghero). The two case studies primarily differ in the
chrono-typological heterogeneity of military artifacts and the scale of datasets that have been
exploited. In both case studies, the primary data that have been identified for the application
of the ML methodologies pertains to a regional dataset derived from two 2008 airborne
LiDAR surveys. The acquisition campaigns were planned and executed with different
characteristics and sensors, resulting in point clouds with different superficial densities.

 

Figure 2. Map of the location of the presented case studies related to the research framework of the
present contribution, Sardinia (Italy).
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The application of two distinct case studies has thus allowed the evaluation of the
methodology from multi-scale and multi-sensor perspectives.

Case study 1 (Figure 3) is related to the urban area of Cagliari Municipality in the
southern part of the region. The density of regional data is 2 points per square meter, and a
balanced chrono-typological heterogeneity characterizes the present historical defensive
artifacts. There are thus different object typologies distinguishable from towers, bastions,
fortresses, bunkers, and batteries.

 
Figure 3. Case study 1. The case study 1 area is located in the southern region of Sardinia and covers
the whole extension of Cagliari town and hinterland.

The map in Figure 4 represents the area concerning case study 2 in the Alghero
municipality. In this case, the ALS point cloud density is 10 points/m2, while the strong
presence of WWII bunker artifacts characterizes the landscape.

Given the vast dimension of the research areas and the widespread diverse typolo-
gies of fortifications, the necessity was to acquire sufficient data that would be useful to
adequately document the territorial context of military landscapes [4].

After a brief analysis of the grid DTM products in the catalog of the Sardinia Geoportal
website (Sardinia Geoportal—Autonomous Region of Sardinia, 2024), the datasets of the
research areas have been made available by the Cartographic Information Sector of Sardinia
region. The ALS point cloud pertains to two surveys (Table 1) conducted in 2008.

The total extension of the acquisitions (Figure 5) covers almost the entire waterline
length. Specifically, Survey 1* represents most of the acquisitions and was thus planned and
executed at 1400 m AGL and a ground speed of 140 knots (≈260 km/h). This resulted in a
point cloud dataset with an average density of 2 points per square meter, which is the pri-
mary data from case study 1. Contrarily, Survey 2 was planned to focus only on the Alghero
municipality area (case study 2). In this case, the acquisition was conducted with a low AGL
(500 m) and a 110-knot ground speed (≈200 km/h), resulting in a density of approximately
10 pts/m2. Besides the flight characteristics, it is possible to observe from the available
information that the sensors and the operating conditions were significantly different.
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Figure 4. Case study 2. The case study 2 area is located in the northwest region of Sardinia and covers
the whole extension of Alghero town and hinterland.

Table 1. Surveys details. This table provides information about the sensor used and the survey and
post-processing characteristics.

Survey Sensor LPRR
[kHz]

Target
Echoes Overlap

Vertical
Accuracy

[m]

Ground
Speed
[kn]

AGL [m]
Average
Density
[pts/m2]

1 * ALTM
Gemini 125 4 30% 25 140 1400 2

2 * Riegl
LMS-Q560 240 unlimited ** 60% 10 110 500 10

* Survey 1 is intended to be the sum of the acquisitions that have been completed in several weeks. Echo
information that is embedded in the point clouds is often missing or incomplete. ** The echo information that is
stored is practically limited only by the maximum data range allowed by the data recorder of the LiDAR system.

In fact, the sensor from Survey 1* was a multi-echo [52] laser scanner head system
operating with a 125 kHz laser pulse repetition rate (LPRR). The point cloud datasets strips
(Figure 5) were obtained from the regional Cartographic Information Sector in a .las file
format, storing sensor information as intensity and echo returns (incomplete).

Instead, the sensor from Survey 2 was a full-waveform topographic LiDAR [52]
laser head and operated instead at a 240 kHz PRR frequency. Despite the technological
superiority of the second sensor, these point cloud strips were given in a .xyz file format,
not storing significant information regarding the multiple echo returns.

For this specific reason, the deep learning methodologies described in the following
section were developed exploiting only the geometrical information of the point clouds.
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Figure 5. Map of the data provided by the Sardinia Region. The stripes available from the two
airborne LiDAR surveys are located on this map. The two surveys were carried out using two
different sensors, as detailed in Table 1.

2.2. Methodologic Approaches for Semi-Automatic Data Structuring

In order to introduce the integrated methodology, it is worth underlining that exploit-
ing the regional low-scale point cloud datasets (>10 pts/m2) from the 2008 surveys could
be crucial for semantic segmentation and object-detection methodologies.

In fact, the application aims to verify if the leverage of the existing regional ALS
dataset as primary data for ML analysis of the defensive landscape could allows a robust
and comprehensive analysis of fortification systems without the necessity of acquiring new
data. The following sections thus describe the primary datasets and the methodological
pipeline that has been developed to answer the research question and aims. The proposed
methodological schema consists of 4 blocks (Figure 6): Block 1 lists the two case studies
addressed by exploiting the existing regional data presented in Section 2.1. Block 2 is related
to the point cloud data structuring integrated methodology, whereas Block 2a is related to
the application of unsupervised geometrical filters. Given the lack of significant waveform
information on the primary data, Block 2b provides a satellite imagery data fusion approach
to integrate multispectral bands within the point cloud. Finally, reference data are generated
where Block 2c describes the training stage of the macro-class semantic segmentation DLM.
While describing the methodologies that have been used for defensive heritage systems
and architecture mapping and analysis, it should be clear that the proposed integrated
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method is conceived as a multi-scale approach. In fact, Block 3 consists of the preliminary
investigation answers and training data generation for the DL object-detection strategies
aiming at the identification of specific point cloud objects. Therefore, the application of DL
methodologies has been developed at a lower scale (semantic segmentation) for land cover
classification combined with a higher scale approach for the possible automatic mapping of
heterogeneous defensive architectures. In this last sense, a class schema has been prepared
for the generation of training labels for the object-detection DL approach (Table 2).

Table 2. Historical defensive heritage object-detection and land cover schema. This class schema has
been created to provide a basic semantic structure for the DL object-detection approach. For each
class is also listed the number of elements in each area.

Class Value Class Name Area 1 Objects Area 2 Objects Description

0 Not classified or in use 28 out of 62
45%

28 out of 113
25%

This class contains all the points remaining
from the other classes.

1 Tower 2 out of 62
3%

6 out of 113
5%

This class integrates all kinds of objects related
to military observation towers and outposts.

2 Walls - 1 out of 113
1%

This class must be intended as objects
pertaining to fortification walls and bastions.

3 Bunker 14 out of 62
23%

66 out of 113
58%

This class contains objects related to the
pillbox-fortified structures. These structures

must be intended as a special type of concrete
camouflaged guard post.

4 Batteries 15 out of 62
24%

12 out of 113
11%

This class contains objects related to military
batteries, whether those be antiaircraft

or antinavy.

5 Fortress 3 out of 6
25% - This class contains objects pertaining to

fortresses and strongholds.

While the proposed class schema has been deployed as a macro-categorization for a
holistic application, in the proposed contribution, the aim is to investigate the requirements
and adaptations for an object detection approach. In fact, in order to develop a methodology
for the entire class group, a preliminary test was conducted on the Bunker class. Specifically,
this class embeds pillbox fortification that can be easily recognized from sufficiently dense
point cloud datasets. Moreover, the bunker class is highly represented, particularly in
Area 2. Although data augmentation strategies are needed, most elements are original,
which enhances the generalization capabilities of a potential detection model.

2.2.1. Data Preparation for Semantic Segmentation DLM Training

In order to document the defensive landscape, the adequate structuring of ALS point
cloud datasets was essential. This was performed by exploiting unsupervised filtering
algorithms and supervised learning approaches. In such a complex research context, it was
crucial to define a semantic classification scheme that could equally meet both the mapping
and data structuring necessities dictated by the objectives and the constraints imposed by
the data scales. For this reason, a 5-class scheme is proposed (Table 3).

The classification scheme consists of 5 classes, which, given the scale and thus the data
density, are based on the .las specifications of the American Society for Photogrammetry
and Remote Sensing (ASPRS) standard [53]. In the framework of the present research,
it should be underlined that since the application of ML analysis is directed toward the
comprehension of fortification architectures, particular attention is given to the building
class that embeds most of the studied artifacts.
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Table 3. Semantic segmentation class scheme description.

Class Value Class Name Description

0 Unclassified
This class contains all the points remaining from the
other classes. It particularly refers to low vegetation
(e.g., bushes), cars, etc.

2 Ground This class contains all the points pertaining to the
ground surface.

5 High vegetation This class contains objects recognized as trees.

6 Buildings This class contains points related to human-made
artifacts, such as buildings, ruins, etc.

9 Water This class contains water surface points.

The class scheme aim is to provide an efficient macro-class segmentation of unstruc-
tured point clouds, distinguishing between terrain, trees, buildings, and water. Moreover,
the Unclassified class is developed to host object classes that are not identifiable due to the
scarce density issues. In fact, points pertaining to low vegetation, urban furniture, and cars
are not clearly distinguishable from one another. Therefore, data density remains a crucial
factor when it comes to providing a highly specific classification scheme [54].

Since one semantic classification scheme was defined, the first step in structuring the
data was the employment of unsupervised filtering approaches. First, a preprocessing
phase was necessary for the entire dataset, from which data blocks organized into 2000 m
by 2000 m tiles were generated. After organizing the data for both areas, it was decided to
generate a reference ground-truth dataset using the point clouds from case study 1 (Cagliari).
In fact, using low-density data (2 pts/m2) would allow training a classification model
with significantly representative data while avoiding GPU memory overflow errors [55].
Preliminary analyses of a part of the ground truth were thus conducted, similarly to
previous research work. The eigenvalues of the geometric vectors (normal—λ3, curvature,
sphericity, number of neighbors, surface density, surface variation) of the point clouds
were calculated with a radius of 1, 2.5, 5, and 10 m. These indices were used for an
unsupervised segmentation of the points (non-ground) remaining from applying the Simple
Morphological Filter (SMRF) algorithm [56]. Moreover, while evaluating different filters,
the Cloth Simulation Filter (CSF) [57], despite its accuracy capabilities, was considered less
effective in this context.

Multi-sensor data integration techniques provide rich datasets that allow capturing
a wide range of information about the condition and composition of the territory and
landscape [58]. In fact, these have risen in popularity in several application fields, such
as cartography, forestry sciences, and agricultural sciences [59,60]. Moreover, providing
valuable information about the material composition has been proven to be essential for the
study of heritage sites [61]. Since spaceborne imagery has been proven efficient in several
water and vegetation resource studies, this contribution proposes a data fusion approach
to enhance the automation of the point cloud labeling process. Specifically, an integration
of ALS point cloud data with Sentinel-2 missions near-infrared band (NIR) [62] has been
developed to support manual labeling activities in this coastal landscape heritage context.
However, it is worth mentioning that due to the resolution difference between the ALS point
cloud and spaceborne imagery, an upsampling strategy has been essential to match the
spatial resolution of the Sentinel-2 bands (10 m) with the average point spacing of the ALS
point cloud data (1 m). For this necessity, a cubic resampling algorithm has been selected
to accurately achieve the point cloud spatial resolution while avoiding sharp interpolation
resulting from the nearest neighbor algorithm [63]. However, despite the spatial resolution
resampling algorithms being a consolidated approach, those do not provide an efficient
solution for radiometric resolution enhancement. In fact, the integration of point cloud
data with the NIR band has been exploited for the segmentation of the water class. In this
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sense, to segment the water class points, two different approaches have been tested, as
shown in Figure 7.

Figure 6. Methodological schema. The workflow is developed for heterogeneous landscape heritage
frameworks leveraging multiple existing airborne LiDAR datasets (1). The case studies that have
been selected thus not only pertain to distinguished heritage contexts but are characterized by
different acquisition scales and densities. The second stage of the methodology consists of applying
unsupervised (2a) and data fusion strategies (2b) to prepare reference data for DL classification
model training (2c). Finally, a preliminary investigation of object detection strategies (3) addresses
the system mapping and artifact recognition challenges of historical defensive heritage using point
cloud deep learning approaches [56].

The first approach consisted of generating a vector 2D mask to be used in Cloud
Compare for a semi-automatic areal water segmentation. The normalized difference water
index (1) [64] was calculated, generating thus a 2D polyline vector.

NDWI =
Green (b03)− NIR (b08)
Green (b03) + NIR (b08)

(1)

Additionally, a second approach was tested to directly integrate ALS data with the
near-infrared information as a point cloud scalar value. In this case, the NIR band was
projected on a 3D mesh triangulated from the DSM, and thus, a point cloud scalar field
was generated with a majority voting nearest neighbor (6 points) algorithm. However,
despite the successful integration of NIR semantic information, the enriched ALS point
clouds are not declared sufficient for the identification or discrimination of other elements
(e.g., vegetation and buildings), not coherent with the original spatial resolution of the
Sentinel 2 data (10 m). The results of geometric filtering and data fusion approaches will be
further discussed in Section 3.
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Figure 7. Sentinel-2 data fusion approaches. Vector water mask generation for areal segmentation (a).
Band 8 NIR projection on DSM mesh for scalar value interpolation (b).

Therefore, this approach led to an efficient automatic segmentation of water class
points. Finally, after a rapid manual correction of the data classification resulting from the
unsupervised approaches, valid ground-truth reference data were selected to train a DLM
for semantic segmentation (Table 4).

Table 4. Data consistency and class distribution of the training dataset that was used for training and
validating the predictive segmentation model.

Training Dataset Data Percentage Class Class Distribution

Training 78%

Unclassified 5%

Ground 58%

High Vegetation 10%

Building 26%

Water 2%

Validation 22%

Unclassified 6%

Ground 67%

High Vegetation 8%

Building 18%

Water 1%

The training dataset was selected from the ALS data of case study 1 and consisted of
training and validation datasets (Figure 8) balanced at 80%–20%. Furthermore, particular
attention was given to the selection of data to ensure both the representativeness of the
urban and landscape morphology of the area and a homogeneous distribution of classes
(Table 4) between the two parts of the dataset.
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Figure 8. Map of the location of the training dataset (case study 1, Cagliari). The red tiles are about
the training set, while the green blocks relate to the point cloud tiles used to validate the model.

Moreover, in order to evaluate the predictive model performance, four test datasets
were selected (Table 5) from the ALS data of case study 2 (Figure 9). The primary aim was
to evaluate the performance of the DL classification model with data different from the
training area. Furthermore, assessing the model effectiveness and accuracy was useful
from a multiscale perspective. The 100 m by 100 m areas were selected to diverge as much
as possible from the class frequency of the training data, as shown in Tables 4 and 5. For
example, area C is characterized by many points related to the building class (80%), while
area D has a more balanced frequency but with more points related to vegetation (36%).

Table 5. Class frequency of the test datasets used to evaluate the trained predictive model. This
dataset was selected.

Unclassified Ground High Vegetation Building Water

A 2% 52% 2% 38% 6%

B 4% 43% 9% 44% -

C 1% 19% 1% 80% -

D 3% 41% 36% 20% -

Finally, a predictive segmentation DLM was trained using the training dataset from
case study 1. The training process employed RandLA-Net [65] neural network architec-
ture. RandLA-Net is a point-wise multi-layer perceptron architecture that is designed to
efficiently handle large-scale datasets, incorporating a random sampling phase for each
network node. A cross-entropy loss logarithmic function was used to validate the model.
The evaluation of the predictive DLM will be further discussed in Section 3.
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Figure 9. Map of the test dataset areas, A, B, C, and D locations. The test point clouds are in the case
study 2 area (Alghero).

2.2.2. Historical Defensive Heritage Artifact Label Generation and NN Investigations

Since one of the aims was intended to be the development and application of an inte-
grated methodology for historical defensive landscapes, it has been necessary to evaluate
the priorities, challenges, and issues related to the identification of fortifications. Due to
the high number of fortification sites and buildings and the accessibility challenges of their
location, a preliminary investigation regarding the automatic object-detection approach
exploiting the semantic segmented point clouds was addressed.

Therefore, in this research framework, this part of the methodology thus explored the
solutions for fortification classes’ automatic identification from existing airborne LiDAR
point clouds. However, it should be underlined that input data density, training data
preparation, and predictive model training require several specific capabilities.

As mentioned in Section 1.1.3, deep 3D object-detection NNs for LiDAR data are
increasingly being studied due to LiDAR spatial capture capabilities. Contrarily to 2D
detection based on imagery data, the spatial comprehension given by active LiDAR tech-
niques of an environment is a great benefit for recognizing 3D objects. Yet several challenges
in 3D detection are present because of the sparsity of LiDAR point clouds [66].

Moreover, the preparation of a reference dataset requires analysis of data characteris-
tics, scene typology, and the number of object classes and annotations. In Table 6, some
dataset examples are presented.

In the proposed contribution, the authors addressed two essential preliminary techni-
cal questions: input point cloud data and reference data preparation. In order to test the
label generation process, the research focused on bunker architectures of the WWII coastal
containment arch system that are widespread in Alghero’s territory (case study 2).

Moreover, the ALS data from case study 2 were considered dense enough (10 pts/m2)
to recognize bunker objects that were easily distinguishable from other elements (e.g.,
bushes). Relative to this context, the case study 2 area was characterized by a relatively
high number of bunker artifacts, as reported in Table 2. Comparing the numerosity of
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the presented objects with the number of annotations in the object-detection benchmark
datasets, it is evident that the data augmentation challenge should be addressed. This issue
is deepened in Section 4.

Table 6. Summary of existing open benchmark datasets for 3D object detection, showing data type,
number of classes, and annotated 3D bounding boxes.

Dataset Reference Year Data Type Object Classes Annotated 3D Boxes

KITTI [42] 2012 * RGB + LiDAR Autonomous driving 8 200K

ApolloScape [67] 2018 RGB + LiDAR Autonomous driving 6 70K

H3D [43] 2019 RGB + LiDAR Autonomous driving 8 1.1M

Waymo Open [68] 2020 RGB + LiDAR Autonomous driving 4 12M

nuScenes [69] 2020 RGB + LiDAR Autonomous driving 23 1.4M

* In 2017 KITTI released 3D benchmark for 3D object detection.

The generation of reference data was completed in a GIS environment, starting from
point geometries of different census domain datasets [3,15]. The label generation workflow
consisted of extruding the squared buffers of the object centroid between two altimetric
levels (Figure 10). The base height of the 3D bounding box was calculated from the average
reference DTM height. Consequently, the extrusion value was summed to the base height,
generating the 3D bounding box for the training labels stored in ASCII format.

 

Figure 10. Label generation workflow: from a point feature class to a 3D geometry.

Section 1.1.3 presents different types of 3D detector NNs that have precise character-
istics and limitations. In fact, the projection and voxel methodologies result in the loss of
LiDAR data information. However, the application of 3D CNNs in voxel-based methods
still allows local features to be learned and extracted from the 3D representation [66]. Yet,
point-based approaches fully exploit the 3D geometry without significant information
loss [37], despite some limitations that occur for point-wise feature generation.

In the framework of the present contribution, a preliminary training experiment was
conducted exploiting the SECOND (Sparsely Embedded CONvolutional Detection) [47]
detector with ESRI arcpy 2.9 libraries.

3. Results and Discussion

Although the predictive model results represent the final stage of the methodology, it is
equally important to discuss the outcomes achieved during the data preparation stage. As
introduced in Section 2.1, the echo information embedded in the airborne LiDAR data was
either absent or incomplete. To address this, the present research analyzed and compared
return information, reflectance intensity, and newly calculated fields (see Figure 11). From
both visual and statistical inspections, the echo return information (Figure 11a) and intensity
(Figure 11b) were found to be incomplete and noisy, making them unsuitable for accurately
distinguishing between classes. Moreover, is it possible to observe that the presented NIR
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data fusion approach (Figure 11c) is particularly suitable for segmentation where water
bodies correspond to Equation (2).

NIR reflectance ≤ 0.09 (2)

Figure 11. Point cloud echo information, reflectance intensity, and newly calculated scalar field
comparison for geometrical and digital number filtering unsupervised segmentation. Number of
returns (a). Intensity (b). Data fusion near infrared from Sentinel 2 band 8, 784 nm–899.5 nm (c). λ3

eigenvalue (normals) calculated on 2.5 m radius (d).
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Furthermore, λ3 (normals) eigenvalue (Figure 11d) is considered suitable for a prelimi-
nary building class exclusion compared to LiDAR intensity and return information. The
threshold value is, in this case, given by the statistical distribution analysis and is relative
to the topology of this specific LiDAR dataset (3).

λ3 ≥ 0.1 (3)

In this specific case study, the integration of the NIR band and the employment of a
reduced number of geometric features for the unsupervised filter allowed effective results
for the generation of a reference dataset.

As described in Section 2.2.1, a DL predictive model for the semantic segmentation
of low-scale ALS point clouds was trained and completed in 46 h after 38 epochs. The
model was trained and validated with reference data pertaining to case study 1 (Figure 8).
As shown in Table 7, the model achieved excellent results in terms of Accuracy and
Precision, while slightly lower and improvable results were observed for the Recall and F1
score metrics.

Table 7. Predictive model validation results. The metrics of the table were calculated using the
validation data from the Training dataset (case study 1).

Class Accuracy Precision Recall F1 score

0—Unclassified 0.95 0.78 0.29 0.42

2—Ground 0.92 0.93 0.94 0.94

5—High Vegetation 0.97 0.81 0.90 0.85

6—Building 0.94 0.78 0.89 0.84

9—Water 0.99 0.71 0.64 0.67

Macro Average 0.95 0.80 0.73 0.74

The lower overall metrics results are attributable to classes 0 and 9, which are under-
represented in the training dataset. In fact, the segmentation results on the validation
dataset for the most represented objects (ground, high vegetation, and building) are slightly
better than those for the remaining classes, as observed in Figure 12.

Nevertheless, despite the overall good results, it is possible to observe some cases of
the following:

• Overprediction of building class over flat ground areas;
• Underprediction of building class over oblique occluded surfaces;
• Overprediction of unclassified class on small wall objects;
• Underprediction of unclassified class (small evergreen shrubs difficult distinguishable

from ground);
• Underprediction of water class.

Since the focus of the application of DL semantic segmentation methodologies is
on historical defensive contexts, it should be underlined that specific artifact recognition
is considered a challenging issue. In fact, the accuracy evaluation indicated that while
the model is highly precise, there is a trade-off in its ability to classify correctly relevant
structures, particularly those that are partially eroded or obscured. In fact, the identification
of fortification walls and bastions represents a true limit where there is a lack of reference
training data.

In order to analyze accurately the model behavior, four supplementary data blocks
from case study 2 (Figure 9) were selected to test the DLM performances. The aim was
to understand the model generalization capabilities with higher-scale ALS point cloud
datasets, describing areas with different urban and territorial morphology.
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Figure 12. Predictive model training results. The model performance is evaluated using the validation
data from the Training dataset of case study 1 (Cagliari).

The results of applying the semantic segmentation DLM on the test dataset areas
(1,2,3,4) are analyzed and summarized in Table 8. The metric statistics successfully demon-
strate the generalization capabilities of the predictive model, although further improve-
ments are still to be estimated.

Moreover, Figure 13 confirms from a visual perspective the excellent generalization
capability of the trained model in case study 2. In the test areas, cases of under-prediction
and over-prediction are observable, similar to the validation dataset areas.

In this scenario, deep learning approaches for point cloud semantic segmentation
are thus confirmed as a valuable tool for the heritage context, although the accurate
identification issue of specific elements (e.g., bastions) should be adequately addressed for
future perspectives.
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Figure 13. Predictive model testing results. The model performance is evaluated using the test dataset
A, B, C, and D of case study 2 (Alghero).

Concerning the object-detection approach of historical defense architectures, the semi-
automatic labeling task effectiveness was demonstrated, where 66 3D bounding boxes were
generated (Figure 14).
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Table 8. Predictive model test results. The metrics of the table were calculated using the test data A,
B, C, and D.

Area Class Accuracy Precision Recall F1-Score

A

0—Unclassified 0.99 0.71 0.58 0.64

2—Ground 0.84 0.80 0.93 0.86

5—High Vegetation 0.98 0.57 0.66 0.61

6—Building 0.89 0.89 0.81 0.85

9—Water 0.95 0.97 0.21 0.35

Macro Average 0.93 0.79 0.64 0.66

B

0—Unclassified 0.97 0.78 0.53 0.64

2—Ground 0.94 0.87 1.00 0.93

5—High Vegetation 0.97 0.86 0.80 0.83

6—Building 0.89 0.92 0.83 0.87

Macro Average 0.96 0.86 0.79 0.82

C

0—Unclassified 0.99 0.98 0.30 0.46

2—Ground 0.99 0.94 1.00 0.97

5—High Vegetation 1.00 0.87 0.92 0.89

6—Building 0.98 0.99 0.99 0.99

Macro Average 0.99 0.95 0.80 0.83

D

0—Unclassified 0.99 0.97 0.58 0.73

2—Ground 0.96 0.91 1.00 0.96

5—High Vegetation 0.99 0.99 0.98 0.99

6—Building 0.96 0.95 0.83 0.89

Macro Average 0.97 0.96 0.85 0.89

 

Figure 14. Bounding box generation processing for reference data generation. The aim is to apply 3D
deep learning for defensive heritage mapping. In this case, the three areas are focused on bunker
class objects.

The object-detection model was trained employing an entropy loss function for train-
ing and validation datasets (4) [70]

Loss = − 1
N

N

∑
i

(ytrue· log(pi) + (1 − ytrue)· log (1 − pi)) (4)

where N is the total number of observations, ytrue is the binary indicator for the correctness
prediction for observation i, and pi is the probability of the observation being in the correct
class. Since a 3D detector should be evaluated by taking into consideration classification



Heritage 2024, 7 5542

and localization accuracy, the performance of the model has been analyzed with the mean
Average Precision (mAP) metric, as described in [66].

However, from the training graph in Figure 15, it can be observed that the calculation of
the validation loss function was unconcluded throughout the batch processing, demonstrating
the difficulties of the model in effectively learning the given task. Moreover, the localization
and classification accuracies given by the mAP metric were not applicable. The experimental
result was yet predictable because the number of bunker architectures—and thus of reference
training data—was not sufficient to train and validate any object-detection model.

Figure 15. Model validation graph, showing training and validation logarithmic loss functions during
epochs. While the training loss function decreases, validation loss is constantly flat.

Several considerations regarding object-detection future perspectives will be discussed
in the Conclusions and Future Perspectives section.

4. Conclusions and Future Perspectives

In the framework of heritage preservation strategies, the integration of various pro-
posed methodologies provides valuable lessons and opportunities. The proposed study
underlines the importance of combining diverse approaches, as well as critically evaluating
and analyzing the method from a multi-scale perspective. In fact, such insights signifi-
cantly contribute to advancements in CH site conservation through remote sensing data
analysis. Moreover, the application presented in this contribution also addressed the topic
of user-oriented approaches, demonstrating how graphical user interface software could
represent a valuable solution for heritage domain experts.

Regarding airborne LiDAR technology, it should be clear that previous research
works have underlined the suitability of full-waveform LiDAR sensors for archaeological,
heritage investigations, and semantic classification [13,27,30]. The present contribution also
demonstrates the suitability of the multi-echo sensor in heritage contexts. In fact, despite
recent advancements in remote sensing technologies [9,26], lower-density ALS data [71]
from less recent sensors has proven to be still effective for semantic segmentation purposes.

Furthermore, this research highlighted that integrating point clouds with satellite
multispectral imagery data is a valuable strategy to overcome the lack of information
provided by point clouds consisting only of coordinates. Still, it should be noted that
enhancing the spatial and radiometric resolution of free, open-source satellite data [62]
remains a crucial issue, where the necessity is to match the resolution of point cloud
data. In this research framework, the employment of high-resolution satellite datasets
can be considered, although the DL super-resolution approaches could represent a more
innovative and valid further implementation, e.g., [72].
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Since the research aimed to test DL approaches for data structuring, it should be
clear that NNs are widely explored but not yet fully established tools for heritage domain
applications [17,35]. The proposed contribution thus explored ML methodologies, demon-
strating how segmentation predictive DLMs are a valuable approach for ALS point cloud
data semantic structuring in a landscape heritage context. Moreover, despite the DLM
being suitable for extended applications, the model has been tested in areas that were
representative of the morphological and urban conformation of the case studies, assessing
its accuracy in this heritage context.

However, scarce density issues have made challenging the disambiguation of ground-
level anthropic features, which can be addressed with different classification strategies. In
this sense, previously developed OBIA ML approaches of DTM can be considered [13].
Moreover, starting from the application of DL pipelines, the generation of semantic on-
tologies by correlating point cloud geometries should also be addressed, as demonstrated
in [51].

Since it is crucial to establish a minimum threshold for data density and accuracy,
several issues were overcome when investigating point cloud object-detection approaches.
In this research context, low-scale ALS point clouds in case study 1 (2 pts/m2) were declared
not compatible due to the difficulty of recognizing specific elements from point clouds.
Moreover, due to the original defensive specific functions, most of these architectural
objects are not easily detectable using spaceborne or airborne imagery products due to
the designed camouflage characteristics. For this reason, further developments of a DL
object-detection methodology exploiting existing LiDAR point clouds are considered a
crucial future challenge.

Yet it has already been stated in Section 1.1.3 that most DL methodologies related
to point cloud processing mostly pertain to robotics, autonomous driving, and indoor
modeling [37]. Therefore, in CH and landscape contexts, it is hard to address the most
relevant issues of these approaches without significant adaptations.

Specifically, the number of annotations required for training NN detectors is consider-
ably high, with a minimum of 70k bounding boxes [67], as shown in Table 6. The limitations
of the first training experiment conducted (Section 2.2.2) are particularly evident, as shown
by the loss functions and the non-calculable metrics (Figure 15). This predictable result, due
to the number of available annotations (Table 2), nonetheless represents a starting point for
overcoming the challenges inherent in 3D detection. In this sense, preparing algorithms
that allow the generation of synthetic point cloud data and 3D bounding box labels by
copying and transforming (e.g., translation, rotation) the original data is considered to be a
valuable future development. Therefore, it is thus crucial to integrate data augmentation
strategies [44,73] that will be investigated in future research works.
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