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Abstract
The recent COVID-19 pandemic underscores the significance of early stage nonpharmacological intervention strategies. The widespread 
use of masks and the systematic implementation of contact tracing strategies provide a potentially equally effective and socially less 
impactful alternative to more conventional approaches, such as large-scale mobility restrictions. However, manual contact tracing 
faces strong limitations in accessing the network of contacts, and the scalability of currently implemented protocols for smartphone- 
based digital contact tracing becomes impractical during the rapid expansion phases of the outbreaks, due to the surge in exposure 
notifications and associated tests. A substantial improvement in digital contact tracing can be obtained through the integration of 
probabilistic techniques for risk assessment that can more effectively guide the allocation of diagnostic tests. In this study, we first 
quantitatively analyze the diagnostic and social costs associated with these containment measures based on contact tracing, 
employing three state-of-the-art models of SARS-CoV-2 spreading. Our results suggest that probabilistic techniques allow for more 
effective mitigation at a lower cost. Secondly, our findings reveal a remarkable efficacy of probabilistic contact-tracing techniques in 
performing backward and multistep tracing and capturing superspreading events.

Keywords: contact tracing, message passing, epidemic containment, superspreaders, statistical inference

Significance Statement

The recent experience of the COVID-19 pandemic, especially at the early stage of propagation, has highlighted the importance of non-
pharmaceutical interventions to help contain or mitigate epidemic outbreaks while maintaining a low social and economic impact. A 
promising intervention of this type is a targeted test-isolation protocol guided by digital contact tracing (DCT). However, standard im-
plementation of DCT rapidly becomes impractical in a rapid spreading phase where the number of notifications and the number of 
associated recommended tests grows dramatically. Probabilistic contact tracing is an alternative to standard protocols that is more 
robust and allows for higher mitigation effectiveness at lower social cost and thriftier usage of diagnostic resources. The success of 
these techniques relies on the effective detection of superspreading events and a correct reconstruction of transmission paths.
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Introduction
The recent experience of the COVID-19 pandemic has shown that 
mobility restrictions and lockdowns can have severe social and 
economic consequences (1). In light of the potential unavailability 
of vaccines, particularly in the early stages of a pandemic, it is 
then imperative to develop and implement nonpharmacological 
intervention measures capable of ensuring the containment or 
gradual slowing down of epidemic outbreaks while concurrently 
preserving economic and social activities (2, 3). Together with 

increased attention to hygiene and the use of masks, contact tra-

cing represents the most promising nonpharmacological measure 

for this purpose (4), and has been successfully employed to iden-

tify and eradicate small outbreaks of COVID-19 (5, 6). Manual con-

tact tracing (MCT) becomes impractical for large epidemic 

outbreaks, implying high costs and temporal delays (4, 7, 8). 

Moreover, MCT is unlikely to discover contacts outside of immedi-

ate family or close relationships (9, 10). Building on previous 

studies related to the Ebola virus disease (11, 12), it has been 
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argued that such limitations could be overcome with the system-
atic use of automated contact tracing procedures, which could 
scale up to the case of large outbreaks and favor the discovery 
of potentially infectious contacts even among occasional ones 
(13, 14) (see also (15)). Indeed, aggressive containment policies 
based on digital contact tracing (DCT) technologies, such as 
smartphone apps and GPS beacons, proved effective during the 
first wave of COVID-19 in countries like Taiwan (16), South 
Korea (17), China (18), and Singapore (19). These techniques 
sparked debates in Western countries on the threat of individual 
privacy (20–22) and the need for voluntary adoption of contact- 
tracing apps by a large portion of the population (13, 23, 24). 
Privacy-preserving protocols for digital contact tracing (DCT) 
have been introduced, using either centralized (25–27) or distrib-
uted (28–30) approaches, primarily relying on Bluetooth low- 
energy (BLE) communication to detect physical proximity without 
geolocation. The analysis of data obtained from early implemen-
tations of DCT apps indicates a tangible contribution to epidemic 
containment, providing an additional quantitative and qualitative 
advantage over MCT (31–34).

In most DCT apps, exposure notifications are triggered for 
every contact with individuals who have tested positive, irrespect-
ive of a variety of factors determining the risk associated with the 
contact. As a consequence, the proliferation of exposure notifica-
tions and quarantines, responsible for the reduction in the num-
ber of infected individuals, can lead to very high social costs 
(e.g. the number of isolated individuals) and economic costs (e.g. 
the number of diagnostic tests used) (35–37). A crucial step to-
wards improving the efficacy of DCT and reducing notification re-
dundancy is represented by probabilistic contact tracing 
methods, which could naturally account for multiple exposures 
(38–41). Using a Bayesian framework that incorporates all avail-
able data on individuals who tested positive (or negative), Baker 
et al. (39) proposed an efficient distributed method, based on 
Belief Propagation (42, 43), to compute the individual probabilities 
of infection. This information can be leveraged by the contact tra-
cing app to determine individual risk levels presented to the users, 
favoring self-isolation and more efficient testing strategies. In the 
present study, following the approach of Baker et al. (39), we dem-
onstrate the superiority of probabilistic contact tracing methods 
over standard ones, both in terms of higher containment capacity 
and lower cost-to-benefit ratio. This is done through a compara-
tive analysis using different epidemic simulators (44–46), obtain-
ing results that are robust across various disease transmission 
models and parameter ranges.

This study also offers the opportunity to delve deeper into the 
mechanisms and causal relationships that control automated 
contact tracing, investigating the reasons behind the claimed su-
periority of probabilistic methods. As positive tested individuals 
are more likely to come from contagion clusters than to generate 
them (47), it is believed that the detection of sources of individual 
infections (backward tracing) and superspreading events can sig-
nificantly improve containment strategies, especially in the pres-
ence of overdispersed secondary infections (48, 49), a common 
trait of modern diseases such as COVID-19 (50–55) and mpox 
(56–58). Countries like Japan (59), South Korea (60), and Uruguay 
(61) are credited with successfully implementing backward 
tracing in their contact tracing campaigns. However, current 
app-based DCT implementations predominantly engage in simple 
forward tracing (62), where tracked individuals are primarily 
those who could have been exposed to someone who has tested 
positive. Innovative DCT methods based on statistical inference 
(39), which ground their predictive power on reconstructing 

causal relationships in transmission paths (42), are instead ex-
pected to more efficiently discover multistep forward and back-
ward traces and capture superspreading events. This is here 
quantitatively demonstrated by analyzing these features for vari-
ous contact tracing strategies across different epidemic models in 
the early-containment phase, providing a possible explanation of 
the superior containment ability of probabilistic contact tracing.

Results
Mathematical models of epidemic spreading are largely used to 
forecast the evolution of outbreaks at different spatial and tem-
poral scales, to evaluate the effects of public health interventions, 
and ultimately to guide governments’ decisions (63–65). In this re-
spect, agent-based models provide stylized but sufficiently reli-
able representations of the actual contact networks on which 
contagion between individuals could take place, thus becoming 
a natural and necessary tool for analyzing the consequences of 
nonpharmaceutical intervention strategies based on contact tra-
cing. Among the abundance of agent-based models proposed dur-
ing the first waves of the COVID-19 pandemic (44–46, 66–68), some 
of them can be considered exemplary for formulating a critical 
analysis of the containment capabilities of the different contact 
tracing methods and evaluate their cost-to-benefit ratio. The 
agent-based models analyzed in the present work, namely the 
OpenABM model by Hinch et al. (44), Covasim by Kerr et al. (45) 
and the Spatiotemporal Epidemic Model (StEM) by Lorch et al. 
(46), can be considered rather simple generalizations of the 
Susceptible-Exposed-Infected-Recovered (SEIR) model, in which 
additional states are included to account for different levels of 
symptomaticity and disease severity. Agent populations are en-
dowed with realistic features, including demographic data and 
different layers of social interactions, also obtained from simu-
lated mobility (see Methods and the Supplementary Material for 
details). As a consequence, such models are capable of reprodu-
cing the empirically observed non-Poissonian statistics and over-
dispersion in contact patterns and individual viral loads.

These three agent-based models, each characterized by their 
unique attributes, serve as an ideal platform to assess the efficacy 
of contact tracing methods based on statistical inference, 
demonstrating their superiority in comparison to conventional 
test-trace-quarantine approaches. The probabilistic methods under 
study are those appearing in Baker et al. (39), namely Simple Mean 
Field (SMF) and Belief Propagation (BP). For comparison, other con-
tact tracing methods are considered: a basic form of DCT, and a 
more advanced “informed” contact tracing (ICT) approach that lev-
erages all available information from medical test results. 
Additionally, for Covasim, we employed Test-Trace-Quarantine 
(TTQ), the integrated containment method presented in the work 
by Kerr et al. (69). This method employs information about the 
symptomatic status of the tested individuals; even though encoding 
this data into BP is always possible, we do not use this information 
while running BP, SMF, DCT, and ICT to allow for a fair comparison 
among the four methods. The Methods section provides a brief over-
view of the contact tracing algorithms (see Supplementary Material
for further details). The containment effectiveness of these different 
contact tracing methods is evaluated by a quantitative study across 
various intervention scenarios generated using these three agent- 
based models. Our analysis demonstrates that contact tracing 
based on statistical inference techniques facilitates effective mitiga-
tion at low medical costs, measured in terms of diagnostic tests, and 
social costs, quantified by the fraction of the population subjected 
to quarantine. Finally, tracing techniques based on statistical 
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inference are shown to outperform other approaches in effectively 
tracing both backward and forward transmissions and therefore in 
identifying superspreading events associated with the overdisper-
sion of secondary infections.

Epidemic containment
DCT-based strategies possess a remarkable capability to contain 
the spread of epidemics by reducing their impact. This was recent-
ly demonstrated within the realistic framework provided by 
OpenABM (39). A similar analysis is carried out here on several in-
stances of epidemic spreading generated using Covasim and StEM 
from a small initial number of infected individuals (patient zeros). 
The contact tracing protocol involves daily testing of a fixed frac-
tion of symptomatic individuals. Different contact-tracing meth-
ods exploit the initial phase to gather information and update a 
ranking of potentially infected individuals. Starting from the first 
day of intervention ti, an additional number of individuals is 
tested daily according to the risk predictions provided by the dif-
ferent methods. Those who test positive are subsequently con-
fined. To formulate the ranking, each contact tracing algorithm 
incorporates the diagnostic test results and the contacts collected 
by the underlying contact tracing app over a predefined period. 
We assume that the app gathers the same information for all con-
tact tracing methods, contingent on the app’s adoption fraction 
(AF) within the population (assumed to be AF = 1.0 here). The ef-
fects of lower adoption fractions (AF < 1) were investigated in 
(39) for the case of OpenABM, but we expect similar behaviors 
for the two other models studied here. Note, however, that even 
for AF = 1, the transmission network may be significantly different 
than the contact network detected by the app. In StEM, some ex-
ogenous transmissions are added within the simulation, and in 
Covasim the relative transmission among individuals, i.e. the 

weights of the transmission network, is highly heterogeneous 
and inaccessible to the contact tracing app and inference method 
(see Methods). The test results are subject to error due to a non-
zero false-negative rate (fN). In our simulations, we set 
fN = 0.285, an estimated value derived from published data (70), 
representing a relatively high false-negative rate associated with 
rapid COVID-19 tests that provide quick and affordable, but less 
accurate contagion assessment.

A standard testing strategy, applicable to all contact tracing 
methods, entails performing a fixed number of tests per day. In 
the strategies labeled as DCT, ICT, SMF, and BP τ = 7 the number 
of tests is fixed to Ntest = 220 for StEM and Ntest = 230 for 
Covasim. However, it is worth noting that probabilistic contact 
tracing methods like BP and SMF allow for an alternative testing 
strategy. This approach involves observing individuals whose es-
timated probability of being infected exceeds a threshold value 
(pth). In this case, the number of tests based on the ranking 
changes adaptively over time. For StEM, we set pth = 1 × 10−4, 
and pth = 5 × 10−5 for BP and SMF respectively, while for 
Covasim, we set pth = 3 × 10−3 for SMF and pth = 5 × 10−3 for BP 
(see Figures S4 and S5 for the performances of the two algorithms 
under varying thresholds). The significant advantage inherent in 
this testing strategy is that each test is performed based on an es-
timate of the individual’s medical status. This has a twofold im-
pact. First, when no individual is eligible for testing, no 
diagnostic test is administered, leading to a more parsimonious 
use of medical resources compared to the fixed Ntest setting. 
Second, this approach addresses ethical considerations by en-
couraging testing only for individuals with a high likelihood of 
being infected.

To quantify the effectiveness of each containment policy and 
to set the stage for the analysis carried out in the next sections, 
Figure 1 shows the effective reproduction number Rt (refer to 

a1 b1 c1

a2 b2 c2

Fig. 1. Effective epidemic mitigation. Columns labeled a), b), and c) show, respectively, the behavior in time of the effective reproduction number Rt (see 
Supplementary Material for a detailed description), the cumulative number of diagnostic tests, and the cumulative number of infected individuals. For 
the Covasim model (first row), simulations are run on a population of 70,000 people, for T = 100 days. Each simulation starts with Npz = 30 patients zero, 
all in the exposed state, and each day half of the unidentified symptomatic individuals are observed (psym = 50%), while tracing-based interventions start 
after ti = 14 days. For the StEM model (second row), simulations are performed on the urban area of Tübingen for T = 100 days, and the number of initial 
cases Npz is 6 (1 in the exposed state, 2 in the asymptomatic state, and 3 of them are presymptomatic individuals). The same fraction of the symptomatic 
individuals is observed (psym = 50%), with interventions starting at ti = 14. In the StEM model, households are confined whenever a member is tested 
positive. Lines reflect the average behavior of the metrics computed from 20 realizations of the Covasim population model and 30 realizations of the StEM 
mobility model. The shaded regions indicate the associated standard error.
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the Methods section for a definition), the cumulative number NI of 
the infected individuals and the cumulative number Ntest of per-
formed tests (included those administered to symptomatic indi-
viduals) over time. In both models, all nonprobabilistic methods 
face challenges in sustaining Rt below one, even in the long run, 
whereas BP, and to a lesser extent SMF, prove to be more adept 
at achieving this goal swiftly.

Cost–benefit analysis
In addition to the economic costs associated with medical tests, 
nonpharmacological epidemic containment policies also impose 
a social cost due to mobility restrictions. This cost can be quanti-
fied by measuring the cumulative number, or percentage, NQ of 
individuals in quarantine as a result of different contact tracing 
strategies. This quantity is then compared to the effective reduc-
tion in epidemic spread, defined as one minus the ratio between 
the infected individuals in a mitigated scenario and that in an un-
controlled regime, where only a fixed percentage of symptomatic 
individuals are tested and quarantined. The values of reduction 
are computed when the number of infected individuals in uncon-
trolled simulations reaches a plateau (which happens roughly at 
T = 100 for the StEM and at T = 150 for Covasim). Higher values 
of reduction indicate better containment performance. This 
cost-to-benefit analysis was first introduced in Ref. (35), where 
the authors investigated a theoretical expectation of the number 
of required quarantines to achieve a specific reduction in the final 
epidemic size when manual and DCT is applied. For the compari-
son, the settings described in Figure 1 for both the Covasim model 
and StEM are adopted. Figure 2(a.1) and (b.1) shows the reduction 
measure defined above as a function of the number of tests 

performed daily, for Covasim and StEM, respectively. The size of 
the markers reflects the cumulative number of quarantined indi-
viduals resulting from the employed contact tracing strategy (lar-
ger dots correspond to larger numbers). The color gradient 
represents the number of daily tests conducted during the simu-
lation, with darker colors indicating a larger number of observa-
tions. As clearly shown by these results, the two probabilistic 
methods (i.e. SMF and BP) always reach higher performances in 
terms of reduction at a fixed number of medical tests.

Similarly, panels (a.2) and (b.2) display the percentage of indi-
viduals in quarantine generated by the intervention strategy (ex-
cluding isolation associated with symptomatic individuals) as a 
function of the reduction (see Figure S6 for the plot of the number 
of confined individuals as a function of the number of daily tests). 
Regardless of the number of available rapid tests, the number of 
confined individuals is significantly smaller for probabilistic con-
tact tracing techniques (BP and SMF) than for the others (DCT 
and ICT). This suggests that not only the two techniques are pref-
erable in terms of effectiveness, but they also incur a lower social 
cost as fewer individuals need to be isolated. Our numerical esti-
mates appear qualitatively similar to the results in Ref. (35) where 
the authors predicted a behavior similar to a downward opening 
parabola for the number of quarantines as a function of the reduc-
tion. In our case, we stress that BP-based curves are always asso-
ciated with lower values of the isolated cases NQ at fixed reduction 
values. The color gradient in panels (a.2), and (b.2) also reveals 
that this result is achieved at a lower diagnostic cost as the num-
ber of necessary tests to reach the same performance in terms of 
reduction, is lower than that used by the other methods. This be-
havior is particularly pronounced in StEM: BP obtains a reduction 
greater than 0.8 using about 400 daily tests while SMF needs at 

a1 a2

b1 b2

Fig. 2. Spreading reduction, social, and diagnostic cost. Panels (a.1) and (b.1) show the reduction measure of the epidemic spreading as a function of the 
number of medical tests performed daily during the simulations; panels (a.2) and (b.2) display NQ , the percentage of the confined individuals due to the 
different confinement strategies as a function of the reduction (see Ref. (35)). These quantities are computed for T = 100 and T = 150 for StEM and Covasim 
respectively, when the number of infected individuals reaches a plateau in the corresponding uncontrolled simulations. For StEM (Covasim), the 
population has a size of 90, 546 (70,000) individuals (see Methods). The panels on the top display the two measures associated with the Covasim model, 
while the panels on the bottom show the results while running StEM dynamics. The reduction measure is formally defined as the difference between the 
cumulative number of infected in an unconstrained propagation (where only the fixed percentage of symptomatic is confined) and the mitigated one, 
normalized by the cumulative number of infected in unconstrained dynamics. The higher the reduction, the more effective the containment measure. 
The size of the markers in panels (a.1) and (b.1) is proportional to the number of quarantines (the quantity plotted in the y-axis of the (a.2) and (b.2) 
panels), the larger the dots, the larger the number of confined individuals. The color code used in all the panels mirrors the number of tests performed on 
a daily basis: the darker the color, the larger this number.
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least 700 observations, and DCT and ICT never reach this value 
with the number of tests considered for this experiment (see panel 
(b.1)).

Overdispersion and superspreaders
Probabilistic-based tracing methods also exhibit a remarkable abil-
ity to effectively detect superspreaders. Superspreading transmis-
sion can have distinct origins, contingent on the properties of both 
the viral disease and the underlying population. This diversity is 
represented and exemplified by the three agent-based models 
under study. In OpenABM (13), superspreading events occur due 
to an overdispersed distribution of contacts in one of the three net-
work layers used to model the population structure. Similarly, in 
StEM (46), overdispersion arises naturally from the contact graph, 
as a result of realistic mobility simulations based on geolocalized 
data within an urban area. In both cases, the empirical distribution 
of the number of infections exhibits significant non-Poissonian sta-
tistics, characterized by a variance-to-mean ratio (VMR) larger 
than one (refer to the Supplementary Material for further details). 
For these two models, individuals who infect at least seven con-
tacts within their infectious time window are identified as super-
spreaders, following the definition provided in Wong et al. (71). In 
contrast, in Covasim (45), the overdispersion of infections directly 
arises from the properties of individual viral load, which is drawn 
from a fat-tailed distribution (see Supplementary Material): super-
spreaders can therefore be identified by looking at the individual 

relative transmission intensity Trel, a quenched parameter not ac-
cessible to the tracing methods. In particular, in each simulation, 
individuals displaying Trel ≥ 5 are classified as superspreaders.

The ability of the different contact tracing methods to detect 
superspreaders among the infected individuals is evaluated 
through numerical experiment employing the following proced-
ure: in each epidemic realization, the propagation is allowed to 
evolve freely without intervention up to a time T, whereupon 
the contact tracing methods are applied once, and the corre-
sponding ranking of potentially infected individuals is collected. 
The value of T is here chosen to be of the order of a few weeks, rep-
resenting the typical time window for which contact information 
can be retained in DCT applications (39). To mimic a realistic set-
ting, we assume that individuals showing symptoms spontan-
eously take tests and their results are collected by the contact 
tracing app. This is encoded in our simulations by observing a 
fixed fraction of the symptomatic individuals daily (see caption 
of Figure 3 for additional details). Individuals identified by means 
of the different contact tracing methods, and ranked based on 
their epidemic risk, are then classified according to their true in-
fection status, obtaining corresponding ROC curves. To specifical-
ly study the detection of superspreaders (and not other infected 
individuals), only the subset consisting of (a posteriori determined 
and nonobserved) superspreaders and susceptible individuals at 
time T was considered (refer to Figure 3a for a schematic represen-
tation of the setup). Superspreaders who recovered before time T 
were not taken into account, as their number is negligible after 

a

c

b

d

Fig. 3. Detection of the superspreaders. a) Schematic representation of the experimental setup. A posteriori, the superspreader individuals (the purple 
nodes) are identified as those responsible for over-dispersed transmissions (see the main text for a proper definition for the three models), here marked as 
the nodes within the pink shadow. To fairly evaluate the ability of each contact tracing method to detect superspreaders the ROC curves are built only for 
a subset of the individuals composed of the true superspreaders and susceptible individuals (small light gray nodes). Information about the epidemic 
dynamics entirely comes from the contact network and the daily observation of a fixed fraction of symptomatic (red nodes). The methods employed to 
compute the ROC curves are Belief Propagation (BP), Simple Mean Field (SMF), Informed Contact Tracing (ICT), DCT, Trace-Test-Quarantine (TTQ). The 
statistics of the AUC associated with the ROC curves obtained by different methods are shown for b) OpenABM, c) Covasim, and d) StEM. Lines are kernel 
density estimation plots used as guides for the eyes, while mean AUC values are reported in the legend. All parameters used in these simulations are the 
same as used in the epidemic containment results, except for the time T, the number of patients zero Npz, and the probability of self-testing. These 
numbers have been tuned to ensure that the maximum number of true positives in the ROC curves is at least a few tens. In particular, the duration of the 
free epidemic propagation before estimation is set to T = 15 for StEM, T = 30 for Covasim, and T = 20 for OpenABM. The number of initially infected 
individuals is set to Npz = 200 for StEM, Npz = 90 for Covasim and Npz = 100 for OpenABM. The fraction of observed symptomatic individuals is set to psym = 
0.1 for StEM and for Covasim, while for OpenABM all severe symptomatic individuals are observed (pssym = 1.0) together with a fraction pmsym = 0.3 of mild 
ones.
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T days. Figure 3b–d illustrates the empirical distributions of the 
area under the curve (AUC) obtained from different contact 
tracing methods across multiple epidemic realizations for 
OpenABM, Covasim, and StEM. In all three models, probabilistic 
methods (SMF and BP) turn out to better differentiate between 
noninfected and superspreaders, as indicated by both the distri-
bution of the AUC (it is significantly shifted towards larger values 
for SMF and BP) and the average value of the AUC shown in the le-
gend. Conversely, the distributions associated with ICT, DCT (and 
TTQ for Covasim) predictions are concentrated at lower values, 
confirming that nonprobabilistic algorithms are less effective in 
tracing superspreader exposures.

Backward and forward tracing
One of the inherent difficulties in contact tracing is determining 
the direction of infection among confirmed cases. While tracing 
new infections (forward tracing) is relatively easier, a more com-
plex task is to trace the source of the observed infections (back-
ward tracing). The ability to identify transmissions backward is 
crucial for detecting superspreaders and effectively mitigating 
the spread of an outbreak (48, 49). To further emphasize the ad-
vantages of probabilistic contact tracing methods like SMF and 

BP, it is valuable to assess their ability to identify secondary and 
tertiary infections, i.e. new infections that occur two or three steps 
away from the observed individuals in the transmission history. 
The experimental setup employed in Figure 4 consists of the fol-
lowing: for each epidemic realization, the propagation is allowed 
to evolve without intervention until a time T, and a small fraction 
of symptomatic individuals is observed daily. The backward 
propagators are defined as the sources of infection for the 
observed symptomatic individuals (depicted as blue dots in 
Figure 4a.1); their infectors instead identify the two-step back-
ward propagators (see Figure 4b.1). Forward propagators are de-
fined as the secondary infections of observed individuals 
(represented by green nodes in Figure 4c.1). New infections occur-
ring at two and three steps from the observed individuals are 
shown as orange nodes in the example presented in Figure 4d.1. 
To quantify the performances of the ranking methods, a compari-
son is made using the AUC associated with the classification of the 
infected individuals in a restricted set, where the false positive 
set comprises all noninfected individuals (light gray nodes in 
Figure 4a.1–d.1) while the true positive set consists of the unob-
served one-step and two-step backward infectors, forward 
infections, or new infections occurring at steps two and three, re-
spectively. Other infected individuals not belonging to these three 

a1

a2

a3

a4

b1

b2

b3

b4

d1

d2

d3

d4

c1

c2

c3

c4

Fig. 4. Detection of the one-step, two-step backward, and one-step, multistep forward tracing. Panels (a.1), (b.1), (c.1), and (d.1) show a schematic 
representation of the one-step, two-step backward, one-step, and multistep forward transmissions respectively. See the main text for a formal definition. 
The second, third, and fourth rows show the histogram of the AUC associated with the detection of the four types of infected individuals, for OpenABM, 
Covasim, and StEM, respectively. The methods used to obtain the ROC curves are Belief Propagation (BP), Simple Mean Field (SMF), Informed Contact 
Tracing (ICT), DCT, and Trace-Test-Quarantine (TTQ). The simulation set-up used for these results is the same exploited for the detection of the 
superspreaders illustrated in Figure 3. The average AUC is reported in the legend for the methods, while the lines report kernel density estimates to guide 
the visualization of the histograms.
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categories (e.g. tested-positive individuals, represented by red no-
des in Figure 4a.1–4d.1) are not considered. Although the perform-
ances vary across the three epidemic models, the results in 
Figure 4 demonstrate that probabilistic models such as BP and 
SMF are highly effective in identifying transmissions forward 
and backward. For OpenABM (panels a.2–d.2) and StEM (panels 
a.4–d.4) probabilistic contact tracing methods outperform the 
others, particularly when detecting one-step, two-step backward. 
In the case of Covasim (panels a.3–d.3), probabilistic methods ap-
pear to play a crucial role mainly in detecting multistep forward 
transmissions, while their performances are similar to ICT in de-
tecting backward and one-step forward transmissions. In these 
last three scenarios, simpler and less computationally expensive 
nonprobabilistic contact tracing methods (DCT and TTQ) do not 
reach the same AUC values achieved by ICT. We stress that al-
though TTQ includes additional information about the symptom-
atic status of the individuals, it still does not attain the accuracy of 
probabilistic methods.

Discussion
Contact tracing stands out as a compelling strategy to support and 
improve the effectiveness of common nonpharmaceutical mitiga-
tion measures, such as social distancing, the use of masks, and 
other hygiene practices, in order to contain the spread of emerging 
viral diseases. This approach has the potential to prevent the need 
for measures with significant socioeconomic impacts, such as 
lockdowns. In particular, DCT overcomes the limitation of man-
ual contact tracing by encompassing the ability to detect pre-
symptomatic and asymptomatic individuals outside of close and 
known relationships with tested individuals, a key aspect in the 
prevention of highly contagious diseases, such as COVID-19. The 
primary drawback of current implementations of digital contact 
tracing is that the volume of exposure notifications delivered 
drastically grows with the outbreak size. Consequently, the num-
ber of individuals flagged for testing grows substantially, render-
ing the overall procedure impractical. A potential solution to 
this challenge involves enhancing individual-based epidemic 
risk assessment and using it to guide selective test-trace-isolate/ 
quarantine strategies. This can be accomplished by integrating 
contact tracing with distributed statistical inference methods, 
capable of reconstructing contagion channels from locally col-
lected information and providing a more accurate estimate of in-
dividual risk (39). These algorithms can be implemented in a 
privacy-preserving distributed way through smartphone apps 
based on current technology and without the need for centralized 
calculations. It was estimated that when implementing BP or SMF 
the amount of information sent and received between two users 
could be approximately 1 megabyte (MB) or 2 kilobytes (KB) per 
day, respectively (39).

The present work builds on this direction providing a quantita-
tive comparative analysis of the performance of different contact 
tracing methods across various epidemic regimes using three dis-
tinct epidemic models recently developed for COVID-19. In all 
scenarios under study, probabilistic contact-tracing methods ef-
fectively curb ongoing outbreaks, as indicated by the rapid reduc-
tion of the effective reproduction number below the critical value 
of one. This is achieved with a substantially lower cumulative 
number of infected individuals compared to other methods, all 
while incurring a similar or significantly reduced deployment of 
testing resources. The cost (number of quarantines) versus benefit 
(outbreak reduction) analysis clearly shows a more favorable ratio 
for probabilistic contact-tracing methods, in particular for BP. 

Note that experiments conducted in this work utilize imperfect in-
formation about the underlying contact network (specifically, not 
all exposure events are assumed in StEM to be traceable, and con-
tact strength is highly variable in Covasim but this information is 
not available to the inference algorithms). Other regimes with 
more uncertainty on the contact network will be investigated in 
future developments.

The numerical experiments also revealed that probabilistic 
methods are better suited than others to detect superspreading 
events, whether stemming from an innate variety of transmissi-
bility or the heterogeneity of the contact network. This capability 
is crucial for the containment of emerging viral diseases charac-
terized by overdispersion in secondary infections. Due to the pres-
ence of superspreaders, it becomes essential to work backward to 
identify the sources of infection for observed cases, as many indi-
viduals are likely infected by someone who also transmitted the 
virus to other people. In this respect, probabilistic contact tracing 
methods were found to outperform other methods in correctly re-
constructing infection channels by one-step and multistep back-
ward and forward tracing. On one hand, these results provide 
valuable insights into the mechanisms and causal patterns that 
govern the detailed functioning of contact tracing. On the other 
hand, the emerged superiority of probabilistic methods demon-
strates that greater effectiveness in detecting superspreading 
events and backward and multistep causal relationships is crucial 
for successful epidemic containment strategies.

Our findings also have several practical implications. As 
pointed out by the threshold-based probabilistic methods, early 
interventions using a large number of tests appear to be always 
advantageous. This approach ensures a better assessment of the 
population-wide epidemic risk during the initial phase of the out-
break and prompt employment of a possibly large number of 
quarantines, if necessary. This strategy is particularly effective 
when a possibly large number of cheap, low-sensitivity rapid tests 
is available (72), as the prior information about the sensitivity of 
the tests can be included in the Bayesian probabilistic approach 
(39). Notice that a timely intervention ensures better containment 
in the long run, but also a lower time-integrated social cost (e.g. 
lower total number of isolated individuals). In this regard, a 
more in-depth study of probabilistic contact tracing strategies 
with intervention thresholds appears compelling.

In the numerical experiments, all contact tracing methods are 
either model-free (DCT, ICT, TTQ) or assume much simpler epi-
demic models (BP, SMF) compared to those used to generate the 
underlying epidemic traces. It follows that the superior perform-
ance shown by probabilistic contact tracing methods is not attrib-
utable to a greater knowledge of the real transmission 
mechanisms of the specific epidemics. This feature makes us be-
lieve that the results discussed in this work will remain consistent, 
at least qualitatively, in a real-world scenario with epidemic data 
from the necessarily much more complex diffusion in a human 
population, in the event of new variants or other emerging dis-
eases with similar properties. Finally, these probabilistic contact 
tracing methods are sufficiently flexible to work with other pre-
vention and mitigation measures, especially in the presence of 
vaccinated individuals and selective mobility restrictions.

Methods
Contact tracing methods
We report a brief description of the overall set of ranking techni-
ques referring to the Supplementary Material for the implementa-
tion details. 
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• DCT. When individuals are tested positive, their recent con-
tacts (within a one-week time window) are considered eligible 
for testing. When the number of individuals to be reached ex-
ceeds the number of available tests, we uniformly sample for 
testing as many of them as the maximum number of tests. 
This protocol is similar to the one published in Barrat et al. 
(35).

• ICT. Similarly to the probabilistic contact tracing technique, 
this method returns a score quantifying how likely each indi-
vidual may be infected at the observation time. Exploiting 
both the positive and negative results of the tests, this method 
counts the number of potentially exposed events that each in-
dividual has had within a temporal window of one week. This 
type of potentially infectious contact occurs if (a) the consid-
ered individual has never been tested or has always been 
negatively tested in the past, and (b) the time of the contact 
lies in the time interval ranging from the last time the poten-
tial infector has been negatively tested (before being positive-
ly tested), and the first time it has been negatively tested after 
the infection (in case there is no such occurrence, this corre-
sponds to the observation time). Here we have assumed 
that the process is irreversible, or, in other words, the time 
window we consider is sufficiently small to assume that, after 
a first infection, the acquired immunity preserves individuals 
from further infections after recovery.

• Simple Mean Field (SMF). This method assumes Markovian 
Susceptible-Infected-Recovered (SIR) dynamics with, when 
available to the app, heterogeneous infection probabilities 
mirroring, for instance, a diverse duration of the contacts. 
When an individual tests positive, SMF assumes that the in-
fection occurred tSMF days before (here and in Baker et al. 
(39) tSMF = 5 as it seems to better fit the COVID-19 features). 
Finally, the SMF-based ranker estimates an approximated 
marginal probability of the state of all individuals at each 
time step of the dynamics. The values obtained at the obser-
vation time for the infected state are considered as a proxy for 
the individual risks. More details can be found in Ref. (39) and 
in the Supplementary Material.

• Belief Propagation (BP). Similarly to SMF, BP assumes that the 
underlying infection can be modeled as an SIR dynamic. 
Though, at difference with SMF, some intrinsic COVID-19 fea-
tures are encoded in time-dependent infection and recovery 
rates resulting in a non-Markovian SIR model. Observations 
of the states of the individuals, i.e. the results of the medical 
tests, are properly introduced in the model by means of a 
Bayesian framework. This allows us to deal with imprecise 
test outcomes, mirroring the false negative and positive rates 
of the tests. Through the application of BP, the overall epi-
demic dynamics are reconstructed by inferring the infection 
and recovery times of all individuals. From this information, 
one can compute the individual probability of being infected 
at the observation time and, therefore, an estimate of the 
risk. The label τ = 7 refers to the implementation used in 
Ref. (39), in which the risk is computed from the aggregate 
probability of infection and recovery times in a time window 
of τ = 7 days. When a threshold is set, all individuals with a 
probability of being in the infected state larger than the 
threshold are tested. See Ref. (39) for a detailed description 
and Supplementary Material for the implementation details 
used for the StEM, Covasim, and OpenABM.

• Test-Trace-Quarantine (TTQ). This containment strategy is 
integrated into Covasim (69) and relies on the MCT process in-
cluded in the model. This method traces individuals who have 

come in contact with confirmed infected ones (with a prob-
ability ptrace for each contact to be traced) and puts them in 
the so-called preemptive quarantine (PQ). In this state, which 
is unique to the Covasim model, individuals reduce their in-
fectiousness levels. In the TTQ strategy, individuals are tested 
each day with a probability that depends both on their state 
(symptomatic or asymptomatic) and the time elapsed since 
their entrance into PQ (see Supplementary Material for de-
tails). As implemented in Covasim, this strategy does not limit 
the number of tests performed each day. To perform a fair 
comparison with the other containment techniques, in the re-
gime of a limited number of tests, we adopted a modified ver-
sion of the process, called TTQ-N, where the individuals to be 
tested are randomly chosen, drawing first from the set of 
symptomatic individuals and then with a probability propor-
tional to the one used in TTQ. The process stops when the 
maximum number of tests is reached. Moreover, since indi-
viduals in the PQ state are subject to a reduction in transmis-
sion probability, in the results on Covasim shown in Figure 1, 
MCT is applied together with the other tracing methods in or-
der to produce fair comparisons between TTQ and the other 
methods.

Agent-based models.
This section contains some important implementation details of 
the agent-based simulations. A brief description of the three mod-
els considered is reported in the Supplementary Material. 

• OpenABM. The model introduced in Ref. (44) exploits discrete- 
time non-Markovian stochastic processes to simulate an epi-
demic spreading on an age-stratified population interacting 
on a multilayer synthetic graph, with demographic data 
based on the UK census (additional details are given in the 
Supplementary Material). The efficacy of probabilistic infer-
ence using BP and SMF against standard contact-tracing tech-
nique in the epidemic containment was already discussed in 
(39). Here we focus only on quantifying their performance 
w.r.t. the detection of super spreaders and forward/backward 
infections. The results presented in Sections and are obtained 

by simulating a population of N = 105 individuals for T = 20  
days, with an initial number N pz = 100 of infected individuals. 

All the other model parameters are not changed with respect 
to the default implementation of the simulator discussed in 
the original work. As the OpenABM model distinguishes be-
tween asymptomatic states and different classes of symp-
tomatic ones (mild, severe), observations are performed on 
a daily basis on the full population of severe symptomatic 
and on 30% of mild symptomatic individuals, i.e. the same 
setting used in (39) for the online containment.

• Covasim. The work in Ref. (45) introduces Covasim, an agent- 
based model that includes country-specific demographic 
information such as age structure and population size. The 
contact networks used in Covasim comprise both an individ-
ual scale (these contacts are static) and a community scale 
(these interactions are randomly redrawn over time) to cope 
with households and social interactions. For this work, we 
use a population of 70, 000 individuals, with contact features 
matching those of the Seattle Metropolitan Area (as done in 
Ref. (45)). The epidemic model underlying the Covasim dy-
namic is a discrete-time non-Markovian process involving 
susceptible, exposed, several infectious states (an asymptom-
atic and presymptomatic state and three symptomatic states 
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to account for mild, severe, and critical conditions), as well as 
a recovered state. All individual transition times between 
these states are log-normally distributed. Special attention 
is devoted to the transmission of the disease; when a suscep-
tible and an infectious individual meet, the transmission 
probability associated with this event depends on both indi-
vidual viral-load-based transmissibility and susceptibility, 
and the social layer the contact belongs to. These ingredients 
favor the occurrence of superspreading events.

• StEM. The model proposed in Ref. (46) combines publicly 
available demographic data and automatic geo-referencing 
to produce continuous-time individual mobility traces with 
realistic features. In particular, we run mobility simulations 
on the urban area of Tübingen (Germany), having 90,546 indi-
viduals distributed in 47,309 houses. All the accessible venues 
fall into five categories (education, social places, public trans-
port, offices, and supermarkets). Each inhabitant can visit a 
subset (one education venue, ten social places, five public 
transportation, one office, and two supermarkets) of the 
1,487 available locations assigned with a probability that de-
pends on the house-location distance. The duration of the vis-
its depends on the location (2 hours at education, 1.5 hours at 
social places, 0.2 hours for public transport, 2 hours for work-
ing places, and 0.5 hours supermarket). Simulated mobility 
data is used to compute infectious contacts within a 
continuous-time non-Markovian stochastic model that in-
cludes an exposed state and multiple infected states to cope 
with asymptomatic, presymptomatic, and symptomatic indi-
viduals. Exposures depend on the state of the infectors, an ex-
posure rate (set to 0.05 for all locations), and a kernel term 
that allows one to accommodate environmental transmis-
sions. All contacts are available to the containment methods 
except those due to a small but continuous influx of untrace-
able exogenous exposures (as in the default setting, we set five 
of such events per 100,000 inhabitants and per week).
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