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A B S T R A C T

In designing Molten Salt Reactors, implementing passive safety systems that rely on natural circulation
phenomena can be an attractive proposal to remove decay heat from the core. In this type of reactor, when
the active cooling system fails, the fuel-coolant salt flows by natural circulation in the presence of Internal
Heat Generation due to the fuel dissolved and mixed within the coolant salt. Adopting a Natural Circulation
Loop for the dissipation of the heat generated can be an attractive safety system, but it is affected by some
undesired phenomena regarding flow mass rate oscillation, which influences the heat transfer efficiency and
local temperature. In particular, it is necessary to understand the influence of the Natural Circulation loop on
the internal stability of the reactor. The purpose of the DYNASTY-eDYNASTY facility (DYnamics of NAtural
circulation for molten SalT internallY heated), built at Politecnico di Milano, is to investigate the dynamical
effects manifesting in a Coupled Natural Circulation Loops and to get insights about the phenomenology
which can result relevant for the study of accidental scenarios in Molten Salt Reactors, simulating the
natural circulation in the reactor and the Natural Circulation Loop of the passive safety system. This paper,
starting from the one-dimensional model of the DYNASTY-eDYNASTY facility, develops a in-house code for
the computation of the steady states and a Stability Map for the stability analysis of the Coupled Natural
Circulation Loops. Verification of the results has been carried out by comparing the outcomes derived from the
MODELICA model of the DYNASTY-eDYNASTY facility adopting the DYMOLA® environment. The steady-state
model can predict the results of the DYMOLA® simulations with acceptable accordance, and the verification
of the Stability Map with DYMOLA® simulations highlighted a good prediction of the model developed for the
stability analysis.
1. Introduction

In the last decade, a renewed interest in the nuclear energy sector
has made it possible to focus part of the research on the safety of
the Nuclear Power Plant. Recently, new reactor designs include pas-
sive safety features for various purposes, such as core cooling during
transients, design basis accidents or severe accidents or containment
cooling [1]. Passive safety systems that exploit the natural circulation
of the coolant fluid to transfer heat from a hot source to a cold sink
are more attractive than those which adopt forced convection [2] as
they rely on general physical laws. In the presence of density gradients
induced by temperature differences, convective motion can be self-
sustained [2,3], avoiding adopting active components [4]. Natural
Circulation Loops (NCLs) are systems employed to investigate the phe-
nomenon of natural circulation or as passive safety systems for heat
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removal. These systems can be subjected to instabilities and dynamic
oscillations [2,4–6] which can compromise heat removal efficiency and
the fluid could reach a local temperature which could not be compatible
with the materials used. These instabilities rise from the competition
between the buoyancy forces driving the fluid and the friction forces,
which hinder the fluid motion [7,8]. Moreover, NCLs are also affected
by the pipe-wall material: Cammi et al. [2] have highlighted how its
thermal capacity and conductivity tend to stabilize the dynamics of
the system. In this context, having reliable models that can predict the
behaviour of this phenomenon is of particular interest in the design of
safety systems based on natural circulation. One task of the Generation
IV Molten Salt Fast Reactors is to ensure a high level of safety also
during the occurrence of an accident [9]: the reactor is designed to
allow the natural circulation of the coolant when the power supply of
vailable online 10 July 2024
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Nomenclature

Latin symbols

𝐞̂𝑠 Unit vector following the fluid flow (dimen-
sionless)

𝐞̂𝑧 Unit vector pointing towards the positive
vertical direction (dimensionless)

𝑒𝑞 Thermal barycentre distance (m)
𝑅̃ Thermal resistance (m K W−1)
𝑆̃ Lateral surface of an infinitesimal shell of

the pipe (m2)
𝑠̃ Length of an infinitesimal shell of the pipe

(m)
𝑉 Volume of a infinitesimal shell pipe (m3)
𝑎 Auxiliary constant for temperature profile

at heat exchanger (dimensionless)
𝐵 Parameter describing the effect of the heat

exchange (dimensionless)
𝑏 Auxiliary constant for temperature profile

at cooler (dimensionless)
𝑐 Specific heat (J kg−1 K−1)
𝐷 Diameter (m)
𝑔 Gravitational acceleration (m s−1)
ℎ Heat transfer coefficient (W m−2 K−1)
𝑘 Thermal conductivity (W m−1 K−1)
𝐿 DYNASTY length (m)
𝑙 eDYNASTY length (m)
𝐿𝑡𝑜𝑡 Loop total length (m)
𝑁𝑢 Nusselt number (dimensionless)
𝑝 Pressure (Pa)
𝑃𝑟 Prandtl number (dimensionless)
𝑞′′ Heat flux (W m−2)
𝑄 Heat power (W)
𝑅𝑒 Reynolds number (dimensionless)
𝑠 Curvilinear coordinate (m)
𝑆𝑡𝑚 Modified Stanton number (dimensionless)
𝑇 Temperature (K)
𝑡 Time (s)
𝑢 Fluid velocity (m s−1)

Greek symbols

𝛼 Auxiliary exponent in heat exchanger tem-
perature field (m−1)

𝛽 Auxiliary exponent in cooler temperature
field (m−1)

𝛽𝑓 Fluid thermal expansion coefficient (K−1)
𝛥 Finite variation of a parameter (dimension-

less)
𝛿 Infinitesimal variation of a parameter (di-

mensionless)
𝛿𝐻𝐸 Auxiliary parameter for the heat exchanger

(dimensionless)
𝜖 Inverse of the annular hydraulic diameter

(m−1)
𝛤 Mass rate (kg s−1)

the pumps is lost, and a safety system based on NCL must work properly
and efficiently to dissipate the heat generated in the core. Moreover,
this particular type of reactor introduces the concept of the Internal
2

𝛾 Relative mass rate error (%)
𝜆 Darcy friction factor (dimensionless)
𝜇 Dynamic viscosity (Pa s)
𝜔 Complex frequency of the Laplace transform

(s−1)
𝛹 Fermi–Dirac interpolation function (dimen-

sionless)
𝜌 Mass density (kg m−1)
𝜏𝑤 Wall thickness (m)

Subscripts–superscripts
∗ Reference value
0 Steady-state
− Dimensionless variable
𝐷𝑌𝑀 DYMOLA
𝑃𝑦 Python
1 DYNASTY loop
2 eDYNASTY loop
𝑓 Fluid
𝑤 Wall
𝑐𝑜𝑛𝑐 Concentrated
𝐶𝑂𝑂𝐿 Cooler
𝑑𝑖𝑠𝑡𝑟𝑖𝑏 Distributed
𝑓𝑟𝑖𝑐 Frictional
𝐻𝐸 Heat Exchanger
𝐻 Heater
𝑗 𝑗th loop (𝑗 = 1, 2)
𝑃 Adiabatic pipe
𝑤𝑖

Inner wall shell
𝑤𝑜

Outer wall shell

Acronyms

CNCLs Coupled Natural Circulation Loops
DH Distributed Heating
DYNASTY DYnamics of NAtural circulation for molten

SalT internallY heated
EHS External Heat Source
HE Heat Exchanger
IDE Integrated Development Environment
IHG Internal Heat Generation
MSR Molten Salt Reactor
NCL Natural Circulation Loop
ODE Ordinary Differential Equation
PRHR Passive Residual Heat Removal Systems
SCNL Single Natural Circulation Loop

Heat Generation (IHG) for the coolant: the fluid which flows in the core
reactor is a homogeneous mixture of molten salt and fissile material
and acts both as coolant and fuel [10]. In the case of shutdown of the
reactor, the fission products dissolved in the salt act as a density source
of heat due to their radioactive decay, which must be dissipated to
maintain the integrity of the reactor. Considering these characteristics
of the MSFR in an accident scenario, Natural Circulation established in
the reactor by IHG, the problem of instabilities that can occur within it
is of particular interest and needs to be studied for future development
in this field.

The DYNASTY-eDYNASTY facility (DYnamics of NAtural circulation
for molten SalT internallY heated) was designed and built at Politecnico
di Milano [8,11,12] for simulating the behaviour of Natural Circulation
in a coupled system with a distributed heat source. The facility is
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Table 1
Length dimensions for the DYNASTY-eDYNASTY model adopted in this paper.

Subscript (𝑗) Total length

1 2 3 4 5 6 𝐶 𝐻𝐸

DYNASTY loop 𝐿𝑗 (m) 0 3.1 3.09 0.5 0.5 0.45 2.1 2.64 12.38
eDYNASTY loop 𝑙𝑗 (m) 0.59 0.5 0.5 3.23 3.1 0 2.1 2.64 12.66
realized by two NCLs, named DYNASTY and eDYNASTY loop. DY-
NASTY represents the primary NCL, whose heating system is designed
to simulate a loop under Internal Heat Generation conditions; this
loop is coupled with eDYNASTY, which represents the secondary NCL,
through a double-pipe heat exchanger. Due to the high ratio of axial
length to radius of the pipes, the External Heat Source (EHS) is a good
first approximation to the IHG. This avoids the difficult problems of
adopting a heating system based on an IHG in favour of a distributed
EHS, which is easier to manage and control during experiments.

The DYNASTY-eDYNASTY facility is unique among NCLs as it is
the only one capable of investigating the coupling between two inter-
connected NCLs. As such, it allows the dynamics of the Natural Cir-
culation Loop to be studied, and in particular its stability, both under
heating conditions approximating IHG and in the presence of a sec-
ondary coupled loop driven by NC. This configuration is of particular
interest for the MSFR reactor, as it represent the operating condition
of the passive Decay Heat Removal System. Due to this uniqueness and
to the peculiarity of its working conditions, the DYNASTY-eDYNASTY
facility has to be studied and characterized first and foremost using
well-proven methods to ensure a coherent and reliable analysis. In
particular, this work adopts the well-known one-dimensional analysis
and Perturbation Theory to retrieve the Stability Map characterizing
the system, a necessary requirement to perform more detailed analyses
and to set-up experimental campaign. On the basis of the Stability Map
of the DYNASTY-eDYNASTY facility, it is possible to clear up some of
the doubts that arise when two Natural Circulation Loops are coupled
together. In the event of an accidental scenario occurring in the primary
loop that causes instabilities to increase in its dynamics, it is important
to understand whether the presence of the coupled secondary loop is
able to stabilize the system. On the other hand, it is crucial to study
whether the occurrence of a transient in the secondary loop can have
an influence on the primary loop, affecting its stability and causing the
system to become unstable.

The purpose of this paper is to extend the analytical mono-
dimensional studies conducted by [2,12] for the Single Natural Cir-
culation Loops (SCNLs), including the effect of the additional thermal
inertia provided by the coupling of a secondary loop, expanding the
analysis to Coupled Natural Circulation Loops (CNCLs). The particular
case of the DYNASTY-eDYNASTY configuration for CNCLs is studied,
obtaining its Stability Map from well-proven techniques in order to
answer to the main doubts mentioned.

The paper is organized as follows. In Section 2, a brief introduc-
tion of the DYNASTY-eDYNASTY facility and the relevant dimensions
adopted to conduct the analysis are presented. Section 3 introduces
the dynamical mono-dimensional equations based on conservation laws
to model the DYNASTY-eDYNASTY facility. In Sections 4 and 5, the
models to perform steady-state and stability analysis of the CNCLs are
derived. Section 6 is dedicated to presenting the simplified model of the
DYNASTY-eDYNASTY facility, developed in the MODELICA language
and used to perform verification of the models developed in Sections 4
and 5. In Section 7, the results obtained from the developed analytical
models are verified by comparing with those obtained through the
MODELICA model simulations, and in Section 8, the conclusions and
possible future case studies are discussed.

2. DYNASTY-eDYNASTY facility

A complete description of the design of the DYNASTY-eDYNASTY
facility has been given in [6]. Therefore, in this section, only a summary
is provided.
3

Table 2
Pipe dimensions for the DYNASTY-eDYNASTY model adopted in this paper. The
subscript 1 is for the DYNASTY loop, while subscript 2 refers to the eDYNASTY loop.
For the external pipe of the heat exchanger (Fig. 2), the subscript is 𝐻𝐸.

Subscript (𝑗)

1 2 𝐻𝐸

Inner diameter 𝐷𝑓𝑗 (mm) 38.2 38.2 56
Thickness 𝜏𝑤𝑗

(mm) 2 2 2

The facility, built at the Energy lab of Politecnico di Milano, is
composed of two rectangular Natural Circulation loops realized in
stainless steel named DYNASTY loop, made of AISI 316L, and eDY-
NASTY loop, made of AISI 304, which are coupled through a double
pipe heat exchanger. The facility can operate as an SCNL with the
stand-alone DYNASTY loop, bypassing the heat exchanger through a
vertical pipe, or as CNCLs with both loops. The heating system is placed
in the DYNASTY loop and consists of tape of electrical resistances that
envelope the horizontal bottom leg and the two vertical legs, which can
be heated independently. The Distributed Heating (DH) configuration is
achieved by switching on all electrical resistances and would simulate
the case when the fluid is heated by Internal Heat Generation (IHG).
Thanks to the high axial length-to-radius ratio of the pipe, the IHG
condition can be replaced with an External Heating Source (EHS) [2],
experimentally simulated with the electrical resistances enveloped to
the pipes of the DYNASTY loop. The cooling system consists of two
finned pipes placed in the horizontal top leg of both loops in cross-flow
with a fan.

Fig. 1 shows the DYNASTY and eDYNASTY loop configured as
CNCLs, where the heating system is highlighted in red, the coolers are
light blue and the heat exchanger is green, and the terminology adopted
for the lengths, distinguishing with the capital letter 𝐿 those of the
DYNASTY loop and lowercase letter 𝑙 those of the eDYNASTY loop,
while in Table 1 the principal length dimensions are reported. In the
DYNASTY loop (Fig. 1(a)), the pump’s leg is only opened when using
forced circulation, closing the leg below where the mass-flow meter
(Endress-Hauser® Promass F80 DN25 Coriolis, [13]) is placed. The heat
exchanger is characterized by an annular cross-section, called in this
paper secondary side, which is in communication with the eDYNASTY
loop, and an internal pipe that is part of the DYNASTY loop, called the
primary side. Fig. 2 shows the cross-section of the heat exchanger and
some nomenclature adopted, while Table 2 reports the principal pipe
dimensions for both loops.

3. Mathematical model

3.1. Main hypothesis

In this section, the governing equations for a generic NCL are
presented. In the case of CNCLs, the same hypothesis assumed in [2]
have been adopted and extended for the eDYNASTY loop. Specifically,
for the working fluids:

• The flow is considered incompressible and one-dimensional along
the axial direction of the pipes for both loops.

• The Boussinesq approximation is used.
• The flow regime (laminar, laminar-turbulent transition, or fully

turbulent) does not change within the DYNASTY loop.
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Fig. 1. (a) DYNASTY loop and (b) eDYNASTY loop with the main length nomenclature adopted and the dimensions reported in Table 1. The heater zone is highlighted in red,
the coolers are in blue and the heat exchanger is in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Source: Adapted from [6].
Fig. 2. Section of the heat exchanger with nomenclature. The primary side, correspond-
ing to the cross-section of the green pipe in Fig. 1(a), is highlighted in red, whereas
the secondary side, corresponding to the cross-section of the green pipe in Fig. 1(b),
is shown in light blue. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

• Conversely, eDYNASTY will see two different flow regimes, one
in the annular section of the heat exchanger and another one in
the rest of the loop, due to the different hydraulic diameters of
the two sections.

• Dissipative and diffusion terms in the energy balance are ne-
glected.

Regarding the solid regions characterized by the pipe walls, they
have been discretized along the radial coordinate into two coaxial shells
(namely, the inner and the outer wall), adopting a lumped parameter
approach [2], as Fig. 3 shows.

The same hypothesis assumed by [2] for the pipe walls have been
adopted:
4

• The wall thickness (𝜏𝑤) and the diameter (𝐷𝑤𝑜
= 𝐷𝑓 +2𝜏𝑤) of the

pipes are constant.
• A thermal capacitance (𝑐𝑤) is assigned to each shell.
• A conductive thermal resistance (𝑅̃𝑤) is placed between the two

shells.
• The thermo-physical properties are assumed constant.
• The axial conduction and the thermal dissipations are neglected.

Regarding the thermo-physical properties of the walls, the same
parameters adopted by [2] for the stainless-steel AISI 316L were used
for both loops: 𝜌𝑤 = 8238 kg∕m3 (density), 𝑐𝑤 = 468 J∕(kgK) (specific
heat), 𝑘𝑤 = 13.4W∕(mK) (thermal conductivity). The heater zone
is modelled as a uniform heat flux source 𝑞′′, while the coolers are
modelled by assuming an imposed temperature 𝑇𝑐 to the external
surfaces of the walls. Regarding the cooler of the DYNASTY loop, it can
also be treated as an adiabatic pipe when heat exchange in that zone
is not considered. Moreover, models for the heat transfer coefficients
and friction factor, based on the definition of dimensionless Nusselt,
Reynolds and Prandtl numbers, have been implemented to complete
the set of equations.

3.2. General equations

The governing equations are the same adopted in [2] based on the
conservation laws expressed in one spatial dimension. A point along
both the DYNASTY and eDYNASTY loops is identified by the curvilinear
coordinate 𝑠𝑗 , where 𝑗 is the subscript equal to 1 or 2 referring to
DYNASTY or eDYNASTY loops respectively, with the assumption of
clockwise flow directions (Fig. 1). Two arbitrary starting points were
chosen (𝑠1,2 = 0): the entrance of the heat exchanger for the DYNASTY
loop and the exit of the heat exchanger for the eDYNASTY loop (which
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Fig. 3. (a) Discretization of the pipe wall and (b) the equivalent t scheme for thermal capacitances and resistances [2].
correspond to the top part of the heat exchanger in Fig. 1). With the
hypothesis introduced in Section 3.1, Eq. (1) express the conservation
laws for the fluid flows for both DYNASTY and eDYNASTY loop, except
for the heat exchanger zone.2

𝜕𝐺𝑗

𝜕𝑠𝑗
= 0 with 𝐺𝑗 = 𝜌∗𝑓𝑗 𝑢𝑗 (1a)

𝜕𝐺𝑗

𝜕𝑡
+ 𝜕

𝜕𝑠𝑗

𝐺2
𝑗

𝜌∗𝑓𝑗
= −

𝜕𝑝𝑗
𝜕𝑠𝑗

− 1
2
𝜆𝑗

𝐺2
𝑗

𝜌∗𝑓𝑗

1
𝐷𝑓𝑗

− 𝜌𝑓𝑗 𝑔𝐞̂𝑧 ⋅ 𝐞̂𝑠 (1b)

𝜌∗𝑓𝑗 𝑐𝑓𝑗
𝜕𝑇𝑓𝑗
𝜕𝑡

+ 𝐺𝑗𝑐𝑓𝑗
𝜕𝑇𝑓𝑗
𝜕𝑠𝑗

= −ℎ𝑗𝑚 (𝑇𝑓𝑗 − 𝑇𝑤𝑖𝑗
)
𝑆̃𝑓𝑗

𝑉𝑓𝑗
(1c)

The influence of the pipe walls was taken into consideration by the
heat conduction Eq. (2) for the two discretized wall shells.

𝜌𝑤𝑗
𝑐𝑤𝑗

𝜕𝑇𝑤𝑖𝑗

𝜕𝑡
=ℎ𝑗𝑚 (𝑇𝑓𝑗 − 𝑇𝑤𝑖𝑗

)
𝑆̃𝑓𝑗

𝑉𝑤𝑖𝑗

−
𝑇𝑤𝑖𝑗

− 𝑇𝑤𝑜𝑗

𝑉𝑤𝑖𝑗
𝑅̃𝑤𝑗

(2a)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇𝑤𝑜𝑗
= 𝑇𝑐 cooler

𝜌𝑤𝑗
𝑐𝑤𝑗

𝜕𝑇𝑤𝑜𝑗
𝜕𝑡 =

𝑇𝑤𝑖𝑗
−𝑇𝑤𝑜𝑗

𝑉𝑤𝑜𝑗
𝑅̃𝑤𝑗

+
𝑆̃𝑤𝑜𝑗
𝑉𝑤𝑜𝑗

𝑞′′ heater

𝜌𝑤𝑗
𝑐𝑤𝑗

𝜕𝑇𝑤𝑜𝑗
𝜕𝑡 =

𝑇𝑤𝑖𝑗
−𝑇𝑤𝑜𝑗

𝑉𝑤𝑜𝑗
𝑅̃𝑤𝑗

otherwise

(2b)

where:

𝑉𝑓𝑗 = 𝜋

(

𝐷𝑓𝑗

2

)2

𝑠̃ 𝑆̃𝑓𝑗 = 𝜋𝐷𝑓𝑗 𝑠̃

𝑉𝑤𝑖𝑗
= 𝜋

⎡

⎢

⎢

⎣

(𝐷𝑤𝑖𝑗

2

)2

−

(

𝐷𝑓𝑗

2

)2
⎤

⎥

⎥

⎦

𝑆̃𝑤𝑖𝑗
= 𝜋𝐷𝑤𝑖𝑗

𝑠̃

𝑉𝑤𝑜𝑗
= 𝜋

⎡

⎢

⎢

⎣

(𝐷𝑤𝑜𝑗

2

)2

−

(𝐷𝑤𝑖𝑗

2

)2
⎤

⎥

⎥

⎦

𝑆̃𝑤𝑜𝑗
= 𝜋𝐷𝑤𝑜𝑗

𝑠̃

(3)

Eqs. (1a) to (1c) are the mass, momentum and energy balance
respectively. The infinitesimal volumes and surfaces are reported in
Eq. (3). With reference to Eqs. (1) and (2), 𝐺 is the mass flux, 𝑢 is the
velocity magnitude, 𝜌 is the density, 𝜆 is the Darcy friction factor, 𝑝 is
the pressure, 𝑇 is the temperature, 𝑐 is the specific heat and ℎ is the
heat transfer coefficient. 𝑉 and 𝑆̃ stands for volume and lateral surface
of an element of infinitesimal length 𝑠̃. The superscript ∗ specifies the
reference thermo-physical quantities for the fluid region taken at the
origin of each curvilinear coordinate (𝑠𝑗 = 0) for each loop for the
specific fluid (𝜌∗𝑓 is the fluid reference density, while 𝜌𝑓 is the fluid
density along the loop). The subscripts 𝑓 and 𝑤 stand for fluid and wall,
respectively. In particular, 𝑤𝑖 refers to the inner wall shell, while 𝑤𝑜 to
the outer one. 𝑔 denotes gravitational acceleration, 𝐞̂𝑧 the 𝑧 direction

2 As the cross-section was assumed uniform, it can be neglected in the mass
conservation Eq. (1a).
5

unit vector, and 𝐞̂𝑠 the flow direction unit vector. The subscript 𝑚 in
the heat transfer coefficient refers to the different zones of the cooler
(𝑚 = 𝐶𝑂𝑂𝐿), heater (𝑚 = 𝐻), and adiabatic pipe (𝑚 = 𝑃 ), where
the coefficients are computed with different correlations, resumed in
Section 3.4. The thermal resistance 𝑅̃𝑤𝑗

is computed with equation
Eq. (4):

𝑅̃𝑤𝑗
= 1

2𝜋𝑘𝑤𝑗
𝑠̃
𝑙𝑜𝑔

(𝐷𝑤𝑜𝑗

𝐷𝑓𝑗

)

(4)

where 𝑘𝑤𝑗
is the thermal conductivity of the wall of the 𝑗th loop.

3.3. Equations of heat exchanger

The equations for the primary side of the heat exchanger are iden-
tical to Eqs. (1) and Eq. (2a) with 𝑗𝑚 = 1𝐻𝐸 , where the subscript
𝐻𝐸 refers to the heat exchanger zone. Concerning the outer wall shell
equation for the primary side, the heat transferred to the secondary
fluid must be included. Naming the heat transfer coefficient ℎ𝐻𝐸 , the
equation for the heat conduction of the outer wall shell of the DYNASTY
loop in the heat exchanger can be expressed as Eq. (5):

𝜌𝑤1
𝑐𝑤1

𝜕𝑇𝑤𝑜1

𝜕𝑡
=

𝑇𝑤𝑖1
− 𝑇𝑤𝑜1

𝑉𝑤𝑜1
𝑅̃𝑤1

+ ℎ𝐻𝐸 (𝑇𝑓2 − 𝑇𝑤𝑜1
)
𝑆̃𝑤𝑜1

𝑉𝑤𝑜1

(5)

Regarding the annular cross-section, thus the secondary side of the
heat exchanger, all the variables are marked with the subscript 𝐻𝐸.
The mass balance equation does not change:
𝜕𝐺𝐻𝐸
𝜕𝑠2

= 0 with 𝐺𝐻𝐸 = 𝜌∗𝑓2𝑢𝐻𝐸 (6)

The momentum equation must take into account the hydraulic
diameter of the annular cross-section in the friction term, as expressed
in Eq. (7):

𝜕𝐺𝐻𝐸
𝜕𝑡

+ 𝜕
𝜕𝑠2

𝐺2
𝐻𝐸
𝜌∗𝑓2

= −
𝜕𝑝2
𝜕𝑠2

− 1
2
𝜆𝐻𝐸

𝐺2
𝐻𝐸
𝜌∗𝑓2

𝜖 − 𝜌𝑓2𝑔𝐞̂𝑧 ⋅ 𝐞̂𝑠

with 𝜖 = 1
𝐷𝑓𝐻𝐸

− (𝐷𝑓1 + 2𝜏𝑤1
)

(7)

where 𝜖 is the inverse of the hydraulic diameter of the annulus.
Regarding the energy equation for the secondary fluid which flows

through the annulus, two heat transfer coefficients ℎ are assigned to it:
one related to the heat transfer with the outer wall shell of the primary
circuit (ℎ𝐻𝐸) and one related to the heat transfer with the external wall
shell of the heat exchanger (ℎ2𝐻𝐸

). Thus, the energy balance can be
written as Eq. (8):

𝜌∗𝑓2 𝑐𝑓2
𝜕𝑇𝑓2
𝜕𝑡

+ 𝐺𝐻𝐸𝑐𝑓2
𝜕𝑇𝑓2
𝜕𝑠2

= − ℎ𝐻𝐸 (𝑇𝑓2 − 𝑇𝑤𝑜1
)
𝑆̃𝑤𝑜1

𝑉𝑓𝐻𝐸

− ℎ2𝐻𝐸
(𝑇𝑓2 − 𝑇𝑤𝑖

)
𝑆̃𝑓𝐻𝐸

̃

(8)
2 𝑉𝑓𝐻𝐸
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where:

𝑉𝑓𝐻𝐸
= 𝜋

⎡

⎢

⎢

⎣

(𝐷𝑓𝐻𝐸

2

)2

−

(𝐷𝑤𝑜1

2

)2
⎤

⎥

⎥

⎦

𝑆̃𝑓𝐻𝐸
= 𝜋𝐷𝑓𝐻𝐸

𝑠̃ (9)

The inner shell of the external wall of the heat exchanger can be
odelled with Eq. (10):

𝑤2
𝑐𝑤2

𝜕𝑇𝑤𝑖2

𝜕𝑡
= ℎ2𝐻𝐸

(𝑇𝑓2 − 𝑇𝑤𝑖2
)
𝑆̃𝑓𝐻𝐸

𝑉𝑤𝑖𝐻𝐸

−
𝑇𝑤𝑖2

− 𝑇𝑤𝑜2

𝑉𝑤𝑖𝐻𝐸
𝑅̃𝑤𝐻𝐸

(10)

The outer shell of the external wall of the heat exchanger can be
odelled with Eq. (11) where heat exchange is not considered between

he outer wall and the external environment.

𝑤2
𝑐𝑤2

𝜕𝑇𝑤𝑜2

𝜕𝑡
=

𝑇𝑤𝑖2
− 𝑇𝑤𝑜2

𝑉𝑤𝑜𝐻𝐸
𝑅̃𝑤𝐻𝐸

(11)

The mass fluxes of the eDYNASTY loop are linked thanks to the
conservation of mass at the entrance and exit of the heat exchanger:

𝐺2𝑉𝑓2 = 𝐺𝐻𝐸𝑉𝑓𝐻𝐸
(12)

In this way the mass rates are conserved at the interfaces.

3.4. Coefficients models

The models for the Darcy friction factor and heat transfer coeffi-
cients, found in literature, are based on models defined starting from
the Nusselt, Reynolds and Prandtl dimensionless numbers, defined as:

ℎ =
𝑁𝑢 ⋅ 𝑘𝑓
𝐷ℎ

𝑅𝑒 =
𝐺 ⋅𝐷ℎ
𝜇𝑓

𝑃𝑟 =
𝑐𝑓 ⋅ 𝜇𝑓
𝑘𝑓

(13)

The Darcy friction factor correlation is assumed:

=
( 64
𝑅𝑒

)𝛹𝜆
(

0.316
𝑅𝑒0.25

)1−𝛹𝜆
(14)

here

𝜆 =
(

1 + 𝑒
𝑅𝑒−2530

120
)−1

is the ‘‘Fermi–Dirac’’ function centred at 𝑅𝑒 = 2530, which is the
value chosen for the transition from laminar to turbulent flow [5]. The
‘‘Fermi–Dirac’’ function interpolates the Darcy friction factors for the
laminar and turbulent regime, allowing to adopt a unique, continuous
and derivable correlation of the friction factor (Eq. (14)) for the entire
Reynolds range, particularly suitable for the numerical calculation of
natural circulation problems which cover a wide range of regimes.
For the Nusselt number, the model adopted is the same one proposed
by [4]:

𝑁𝑢 =

[

𝑁𝑢
𝛹𝑁𝑢1
𝐻

(

𝑁𝑢
𝛹𝑁𝑢3
𝑆 𝑁𝑢

1−𝛹𝑁𝑢3
𝐺

)1−𝛹𝑁𝑢1
]𝛹𝑁𝑢2

⋅
(

𝑁𝑢
𝛹𝑁𝑢3
𝑆 𝑁𝑢

1−𝛹𝑁𝑢3
𝐷𝐵

)1−𝛹𝑁𝑢2

(15)

where 𝛹𝑁𝑢1 , 𝛹𝑁𝑢2 and 𝛹𝑁𝑢3 are the ‘‘Fermi–Dirac’’ functions adopted
for interpolating the correlations used for the Nusselt number in the
Reynolds and Prandtl range, defined as reported in Eq. (16).

𝛹𝑁𝑢1 =
(

1 + 𝑒
𝑅𝑒−2530

20
)−1

(16a)

𝑁𝑢2 =
(

1 + 𝑒
𝑅𝑒−105

20

)−1
(16b)

𝑁𝑢3 =
(

1 + 𝑒
𝑃𝑟−0.6
10−5

)−1
(16c)

𝑢𝐻 , 𝑁𝑢𝑆 , 𝑁𝑢𝐺 , 𝑁𝑢𝐷𝐵 are respectively the Hausen, Skupinski, Gnielin-
ki and Dittus–Boelter correlations for the Nusselt number [14], sum-
arized in Table 3. The Hausen correlation is suitable for the cooler
6

zone [14] for the laminar regime and imposed temperature at the wall
of the pipe. Regarding the heater zone, where uniform heat flux is
imposed and not the temperature, the Hausen correlation is replaced
with the analytical solution 𝑁𝑢 = 48

11 [14], reported in Table 3.

4. Steady-state analysis

Starting from the set of dynamic Eqs. (1) and (2) for the DYNASTY
and eDYNASTY loop, and Eqs. (5) to (8), (10) and (11) for the heat
exchanger, the steady state was obtained neglecting the partial time
derivative. In this way, a set of Ordinary Differential Equations (ODEs)
was obtained for each pipe that composes the CNCLs. The temperature
field solution was first obtained in Section 4.1, and then the momentum
equations were integrated along each loop to obtain a global balance
of the forces that act on the fluid and allow natural circulation (Sec-
tion 4.2). All the quantities obtained from solving the steady-state
equation are indicated with a superscript 0.

4.1. Temperature fields

The fluid temperature profile of each NCL can be derived by solving
Eqs. (1c), (2), (5), (8), (10) and (11) expressed in steady-state form.
Thanks to the ODEs obtained, it is possible to obtain the temperature
along the coolers, heater and each adiabatic pipe. To make equations
more compact and readable, the following quantities were defined:

𝛥𝑇 0 = 𝑄
𝛤1𝑐𝑓1

𝑄 = 𝑞′′
𝑆̃𝑤𝑜1

𝑠̃
𝐿𝐻 𝛤𝑗 = 𝐺𝑗

𝑉𝑓𝑗
𝑠̃

(17)

where 𝛥𝑇 0 is the primary fluid temperature difference between the
outlet and the inlet of the heater, 𝑄 is the total power delivered by the
heater, 𝐿𝐻 is the heater length and 𝛤𝑗 is the mass rate of each loop. In
this way, the analytical temperature fields for the regions of the cooler,
the adiabatic pipes, and the heater were obtained from the steady-state
form of Eqs. (1c), (2) and (5), and their expressions are Eqs. (18a) to
(18c) respectively.

𝑇 0
𝑓𝑗
(𝑠𝑗 ) = 𝑇𝑐 + 𝑏𝑗 ⋅ 𝑒

−𝛽𝑗 (𝑠𝑗−𝐿)𝛥𝑇 0 cooler (18a)

𝑇 0
𝑓𝑗
(𝑠𝑗 ) = 𝑇 0

𝑓 (𝐿) adiabatic pipe (18b)

𝑇 0
𝑓𝑗
(𝑠𝑗 ) = 𝑇 0

𝑓 (𝐿) + 𝛥𝑇 0 ⋅
𝑠𝑗 − 𝐿
𝐿𝐻

heater (18c)

Generalizing for the cooler, adiabatic pipe and heater, the inlet of
each pipe is placed at a generic coordinate 𝑠𝑗 = 𝐿, while 𝑇 0

𝑓 (𝐿) is
the fluid temperature at the inlet of the pipe considered. Considering
the two sides of the heat exchanger, naming 𝑇𝑓1 (0) the inlet fluid
temperature on the primary side and 𝑇𝑓2 (0) the outlet fluid temperature
of the heat exchanger secondary side, the temperature profiles obtained
are represented in Eq. (19a) for the primary side of the heat exchanger
and in Eq. (19b) for the secondary side. The equations are obtained
from the steady-state form of Eqs. (5), (8), (10) and (11).

𝑇 0
𝑓1
(𝑠1) = 𝑇 0

𝑓1
(0) + 𝑎 ⋅ (1 − 𝑒−𝛼𝑠1 )𝛥𝑇 0 (19a)

𝑇 0
𝑓2
(𝑠2) = 𝑇 0

𝑓2
(0) +

𝛤1𝑐𝑓1
𝛤2𝑐𝑓2

𝑎 ⋅
[

1 − 𝑒−𝛼(𝐿𝑡𝑜𝑡2−𝑠2)
]

𝛥𝑇 0 (19b)

where 𝐿𝑡𝑜𝑡2 is the total length of the eDYNASTY loop. The values of the
constants 𝑎 and 𝑏𝑗 depend on the pipe configurations of the CNCLs. The
exponents 𝛼 and 𝛽𝑗 have the following expressions:

𝛼 =
𝛤2𝑐𝑓2 − 𝛤1𝑐𝑓1
𝛤1𝛤2𝑐𝑓1 𝑐𝑓2 𝑅̃

𝑡ℎ
𝐻𝐸

(20)

𝛽𝑗 =
1

𝛤𝑗𝑐𝑓𝑗 𝑅̃
𝑡ℎ
𝐶𝑂𝑂𝐿𝑗

(21)

The two thermal resistances introduced in Eqs. (20) and (21), 𝑅̃𝑡ℎ
𝐻𝐸

and 𝑅̃𝑡ℎ , are respectively the thermal resistance between the two
𝐶𝑂𝑂𝐿𝑗
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Table 3
Adopted heat transfer correlations.
Correlation name Correlation formula Reynolds range Prandtl range

Hausen 3.66 + 0.0668(𝐷∕𝐿)𝑅𝑒𝑃𝑟
1+0.04[(𝐷∕𝐿)𝑅𝑒𝑃𝑟]0.67

3.6 ⋅ 103 ≤ 𝑅𝑒 ≤ 9.05 ⋅ 105 3 ⋅ 10−3 ≤ 𝑃𝑟 ≤ 5 ⋅ 10−2

Analytic solution 48
11

Laminar Fully developed conditions,
uniform 𝑞′′

Skupinski 4.82 + 0.0185(𝑅𝑒𝑃𝑟)0.827 Laminar Thermal entry, uniform 𝑇𝑤

Gnielinski (𝑓∕8)(𝑅𝑒−1000)𝑃𝑟
1+12.7(𝑓∕8)0.5 (𝑃𝑟0.67−1)
𝑓 = [0.79 ⋅ 𝑙𝑜𝑔(𝑅𝑒) − 1.64]−2

3 ⋅ 103 ≤ 𝑅𝑒 ≤ 5 ⋅ 106 0.5 ≤ 𝑃𝑟 ≤ 2 ⋅ 103

Dittus–Boelter 0.023 ⋅ 𝑅𝑒0.8𝑃𝑟𝑛

𝑛 =

{

0.3 fluid being cooled
0.4 fluid being heated

𝑅𝑒 ≥ 104 0.6 ≤ 𝑃𝑟 ≤ 160
w
a
t

𝛥

h

w
h
t



l

𝛥

fluids at the heat exchanger and the thermal resistance between the
fluid of the 𝑗th loop and the outer cooler wall surface. Their expressions
are shown in equations Eq. (22):

𝑅̃𝑡ℎ
𝐻𝐸 = 1

𝜋𝐷𝑓1ℎ1𝐻𝐸

+ 𝑠̃𝑅̃𝑤1
+ 1

𝜋𝐷𝑤𝑜1
ℎ𝐻𝐸

(22a)

̃ 𝑡ℎ
𝐶𝑂𝑂𝐿𝑗

= 𝑠̃𝑅̃𝑤𝑗
+ 1

𝜋𝐷𝑓𝑗ℎ𝑗𝐶𝑂𝑂𝐿

(22b)

The temperatures that both fluids assume at the origin of each
urvilinear coordinate, 𝑇 0

𝑓1
(0) and 𝑇 0

𝑓2
(0), are coupled thanks to the

elation Eq. (23), which is derivable from Eqs. (5), (8), (10) and (11).

0
𝑓2
(0) = 𝑇 0

𝑓1
(0) +𝑄𝑅̃𝑡ℎ

𝐻𝐸𝑎𝛼 (23)

To determine the coefficients 𝑎 in Eq. (19) and 𝑏𝑗 in Eq. (18a), and
the temperatures 𝑇 0

𝑓1
(0) and 𝑇 0

𝑓2
(0) in Eq. (19), the continuity of the

temperature field for each loop must be imposed.

4.2. Integral momentum equations

The global balance of the momentum for both loops can be ob-
tained by applying a path integral to Eq. (1b), including also Eq. (7)
for the eDYNASTY loop, belonging to each loop, obtaining integral
momentum Eqs. (24a) and (24b) for the DYNASTY and eDYNASTY loop
respectively:

1
2
𝜆01

(𝐺0
1)

2

𝜌∗𝑓1

𝐿𝑡𝑜𝑡1
𝐷𝑓1

= −∮𝑙𝑜𝑜𝑝1
𝜌0𝑓1𝑔𝐞̂𝑧 ⋅ 𝐞̂𝑠 (24a)

1
2
𝜆02

(𝐺0
2)

2

𝜌∗𝑓2

𝐿𝑡𝑜𝑡2 − 𝐿𝐻𝐸

𝐷𝑓2
+1
2
𝜆0𝐻𝐸

(𝐺0
𝐻𝐸 )

2

𝜌∗𝑓2
𝜖𝐿𝐻𝐸

= −∮𝑙𝑜𝑜𝑝2
𝜌0𝑓2𝑔𝐞̂𝑧 ⋅ 𝐞̂𝑠

(24b)

The relations state the balance between the distributed friction
pressure drop on the left hand of both equations and the pressure that
rises from the Buoyancy force on the right hand of the equations. In the
case of the presence of concentrated pressure losses, such as elbows
temperature probes or mass-flow meters, the frictional pressure drop
term must include them.

𝛥𝑝𝑓𝑟𝑖𝑐𝑗 = 𝛥𝑝𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑗 + 𝛥𝑝𝑐𝑜𝑛𝑐𝑗 (25)

which must be balanced by the Buoyancy force. The concentrated
pressure losses can be modelled as follows [15]:

𝛥𝑝𝑐𝑜𝑛𝑐𝑗 =
1
2

(𝐺0
𝑗 )

2

𝜌∗𝑓𝑗

𝑁𝑗
∑

𝑛=1
𝐾𝑛𝑗 (26)

where 𝐾𝑛𝑗 is a constant that depends on the 𝑛th device that causes the
concentrated pressure drop and 𝑁𝑗 is the total number of devices that
cause the concentrated pressure losses in the 𝑗th loop. The momentum
balance equation and the energy balance equation are coupled thanks
7

to the Boussinesq approximation, Eq. (27):

𝜌𝑓𝑗 = 𝜌∗𝑓𝑗 +

(

𝜕𝜌𝑓𝑗
𝜕𝑇𝑓𝑗

)

𝑝

(𝑇𝑓𝑗 − 𝑇 ∗
𝑓𝑗
) = 𝜌∗𝑓𝑗 [1 − 𝛽𝑓𝑗 (𝑇𝑓𝑗 − 𝑇 ∗

𝑓𝑗
)]

with 𝛽𝑓𝑗 = − 1
𝜌∗𝑓𝑗

(

𝜕𝜌𝑓𝑗
𝜕𝑇𝑓𝑗

)

𝑝

(27)

here 𝛽𝑓𝑗 is the thermal expansion coefficient for the 𝑗th fluid evalu-
ted at the reference temperature 𝑇 ∗

𝑓𝑗
. Inserting Eq. (27) in Eq. (24),

he general integral momentum Eq. (28) is obtained for a generic NCL:

𝑝𝑓𝑟𝑖𝑐𝑗 = 𝜌∗𝑓𝑗 𝑔𝛽𝑓𝑗 ∮𝑙𝑜𝑜𝑝𝑗
𝑇 0
𝑓𝑗
𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠𝑗 (28)

It is possible to demonstrate that for each NCL, the relation Eq. (29)
olds [5]:

∮𝑙𝑜𝑜𝑝𝑗
𝑇 0
𝑓𝑗
𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠𝑗 = 𝛥𝑇 0𝑒𝑞𝑗 (29)

here 𝑒𝑞𝑗 is the thermal barycentre between the heat source and the
eat sink of the 𝑗th loop. Referring to Fig. 1 of the CNCLs analysed, the
hermal barycentres of the two loops assume the following expression:

𝑒𝑞1 =
[

𝐿2
𝐿𝐻

+ 𝑎 ⋅
(

1 − 𝑒−𝛼𝐿𝐻𝐸
)

+
𝐿3
2𝐿𝐻

]

𝐿3

−𝐿1𝑎 ⋅
(

1 − 𝑒−𝛼𝐿𝐻𝐸
)

− 𝑎
𝛼
(𝛼𝐿𝐻𝐸 − 1 + 𝑒−𝛼𝐿𝐻𝐸 )

(30a)

𝑒𝑞2 = (𝑙6 − 𝑙4)
𝛤1𝑐𝑓1
𝛤2𝑐𝑓2

𝑎 ⋅
(

1 − 𝑒−𝛼𝐿𝐻𝐸
)

+
𝛤1𝑐𝑓1
𝛤2𝑐𝑓2

𝑎
𝛼
(𝛼𝐿𝐻𝐸 − 1 + 𝑒−𝛼𝐿𝐻𝐸 )

(30b)

For a CNCLs problem, once the temperature fields belonging to each
oop are determined, Eq. (31) are the remaining equations to solve:

𝑝𝑓𝑟𝑖𝑐1 = 𝜌∗𝑓1𝑔𝛽𝑓1𝛥𝑇
0𝑒𝑞1 (31a)

𝛥𝑝𝑓𝑟𝑖𝑐2 = 𝜌∗𝑓2𝑔𝛽𝑓2𝛥𝑇
0𝑒𝑞2 (31b)

Thus, it is necessary to find those mass fluxes (𝐺1, 𝐺2) that satisfy
Eq. (31). Since Eqs. (31a) and (31b) are non-linear equations, a numer-
ical optimization algorithm, namely the Broyden one with second Ja-
cobian approximation, has been coded in Python using the optimization
library scipy.optimize.root(method=’broyden2’) [16].
Such a method has the best performance among the others imple-
mented in the same library.

5. Stability analysis

In this section, stability analysis of the steady-state solution is
presented. The analysis was conducted by linearizing the dynamic
equations for NCL in the proximity of a steady-state, applying the
Perturbation theory [2,4,12]. From these linear equations obtained, it
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Table 4
Validity range of the perturbation applied to the state variables, referring to Eq. (32).

State variable 𝑥 Lower bound 𝑐 Upper bound 𝑑

𝐺1 0 𝐿𝑡𝑜𝑡1
𝐺2 0 𝐿𝑡𝑜𝑡2 − 𝐿𝐻𝐸
𝐺𝐻𝐸 𝐿𝑡𝑜𝑡2 − 𝐿𝐻𝐸 𝐿𝑡𝑜𝑡2
𝑇𝑓𝑗 0 𝐿𝑡𝑜𝑡𝑗
𝑇𝑤𝑖𝑗

0 𝐿𝑡𝑜𝑡𝑗

𝑇𝑤𝑜𝑗
0 𝐿𝑡𝑜𝑡𝑗

was possible to derive a Stability Map for the CNCLs, following the
same procedure adopted by [12].

5.1. Linear dimensionless governing equations

Following a similar approach adopted by [2], the state of the CNCLs
system, identified by the mass fluxes 𝐺𝑗 and the temperatures 𝑇𝑓𝑗 , 𝑇𝑤𝑖𝑗

,
𝑇𝑤𝑜𝑗

, is perturbed around a steady-state solution (𝐺0
𝑗 , 𝑇

0
𝑓𝑗

, 𝑇 0
𝑤𝑖𝑗

, 𝑇 0
𝑤𝑜𝑗

)
nder the assumption of small perturbation compared to the steady-
tate values. Assuming 𝑥 a generic state variable, the perturbation
ssumption is the following:

≅𝑥0(𝑠𝑗 ) + 𝛿𝑥(𝑠𝑗 , 𝑡) with
𝛿𝑥(𝑠𝑗 , 𝑡) ≪ 𝑥0(𝑠𝑗 ) ∀(𝑠𝑗 , 𝑡) ∈ [𝑐, 𝑑] × R+ (32)

here 𝑐 and 𝑑 are the lower and upper bounds of the validity range
of the perturbation applied to the state variables for the system, whose
values are reported in Table 4.

The same approach of Eq. (32) is applied regarding the heat transfer
coefficients and the friction factors: as they are functions of the system
state, a perturbation of the state implies a perturbation to the heat
transfer coefficients and the friction factors (33).

ℎ𝑗𝑚 ≅ ℎ0𝑗𝑚 + 𝛿ℎ𝑗𝑚 (33a)

𝜆𝑗 ≅ 𝜆0𝑗 + 𝛿𝜆𝑗 (33b)

Assuming constant thermo-physical properties, the perturbations
applied to the heat transfer coefficients and the friction factors in
Eq. (33) depend only on perturbations of the mass flux; moreover,
perturbations are linearized as written in Eq. (34), following the same
approach adopted by [4].

𝛿ℎ𝑗𝑚 ≈
( 𝜕ℎ𝑗𝑚

𝜕𝐺𝑗

)

0
𝛿𝐺𝑗 with

( 𝜕ℎ𝑗𝑚
𝜕𝐺𝑗

)

0
∶=

( 𝜕ℎ𝑗𝑚
𝜕𝐺𝑗

)

|

|

|

|𝐺𝑗=0
(34a)

𝜆𝑗 ≈
( 𝜕𝜆𝑗
𝜕𝐺𝑗

)

0
𝛿𝐺𝑗 with

( 𝜕𝜆𝑗
𝜕𝐺𝑗

)

0
∶=

( 𝜕𝜆𝑗
𝜕𝐺𝑗

)

|

|

|

|𝐺𝑗=0
(34b)

The perturbed variables, Eqs. (32) and (33), are substituted in Eqs.
1), (2) and (5) to (8). In this way, the set of the linear time-dependent
overning equations, Eq. (35), are obtained for the perturbed variable
or each of the two loops:

𝜕(𝛿𝐺𝑗 )
𝜕𝑠𝑗

= 0 (35a)

𝜕(𝛿𝐺𝑗 )
𝜕𝑡

= −
𝜕(𝛿𝑝𝑗 )
𝜕𝑠𝑗

−

(

𝜕2𝑝𝑗
𝜕𝐺𝑗𝜕𝑠𝑗

)

𝑑𝑖𝑠𝑡𝑟𝑖𝑏

𝛿𝐺𝑗 − 𝛿𝜌𝑓𝑗 𝑔𝐞̂𝑧 ⋅ 𝐞̂𝑠 (35b)

∗
𝑓𝑗
𝑐𝑓𝑗

𝜕𝛿(𝑇𝑓𝑗 )

𝜕𝑡
+ 𝛿𝐺𝑗𝑐𝑓𝑗

𝑑𝑇 0
𝑓𝑗

𝑑𝑠𝑗
+ 𝐺0

𝑗 𝑐𝑓𝑗
𝜕𝛿(𝑇𝑓𝑗 )

𝜕𝑠𝑗
=

−ℎ0𝑗𝑚 (𝛿𝑇𝑓𝑗 − 𝛿𝑇𝑤𝑖𝑗
)
𝑆̃𝑓𝑗

𝑉𝑓𝑗

−
( 𝜕ℎ𝑗𝑚

𝜕𝐺

)

𝛿𝐺𝑗 (𝑇 0
𝑓𝑗

− 𝑇 0
𝑤𝑖𝑗

)
𝑆̃𝑓𝑗
̃

(35c)
8

𝑗 0 𝑉𝑓𝑗
𝜌𝑤𝑗
𝑐𝑤𝑗

𝜕(𝛿𝑇𝑤𝑖𝑗
)

𝜕𝑡
= ℎ0𝑗𝑚 (𝛿𝑇𝑓𝑗 − 𝛿𝑇𝑤𝑖𝑗

)
𝑆̃𝑓𝑗
𝑉𝑤𝑖𝑗

+
( 𝜕ℎ𝑗𝑚

𝜕𝐺𝑗

)

0
𝛿𝐺𝑗 (𝑇 0

𝑓𝑗
− 𝑇 0

𝑤𝑖𝑗
)
𝑆̃𝑓𝑗

𝑉𝑤𝑖𝑗

−
𝛿𝑇𝑤𝑖𝑗

− 𝛿𝑇𝑤𝑜𝑗

𝑉𝑤𝑖𝑗
𝑅̃𝑤𝑗

(35d)

𝛿𝑇𝑤𝑜𝑗
= 0 cooler

𝜌𝑤1
𝑐𝑤1

𝜕(𝛿𝑇𝑤𝑜1
)

𝜕𝑡
=

𝛿𝑇𝑤𝑖1
− 𝛿𝑇𝑤𝑜1

𝑉𝑤𝑜1
𝑅̃𝑤1

+ℎ0𝐻𝐸 (𝛿𝑇𝑓2 − 𝛿𝑇𝑤𝑜1
)
𝑆̃𝑤𝑜1

𝑉𝑤𝑜1

1st side HE

+
(

𝜕ℎ𝐻𝐸
𝜕𝐺𝐻𝐸

)

0
𝛿𝐺𝐻𝐸 (𝑇 0

𝑓2
− 𝑇 0

𝑤𝑜1
)
𝑆̃𝑤𝑜1

𝑉𝑤𝑜1

𝜌𝑤𝑗
𝑐𝑤𝑗

𝜕(𝛿𝑇𝑤𝑜𝑗
)

𝜕𝑡
=

𝛿𝑇𝑤𝑖𝑗
− 𝛿𝑇𝑤𝑜𝑗

𝑉𝑤𝑜𝑗
𝑅̃𝑤𝑗

o/w

(35e)

where:
(

𝜕2𝑝𝑗
𝜕𝐺𝑗𝜕𝑠𝑗

)

𝑑𝑖𝑠𝑡𝑟𝑖𝑏

=

[

1
2

( 𝜕𝜆𝑗
𝜕𝐺𝑗

)

0
𝐺0
𝑗 + 𝜆0𝑗

]

𝐺0
𝑗

𝜌∗𝑓𝑗

1
𝐷𝑓𝑗

(36)

The term (36) expresses the variation of the distributed pressure
osses, per unit of pipe length, due to a variation of the mass flux in
he same loop and it is valid also for the secondary side of the heat
xchanger when the term 1

𝐷𝑓𝑗
is replaced with 𝜖. Eq. (35) are valid for

he secondary side of the heat exchanger, the only difference is in the
luid energy Eq. (35c): at the heat exchanger, it must be included the
erturbation of the heat transfer between the secondary fluid and the
uter wall surface of the primary loop. The momentum Eq. (35b) can
e written in integral form, and thanks to Eq. (12), Eqs. (37a) and (37b)
re obtained for the DYNASTY and eDYNASTY loop respectively.
𝑑(𝛿𝐺1)

𝑑𝑡
𝐿𝑡𝑜𝑡1 = −

(

𝜕𝑝1
𝜕𝐺1

)

𝑓𝑟𝑖𝑐
𝛿𝐺1

− 𝜌∗𝑓1𝑔𝛽𝑓1 ∮𝑙𝑜𝑜𝑝1
𝛿𝑇𝑓1 𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠1

(37a)

𝑑(𝛿𝐺2)
𝑑𝑡

[

𝐿𝑡𝑜𝑡2+
(

𝑉𝑓2
𝑉𝑓𝐻𝐸

−1
)

𝐿𝐻𝐸

]

= −
(

𝜕𝑝2
𝜕𝐺2

)

𝑓𝑟𝑖𝑐
𝛿𝐺2

− 𝜌∗𝑓2𝑔𝛽𝑓2 ∮𝑙𝑜𝑜𝑝2
𝛿𝑇𝑓2 𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠2

(37b)

where:
(

𝜕𝑝1
𝜕𝐺1

)

𝑓𝑟𝑖𝑐
=
(

𝜕2𝑝1
𝜕𝐺1𝜕𝑠1

)

𝑑𝑖𝑠𝑡𝑟𝑖𝑏
𝐿𝑡𝑜𝑡1 +

𝐺0
1

𝜌∗𝑓1

𝑁1
∑

𝑛=1
𝐾𝑛1

(38a)

(

𝜕𝑝2
𝜕𝐺2

)

𝑓𝑟𝑖𝑐
=
(

𝜕2𝑝2
𝜕𝐺2𝜕𝑠2

)

𝑑𝑖𝑠𝑡𝑟𝑖𝑏
(𝐿𝑡𝑜𝑡2 − 𝐿𝐻𝐸 )

+
(

𝜕2𝑝𝐻𝐸
𝜕𝐺𝐻𝐸𝜕𝑠2

)

𝑑𝑖𝑠𝑡𝑟𝑖𝑏

𝑉𝑓2
𝑉𝑓𝐻𝐸

𝐿𝐻𝐸 +
𝐺0
2

𝜌∗𝑓2

𝑁2
∑

𝑛=1
𝐾𝑛2

(38b)

The above terms express the variation of the frictional pressure
losses due to a variation in the mass flux for the DYNASTY loop,
Eq. (38a), and for the eDYNASTY loop, Eq. (38b). The Laplace trans-
form Eq. (39) was applied to the perturbed Eqs. (35) and (37).

𝑓 (𝑠𝑗 , 𝜔) = ∫

+∞

0
𝑓 (𝑠𝑗 , 𝑡)𝑒−𝜔𝑡𝑑𝑡 with 𝜔 ∈ C (39)

Eqs. (35) and (37) can be made dimensionless in order to obtain
general equations which are suitable to any rectangular NCL of any di-
mension which adopts any fluid and any pipe materials. The following
approximation was adopted for the infinitesimal volume of the inner
and outer shell of the pipe wall:

𝑉 ≈ 𝑉 ≈ 𝑉 =
𝑉𝑤𝑜𝑗

+ 𝑉𝑤𝑖𝑗

𝑤𝑜𝑗 𝑤𝑖𝑗 𝑤𝑗 2



International Journal of Heat and Mass Transfer 232 (2024) 125886E. Novarese et al.

𝑆

(

{

w
f
e

s
a

R
l

The dimensionless linear equation of Eqs. (35) and (37) can be
obtained by introducing the following dimensionless quantities:

𝜔 = 𝜔
𝐿𝑡𝑜𝑡1𝜌

∗
𝑓1

𝐺0
1

𝐺𝑗 =
𝐺̂𝑗

𝐺0
1

𝑇 𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗
=

𝑇̂𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗

𝛥𝑇 0

𝜌 =
𝜌∗𝑓2
𝜌∗𝑓1

𝑐 =
𝑐𝑓2
𝑐𝑓1

𝜇 =
𝜇𝑓2
𝜇𝑓1

𝑘 =
𝑘𝑓2
𝑘𝑓1

𝛽𝑓 =
𝛽𝑓2
𝛽𝑓1

𝜌𝑤𝑗
=

𝜌𝑤𝑗

𝜌∗𝑓1
𝑐𝑤𝑗

=
𝑐𝑤𝑗

𝑐𝑓1
𝑘𝑤𝑗

=
𝑘𝑓1
𝑘𝑤𝑗

𝑠𝑗 =
𝑠𝑗

𝐿𝑡𝑜𝑡1
𝐿𝑗 =

𝐿𝑗

𝐿𝑡𝑜𝑡1
𝑙𝑗 =

𝑙𝑗
𝐿𝑡𝑜𝑡1

𝜏𝑤𝑗
=

𝜏𝑤𝑗

𝐿𝑡𝑜𝑡1

𝑆𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗
=

𝑆̃𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗

𝐿𝑡𝑜𝑡1
𝑉 𝑓𝑗 =

𝑉𝑓𝑗
𝐿2
𝑡𝑜𝑡1

𝑉 𝑗 =
𝑉𝑓1
𝑉𝑤𝑗

𝐷𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗
=

𝐷𝑓𝑗 ,𝑤𝑖𝑗 ,𝑤𝑜𝑗

𝐿𝑡𝑜𝑡1
𝑅𝑤𝑗

= 𝜋𝑘𝑤𝑗
𝑅̃𝑤𝑗

𝛼 = 𝛼 ⋅ 𝐿𝑡𝑜𝑡1 𝛽𝑗 = 𝛽𝑗 ⋅ 𝐿𝑡𝑜𝑡1 𝜖 = 𝜖 ⋅ 𝐿𝑡𝑜𝑡1

𝑡0𝑚(𝑗𝑚 )
=

𝑆𝑓𝑗

𝑉 𝑓1

𝑁𝑢𝑗𝑚
𝑅𝑒𝑗𝑃𝑟𝑗

𝐵𝑗𝑚 =
𝑅𝑒𝑗
𝑁𝑢𝑗𝑚

( 𝜕𝑁𝑢𝑗𝑚
𝜕𝑅𝑒𝑗

)

𝑆𝑡0𝑚𝐻𝐸
=

𝑆𝑤𝑜1

𝑉 𝑓1

𝑁𝑢𝐻𝐸
𝑅𝑒2𝑃𝑟2

𝐷𝑓2𝜖

𝑆𝑡0𝑚2𝐻𝐸
=

𝑆𝑤𝑜1

𝑉 𝑓1

𝑁𝑢2𝐻𝐸

𝑅𝑒2𝑃𝑟2
𝐷𝑓2𝜖

𝐵𝐻𝐸 =
𝑅𝑒2

𝑁𝑢𝐻𝐸

(

𝜕𝑁𝑢𝐻𝐸
𝜕𝑅𝑒𝐻𝐸

)

1
𝐷𝑓2𝜖

𝜕̃𝑝𝑗
𝜕𝐺𝑗

)

𝑓𝑟𝑖𝑐
=

𝐿𝑡𝑜𝑡1𝜌
∗
𝑓1

𝐺0
1

( 𝜕𝑝𝑗
𝜕𝐺𝑗

)

𝑓𝑟𝑖𝑐
𝛿𝐻𝐸 =

𝑅𝑒2
𝑅𝑒1

𝐷𝑓1
𝐷𝑓2

𝜇 𝑐

𝑒𝑞𝑗 =
𝑒𝑞𝑗

𝐿𝑡𝑜𝑡1
𝛥𝑝𝑓𝑟𝑖𝑐𝑗 = 𝛥𝑝𝑓𝑟𝑖𝑐𝑗

𝜌∗𝑓1
(𝐺0

1)
2

where 𝑁𝑢𝑗𝑚 = 𝑁𝑢𝑚(𝑅𝑒𝑗 , 𝑃 𝑟𝑗 ), and the subscript 𝑚 distinguishes the
various correlations used in the cooler, heater, adiabatic pipe and heat
exchanger zones. 𝑆𝑡0𝑚(𝑗𝑚 )

is the modified Stanton number [2] related to
the 𝑁𝑢𝑗𝑚 correlation. The dimensionless parameters 𝜌, 𝑐, 𝜇, 𝑘, 𝛽𝑓 relate
the thermo-physical properties of the fluid of the secondary loop with
those of the primary one, while the variables 𝜌𝑤𝑗

, 𝑐𝑤𝑗
, 𝑘𝑤𝑗

relate the
thermo-physical properties of the pipe wall of the 𝑗th loop with those of
the primary loop. Assuming constant thermo-physical properties, these
parameters are fixed and do not depend on the system state. The di-
mensionless linear equations which derive thanks to the dimensionless
parameters introduced are presented in Sections 5.1.1 and 5.1.2.

5.1.1. Momentum dimensionless perturbed equations
The integral linear dimensionless perturbed equations describing

the momentum balance for both loops are Eqs. (40a) and (40b):
[

𝜔+
̃( 𝜕𝑝1
𝜕𝐺1

)

𝑓𝑟𝑖𝑐

]

𝐺1 =
𝛥𝑝𝑓𝑟𝑖𝑐1
𝑒𝑞1 ∮𝑙𝑜𝑜𝑝1

𝑇 𝑓1 𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠1 (40a)

[

𝐿𝑡𝑜𝑡2+
( 𝑉 𝑓2

𝑉 𝑓𝐻𝐸

− 1
)

𝐿𝐻𝐸

]

𝜔 +
̃( 𝜕𝑝2
𝜕𝐺2

)

𝑓𝑟𝑖𝑐

}

𝐺2 =

𝛥𝑝𝑓𝑟𝑖𝑐2
𝑒𝑞2

∮𝑙𝑜𝑜𝑝2
𝑇 𝑓2 𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠2

(40b)

here relations (31) were implemented. The knowledge of the two
unctions (𝑇 𝑓1 , 𝑇 𝑓2 ) is necessary to compute the two integrals, and their
xpressions can be obtained from the energy perturbed equations.
9

5.1.2. Energy dimensionless perturbed equations
The perturbed linear dimensionless energy equations obtained for

the DYNASTY loop, including the primary side of the heat exchanger,
are Eqs. (41):

𝜔𝑇 𝑓1 +
𝑑𝑇 𝑓1

𝑑𝑠1
+ 𝐺1

1
𝛥𝑇 0

𝑑𝑇 0
𝑓1

𝑑𝑠1
= −𝑆𝑡0𝑚(1𝑚 )

(𝑇 𝑓1 − 𝑇𝑤𝑖,1
)

−𝐵1𝑚𝑆𝑡
0
𝑚(1𝑚)

𝑇 0
𝑓1

−𝑇 0
𝑤𝑖1

𝛥𝑇 0 𝐺1

(41a)

𝜌𝑤1
𝑐𝑤1

𝜔𝑇𝑤𝑖,1
= 𝑆𝑡0𝑚(1𝑚 )

𝑉 1 (𝑇 𝑓1 − 𝑇𝑤𝑖,1
)

+𝐵1𝑚𝑆𝑡
0
𝑚(1𝑚 )

𝑉 1

𝑇 0
𝑓1

− 𝑇 0
𝑤𝑖1

𝛥𝑇 0
𝐺1

−𝑆𝑡0𝑚(1𝑚 )
𝑉 1

𝑇𝑤𝑖,1
− 𝑇𝑤𝑜,1

𝑁𝑢1𝑚𝑘𝑤1
𝑅𝑤1

(41b)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑇𝑤𝑜,1
= 0 cooler

𝜌𝑤1
𝑐𝑤1

𝜔𝑇𝑤𝑜,1
= 𝑆𝑡0𝑚(1𝐻𝐸 )

𝑉 1
𝑇𝑤𝑖,1−𝑇𝑤𝑜,1

𝑁𝑢1𝐻𝐸 𝑘𝑤1𝑅𝑤1

+𝑆𝑡0𝑚𝐻𝐸
𝛿𝐻𝐸𝑉 1(𝑇 𝑓2 − 𝑇𝑤𝑜,1

) 1st side HE

+𝐵𝐻𝐸𝑆𝑡
0
𝑚𝐻𝐸

𝑐𝑉 1

𝑇 0
𝑓2

− 𝑇 0
𝑤𝑜1

𝛥𝑇 0
𝐺𝐻𝐸

𝜌𝑤1
𝑐𝑤1

𝜔𝑇𝑤𝑜,1
= 𝑆𝑡0𝑚(1𝑚 )

𝑉 1

𝑇𝑤𝑖,1
− 𝑇𝑤𝑜,1

𝑁𝑢1𝑚𝑘𝑤1
𝑅𝑤1

o/w

(41c)

where the subscript 𝑚 in the heat transfer coefficient refers to the
different zones of the cooler (𝑚 = 𝐶𝑂𝑂𝐿), heater (𝑚 = 𝐻), adiabatic
pipe (𝑚 = 𝑃 ), and heat exchanger (𝑚 = 𝐻𝐸). Eq. (42), regard the
econdary loop linear dimensionless perturbed energy equations, but
re not valid for the secondary side of the heat exchanger.

𝜌 𝑐 𝜔𝑇 𝑓2 + 𝛿𝐻𝐸
𝑑𝑇 𝑓2
𝑑𝑠2

+ 𝑐𝐺2
1

𝛥𝑇 0

𝑑𝑇 0
𝑓2

𝑑𝑠2
=

−𝑆𝑡0𝑚(2𝑚 )
𝛿𝐻𝐸

𝑉 𝑓1

𝑉 𝑓2

(𝑇 𝑓2 − 𝑇𝑤𝑖,2
)

−𝐵2𝑚𝑆𝑡
0
𝑚(2𝑚 )

𝑐
𝑇 0
𝑓2

− 𝑇 0
𝑤𝑖2

𝛥𝑇 0
𝐺2

(42a)

𝜌𝑤2
𝑐𝑤2

𝜔𝑇𝑤𝑖,2
= 𝑆𝑡0𝑚(2𝑚 )

𝛿𝐻𝐸𝑉 2(𝑇 𝑓2 − 𝑇𝑤𝑖,2
)

+𝐵2𝑚𝑆𝑡
0
𝑚(2𝑚 )

𝑐𝑉 2

𝑇 0
𝑓2

− 𝑇 0
𝑤𝑖2

𝛥𝑇 0
𝐺2

−𝑆𝑡0𝑚(2𝑚 )
𝛿𝐻𝐸𝑉 2

𝑇𝑤𝑖,2
− 𝑇𝑤𝑜,2

𝑁𝑢2𝑚𝑘𝑓2𝑅𝑤2

(42b)

⎧

⎪

⎨

⎪

⎩

𝑇𝑤𝑜,2
= 0 cooler

𝜌𝑤2
𝑐𝑤2

𝜔𝑇𝑤𝑜,2
= 𝑆𝑡0𝑚(2𝑚 )

𝛿𝐻𝐸𝑉 2

𝑇𝑤𝑖,2
− 𝑇𝑤𝑜,2

𝑁𝑢2𝑚𝑘𝑓2𝑅𝑤2

o/w
(42c)

where the subscript 𝑚 in the heat transfer coefficient refers to the
different zones of the cooler (𝑚 = 𝐶𝑂𝑂𝐿), and adiabatic pipe (𝑚 = 𝑃 ).

egarding the secondary side of the heat exchanger, the following
inear dimensionless energy Eqs. (43) were obtained:

𝜌 𝑐 𝜔𝑇 𝑓2 + 𝛿𝐻𝐸
𝑉 𝑓2

𝑉 𝑓𝐻𝐸

𝑑𝑇 𝑓2
𝑑𝑠2

+ 𝑐𝐺𝐻𝐸
1

𝛥𝑇 0

𝑑𝑇 0
𝑓2

𝑑𝑠2
=

−𝑆𝑡0𝑚𝐻𝐸
𝛿𝐻𝐸

𝑉 𝑓1
𝑉 𝑓𝐻𝐸

(𝑇 𝑓2 − 𝑇𝑤𝑜,1
)

−𝐵𝐻𝐸𝑆𝑡0𝑚𝐻𝐸
𝑐

𝑉 𝑓1
𝑉 𝑓𝐻𝐸

𝑇 0
𝑓2

−𝑇 0
𝑤𝑜1

𝛥𝑇 0 𝐺𝐻𝐸

−𝑆𝑡0𝑚2𝐻𝐸
𝛿𝐻𝐸

𝑉 𝑓1
𝑉 𝑓𝐻𝐸

(𝑇 𝑓2 − 𝑇𝑤𝑖,2
)

(43a)

𝜌𝑤2
𝑐𝑤2

𝜔𝑇𝑤𝑖,2
= 𝑆𝑡0𝑚2𝐻𝐸

𝛿𝐻𝐸𝑉 𝐻𝐸 (𝑇 𝑓2 − 𝑇𝑤𝑖,2
)

+𝐵𝐻𝐸𝑆𝑡0𝑚𝐻𝐸
𝑐𝑉 𝐻𝐸

𝑇 0
𝑓2

−𝑇 0
𝑤𝑜1

𝛥𝑇 0 𝐺𝐻𝐸

−𝑆𝑡0𝑚 𝛿𝐻𝐸𝑉 𝐻𝐸
𝑇𝑤𝑖,2−𝑇𝑤𝑜,2

(43b)
2𝐻𝐸 𝑁𝑢2𝐻𝐸 𝑘𝑤2𝑅𝑤𝐻𝐸
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𝜌𝑤2
𝑐𝑤2

𝜔𝑇𝑤𝑜,2
= 𝑆𝑡0𝑚2𝐻𝐸

𝛿𝐻𝐸𝑉 𝐻𝐸

𝑇𝑤𝑖,2
− 𝑇𝑤𝑜,2

𝑁𝑢2𝐻𝐸
𝑘𝑤2

𝑅𝑤𝐻𝐸

(43c)

The temperature gradients 1
𝛥𝑇 0

𝑑𝑇 0
𝑓𝑗

𝑑𝑠𝑗
, reported in Eq. (44), can be

computed from the steady-state temperature profiles obtained in Sec-
tion 4.

1
𝛥𝑇 0

𝑑𝑇 0
𝑓𝑗

𝑑𝑠𝑗
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝑏𝑗𝛽𝑗𝑒
−𝛽𝑗 (𝑠𝑗−𝐿) cooler(s)

1
𝐿𝐻

heater

𝑎𝛼𝑒−𝛼𝑠1 1st side HE

−
𝑉 𝑓1
𝑉 𝑓2

𝑎𝛼
𝛿𝐻𝐸

𝑒−𝛼(𝐿𝑡𝑜𝑡2−𝑠2) 2nd side HE

0 o/w

(44)

oreover, from Eqs. (1c) and (8) in steady-state form, the following
eneral relations are obtained:

𝑇 0
𝑓𝑗

− 𝑇 0
𝑤𝑖𝑗

𝛥𝑇 0
= − 1

𝑆𝑡0𝑚(𝑗𝑚)

𝑉 𝑓𝑗

𝑉 𝑓1

1
𝛥𝑇 0

𝑑𝑇 0
𝑓𝑗

𝑑𝑠𝑗
(45)

𝑇 0
𝑓2

− 𝑇 0
𝑤𝑜1

𝛥𝑇 0
= − 1

𝑆𝑡0𝑚𝐻𝐸

𝑉 𝑓2

𝑉 𝑓1

1
𝛥𝑇 0

𝑑𝑇 0
𝑓2

𝑑𝑠2
(46)

Once the two fields (𝑇 𝑓1 , 𝑇 𝑓2 ) are derived, the two path integral
n Eqs. (40a) and (40b) can be computed.

.2. Stability map

The Stability Map for the CNCLs is obtained by determining the
tability of each steady-state, following the same procedure applied
n [12]. As the problem was formulated by means of dimensionless
arameters, imposing a steady-state for the system is equivalent to
ixing the Reynolds and Prandtl numbers for both fluids adopted in the
NCLs. Indeed Eqs. (40) to (43) can be solved once the parameters
𝑅𝑒1, 𝑃 𝑟1, 𝑅𝑒2, 𝑃 𝑟2) have been fixed. As the system is coupled, these
arameters cannot be arbitrarily chosen, but they are related: first
f all, once the dimensionless parameters 𝜌, 𝑐, 𝑘, 𝛽𝑓 , 𝜇 are fixed, the
elation (47) between the two Prandtl number holds.

𝑟2 =
𝑐 𝜇

𝑘
𝑃 𝑟1 (47)

Regarding the relationship between the Reynolds numbers, it is
necessary to find a function 𝑓 that relates the Reynolds of the primary
loop to the Reynolds of the secondary loop:

𝑓 ∶ 𝑅𝑒1 ⟶ 𝑅𝑒2

Taking the ratio between Eqs. (31a) and (31b), it is possible to
obtain the function (48):

𝑓 (𝑅𝑒1, 𝑅𝑒2, 𝑃 𝑟1, 𝑃 𝑟2) ∶=
𝛥𝑝𝑓𝑟𝑖𝑐2
𝛥𝑝𝑓𝑟𝑖𝑐1

− 𝜌𝛽𝑓
𝑒𝑞2

𝑒𝑞1

(48)

The zeroes of the function Eq. (48) are the steady-states which are
olutions of the CNCLs problem. In this way, by fixing the Reynolds
nd Prandtl numbers of the primary fluid (𝑅𝑒1, 𝑃 𝑟1), the Reynolds and
randtl numbers of the secondary fluid (𝑅𝑒2, 𝑃 𝑟2) can be obtained by
olving the non-linear system of equations, Eq. (49):
{

𝑃𝑟2 =
𝑐 𝜇
𝑘
𝑃𝑟1

𝑓 (𝑅𝑒1, 𝑅𝑒2, 𝑃 𝑟1, 𝑃 𝑟2) = 0
(49)

Once the steady-state is obtained by solving the system of Eqs. (49),
its stability can be determined by searching all the poles 𝜔∗ which are
olutions of Eq. (40). In the case any of these complex poles has a
ositive real part (Re{𝜔∗} > 0), then the system is unstable, otherwise
t is stable [17]. This is the same procedure adopted by [12] to obtain
10
Stability Maps for the SCNL configurations, where it had only been
necessary to find the poles of the equation of the DYNASTY loop (40a).
In the CNCLs case, the problem is that a system of two equations must
be solved, Eq. (40), but the variables are three: 𝜔,𝐺1, 𝐺2. To cope with
this issue, Eq. (40) was modified dividing each of them by the term 𝐺1:

𝜔 +
̃( 𝜕𝑝1
𝜕𝐺1

)

𝑓𝑟𝑖𝑐
=

𝛥𝑝𝑓𝑟𝑖𝑐1
𝑒𝑞1

∮𝑙𝑜𝑜𝑝1

𝑇 𝑓1

𝐺1
𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠1 (50a)

{ [

𝐿𝑡𝑜𝑡2 +
( 𝑉 𝑓2

𝑉 𝑓𝐻𝐸

− 1
)

𝐿𝐻𝐸

]

𝜔 +
̃( 𝜕𝑝2
𝜕𝐺2

)

𝑓𝑟𝑖𝑐

}

𝐺2
𝐺1

=

𝛥𝑝𝑓𝑟𝑖𝑐2
𝑒𝑞2

∮𝑙𝑜𝑜𝑝2

𝑇 𝑓2

𝐺1
𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠2

(50b)

In this way, the two integrals Eqs. (50a) and (50b) are functions
of the two variables

(

𝜔, 𝐺2
𝐺1

)

, obtaining a set of two equations in two
variables, thus the problem is determined. As Eqs. (50a) and (50b)
are non-linear functions of the complex variable 𝜔, the poles can be
obtained only by implementing a numerical optimization algorithm,
as it is impossible to get an analytical solution. Following the same
procedure adopted by [2,12] the Trust-Region-Dogleg algorithm [18],
which is present in the [19] libraries, could be implemented. Thus, the
stability/instability of a specific steady-state, identified by the vector
state (𝑅𝑒1, 𝑅𝑒2, 𝑃 𝑟1, 𝑃 𝑟2), can be analysed by imposing the Reynolds and
Prandtl numbers of the primary loop, which represents its own steady-
state (𝑅𝑒1, 𝑃 𝑟1). The steady-state of the secondary loop (𝑅𝑒2, 𝑃 𝑟2) is
hen derived through Eqs. (47) and (48). Once the steady-state of the
NCL is fixed, its stability is determined by analysing the real part of
he poles of the system 𝜔 obtained through Eq. (50). The flowchart of

the algorithm adopted for determining the stability of each steady-state
of the CNCL is shown in Fig. 4.

One consideration on the numerical resolution of Eq. (50) is that
the algorithm requires two initial guesses in order to converge to a

solution
(

𝜔, 𝐺2
𝐺1

)∗
: one guess for the complex frequency 𝜔 and another

guess for the mass flux ratio 𝐺2
𝐺1

respectively. It is expected that the mass

flux ratio
(

𝐺2
𝐺1

)∗
, solution of Eq. (50), could be more than one and for

ach
(

𝐺2
𝐺1

)∗
the ensemble of poles 𝜔∗ can changes. For determining

the stability of the system only the knowledge of the poles values is
required, so the parameter 𝐺2

𝐺1
can be seen as an extra variable, and

reducing the problem solving of the set of equations, Eq. (50), to only
one equation, which depends on the complex frequency, would simplify
the issue. One strategy could be to express the mass flux ratio 𝐺2

𝐺1
as a

unction of the complex frequency 𝜔, and replacing the found relation
in one of Eqs. (50a) and (50b) decreases to one the number of variables.

It is possible to extract the function between the complex frequency
and the mass flux ratio through the momentum balance of the primary
loop by Eq. (50a), as it is possible to write:

∮𝑙𝑜𝑜𝑝1

𝑇 𝑓1

𝐺1
𝐞̂𝑧 ⋅ 𝐞̂𝑠𝑑𝑠1 = 𝐹1(𝜔) + 𝐹2(𝜔)

𝐺2

𝐺1
(51)

In this way, from Eq. (50a), a result which form can be expressed
as Eq. (52) was obtained.

𝐺2

𝐺1
=

[

𝜔 +
̃( 𝜕𝑝1
𝜕𝐺1

)

𝑓𝑟𝑖𝑐

]

𝑒𝑞1
𝛥𝑝𝑓𝑟𝑖𝑐1

− 𝐹1(𝜔)

𝐹2(𝜔)
(52)

Substituting this result in Eq. (50b), a unique nonlinear equation in
one variable is obtained, which can be solved with the Trust-Region-
Dogleg algorithm. The Stability Map for CNCLs was obtained assuming
adiabatic the cooler of the DYNASTY loop, the same fluids in both loops
(𝜌 = 1, 𝑐 = 1, 𝑘 = 1, 𝛽 = 1, 𝜇 = 1) and the same wall parameters adopted
𝑓
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Fig. 4. Flowchart of the algorithm adopted for determining the stability of a steady-state, implemented in [19] to derive the Stability Map of the CNCL. In this algorithm, only
two variables (𝑅𝑒1 , 𝑃 𝑟1) are needed as inputs to determine the stability of the system.
Fig. 5. (a) CNCLs configuration studied and its (b) Stability Map expressed as function
of the Reynolds and Prandtl number of the primary loop (𝑅𝑒1 , 𝑃 𝑟1). In Fig. 5(b) the
red dashed lines refers to the transition regime for the primary loop (𝑅𝑒1 = 2530) and
the secondary loop (𝑅𝑒1 = 1900), this last value reported as value of primary Reynolds
number thanks to Eq. (48).

by [12] for determining the Stability Maps for SCNL configurations:
𝜌𝑤𝑗

= 8.33, 𝑐𝑤𝑗
= 0.1119, and 𝑘𝑤𝑗

= 0.04. Moreover, concentrated
pressure losses were not considered.

Fig. 5 shows the Stability Map for the CNCLs as a function of
Reynolds and Prandtl numbers of the primary fluid. The non-linear
phenomenon of the natural circulation has been linearized in order
to obtain Stability Map for predicting the stability or instability of the
steady-states for a CNCLs. The aim is to study the behaviour of a non-
linear phenomenon through an approximated model. With a similar
procedure, the same adopted by [2], the Stability Map of the SCNL
configuration, which is shown in Fig. 6, was obtained.

In order to investigate the effects of different cooling systems
adopted for the primary loop in EHS configuration, the two Stability
Maps (Figs. 5(b) and 6(b)) have been compared. It is possible to notice
that the additional thermal inertia to the primary loop, given by the
second loop, has a twofold effect: it stabilizes the system for laminar
11
Fig. 6. (a) SCNL configuration adopted for the comparison and its (b) Stability Map
expressed as function of the Reynolds and Prandtl number of the loop (𝑅𝑒, 𝑃 𝑟). The
red dashed line refers to the transition regime fixd at (𝑅𝑒 = 2530).

flow regime (𝑅𝑒 ≲ 2530) but it increases the unstable zone for turbulent
flow regime. A reason for this latter phenomenon can be caused by
feedback that characterizes the dynamics inside the heat exchanger. It
could be that during a transient phenomenon, the primary mass flux
(𝐺1) increases by a fluid temperature increasing. In this case, more
heat is exchanged with the secondary side due to a hotter primary
fluid. In the secondary loop, the fluid heats up and the mass flux (𝐺2)
increases, increasing at the same time the efficiency of the heat transfer.
This causes a cooling of the primary fluid, and consequently a decrease
in the primary mass rate which worsens the heat transfer. Then, less
heat is absorbed by the secondary loop, where the temperature and
the mass rate decrease. At this point, the primary loop can no longer
transfer the whole thermal power, causing an increase in the primary
temperature and mass rate, restarting the process. The friction pressure
losses are not able to dampen these effects and an oscillatory behaviour
is established.

In Fig. 5(b), there are two zones in the region of the Reynolds
number between 1000 and 10 000 where the system is unstable for
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Fig. 7. Scheme of the MODELICA model adopted for the CNCLs simulations, showing the detailed models for the (a) heat exchanger and (b) a pipe. The pipe model (b) was
adopted for all the pipes of both loops, specifying the imposed heat flux (𝑞′′) for the heater zone and the adiabatic pipes, or the imposed temperature for the cooler (𝑇𝑐 ) at the
connector EHF. The objects named TC and eTC are referred to as the thermocouples of the DYNASTY and eDYNASTY loop respectively, and they allow to give information about
the fluids’ state such as temperature and pressure.
Source: Adapted from [6].
any Prandtl number of the fluid. The same phenomenon occurs in
Fig. 6(b), but in this case only one unstable zone extends for any Prandtl
number. These regions occurs at very specific Reynolds numbers: they
are related to the Reynolds number for the transition from laminar to
turbulent flow regime (Section 3.4). This fact justifies the reason for
the unstable horizontal line at 𝑅𝑒 = 2530 in Fig. 6(b) for the SCNL.
Regarding the CNCL, two loops compose the system under study, so
the transition regime can occur in one of the two loops. In particular,
when the first loop is in the transition regime, at 𝑅𝑒1 = 2530, the
system is unstable in accordance with the SCNL case, justifying the
unstable line at such Reynolds number in Fig. 5(b). When the transition
regime occurs in the second loop, at 𝑅𝑒2 = 2530, more considerations
are needed: clearly, at this 𝑅𝑒, the loop itself is unstable; thanks
to Eq. (48), it is possible to relate the Reynolds number of the two
loops, discovering that, when the Reynolds number of the fluid in the
secondary loop is around the transition regime, the Reynolds number
of the fluid in the secondary loop is 𝑅𝑒1 ≈ 1900, justifying the second
unstable line in Fig. 5(b).

6. Reference model for verification

Verification and validation of any model are important procedures
which must be performed to ensure the reliability and results accuracy
of the model. Planning to organize an experimental campaign at the
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DYNASTY-eDYNASTY facility to validate the models of the steady-state
and stability maps described in Sections 4 and 5, their verification
has been performed by comparing the obtained results with those
acquired from a 1D model of the facility developed the in MODELICA
language and described in [8]. The simulation campaign performed
with this model has shown a satisfactory and accurate prediction of
the DYNASTY facility behaviour in the heating transient compared to
experimental data, justifying the reason for choosing this model to
verify the analytical ones. For completeness, a brief description of the
MODELICA model is reported below, along with some results.

6.1. DYNASTY-eDYNASTY MODELICA model

DYMOLA® is an Integrated Development Environment (IDE) based
on the simulation language MODELICA [20]. MODELICA allows the
description of each component of a system (called object) through
physical and engineering principles, such as energy and mass bal-
ance [21]. The objects are connected by connectors to describe the
mass and energy exchange among the components, thus obtaining a
complete model of the system. This approach allows to build highly
flexible models, as each component can be substituted without the
necessity of writing the model of the entire system from scratch [21].
The model developed for the NCLs uses an extended version of the
ThermoPower library [22], called ThermoPowerIHG, [8]. The MODELICA
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Fig. 8. Simulation results of a stable state performed with the MODELICA model of
the CNCLs (Fig. 7) with 𝑃𝑟 = 5 for both fluids, imposed power at the heater of the
DYNASTY loop 𝑄 = 1500 W and imposed temperature of the cooler of the eDYNASTY
loop 𝑇𝑐 = 25 ◦C. Figure (a) shows the mass rates evolution in the DYNASTY and
eDYNASTY loop, Figures (b) and (c) show the temperature evolution of the fluids in the
DYNASTY and eDYNASTY loop respectively, keeping the notation for the thermocouples
adopted in Fig. 7.

model (Fig. 7) developed for the validation is a simplified version
of the one developed by [6], where dissipation of the heat with the
environment was not taken into account and a simpler model of the
cooling system was implemented. Fig. 7 shows also the details of the
models developed for the pipes and heat exchanger and adopted by [6].
Regarding the model of the heat exchanger in Fig. 7a, internalPipe and
the Annulus are respectively the primary and secondary loop sections
of the heat exchanger. The model for the cooler is similar to the pipe’s
one, with the difference of imposed temperature at the external pipe’s
wall instead of imposed heat flux (EHF connector in Fig. 7b). Each
of these models adopts as a fluid model the customFlow1DFEM from
the library ThermoPowerIHG, or its modification as for Annulus and
internalPipe for the heat exchanger. To model the walls of the pipes, the
metalTubeFEM was taken from library ThermoPower. To account for the
motion of the fluid in the axial direction, the ThermoPower library uses
a Finite Elements Methods (FEM) approach which is able to model flow
inversion. MODELICA then simulates the time evolution of the model
using different numerical integration algorithms. Following the results
in [8] the one adopted to simulate the DYNASTY-eDYNASTY facility
was the Radau2a algorithm [23]. The model, once the heat power and
the external wall temperature at the cooler of the eDYNASTY loop
are fixed (the one in the DYNASTY loop was assumed adiabatic, for
consistency with the data obtained with the models developed in this
paper), can simulate the transitory behaviour of the system, obtaining
the time evolution of the quantities of interest, such as temperatures
and mass rates, starting from initial conditions imposed. The fluids
adopted for both the two loops were modelled assuming constant
thermo-physical parameters, the same values as those adopted for the
steady-state and stability analysis.
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Fig. 9. Simulation results of an unstable state performed with the MODELICA model
of the CNCLs (Fig. 7) with 𝑃𝑟 = 5 for both fluids, imposed power at the heater of the
DYNASTY loop 𝑄 = 1700 W and imposed temperature of the cooler of the eDYNASTY
loop 𝑇𝑐 = 25 ◦C. Figure (a) shows the mass rates evolution in the DYNASTY and
eDYNASTY loop, Figures (b) and (c) show the temperature evolution of the fluids in the
DYNASTY and eDYNASTY loop respectively, keeping the notation for the thermocouples
adopted in Fig. 7.

6.2. DYNASTY-eDYNASTY model simulations

The results of the analytical models developed in this work refer to
the asymptotic behaviour for time 𝑡 → +∞ of CNCLs systems. Therefore,
it is necessary to understand when the stationarity or the instability of
the system is reached in each DYMOLA® simulation; specifically, for
verification purposes it is important to understand when the transient,
caused by the initial condition, is extinguished.

By definition, a steady-state is characterized to have all the
time derivatives equal to 0, meaning no time evolution. Thus, in any
DYMOLA® simulation, if the state of the system, which is identified
by the mass rates and temperatures, has reached a point in the graph
space of state-time where the slope is flattened in time, then stationarity
is reached. Moreover, such a steady-state can be also declared stable,
as the initial state can be seen as a perturbation of the steady-state
one, whose amplitude is dampened converging to the steady-state.
Regarding unstable states, the mathematical definition provided by
Lyapunov, which is the basis of the model developed to obtain Sta-
bility Maps, cannot be applied to unstable steady-states. Therefore, as
explained by [12], a different stability definition was introduced: if
a system reaches a steady state after a transient, such state is stable;
otherwise it is in unstable equilibrium. Analytically, unstable states
could also diverge indefinitely in time, but in these types of problems, it
is not possible due to negative feedback which characterizes all these
types of thermodynamic systems, as heat dissipations are a function
of the state of the system due to the dependence of the heat transfer
coefficients to the Reynolds and Prandtl number of the fluid [14]. For
this reason, only limited instabilities are expected in NCLs problems. A
method must be adopted to identify if the simulation of an apparently
unstable state is effectively unstable or if it is a transient phenomenon,
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Fig. 10. Comparison of the steady-states obtained for the DYNASTY loop with the
in-house code and DYMOLA® simulations of the MODELICA model (Fig. 7). The
simulations were performed by imposing the temperature at the eDYNASTY cooler
at 𝑇𝑐 = 25 ◦C and varying the power at the heater 𝑄 at the DYNASTY loop. Figure
(a) reports the mass rates, figure (b) the maximum temperatures and figure (c) the
minimum temperature established in the DYNASTY loop respectively.

which then converges to a steady-state after a certain time. In all
the cases simulated for the purpose of this paper, unstable states
showed an oscillatory-like behaviour, as also in the cases simulated
and studied by [2,12]. When the transitory behaviour is extinguished,
if the state oscillates around an average state reaching a plateau, as in
the case reported in Fig. 9, then it can be stated that such oscillatory
behaviour continues indefinitely in time, and the state at such operative
conditions is declared unstable.

Two examples of two simulations at different operative conditions,
power at the heater 1.5 kW and 1.7 kW and wall temperature of the
secondary cooler 25 ◦C, are reported to distinguish a stable state, Fig. 8,
and unstable state, Fig. 9, with the Prandtl number 𝑃𝑟1,2 = 5 for
both fluids. From the comparison of the two simulations, Figs. 8 and
9, it was noticed that even if both simulations had a similar initial
trend of the system state, choosing a simulation time 𝑡 ≲ 20 000 s
would not be sufficient to declare the simulation stable or unstable also
because the plateau had not yet been reached, justifying the method
just described for determining the stability/instability of the simulation.
In all the simulations performed by DYMOLA®, applying the criteria
just presented, it was observed that a simulation time 𝑡 = 40 000 s was
sufficient to declare stable or unstable the state under study.

7. Results and discussion

7.1. Steady-state verification

The steady-state solutions obtained through the developed in-house
Python code were compared with the stable solutions obtained from
the DYMOLA® simulations. Water was used as working fluid for both
the DYNASTY and eDYNASTY loop, which constant thermo-physical
properties were computed using the IF-97 standard water at a tempera-
ture of 25 ◦C and pressure 1 bar [24]. Concentrated pressure losses were
not considered, as they were not included in the MODELICA model
(Fig. 7), the cooler of the DYNASTY loop was assumed adiabatic, and
the temperature imposed at the wall of the eDYNASTY cooler was
25 ◦C. The heat power imposed at the heater ranges from 100W to
800W, increasing the power of 100W for each simulation. The mass
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Fig. 11. Comparison of the steady-states obtained for the eDYNASTY loop with the
in-house code and DYMOLA® simulations of the MODELICA model (Fig. 7). The
simulations were performed by imposing the temperature at the eDYNASTY cooler
at 𝑇𝑐 = 25 ◦C and varying the power at the heater 𝑄 at the DYNASTY loop. Figure
(a) reports the mass rates, figure (b) the maximum temperatures and figure (c) the
minimum temperature established in the eDYNASTY loop respectively.

Fig. 12. Relative error, computed with Eq. (53), committed by the in-house code data
with respect the DYMOLA® results regarding the mass rates plotted in Fig. 10a and
Fig. 11a for the DYNASTY and eDYNASTY loop respectively.

rates, maximum and minimum temperatures were chosen to verify the
results, in particular, Fig. 10 refers to the steady-states of the DYNASTY
loop while Fig. 11 refers to the steady-states of the eDYNASTY loop.
The DYMOLA® results were obtained by taking the values of the state
assumed at the time 𝑡 = 40 000 s. From the comparison of the results,
Figs. 10 and 11, it is noticed that the in-house code is able to predict the
temperatures for both the loops and the entire power range analysed
with good accuracy. Regarding the mass rates, the in-house code tends
to underestimate their values with respect to the DYMOLA® solutions,
it was noticed that a mesh refinement of the MODELICA model does
not influence its results to justify the gap, but the trends of the results
of the two models by a power variation are similar. The relative error
was computed starting from mass rates with Eq. (53).

𝛾𝑗 =
𝛤𝐷𝑌𝑀
𝑗 − 𝛤 𝑃𝑦

𝑗

𝛤𝐷𝑌𝑀
𝑗

⋅ 100 (53)

𝛤𝐷𝑌𝑀
𝑗 , 𝛤 𝑃𝑦

𝑗 are the mass rate results obtained from the DYMOLA®
simulations and the Python code respectively and plotted in Fig. 10a for
the DYNASTY loop and Fig. 11a for eDYNASTY loop. It was observed
that the relative error committed by the in-house code solutions was not
higher than ≈ 16% for low heat power, and its absolute value decreases
with the power increasing, as Fig. 12 shows.
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Fig. 13. Mass rates of the DYNASTY and eDYNASTY loop obtained through DYMOLA®

simulation with 𝑃𝑟 = 5 for both fluid, an imposed temperature at the eDYNASTY cooler
of 𝑇𝑐 = 25 ◦C and a power at the heater of (a) 𝑄 = 0.3 kW, (b) 𝑄 = 1 kW, (c) 𝑄 = 9 kW
respectively (Table 5).

Fig. 14. Mass rates of the DYNASTY and eDYNASTY loop obtained through DYMOLA®

simulation with 𝑃𝑟 = 10 for both fluid, an imposed temperature at the eDYNASTY
cooler of 𝑇𝑐 = 25 ◦C and a power at the heater of (a) 𝑄 = 3 kW, (b) 𝑄 = 7.5 kW, (c)
𝑄 = 15 kW respectively (Table 6).

A possible explanation for the mass rate difference could be at-
tributed to the different formulations adopted for the energy equation:
in this work, it has been adopted an energetic approach, while in the
MODELICA model, the ThermoPowerIHG library adopts an enthalpic
formulation.

7.2. Stability map verification

A preliminary verification of the Stability Map obtained for the
CNCLs system, Fig. 5, has been conducted by selecting some points
of the map, through the help of the in-house code developed, and
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observing the behaviour of the DYMOLA® simulations at the same
operative conditions of the points under study. Initially, fluids were se-
lected for both loops for the in-house code and MODELICA model to be
consistent with the dimensionless parameters introduced in Section 5.1
and fixed in Section 5.2 to obtain the Stability Map (Fig. 5). Regarding
the in-house code, the thermo-physical properties of the fluid of the
DYNASTY loop were chosen in order to satisfy the dimensionless wall
thermo-physical properties (𝜌𝑤𝑗

= 8.33, 𝑐𝑤𝑗
= 0.1119, 𝑘𝑤𝑗

= 0.04), as
reported in Section 5.2, and the dimensional ones (𝜌𝑤𝑗

= 8238 kg∕m3,
𝑐𝑤𝑗

= 468 J∕(kgK), 𝑘𝑤𝑗
= 13.4 W∕(mK)), as reported in Section 3.1.

Through these parameters fixed, it has been possible to compute the
thermo-physical properties of the primary fluid (54).

𝜌∗𝑓1 = 988.95 kg∕m3

𝑐𝑓1 = 4182.3 J∕(kgK)

𝑘𝑓1 = 0.536 W∕(mK)

(54)

Moreover, to obtain the Stability Map (Fig. 5(b)) the following dimen-
sionless parameters were fixed: 𝜌 = 1, 𝑐 = 1, 𝑘 = 1, 𝛽𝑓 = 1, 𝜇𝑓 = 1, as
reported in Section 5.2. These parameters express the ratio between
the thermo-physical properties of the secondary and primary fluid
for the densities, specific heats, thermal conductivities, coefficients
of thermal expansion and viscosities, relatively. Since the ratios are
unitary, this means that the thermo-physical properties imposed for
the secondary fluid (𝜌∗𝑓2 , 𝑐𝑓2 , 𝑘𝑓2 ) are identical to the primary ones
(54). The remaining parameter to be fixed was the fluid viscosity (𝜇𝑓1 ),
which allowed to selection of the Prandtl number of the primary fluid
(𝑃𝑟1), as the thermal capacity and thermal conductivity have just been
selected (Eq. (54)). Once the thermo-physical properties of both fluids
were selected, imposing the operational conditions, as heat power 𝑄
and imposed wall temperature of the eDYNASTY cooler 𝑇𝑐 , to the in-
house code, allows to compute the mass rates that are established in
both loops, in this way, it is possible to compute the Reynolds numbers
of the fluids. In summary, in order to select a point in the Stability
Map (Fig. 5), once the dimensionless parameters used to obtain the
Stability Map are in accordance with the thermo-physical properties
of the wall and the fluids of the in-house code, the Prandtl number
can be imposed by choosing the primary fluid’s viscosity (𝜇𝑓1 ), and
the Reynolds numbers can be computed by imposing the operative
conditions (𝑄, 𝑇𝑐) through the in-house code. The same fluids and wall
parameters were imposed in the MODELICA model and the simulations
have been conducted at the same operational conditions in order to
verify if the points of the Stability Map (Fig. 5) can predict the stability
or instability of the CNCLs. In this analysis, the cooler temperature was
imposed at 25 ◦C and two Prandtl numbers were selected 𝑃𝑟1 = 5 and
𝑃𝑟1 = 10 (the Prandtl numbers of the secondary fluid 𝑃𝑟2 were the
same thanks to equation Eq. (47)). In this case, only the power has
been allowed to vary in order to reach the desired Reynolds numbers.
The cases studied are summarized in Table 5 for the fluid with 𝑃𝑟1 = 5
and in Table 6 for the fluid with 𝑃𝑟1 = 10.

In this analysis, most of the stability results predicted and selected
from the Stability Map (Fig. 5(b)) are in accordance with the simu-
lations obtained by the MODELICA model. It can be noticed that at
power 𝑄 = 1 kW for fluid with 𝑃𝑟1 = 5 (Table 5) and at power 𝑄 =
7.5 kW for fluid with 𝑃𝑟1 = 10 (Table 6), results predicted by Stability
Map are different from results obtained through DYMOLA® simulation.
This region is characterized by the transition zone from laminar to
turbulent regime for the secondary fluid, as its Reynolds number value
is 𝑅𝑒2 ≈ 2530, and it corresponds to the thin unstable line at 𝑅𝑒1 ≈
1900 that can be observed in the Stability Map (Fig. 5). Stability Map
predicts that for this Reynolds value, 𝑅𝑒1 ≈ 1900, instability occurs.
The inaccuracy of the Stability Map to catch the right Reynolds value,
predicted by the DYMOLA® simulation, can be associated with the fact
of the linearization of the Natural Circulation equations, which is a
non-linear phenomenon. Thus, approximations are introduced which
can conduct the propagation of some errors. In fact, in this analysis,
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Table 5
Verification of results predicted by the Stability Map (Fig. 5) with DYMOLA® simulation for the stability analysis with primary
fluid with 𝑃𝑟1 = 5.
𝑃𝑟1 = 5

Power 𝑄 (kW) Reynolds number 𝑅𝑒1 (−) Stability Map prediction DYMOLA® simulation

0.3 1100 Stable Stable
0.8 1770 Stable Stable
1 1970 Unstable Stable
1.5 2320 Stable Stable
1.7 2400 Unstable Unstable
9 3770 Unstable Unstable
Table 6
Verification of results predicted by the Stability Map (Fig. 5) with DYMOLA® simulation for the stability analysis with primary
fluid with 𝑃𝑟1 = 10.
𝑃𝑟1 = 10

Power 𝑄 (kW) Reynolds number 𝑅𝑒1 (−) Stability Map prediction DYMOLA® simulation

0.3 390 Stable Stable
0.8 630 Stable Stable
1.5 850 Stable Stable
3 1180 Stable Stable
7.5 1760 Stable Unstable
8 1810 Stable Stable
10 1970 Stable Stable
15 2230 Stable Stable
Fig. 15. Position of steady-state solution of CNCL in Stability Map (Fig. 5(b)) with
temperature at the external cooler wall 𝑇𝑐 = 25 ◦C.

phenomena with order higher than the first one were not taken into
account in Section 5. Moreover, in the MODELICA model of the heat
exchanger (Fig. 7a), the external wall was not taken into account,
unlike in the model developed for obtaining the Stability Map. Figs. 13
and 14 show the simulation results conducted with 𝑃𝑟1 = 5 and 𝑃𝑟1 =
10, respectively, where only the mass rates of the two loops are plotted.
Regarding the unstable area in the Reynolds numbers of about 100
(Fig. 5(b)), the MODELICA model is not able to simulate the CNCL at
very low power (less than 1W) and the two fluids are practically static
as very low velocities are reached, so it was not possible to verify that
zone.

Concluding, the last study focused on the influence of heat power,
cooler temperature and the fluid characteristics on the stability of the
CNCL. Some steady-state points where obtained through the in-house
Python code imposing the power at the heater 𝑄 = 1 kW and 𝑄 =
10 kW and the cooler temperature 𝑇𝑐 = 25 ◦C. The same thermophysical
properties (𝜌𝑓 , 𝑐𝑓 , 𝑘𝑓 ) where fixed as (54) for both primary and
secondary fluids. To impose the Prandtl number of the desired primary
fluid (𝑃𝑟1), the dynamic viscosity (𝜇𝑓1 ) was varied to satisfy the Prandtl
correlation (13), while the Prandtl number of the secondary fluid (𝑃𝑟2)
was derived thanks to (47) by assuming 𝑐 = 1, 𝑘 = 1, 𝜇𝑓 = 1. Fig. 15
shows the position of the steady-state points, computed through the in-
house code, in the Stability Map (Fig. 5(b)). At fixed thermophysical
properties, an increase in the power of the heater has the effect of
increasing the velocity of the fluid (𝑅𝑒 increases), approaching the
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system to the unstable zones. On the other hand, an increasing of the
Prandtl number, at fixed heat power, has the effect of reducing the
fluids regime (𝑅𝑒1, 𝑅𝑒2 decrease). Finally, it has been noted that a
temperature variation on the cooler’s outer wall has a negligible effect
on the Reynolds number, reflecting a very low variation of the same,
which is hardly visible in the Stability Map.

8. Conclusions

In this work, the analytical studies carried out so far by [2,12] on
the rectangular Single Natural Circulation Loops have been extended
to the Coupled Natural Circulation Loops in order to study the stability
of the system due to the influence of having both a distributed heat
source as a heating system and an additional thermal inertia due to
the presence of a coupled loop, a unique configuration of particular
interest, the study of which requires the adoption of well-established
analytical methods. As such, the DYNASTY-eDYNASTY facility is in-
vestigated in this paper by means of one-dimensional analysis and
Perturbation Theory. This facility is unique in that it studies natural
circulation conditions established in a Coupled Natural Circulation
Loops (CNCLs) in presence of a distributed heat source as a promoter
of circulation, which simulates the Internal Heat Generation condition
that characterize, for example, in Molten Salt Fast Reactors.

The one-dimensional dynamic equations of conservation of laws for
fluids, adopted by [2], has been extended to include the heat exchanger
characteristics, adopted to couple the two Natural Circulation Loops.
An in-house code has been developed in Python to determine the
steady-states of the CNCLs under fixed operative conditions such as
power delivered by the heater and cooler temperatures.

The study of the linear stability of these steady-states has been
conducted by applying the Perturbation Theory to the dynamic equa-
tions. After linearization and non-dimensionalization of the equations
obtained, the Stability Map was obtained as a function of the Reynolds
and Prandtl numbers, which identify the steady-state of the fluid in the
primary loop of the CNCLs. This map was compared against the one
of Single Natural Circulation Loop counterpart. The Stability Map of
the DYNASTY-eDYNASTY facility (CNCLs) shows an unstable behaviour
when the heating power is increased, reaching turbulent regimes in the
two loops, a phenomenon that is not found when looking at the stability
map of the SNCL. In this unstable region, an oscillatory behaviour of
the mass rates and temperature of both fluids was observed, which is
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maintained by feedback phenomena. This fluctuation of state affects the
efficiency: the mass rate of the loop increases due to the increase in the
temperature of the fluid, which improves the heat transfer efficiency of
the heat exchanger, thus the secondary loop (eDYNASTY loop) absorbs
more heat. This increases the temperature of the secondary circuit and
consequently the mass flow rate, further improving the heat transfer
efficiency of the heat exchanger. The fluid in the primary loop is
then cooled and its mass rate decreases, reducing the efficiency of
heat transfer through the heat exchanger, and consequently increasing
the temperature in the primary loop. This oscillatory behaviour of
temperatures and mass rates is not dampened by the pressure drops
of the loops, which try to stabilize the system, and the fluctuations
are maintained. On the other hand, in the laminar regime, the un-
stable zone is reduced when comparing the Stability Maps of CNCLs
and SNCLs, reflecting a stabilizing effect given by the coupling of a
secondary Natural Circulation Loop.

The study then focused on the verification of the steady states and
their stability predicted by the in-house code against simulations per-
formed by a validated MODELICA model of the DYNASTY-eDYNASTY
facility. Firstly, a series of steady states were calculated using the in-
house code and the MODELICA model by fixing the thermo-physical
properties of the fluids and the cooler temperature, and varying the
heating power. The temperatures and mass rates calculated by the
in-house code showed satisfactory agreement with those obtained by
MODELICA for each steady state.

Then, some points were selected from the Stability Map and their
state was verified with the MODELICA model predictions. From the ver-
ification, it was noticed that the Stability Map can predict the stable and
unstable states of the system with satisfactory precision if compared
with the DYMOLA® simulations results, confirming the reliability of
the analytical procedure adopted to obtain the Stability Map. Some
inconsistencies were found in the transition region from laminar to
turbulent regimes of the fluids of both loops, due to the approximations
introduced in the model developed to obtain the stability map.

Finally, plotting some steady-state points on the Stability Map,
obtained from the in-house code by varying either the heating power
of the primary loop or the Prandtl numbers of the fluids, confirmed
that the system tended to move into unstable zones of the map as
the heating power increased, reflecting an increase in the Reynolds
number of the fluids. On the other hand, varying the Prandtl numbers
while keeping the heating power constant resulted in a decrease of the
Reynolds numbers.

Regarding future case studies, in anticipation of experimental cam-
paigns of the DYNASTY-eDYNASTY facility for the validation process,
the adiabaticity of the pipes is no longer acceptable and heat losses can
be taken into account to be more coherent with the actual design of the
facility, considering the planned insulation of the structure. Moreover,
a fan cooler model must be implemented to have a more reliable model
with respect to the facility. The Stability Map verification must be
extended to more points of the map, for higher Reynolds and Prandtl
numbers. In addition, in the stability analysis concentrated pressure
losses and the cooler of the primary loop must be included, to get a
model of the Coupled Natural Circulation Loops more realistic to the
DYNASTY-eDYNASTY facility.
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