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A B S T R A C T

Numerous technological solutions for wave energy converters (WECs), referred as inertial reaction mass (IRM)
systems, incorporate a reacting mass within the floater, coupled with a power take-off (PTO) system, to
shelter all electronic components from the hostile sea environment. While the overall complexity of the
system increases, the current modeling procedures persist in considering only a limited number of modes
of motion, neglecting relevant dynamical effects. In this context, this paper proposes a systematic procedure
for defining the kinematic characteristics and overall analytical model for the dynamics of IRM WECs. The
significance of the proposed procedure lies in the statement of the reaction mass-related dynamic equation,
considering the floater’s parametric excitation in six degrees of freedom (DoF). Additionally, it introduces
the procedure for defining the reaction forces that the inertial mass exerts on the floater, which are often
neglected in the literature for the full simulation of such systems. Furthermore, the proposed analytical
modeling procedure allows the definition of approximated models in more simplified nonlinear forms for
dynamic analysis and ultimately in fully linear approximations. This enables the application of methodologies
and techniques commonly used in the literature for linear systems. The development of the framework is
kept generic, in order to introduce a versatile mathematical procedure, that can be easily adjusted, with
minor modifications, to accurately capture and represent the mechanical interaction for a wide family of
IRM WEC devices. Subsequently, a case study on a vertical-hinged pendulum WEC is analyzed, to showcase
the effectiveness of the proposed methodology. Moreover, to test the reliability of the analytical framework,
a comparison with the output of a commercial software is conducted.
1. Introduction

In 2019 alone, humans released 36.7 billion tons of CO2, marking
a staggering 50% increase compared to the year 2000, causing con-
sequent increment of heat trapped in the atmosphere. This includes
the use of gas-powered vehicles, livestock farming, intensive agricul-
ture, deforestation, waste generation, and the combustion of coal, oil,
and natural gas for electricity and heat production [1]. The latter
contributes a quarter of global human-driven emissions. It is then abso-
lutely clear that any efforts in mitigating climate change necessitate a
reduction in greenhouse gas emissions on a global scale. As the energy
sector plays a pivotal role, the International Renewable Energy Agency
(IRENA) indicates the path, technologically speaking, for decarbonizing
the power sector, which relies on the vast expansion of renewable
electricity generation and on the expansion of smarter and more flexible
electricity grid. In most parts of the world today, renewable energies
have become the lowest cost source of power generation, and are gener-
ally competitive when directly compared with fossil alternatives. In this
context, wave energy emerges is a promising renewable energy source,
potentially fulfilling up to one third of the global energy demand [2,3].
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Although wave power has several advantages, e.g. high level of power
intensity source availability over time, wave energy conversion tech-
nologies have not yet reached commercialization stage, when compared
to well-established renewable energy sources, e.g wind and solar. It
is worth highlighting that numerous concepts and prototypes of WEC
systems have been developed and built by inventors and researchers in
recent decades [4,5], with the final aim of exploiting the reciprocating
motion of the sea wave to produce clean energy.

Since the early beginning, it has been clear that converting wave
energy into usable power is not straightforward, mostly since me-
chanical and electrical components are challenged by the harsh sea
environment, where the level of corrosion and wear have an enormous
impact on the overall system durability and functionality. Therefore, to
overcome these difficulties, it is common to install energy conversion
systems within a sealed hull, sheltering all main electronic/mechanical
components from the marine environment. These systems are referred
to as Inertial Reaction Mass (IRM) WECs. Although useful to reduce the
harsh effects from the sea, this development adds further complexity to
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Nomenclature

𝛼 Generalized coordinate about 𝜉-axis
𝛽 Generalized coordinate about 𝜂-axis
𝛾 Generalized coordinate about 𝜁 -axis
𝐵𝐹 Floater Coriolis matrix in (′xyz)
𝐵𝑓 Floater Coriolis matrix in (XYZ)
𝐵𝐼 Mechanism Coriolis matrix in (𝜉𝜂𝜁)
𝐵𝑖 Total Coriolis matrix in (XYZ)
𝐶 3-D Rotation matrix
𝐶1 PTO output force
𝐶2 Generator control force
𝐶𝑚 Hull-generated parametric excitation
𝑐𝑝𝑡𝑜 Control damping coefficient
𝐷 Analytical Jacobian
𝑢 Mechanism-related Jacobian matrix
𝑢 Mechanism-related rotation matrix
𝛷 3-Dimensional rotation vector
𝐹𝑒𝑥𝑡 External hull force in the floater frame
𝑓𝑒𝑥𝑡 External hull force in the inertial frame
𝐹𝑟𝑐 Reaction forces in (𝜉𝜂𝜁)
𝑓𝑟𝑐 Reaction forces in (′xyz)
𝑓𝑟𝑐 Full mechanical coupling vector
𝑓𝑏𝑘 Damping and stiffness force vector
𝑓𝑒 Wave excitation force
𝑓ℎ Hydrostatic force
𝑓𝑟 Radiation force
𝐼𝑚 Mechanism inertia matrix
𝐼𝑚𝑓 Inertial coupling vector
𝑙𝑝 Pendulum arm
 Floater total mass matrix
𝑀𝐹 Floater mass matrix in (′xyz)
𝑀𝑓 Floater Coriolis matrix in (XYZ)
𝑀𝐼 Mechanism mass matrix in (𝜉𝜂𝜁)
𝑀𝑖 Total Coriolis matrix in (XYZ)
𝑀̄𝐹 Linear mass matrix
𝑚∞ Added mass at the infinite frequency
𝑚𝑝 Pendulum mass
𝐽𝐹 Jacobian matrix to (′xyz)
𝐽𝑀 Jacobian matrix to (𝜉𝜂𝜁)
𝐽𝐼 Jacobin matrix in (𝜉𝜂𝜁)
𝑘𝑟 Radiation kernel
𝐾̄ Linear stiffness matrix
𝑝 Mechanism pose vector
𝑞 Floater pose vector
𝑃𝑎 Instantaneous mechanical power
r Mechanism position vector
𝜌 Mechanism generalized coordinate
𝛴 PTO representative function
𝑠ℎ Hydrostatic stiffness matrix
 Kinetic energy
 Potential energy
𝑉𝐹 Floater linear velocity vector
𝑉𝐼 Linear velocity vector in (𝜉𝜂𝜁)
2 
𝑉𝑔 Generator-related reaction force
𝑉𝑟 PTO-related reaction force
𝑉𝑡𝑜𝑡 Reaction force on the mechanism DoF
𝑉𝑀 Linear velocity vector in (𝛯)
𝑉𝐸𝐹 End-effector linear velocity vector
𝜔𝑚 Proper mechanism velocity vector
𝛿 Pitch rotation angle
𝜃 Roll rotation angle
𝜓 Yaw rotation angle
𝛺𝐹 Floater angular velocity vector
𝛺𝑀 Angular velocity vector in (𝛯)
𝛺𝐼 Angular velocity vector in (𝜉𝜂𝜁)
𝛺𝐸𝐹 End-effector linear velocity vector
𝑤𝛯 Velocity vector in the (𝛯)
𝑤𝑥𝑦𝑧 Velocity vector in (′xyz)

the study of the underlying physical phenomena, since another stage in
the energy conversion chain is included.

While the physical system indeed encompasses modeling of numer-
ous energy transformation stages, addressing fluid–structure interaction
and mechanical couplings represents the first challenge to provide a
glimpse into the WEC potential. The hydrodynamic problem has been
commonly faced, in the wave energy community, through the linear
representation of the fluid effects on the floater, exploiting the so-
called Cummins formulation [6,7]. Instead, mechanical interactions
are commonly simulated through existing software, such as MATLAB®
Simscape (commercial) or WEC-Sim (Wave Energy Converter SIMulator
— non-commercial). The latter represents a suitable option, being
an open-source code properly developed for WEC system simulation
by the National Renewable Energy Laboratory and Sandia National
Laboratories [8]. WEC-Sim uses a very intuitive approach through a
connection of blocks for the description of the dynamic interactions
between rigid bodies. However, an analytical expression is crucial for
performing analysis on the system response and for the synthesis of
model-based control strategies, for energy maximization purposes [9,
10]. In most cases, when an analytical representation is derived within
the literature, several simplifying assumptions are often made, by e.g.
reducing the number of modeled degrees-of-freedom (DoF) to either
one or three.

Note that, with reference to Fig. 1, we can classify the IRM WECs
existing in the literature according to the architecture of the reacting
system. In particular, IRM WEC devices rely on the coupling between
two rigid bodies: the floater generates a parametric excitation to an
encapsulated body which, behaving as a prime mover, activates the
internal energy conversion mechanism for electric power production.
The nature of the coupling can vary depending on the selected system
design.

The literature review highlights various wave energy conversion
mechanisms, that will be referred as Inertial Reaction Mass (IRM),
including: (a) pendulum mechanism, (b) gyroscopic system, and (c)
sliding mass. These architectures are classified based on the arrange-
ments of the rotational axis, and on the coupling modes of the IRM with
the WEC hull. The pendulum technology, for instance, can be adopted
in WEC systems with its rotation axis being adjusted on a horizontal or
vertical plane, according to the expected system interaction with the
input wave [11]. As a matter of fact, horizontally-hinged pendulums are
constrained to move on a vertical plane and are coupled with the floater
via the pitch DoF while. The former solutions are usually mounted
into prismatic floaters, hence these are commonly modeled considering
exclusively one rotation DoF (pitch) and two linear displacements,

happening in a plane perpendicular to the pendulum rotation axis.
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Fig. 1. Main mechanism applied to the energy transfer from wave to the electric
generator.

The PeWEC system is an example of horizontal-axis pendulum WEC,
whose floater pitching motion induces a swinging motion of the pen-
dulum, being the energy extraction performed through the generator
damping action on the harmonic motion of the pendulum [12]. Analysis
on a pendulum-based IRM WEC is conducted also in [13]. Furthermore,
the SEAREV [14] system exploits pendulum effects by connecting an
eccentric mass, referenced to the hull, to an hydraulic PTO, which,
in turn, sets an electric generator into motion [15–17]. Further exam-
ple cases are the AMOG WEC [18], which is a pre-commercial scale
device based on a horizontal pendulum architecture design, and the
Seaquest [19], which incorporates a direct drive PTO, whose swing
mass is itself the rotor of an electric generator. Although belonging to
the horizontal-axis family of pendulum devices, the dynamic response
of the system can change if the pendulum is mounted upside down. This
system, called the inverted pendulum wave energy converter (IPWEC),
is studied for WEC applications in [20].

Alternatively, vertical-axis pendulum are also considered being ex-
cited by vibrations generated from any direction, i.e. involving both roll
and pitch rotations of the floater. For instance, in the study presented
in [21], the use of nonlinear coupling between pitch and roll modes
in a vessel is investigated, to increase power generation from the wave
motion. For such a reason, this family of IRM WECs are mainly coupled
with an axial-symmetric hull or irregular-shaped bodies, as in the
case of the Penguin [22] and the VAPWEC [23]. To improve the sys-
tem conversion capabilities for multi-directional inputs, the gimbaled-
pendulum is a further technological solution that exploit the pendulum
concept. Gimbaled pendulums for energy harvesting can be suspended
by a thread, a universal joint, or multiple coupled shafts [24]. The WITT
omnidirectional pendulum [25] is the most representative example of a
gimbaled-type pendulum-based WEC, exhibiting a frequency response
with three different peaks, whose broad banded operative frequency
range impacts the system functionality [25].

Gyroscope-based systems, considering both inputs and outputs, in-
volve three perpendicular rotation axes. Even though a 6-DoF model
might be more suitable for such a family of systems, even in this case,
for the sake of simplicity, some dynamics are commonly neglected, by
constraining the system representation in a plane. Three prototypes
of gyroscope-based systems have been designed and tested in the
literature, as presented in [26]. In this setup, the electric generator can
be activated by the gyroscopic rotation of a gimbal body referenced to
a spinning flywheel [27]. The latter is the principle applied by both
the ISWEC system [28], which controls the flywheel velocity to change
the device frequency response, and the OCEANTEC device [29]. The
gyroscope can alternatively be mounted with the vertical precession
axis, as is the case of the GWEC [30].

The sliding body device, which involves the interaction between a
floater and a sliding PTO system, is a further wave power absorption
3 
solutions proposed in the literature. The E-device [31] and the PS Frog
Mk 5 [32] have successfully applied such as technological solution,
allowing the mass t slide on the horizontal plane. For this family
of devices, the mechanical motion is exploited to drive an electrical
generator via a hydraulic transmission [32]. Alternatively, the reacting
mass, encapsulated in the floater can be allowed to move on the vertical
plane. The DR-WEC [33] and TALOS II belong to this class of devices.
The latter system, presented in [34], is a multi-axis point absorber-style
device with a solid outer hull encapsulating all moving parts. Another
example is the vibro-impact WEC, as introduced in [35,36], which
integrates a self-referenced mass mounted inside a semi-submerged
floater to exploit the nonlinear elastic impact of the inner mass with
the buoy, improving its power absorption capabilities.

In every category of IRM WECs under consideration, and across all
existing technological solutions outlined in Table 1, modeling simplifi-
cations are virtually always adopted by the designers, to simplify the
overall system description. These simplifications often involve neglect-
ing certain dynamics or mechanical interactions, which are intention-
ally overlooked for practical reasons. Nonetheless, such assumptions
can lead to misleading system representations, introducing a large
degree of uncertainty in the main variables and indicators used to
measure device performance, and hence actual estimation of the ca-
pabilities of any given IRM WEC. Furthermore, closed-form models
are virtually always employed for control design purposes, which are
fundamental for efficient and safe operation of WEC systems [37–39].

Motivated by the advantages of IRM WECs and the necessity for sys-
tematic and accurate modeling of this family of devices for performance
assessment [40,41], optimization [42], and control purposes [43,44],
this paper introduces a comprehensive yet simple methodology for
modeling IRM WEC systems. This approach considers the full set of
DoF and introduces a theoretical framework for their dynamic simula-
tion, avoiding restrictive simplifications and incorporating all dynamic
effects crucial for system design.

In particular, this paper provides the following main contributions:

• Derivation of the kinematic conversion chain, hence the analytical
expressions describing the dynamic behavior of the reacting mass
and its mechanical coupling with the floater, for a full set of
DoF. This approach offers a comprehensive understanding of the
interactions between rigid bodies in the wave energy conversion
context.

• Definition of a generalized, step-by-step procedure for construct-
ing kinematic transformation matrices, which can be applied to
the Lagrange equation, defined for quasi-coordinates, to derive
the equations of motion for a wide range of IRM WEC systems.
This procedure ensures both broad applicability and ease of use.

• Loads computation on critical mechanical components, e.g. sup-
porting bearings, addressing a crucial aspect of IRM WEC design
and ensuring that the components are designed to meet the
practical demands of their operational environment.

It is important highlighting the advantages of the analytical model
presented. Specifically, it provides the WEC designer with a compre-
hensive understanding of the energy transformation process, including
the overall occurring nonlinear effects. This model also facilitates the
development of control-oriented models for designing and synthesiz-
ing control technologies. It can be achieved, through the creation
of a simplified linear model for straightforward control algorithms
with practical implementation value. For instance, a linear model
derived from the nonlinear one is essential, especially for impedance-
matching control methods [10,45]. Additionally, the introduction of
the analytical equations allows simplifications that produce intermedi-
ate nonlinear models [37,39], for more effective analysis on the system
response [46–48] and data-driven control algorithms [49], suited for
nonlinear system representation. The remainder of this paper is orga-

nized as follows. Section 2 introduces the IRM WEC simulation loop,
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Table 1
Classification of IRM WECs and model complexity. The marker color specify the motion axis of the related mechanism: light blue → horizontal
axis, violet → vertical axis, and black → multiple axis. Moreover, the table acronyms are: Pr → Prismatic, Ax → Axial-symmetric, and Ir →

irregular; While for the modeled DoFs: S → Surge, Sw → Sway, H → Heave, R → Roll, P → Pitch, Y → Yaw, M→ Mechanism-related DoF.
Finally, Exp stands for performance analysis based on experimental activity.

Ref. Name Inertial mechanism Floater shape Modeled DoF

Pendulum Gyroscope Sliding Mass

[50,51] ISWEC ■ Pr S-H-P-M
[45,52] PeWEC ■ Pr S-H-P-M
[14,16] SEAREV ■ Pr S-H-P-M
[22] Penguin ■ Ir Exp
[25] WITT ■ Ax S-H-P-M
[31,53] E-Motion ■ Pr P-M
[30,54] G-WEC ■ Pr S-H-P-M
[32] PS Frog MK 5 ■ Ir S-P-M
[35] VIWEC ■ Ax H-M
[29] OCEANTEC ■ P Exp
[20] IPWEC ■ Pr H-M
[18] AMOG ■ Pr Exp
[33] DR-WEC ■ Ax H-M
[23] VAPWEC ■ Ax S-Sw-H-R-P-M
[21] WEC by Yerrapragada ■ A R-P-M
[34] TALOS II ■ Pr Exp
[13] WEC by Ma ■ Pr P-M
[55] Plumb Bob ■ Pr Exp
[26] WEC by Kanki ■ Pr Exp
[19] Seaquest ■ Pr Exp
focusing on mathematical representation of the mechanical interac-
tions. Section 3 addresses the kinematic problem of each interacting
body, while Section 4 details the approach for formulating the complete
set of dynamic equations. In Section 5, the modeling of a specific
vertically-hinged pendulum IRM WEC is presented, while Section 6
introduces a comparison between the output of the analytical model
with the one computed by the commercial software Simscape. Finally,
Section 7 encompasses the main conclusions of this manuscript.

Notation

The notation 𝑅(𝛼, 𝑘̂) represents a rotation by an angle 𝛼 around the
versor 𝑘̂. The symbol 0 is used to denote a zero matrix, with dimensions
that are understood based on the context. Furthermore, for a general
vector 𝜒 = [𝜒𝑥, 𝜒𝑦, 𝜒𝑧]𝖳, the corresponding skew-symmetric matrix
is denoted by 𝜒 . For a square matrix 𝐵 ∈ R𝑚×𝑚, we define 𝐵−𝖳 as
he transpose of the inverse of 𝐵, denoted by (𝐵−1)𝖳. Furthermore, 𝐼𝑛

specify the identity matrix in C𝑛×𝑛. Defined the matrix 𝑀 ∈ C𝑛×𝑚,
we denote its 𝑖𝑗-th entry as 𝑀𝑖𝑗 , with 𝑖 ∈ N𝑛 and 𝑗 ∈ N𝑚. Similarly,
for a vector 𝑉 ∈ R𝑛, we refer to its 𝑖th component as 𝑉𝑖, where
𝑖 ∈ N𝑛. Additionally, we define the canonical basis vector as 𝑒𝑗𝑖 ∈ R𝑗 ,
characterized by all components being zero except for the 𝑖−th element,
which is 1.

2. On the integration of the mechanical model into the WEC
simulation scheme

IRM WECs are generally identified as point absorbers [56], charac-
terized by an inertial body, installed in a floater, moored to the seabed.
The electrical and electronic components of these systems are enclosed
into the hull to avoid issues with corrosion (as per the discussion
provided in Section 1), enabling the mitigation of issues related to
maintenance and accessibility of these hardware components. As shown
in Fig. 2, this set of devices generally introduces a further step in the
energy conversion process. For instance, the hydrodynamic interaction
between the floater and the wave induces a parametric excitation to the
inertial body installed in the hull. While the inertial system activates
the PTO for electric power generation, the reaction forces are fed
back to floater, impacting significantly its dynamics. Furthermore, the
produced power can then be either stored, or directly supplied into
the grid. Focusing on mechanical power characterization, we introduce
4 
the IRM WEC simulation framework. The fluid–structure interaction
modeling is first generally introduced in Section 2.1. The physical
characterization of the reaction forces is presented in Section 2.2, and
the overall general model is presented in Section 2.3.

2.1. Modeling of the fluid–structure interaction

As mentioned in Section 1, the fluid–structure interaction mathe-
matically represents the initial modeling challenge, when approaching
the simulation of a WEC system. Although the problem can become
significantly demanding [57–59], the use of a linear representation
of hydrodynamic phenomena is well-established for the initial power
assessment of such systems. Particularly, under the assumption of an
irrotational flow and neglecting viscous effects, the linear potential
flow theory [60] provides a suitable approximation for fluid–structure
interactions. This approach models the interactions through a system of
integro-differential equations in the time domain. If the floater position
and orientation is defined by the pose vector 𝑝 ∶ 𝑡 ↦ R6, the equation
of motion is expressed through the following function 𝛤 , written, for
𝑡 ∈ R+, as follows

𝛤 ∶

{

𝑝̈ = 𝑓𝑒 + 𝑓ℎ + 𝑓𝑟,
𝑣 = 𝑝̇,

(1)

where  ∈ R6×6 encloses the contribution of the floater inertia tensor
𝑀𝑓 ∈ R6×6 and the added mass at infinite frequency 𝑚∞ ∈ R6×6, i.e.
 = (𝑀𝑓 +𝑚∞), 𝑓ℎ ∈ R6 is the hydrostatic force, directly proportional
to the position vector 𝑝, through the hydrostatic stiffness matrix 𝑠ℎ ∈
R6×6, and 𝑓𝑒 ∈ R6 is the wave excitation force [61,62]. Moreover,
the radiation force 𝑓𝑟, that accounts for the dissipative hydrodynamic
effects, is defined by a convolution integral through the Cummins
equation, involving a corresponding radiation kernel 𝑘𝑟 ∈ R6×6 and
velocity vector 𝑣 = 𝑝̇ [63,64].

2.2. Characterization of the reaction forces

Eq. (1) provides a description of the floater dynamics exclusively
considering the fluid–structure interaction. Hence, an analysis on the
loads acting on the inner bodies, responsible for the overall energy
generation process, is effectively required. To facilitate the computation
and understanding of the system, the study of IRM WECs can be divided
into two sub-problems: Computation of the reaction force vector and
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Fig. 2. Schematic representation of an IRM WEC energy transformation process, highlighting the conversion from ocean wave power to grid-compatible electric energy. The
diagram illustrates the transformation process through mechanical power development, which depends on the interaction between the floater and the reacting system, and the
electrical power generation dependent on the PTO nature.
Fig. 3. Schematic representation of the load distribution along the PTO transmission axis, from the torque generated by the floater (prime mover torque) to the reaction torque
exerted by the reacting system on the floater.
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formulation of the dynamical equation describing the motion of the
reacting mass-related DoF.

The reacting systems usually have a single associated DoF, and
therefore are allowed to rotate with respect to the PTO axis, alter-
natively to slide on a plane, but are constrained with respect to the
remaining set of motions. To begin we define a generic generalized
coordinate 𝜌 ∶ R+ → R, 𝑡 ↦ 𝜌, which is related to the IRM DoF. A
reaction force vector 𝑓𝑟𝑐 ∈ R6 is exerted following the relation

𝑓𝑟𝑐 =𝑀𝑚𝑝̈ + 𝐼𝑚𝑓 𝜌̈ − 𝑓𝑏𝑘, (2)

where 𝑀𝑚 ∶ R+ → R6×6 is the generalized mass-inertia matrix of the
nertial reacting system, 𝐼𝑚𝑓 ∈ R6 is the inertia vector coupling the PTO
oF to the floater, and 𝑓𝑏𝑘 ∶ R+ → R6 encloses all the reacting effects
oth due to Coriolis and centrifugal forces, and effects due to gravity.

A focused discussion is necessary for the study of the PTO-related
oF. With reference to Fig. 3, the torque activating the energy extrac-

ion axis is 𝐶𝑚 ∶ R+ → R, which excites the inertial mass, since its
otion is not constrained (although it is coupled with a PTO system,
hich is rigidly connected to the floater). Nevertheless, keeping the
ynamic equilibrium on the transmission shaft results in the generation
f a reaction force 𝑉𝑡𝑜𝑡 ∶ R+ → R transmitted to the floater through the
upport frame. Note that 𝑉𝑡𝑜𝑡 is defined as the sum of the reaction forces
𝑟 ∶ R+ → R and 𝑉𝑔 ∶ R+ → R, transmitted to the floater through the
TO frame conditioning stage and the generator, respectively, hence

𝑡𝑜𝑡 = 𝑉𝑟 + 𝑉𝑔 . (3)

pecifically, the reaction forces exerted on the floater, attributed to the
TO stage, are defined as the difference between the input torque 𝐶1
nd the output torque 𝐶2 (𝑉𝑟 = 𝐶1 −𝐶2). 𝐶2 corresponds to the control

function, while the former depends on the specific PTO stage, which

can be direct-drive, either mechanical or hydraulic [65,66]. Therefore,

5 
it can be generally expressed as 𝐶1 = 𝛴(𝐶2), with the operator 𝛴
defined according to the type of PTO adopted. For instance, for a
mechanical PTO system, based on a gear stage, 𝐶1 = 𝜂𝑔𝑏𝐶2, where 𝜂𝑔𝑏 ∈
Z+ is the gearbox reduction parameter. Knowing that the generator
transmitted reaction force is exactly the control force 𝐶2 (𝑉𝑔 = 𝐶2),
he following is implied:

𝑡𝑜𝑡 = 𝐶1. (4)

ence, the dynamical equation that describes the motion of the IRM
EC system, through its rotational velocity 𝜔𝑚 ∈ R, is defined through

he function 𝑔 ∶ R+ → R6, 𝑡↦ 𝑔, is defined as follows

∶ 𝐼𝑚𝜔̇𝑚 = 𝐶𝑚 − 𝐶1 = 𝐶𝑚 − 𝛴(𝐶2), (5)

here 𝐼𝑚 is the mass inertia with respect to the rotation axis. For sake
f completeness, note that the extracted mechanical power 𝑃𝑎 ∈ R is
efined as the product between the control torque 𝐶2 and the rotational
elocity of the generator side, hence:

𝑎 = 𝐶2𝛴
−1(𝜔𝑚) ⇒ 𝑃𝑎 = 𝐶1𝜔𝑚. (6)

2.3. Coupled mechanical-hydrodynamic model

With reference to the previous sections, specifically Eqs. (1), (2)
and (5), we define the overall equation of motion of a generic IRM
WEC. In particular, the wave force 𝑓𝑒, which is exogenous, induces the
motion of the floater. The floater, influenced by hydrodynamic forces
such as 𝑓𝑟 and 𝑓ℎ, induces vibrations on the inner mechanical system.
It behaves as a parametrically excited vibratory entity, as it is coupled
with the floater and controlled by the PTO action 𝐶1. A representation
of the IRM WEC simulation loop is schematized in Fig. 4. However,
due to partial constraints to the hull, the inertial mechanism gener-

ates reaction forces that are then applied back to the floating body.
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Fig. 4. Schematic representation of an IRM WEC simulation loop, encompassing the
input wave and main simulation blocks. These blocks include the floater, which
activates the inertial mechanism. The control action influences the set of reaction forces,
which, together with the input wave, impact the floater dynamics.

Within this section, we provide the coupled mechanical-hydrodynamic
model 𝛤 ′, by considering the inherent mechanical coupling between
the mechanism and the floater, and the hydrodynamic motion of the
device activated by the wave input force, i.e.

𝛤 ′ ∶
[

 +𝑀𝑚 𝐼𝑚𝑓
𝐼𝑓𝑚 𝐼𝑚

] [

𝑝̈
𝜌̈

]

=
[

𝑓𝑒 + 𝑓ℎ + 𝑓𝑟 + 𝑓𝑏𝑘
𝐶𝑚 − 𝐶1

]

, (7)

where 𝐼𝑚𝑓 = 𝐼𝖳𝑓𝑚 is the coupling vector linking the floater acceleration
o the inertial effect on the IRM DOF. As highlighted in Eq. (7), the IRM

EC dynamics involve hydrodynamic modeling, the wave environment
epresentation through the function 𝑓𝑒 [67,68], the simulation of the
TO transformation function, and the mechanical coupling. It is worth
ighlighting that such a general scheme can be adapted according to
he wave environmental conditions and by changing the definition of
he PTO system. The latter can be tuned through the general function
, knowing that its effect on the mechanical system dynamics is defined
y 𝐶1, according to the generator exerted torque 𝐶2.

However, this study specifically focuses on modeling the mechanical
nteraction, which includes determining the prime mover torque 𝐶𝑚,

analyzing reaction forces transmitted from the inner mass to the floater
(denoted as 𝑓𝑏𝑘), and assessing inertial couplings, such as 𝑀𝑚, 𝐼𝑚𝑓 , and
𝑓𝑚.

Although the general scheme is presented in Eq. (7), a further
onlinear force 𝐹𝑛𝑙 can be added to the PTO DoF if a nonlinear stiffness
echanism is introduced. For instance, as demonstrated in [69,70] a

pring attached to the mass can emulate a nonlinear varying recall force
ependent on the pendulum’s rotation angle [71]. These mechanisms
im to exploit bistability effects in wave energy systems [72,73]. It is
rucial to note that if a nonlinear force acts on the PTO DoF according
o the (𝜉𝜂𝜁) frame, the corresponding reaction force on the floater
ust be defined using the transformation matrix mapping procedure.
he literature analysis of gross output power indicates that rotating
otion, whether chaotic or periodic, enhances energy harvesting per-

ormance by increasing power and broadening the system operating
andwidth [74]. On this scenario, nonlinear energy harvesting meth-
ds have been proposed, including nonlinear stiffness and nonlinear
amping, acting even on raft-type WEC systems [75,76].

. Dynamic modeling of the mechanical couplings

This section provides a clear derivation and analysis of the me-
hanical interaction between the floater and the IRM. The discussion is
ntentionally kept general, in order to introduce a versatile framework
hat can be easily adjusted with minor modifications, to accurately
apture and represent the mechanical interaction for a wide family
f devices. The proposed modeling procedure begins with the com-
utation of the matrix that characterizes the kinematic chain of the
echanism: This includes the corresponding Jacobian matrix, which
aps the system velocity from the inertial frame to the mechanism-

ixed frame. Subsequently, the velocities of the bodies are directly
6 
ormulated, allowing for the calculation of both kinetic and potential
nergy. In particular, starting with the kinematic characterization of
he bodies involved, Section 3.1 introduces the reference frame to
e set. Moreover, Section 3.2 describes the kinematic chain mapping
he floater velocity from the inertial frame to the IRM-fixed refer-
nce frame, while Section 3.3 states the overall velocity vector of the
eacting mass.

.1. Reference frames definition

During operations, the dynamics of an IRM WEC device involve the
echanical interaction between two bodies: the floater and an inertial

eacting system. These two bodies are interconnected and influence
ach other motion and behavior. Both of them need to be defined in
elation to an inertial reference frame. This is achieved by using a set
f generalized coordinates that captures the motion and behavior of
irtual joints. The generalized coordinates are defined according to the
eference frames shown in Fig. 5. In particular, a vertical axis pendulum
evice, installed in an axial-symmetric floater, e.g. a spherical cup,
s selected as a representative case-study. Note that, the vertically-
inged pendulum is the most relevant technological solution, hence
t is adopted as a reference benchmark in the following preliminary
omputations. Therefore, according to Fig. 5, the following reference
rames are subsequently introduced:

• The inertial frame (𝑂𝑋Y𝑍), whose origin coincide with 𝑂.
• The hull-fixed reference frame, denoted as (′xyz), is centered

at the hull’s center of gravity (CoG), marked as 𝑂′. The frame
(′xyz) is capable of moving freely in space and accommodates
the complete range of motions, including both linear and rota-
tional movements. Specifically, the orientation of this frame is
determined using the roll-pitch-yaw convention, which involves
subsequent rotations relative to the axes in the order: 𝑧, 𝑦 and 𝑥.

• The inertial reacting system motion is defined by the (𝛯)
frame, whose -axis, for the specific case study of Fig. 5 is point-
ing upward, according to the PTO axis. The axis 𝛯 are always
parallel to x, y, 𝑧-axis, but having the origin in . In particular,
the position of  with respect to (′xyz) is determined by the
vector 𝑟 = [𝑥0 𝑦0 𝑧0].

• (𝜉𝜂𝜁) is the IRM-fixed reference frame. For instance, such
a frame follows the vertically-hinged pendulum rotation with
respect the 𝜁 -axis.

It is worth noting that the kinematic characterization of each mech-
nism is closely interrelated, requiring the development of a generic
cheme. The dynamics of the inner reacting mass, within the floater,
re influenced by parametric excitation and external forces. While the
atter can be defined by the user through a proper control algorithm, as
iscussed in [45,77,78], the parametric excitation is inherently linked
o the hull motion, which activates the entire energy transformation
rocess. Specifically, the motion of the floater, and its derivatives, sig-
ificantly affects the IRM motion. Meanwhile, the interaction between
oF varies depending on the type of mechanism selected for the WEC.

n details, the position and orientation of the floater in the inertial
eference frame, is indicated by the vector 𝑝 =

[

𝑋𝖳 𝛷𝖳
]𝖳, whose vector

= [𝑥 𝑦 𝑧]𝖳 ∈ R3 establishes the surge, sway and heave motion of the
loater, respectively, while the vector 𝛷 = [𝜃 𝛿 𝜓]𝖳 ∈ R3 determines its
oll, pitch and yaw rotation. When considering the reacting mass, an
dditional generalized coordinate is required, resulting in the definition
f the ‘augmented’ vector 𝑞 =

[

𝑝𝖳 𝜌
]𝑇 . Consequently, with the identi-

fication of the main bodies involved in the power conversion chain,
we state the nonlinear set of differential equations, which describe the
floater-mechanism interaction, in the following sections.



F. Carapellese and N. Faedo International Journal of Mechanical Sciences 284 (2024) 109731 
Fig. 5. Diagram illustrating the reference frame setup for IRM WECs, from the inertial frame to the reactive mass-fixed frame. It moves through the floater-fixed reference frames,
one defined at the floater’s CoG and the second at the inertial mass position.
3.2. Kinematics chain description

This section aims to define, unequivocally, the kinematics of the
rigid body interconnected to the electric generator for the energy trans-
formation process. Following a step-by-step procedure, the kinematic
transformations in between the reference frames allow for the defini-
tion of the overall velocity of the inner reacting mass. For this purpose,
an IRM WEC can be schematized as a chain of rigid links and joints.
In particular, the inertial conversion unit can be represented through a
translational or rotational joint, according to the adopted technological
solution. As previously discussed, for technological constraints, the IRM
has a single DoF, 𝑖.𝑒. 𝑚 = 1, which is coupled with the PTO system.
The number of DoFs can be increased, as in the case of the gimbaled
pendulum, where the mass motion is described by a set of two joints.

Furthermore, the floater can be modeled as a 6 DoF joint, i.e. it is
allowed to move in space and rotate with respect to the 𝑥-, 𝑦- and 𝑧-axis.
For instance, the velocity mapping from the inertial frame (𝑂𝑋Y𝑍)
to the floater frame (′xyz) is the first transformation to be defined.
Subsequently, the velocity is transported on (𝛯) frame, under
the assumption that the origin ′ of the (′xyz) frame does not lie on
the line defining the energy transmission axis toward the PTO system.
Finally, the velocity projection from the (𝛯) frame into the IRM-
fixed reference frame (𝜉𝜂𝜁) is required, since a further DoF is added
by the mechanism itself.

The floater velocity vector 𝑉𝑓𝑥𝑦𝑧 = [𝑣𝑥 𝑣𝑦 𝑣𝑧]𝖳, where 𝑣𝑥, 𝑣𝑦 and 𝑣𝑧
are surge, sway, and heave velocities defined in the floater reference
frame (′xyz), is obtained through a kinematic transformation from
the vector 𝑋̇. Such linear vector projection involves a set of three trans-
formations, characterized by roll, pitch and yaw rotations, incorporated
into the matrix 𝐶 ∈ R3×3, whose transpose is explicitly defined as
follows

𝐶𝖳 = 𝑅(𝜃, 𝑖)𝖳𝑅(𝛿, 𝑗)𝖳𝑅(𝜓, 𝑘̂)𝖳. (8)

About the rotational velocity, it is well known that the velocity
vector in the body-frame, e.g. (′xyz), does not correspond to the
derivative of the generalized coordinates vector 𝛷. For instance, the
computation of 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧, the angular velocities defined in the
floater-fixed reference frame (′xyz), is dependent on the analytical
Jacobian 𝐷 ∈ R3×3. On this purpose, the analytical Jacobian matrix
𝐽𝐹 ∈ R6×6, which links the vector of the derivative of generalized coor-
dinates to the floater velocity, defined in the body frame, is explicitly
7 
stated as follows

𝑤𝑥𝑦𝑧 =
[

𝑉𝐹
𝛺𝐹

]

= 𝐽𝐹 𝑝̇ =
[

𝐶𝖳 0
0 𝐷

] [

𝑋̇
𝛷̇

]

. (9)

Furthermore, the velocity vector 𝑤𝛯 = [𝑉 𝖳
𝑀 𝛺𝖳

𝑀 ]𝖳, defined in
(𝛯), considering the position of the origin  with respect to ′

dependent on the position vector 𝑟, is expressed through the following
relation

𝑤𝛯 =
[

𝑉𝑀
𝛺𝑀

]

= 𝐽𝑀 𝑝̇ =
[

𝐶𝖳 −𝑟𝐷
0 𝐷

] [

𝑋̇
𝛷̇

]

, (10)

where 𝐽𝑀 ∈ R6×6 is the Jacobian matrix linking 𝑝̇ to 𝑤𝛯. The
Jacobian 𝐽𝑀 in Eq. (10) can be written in, compact form, using the
fact that the velocity 𝑉𝑀 of a generic point in a rigid body is defined
as

𝑉𝑀 = 𝑉𝐹 +𝛺𝑀 × 𝑟 = 𝑉𝐹 + 𝛺̃𝑀 𝑟 = 𝑉𝐹 − 𝑟𝛺𝑀 . (11)

Please note that an additional transformation is necessary to express
the IRM WEC velocity in the mechanism-fixed reference frame 
(𝜉𝜂𝜁), whose dynamics are described by the generalized coordinates
𝜌. The specific definition of the coordinate 𝜌 is contingent upon the
nature of the chosen inertial reacting device, i.e. rotating or sliding, as
discussed in the following.

Rotating inertial reacting system. For rotation-based mechanical systems,
such as the case of pendulums and gyroscopes, a further rotation is nec-
essary for the velocity vector to be defined into (𝜉𝜂𝜁). The additional
coordinate 𝜌 represents an angle, characterized, in this general context,
by means of three canonical angles 𝛼, 𝛽, and 𝛾, whose association to a
specific IRM depends on the orientation of the rotation axis, whether
vertical or horizontal. The rotation matrix associated to 𝜌 is generally
referred to as 𝑢 ∈ R3×3.

The kinematic link matrix, which maps the generalized velocity
vectors 𝑋̇ and 𝛷̇ into the mechanism-based velocity 𝑉𝐺 and 𝛺𝐺, for
rotational mechanisms, termed 𝐽𝐺, is defined as follows

𝐽𝐺 =
[

𝑢𝐶𝖳 −𝑢𝑟𝐷
0 𝑢𝐷

]

, (12)

and the following holds
[

𝑉𝐺
]

=
[

𝑢𝐶𝖳 −𝑢𝑟𝐷
] [

𝑋̇
]

. (13)

𝛺𝐺 0 𝑢𝐷 𝛷̇
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Up to this point, the velocity of the floater is projected onto the
reference frame of the mechanism. However, the proper velocity of
PTO system is required to be added to the projected floater velocity.
These are subjected to its own rotational velocity 𝜔𝑚 ∈ R3, and then
otal rotational velocity vector 𝛺𝐼 is computed through the following
quation:

𝐼 = 𝛺𝐺 + 𝜔𝑚. (14)

he total system velocity 𝑤𝜉𝜂𝜁 = [𝑉 𝖳
𝐼 𝛺𝖳

𝐼 ]
𝖳 expressed in the (′𝜉𝜂𝜁)

rame is stated through the matrix 𝐽𝐼

𝐼 =
[

𝑢𝐶𝖳 −𝑢𝑟𝐷 0
0 𝑢𝐷 𝑢

]

, (15)

nd hence the following relation

[

𝑉𝐼
𝛺𝐼

]

=
[

𝑢𝐶𝖳 −𝑢𝑟𝐷 0
0 𝑢𝐷 𝑢

]

⎡

⎢

⎢

⎣

𝑋̇
𝛷̇
𝜌̇

⎤

⎥

⎥

⎦

, (16)

olds, where 𝑢 ∈ R3×𝑚 is defined in terms of the basis vector 𝑒3𝑖 for
single-DoF mechanism, e.g. 𝑢 = 𝑒33 = [0 0 1]𝖳 for the vertical-axis

pendulum system of Fig. 5. It is worth noting that 𝑉𝐼 = [𝑣𝜉 𝑣𝜂 𝑣𝜁 ]𝖳,
whose elements are 𝑣𝜉 , 𝑣𝜂 and 𝑣𝜁 , and the angular velocity vector
𝛺𝐼 = [𝜔𝜉 𝜔𝜂 𝜔𝜁 ]𝖳, defined by the components 𝜔𝜉 , 𝜔𝜂 and 𝜔𝜁 , are the
inear and angular velocity vectors, respectively, defined with respect
o the (𝜉𝜂𝜁) frame.

For a multi-DoF mechanical component, e.g. the gimbaled pendu-
um, where 𝜌 = [𝛼 𝛽], the block matrices 𝑢 and 𝐷𝑢 in Eq. (16)
re distinctly defined. Their characterization takes it account that two
onsecutive rotation, 𝛼 and 𝛽, occur with respect t the 𝜉- and 𝜂- axis,
espectively. In particular, the rotation matrix is consequently stated as
𝑢 = 𝖳

𝛽
𝖳
𝛼 , while 𝑢 is defined as follows

𝑢 =
⎡

⎢

⎢

⎣

cos 𝛽 0
0 1

sin 𝛽 0

⎤

⎥

⎥

⎦

. (17)

liding reacting system. These systems are subjected to their linear
elocity 𝑣𝑚 ∈ R3, and then the total linear velocity vector 𝑉𝐼 is
omputed through the following equation:

𝐼 = 𝑉𝑀 + 𝑣𝑚. (18)

he Jacobian matrix 𝐽𝐼 ∈ R6×(6+𝑚) for sliding mechanism is then
omputed as

[

𝑉𝐼
𝛺𝐼

]

=
[

𝐶𝖳 −𝑟𝐷 𝑒3𝑖
0 𝐷 0

]

⎡

⎢

⎢

⎣

𝑋̇
𝛷̇
𝜌̇

⎤

⎥

⎥

⎦

. (19)

To sum up, the system velocity is defined through an associated
acobian matrix, which states a precise relation between the set of
eneralized coordinates and the velocity into the mechanism frame.
o streamline the procedure, the characterization of the velocity into
he mechanism reference frame starts with the projection of the floater
elocity vector in the body frame, through the matrix 𝐽𝐹 . While the
atrix 𝐽𝑀 allows a further velocity representation with respect to

he rotation axis, then allowing the following mapping (′𝑥𝑦𝑧) ↦

(𝛯) to encompass the velocity projection from the floater frame
o the IRM reference position, defined by the 𝑟 vector. Conversely, the
atrices 𝐽𝐺 and 𝐽𝐼 are responsible for incorporating the additional
oF from the IRM. These matrices project the floater’s velocity into

he (𝜉𝜂𝜁) frame using the rotation matrix associated with the IRM’s
eneralized coordinates. This process is used exclusively for rotating
ystems, such as pendulums and gyroscopes. Additionally, a block ma-
rix is added to incorporate the contribution of the mechanism velocity.
he reader can refer to Table 2 for a summary of the Jacobian matrices
equired during the main transformation steps.
8 
.3. End-effector velocity

As discussed previously within this section, every mechanical IRM
ystem can be modeled as an assembly of several rigid bodies. There-
ore, the spatial velocity vector [𝑉𝐸𝐹 𝛺𝐸𝐹 ]𝖳 must be defined, where
𝐸𝐹 ∈ R3 and 𝛺𝐸𝐹 ∈ R3 represent linear and angular velocities of
ach single body, respectively. In particular, these depend on the ar-
hitecture of the selected mechanism hence, in the following, we define
he end-effector velocity for the three main subfamilies of IRM systems
onsidered: gyroscopes, pendulum, and sliding mass. The reader can
efer to Table 3 for further details.

yroscope. A gyroscope system consists of two main components: the
imbal and the flywheel. The velocity vector of the gimbal corresponds
o the ne described by Eq. (16). However, the flywheel experiences an
dditional velocity, i.e. its spinning velocity about its polar axis, de-
oted as 𝜑̇. Therefore, the angular velocity component of the flywheel
fw = 𝑒3𝑚𝜑̇, where 𝑚 depends on the versor orientation, knowing it has

o be parallel to the flywheel polar axis. Without loss of generality the
ollowing relation holds:

𝐸𝐹 = 𝛺𝐼 + 𝜔fw. (20)

Pendulum. For pendulum-based systems, although the angular velocity
is invariant with respect 𝛺𝐼 , the linear velocity 𝑉𝐸𝐹 is defined accord-
ing to the position vector of the pendulum mass with respect to the
(′𝜉𝜂𝜁) frame, through the vector 𝑟𝑚, i.e.

𝑉𝐸𝐹 = 𝑉𝐼 + 𝛺̃𝐼 𝑟𝑚. (21)

In particular, 𝑟𝑚 can be defined differently according to the orientation
of the swinging mass. For horizontal pendulum-based devices, the arm
vector is 𝑟𝑚ℎ = [0 0 − 𝑙𝑝]𝖳, where 𝑙𝑝 is the length of the link defined
from the 𝜉-axis for a horizontal-axis pendulum and gimbaled pendulum
while, for the vertical pendulum, 𝑟𝑚𝑣 = [𝑙𝑝 0 0]𝖳, where 𝑙𝑝 is the
distance between the vertical axis 𝜁 and the mass CoG, knowing that
the pendulum mass lies on the 𝜉-axis.

Sliding mass. In a sliding mass system, the end effector’s velocity is
dependent on the generalized coordinate itself. Specifically, the rota-
tion velocity of the sliding mass corresponds to the velocity vector
𝛺𝐼 , and the linear velocity is described by Eq. (21). Additionally, the
mass position is instantaneously changing in time, since it is defined
by the coordinate 𝜌. For instance, for the horizontal sliding body the
position vector is 𝑟𝑚ℎ = [𝛼 0 0], while for the vertical configuration, it
is 𝑟𝑚𝑣 = [0 0 𝛾].

4. Computation of the dynamic equation of IRM WECs

From the definition of an appropriate set of reference frames to
properly describe system motion, this section introduces the procedure
for the derivation of the mathematical model characterizing such de-
vices, focusing on the derivation of the coupling between the floater
and the associated PTO system, mainly governed by nonlinear effects
such as centrifugal and Coriolis forces. The resulting nonlinear model
allows for the evaluation of WEC performance with high fidelity, pro-
viding detailed insights into its behavior. Furthermore, the nonlinear
model serves as a foundation for developing a linear counterpart. Such
a linear model offers simplicity, facilitating the study of the system
and the assessment of its dynamic performance, as well as design and
synthesis of real-time energy-maximizing control technology. For this
purpose, Section 4.1 states the Euler equations for defining the floater’s
motion in 6 DoF, and Section 4.2 addresses the analytical expression for

the reaction mass dynamics and the definition of the reaction forces.
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Table 2
Jacobian matrix for transforming from (𝑂𝑋𝑌𝑍) to (𝜉𝜂𝜁).
Reference frame transformation Jacobian matrix

(𝑂𝑋Y𝑍) ↦ (′xyz)

(′xyz)↦ (𝛯)

(𝛯)↦ (𝜉𝜂𝜁)
o
P
c
t
d
t
a
t
f


𝑀

w
m
t
c
g
c
f
c

𝐹

i
g

𝑀

w
w
i
a
P
r

i

𝐽

T
c
r
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d

𝑓

f

4.1. Floater dynamics and reaction forces

The mechanical power transmitted from the wave to the IRM sys-
tem, through the floater motion, is converted into electric power by a
suitable control action exerted by the PTO system. The power output of
a wave energy device is then ultimately integrated into the grid through
power converters and an associated conditioning process [79]. On the
basis of this, the focus is now dedicated to the first body (primary
mover) acting as part of such process, i.e. the floater. Let 𝑚𝑓 ∈ R+

nd 𝐼𝑓 = 𝑑𝑖𝑎𝑔([𝐼𝑥 𝐼𝑦 𝐼𝑧]), with 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 ∈ R+, be the mass and inertia
atrix of a generic floater. Then, the dynamic equations in 6 DoFs with

espect to the body axis can be expressed through the Euler equation.
or further details the reader can refer to Appendix A. In particular the
quation describing the floater dynamics can be rewritten as follows:

𝐹 𝑤̇𝑥𝑦𝑧 + 𝐵𝐹 (𝑤𝑥𝑦𝑧)𝑤𝑥𝑦𝑧 = 𝐹𝑒𝑥𝑡, (22)

here 𝑤𝑥𝑦𝑧 = [𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧]𝖳 is the floater velocity vector in the
loater-fixed reference frame and 𝐹𝑒𝑥𝑡 ∈ R6 is the generalized external
orce vector. Note that the velocity vector and its derivative 𝑤̇𝑥𝑦𝑧 are
efined with respect to the vector of generalized coordinates 𝑝, i.e.
{

𝑤𝑥𝑦𝑧 = 𝐽𝐹 𝑝̇,
𝑤̇𝑥𝑦𝑧 = 𝐽̇𝐹 𝑝̇ + 𝐽𝐹 𝑝̈.

. (23)

his can be used to compute, in compact form, the dynamics into the
nertial reference frame (𝑂𝑋Y𝑍):

𝑓 (𝑝)𝑝̈ + 𝐵𝑓 (𝑝, 𝑝̇)𝑝̇ = 𝑓𝑒𝑥𝑡, (24)

here 𝑓𝑒𝑥𝑡 ∈ R6 is the vector of external forces expressed in the inertial
rame, and the matrices 𝑀𝑓 (𝑝) ∶ 𝑝 ↦𝑀𝑓 and 𝐵𝑓 (𝑝, 𝑝̇) ∶ {𝑝, 𝑝̇} ↦ 𝐵𝑓 are

{

𝑀𝑓 = 𝐽𝖳
𝐹𝑀𝐹 𝐽𝐹 ,

𝐵𝑓 = 𝐽𝖳
𝐹𝑀𝐹 𝐽̇𝐹 + 𝐽𝖳

𝐹𝐵𝐹 𝐽𝐹 ,
(25)

llowing (24) to be explicitly rewritten as
𝖳
𝐹𝑀𝐹 𝐽𝐹 𝑝̈ + (𝐽𝖳

𝐹𝑀𝐹 𝐽̇𝐹 + 𝐽𝖳
𝐹𝐵𝐹 𝐽𝐹 )𝑝̇ = 𝑓𝑒𝑥𝑡. (26)

.2. Lagrange equation defined for quasi-coordinates

Even the dynamic coupling between the two bodies happens
hrough the identification of the reaction forces, which can be a key
actor for determining the design of the mechanical components. This
ection characterizes such reaction forces, and compute the overall sys-
em dynamics, where all the main effects are enclosed into a compact
ifferential equation, based on the previous derivations. In particular,
he computation of the dynamic equation of the system is derived via
Lagrangian approach, defined for quasi-coordinates.

For a multi-DoF IRM device, the development of a set of equa-
ions, based on quasi-coordinates, can be more convenient than a
ystem representation via generalized coordinates [80]. Since the rel-
tive motion between floater and internal mechanism is effectively

xploited during the device operating condition, the quasi-coordinates,

9 
r pseudo-coordinates, allow to solve the dynamic problem on the
TO-fixed frame, i.e. (𝜉𝜂𝜁). Fr instance, knowing the generalized
oordinate vector 𝑝(𝑡), the quasi-coordinates (or pseudo-coordinates) of
he IRM WEC under study [81] are the velocity vectors 𝑉𝐼 and 𝛺𝐼 ,
efined in Eqs. (16) and (19), respectively. These are used to define
he force and moment equations in the reacting mass fixed-frame, i.e.
bout the axes 𝜉, 𝜂, 𝜁 , simplifying the computation of the dynamic equa-
ions for this family of systems. In particular, the Lagrange equations
or quasi-coordinates are expressed in Appendix B. Therefore, in the
(𝜉𝜂𝜁) frame the following differential equation holds

𝐼 𝑤̇𝜉𝜂𝜁 + 𝐵𝐼 (𝑤𝜉𝜂𝜁 )𝑤𝜉𝜂𝜁 + 𝐺𝜉𝜂𝜁 = 𝐹𝑟𝑐 , (27)

here 𝑀𝐼 ∈ R6×6 and 𝐵𝐼 (𝑤𝜉𝜂𝜁 ) ∈ R6×6 are the mass and damping
atrix respectively, defined in the IRM-fixed reference frame, where

he latter encloses all the nonlinear effects, such as the Coriolis and
entrifugal forces. Moreover, 𝐺𝜉𝜂𝜁 ∈ R6 includes all the effects of the
ravity on the mechanism, and it is derived from the potential energy
omputation, ad detail in Appendix B, and 𝐹𝑟𝑐 = [𝐹𝑔 𝑇𝑔]𝖳 is the reaction
orce vector, and 𝐹𝑔 ∈ R3 and 𝑇𝑔 ∈ R3 represent linear and angular
omponents, respectively. Additionally, 𝐹𝑟𝑐 is defined as:

𝑟𝑐 =
[

𝐹𝜉 𝐹𝜂 𝐹𝜁 𝑇𝜉 𝑇𝜂 𝑇𝜁
]𝖳 . (28)

We do note that, the Equation presented in (27), can be written
n compact form, referred to the inertial reference frame, into the
eneralized coordinate-space:

𝑖(𝑞)𝑞 + 𝐵𝑖(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑓𝑟𝑐 , (29)

here 𝑀𝑖 ∈ R7×7, 𝐵𝑖 ∈ R7×7 are the mechanism system matrices
ritten in the inertial space. Moreover, 𝐺(𝑞) ∶ R7 → R7, 𝑞 ↦ 𝐺(𝑞)

s the function defining the gravity effect, and 𝑓𝑟𝑐 = [𝑓𝖳
𝑟𝑐 𝐶1]𝖳 is the

ugmented reaction force vector, which includes the corresponding
TO control action. Note that Eq. (29) is obtained through the following
elations
{

𝑀𝑖(𝑞) = 𝐽𝖳
𝐼𝑀𝐼𝐽𝐼 ,

𝐵𝑖(𝑞) = 𝐽𝖳
𝐼𝑀𝐼 𝐽̇𝐼 + 𝐽𝖳

𝐼 𝐵𝑀𝐽𝐼 .
(30)

Therefore, substituting Eq. (30) into (29), the equation characteriz-
ng the reaction forces is the following:
𝖳
𝐼𝑀𝐼𝐽𝐼𝑞 + 𝐽𝖳

𝐼𝑀𝐼 𝐽̇𝐼 𝑞̇ + 𝐽𝖳
𝐼 𝐵𝐼𝐽𝐼 𝑞̇ + 𝐺(𝑞) = 𝑓𝑟𝑐 . (31)

o streamline the exposition, the derivatives of the block matrices
omposing the Jacobians are presented in the Appendix C. Finally, such
eaction forces are required to be coupled with the floater dynamics,
tated in Eq. (26), recalling that the coupling on the PTO axis is
escribed by Eq. (3). Additionally, 𝑓𝑟𝑐𝑚 is defined:

𝑟̄𝑐 = 𝐽𝖳
𝐼 𝐹𝑟𝑐 =

[

𝑓𝑥 𝑓𝑦 𝑓𝑧 𝑓𝜃 𝑓𝛿 𝑓𝜓 𝐶1
]𝖳 . (32)

Finally, the nonlinear expressions for mass matrices and reaction
orces, presented in Eq. (7), are defined in the following expression

[

𝑓𝑏𝑘
𝐶𝑚

]

= (𝐽𝖳
𝐼𝑀𝐼 𝐽̇𝐼 + 𝐽𝖳

𝐼 𝐵𝐼𝐽𝐼 )𝑞̇ − 𝐺(𝑞),
[

𝑀𝑚 𝐼𝑚𝑓
]

= 𝐽𝖳
𝐼𝑀𝐼𝐽𝐼 .

(33)
𝐼𝑓𝑚 𝐼𝑚
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Table 3
Jacobian matrix and end-effector velocity definition.
IRM device Reference frame Jacobian Velocity vector

Pendulum: vertical axis 𝐽𝐼 =

[

𝖳
𝛾 𝐶

𝖳 −𝖳
𝛾 𝑟𝐷 0

0 𝖳
𝛾𝐷 𝑒33

]

[

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0 𝛺̃𝐼
0 0

] [

0
𝑟𝑚𝑣

]

Pendulum: horizontal axis 𝐽𝐼 =

[

𝖳
𝛼𝐶

𝖳 −𝖳
𝛼 𝑟𝐷 0

0 𝖳
𝛼𝐷 𝑒31

]

[

𝑉𝑚
𝛺𝑚

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0 𝛺̃𝐼
0 0

] [

0
𝑟𝑚ℎ

]

Gimbaled pendulum 𝐽𝐼 =

[

𝖳
𝛽

𝖳
𝛼𝐶

𝖳 −𝖳
𝛽

𝖳
𝛼 𝑟𝐷 0

0 𝖳
𝛽

𝖳
𝛼𝐷 𝐷𝑢

]

[

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0 𝛺̃𝐼
0 0

] [

0
𝑟𝑚ℎ

]

Gyroscope: vertical axis 𝐽𝐼 =

[

𝖳
𝛾 𝐶

𝖳 −𝖳
𝛾 𝑟𝐷 0

0 𝖳
𝛾𝐷 𝑒33

]

[

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0
𝑒31𝜑̇

]

Gyroscope: horizontal axis 𝐽𝐼 =

[

𝖳
𝛼𝐶

𝖳 −𝖳
𝛼 𝑟𝐷 0

0 𝖳
𝛼𝐷 𝑒31

]

[

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0
𝑒33𝜑̇

]

Sliding mass: vertical axis 𝐽𝐼 =
[

𝐶𝖳 −𝖳𝑟𝐷 𝑒33
0 𝐷 0

] [

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0 𝛺̃𝐼
0 0

] [

0
𝑟𝑚𝑣

]

Sliding mass: horizontal axis 𝐽𝐼 =
[

𝐶𝖳 −𝑟𝐷 𝑒31
0 𝐷 0

] [

𝑉𝐸𝐹
𝛺𝐸𝐹

]

=
[

𝑉𝐼
𝛺𝐼

]

+
[

0 𝛺̃𝐼
0 0

] [

0
𝑟𝑚ℎ

]

Notably, Eq. (33) has been partially validated in a wave tank for a
pitching floater coupled with a gyroscopic system, comparing the actual
gyroscopic precession motion with the numerical one [82]. However,
the validation of the reaction forces has been neglected, and due to the
hydrodynamic properties of the floater, only a limited set of motion
modes are coupled between the mechanical system and the floater,
making this a very specific application case. Although this represents
10 
an initial validation attempt, deeper analyses are required. These are
introduced through a case study in the following section.

5. A case study

We have conducted a very general approach for the definition of
the mechanical interaction between the IRM and the floating body. In
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this section, we describe the step-by-step computation of the reaction
forces, going through the proposed framework, exploiting a guided
case study, using the vertically-hinged pendulum system (presented in
Fig. 5). Focusing on the case study, the kinematic matrices, kept general
so far, is specifically expressed for the vertically hinged pendulum
in Section 5.1. Section 5.2 presents its dynamic matrices, Section 5.3
introduces the linearization procedure and the statement of the linear
matrices, and Section 5.4 introduces the main interacting modes of
motion between the floater and the IRM, expanding the discussion to
a wide family of WECs.

5.1. Vertically-hinged pendulum: kinematic transformation matrices

During operating conditions, the two rigid bodies involved in the
dynamics of the vertically-hinged device are the floater and the pen-
dulum mass, with the latter free to rotate with respect to a shaft,
referenced to the former. The generalized coordinates are defined
according to the reference frames shown in Fig. 5, recalling that these
are placed respecting the rules presented in Section 3.1.

Recalling the floater pose vector 𝑝, as detailed in Section 3.1, the
whole set of generalized coordinates is identifying adding the proper
pendulum rotation angle 𝛾, i.e. the following holds: 𝑞 =

[

𝑝𝖳 𝛾
]𝑇 . The

characterization of 𝐽𝐼 plays a crucial role for the solution of the system
dynamics, recalling that it represents a link between the derivative of
the generalized coordinates vector 𝑞̇ = [𝑥̇, 𝑦̇, 𝑧̇, 𝜃̇, 𝛿̇, 𝜓̇ , 𝛾̇]𝖳, and
the pendulum linear and angular velocity vector. In particular, the
procedure detailed for a generic IRM WEC, can be sum up for the
vertically-hinged pendulum through the following matrices:

• The kinematic link matrix, denoted as 𝐽𝐺, transforms the general-
ized velocity vectors 𝑋̇ and 𝛷̇ into the pendulum-based velocity
𝑉𝑔 and 𝛺𝑔 . Specifically, Eq. (12) provides a clear definition by
noting that the general rotation 𝑢 corresponds to the rotation of
the angle 𝛾, about the axis 𝜁 . Thus, 𝐽𝐺 is defined as

𝐽𝐺 =

[

𝑅𝖳
𝛾𝐶

𝖳 −𝑅𝖳
𝛾 𝑟𝐷

0 𝑅𝖳
𝛾𝐷

]

. (34)

• The total system velocity, expressed in the (′𝜉𝜂𝜁) frame, can be
derived recalling that the total velocity is expressed as the sum
of the floater velocity and the proper velocity of the pendulum
system, i.e via the following relation:

[

𝑉𝐼
𝛺𝐼

]

=

[

𝑅𝖳
𝛾𝐶

𝖳 −𝑅𝖳
𝛾 𝑟𝐷 0

0 𝑅𝖳
𝛾𝐷 𝑒33

]

⎡

⎢

⎢

⎣

𝑋̇
𝛷̇
𝛾̇

⎤

⎥

⎥

⎦

. (35)

• Finally, the angular velocity component of the pendulum, seen as
the end-effector of the kinematic chain, can be computed through
the expression reported in Table 3.

• The position of the system is defined with respect to the inertial
frame through the position vector 𝑝𝑚 ∈ R3, i.e.

𝑝𝑚 = 𝑇 1𝑇 2𝑙𝑣, (36)

where 𝑙𝑣 = [ 𝑙𝑝 0 0 ]𝖳 is the position of the pendulum mass with
respect to its rotation axis and the roto-translation matrices 𝑇 1

and 𝑇 2 are

𝑇 1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶
⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑇 2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅𝛾
⎡

⎢

⎢

⎣

𝑥0
𝑦0
𝑧0

⎤

⎥

⎥

⎦

0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (37)

.2. Vertically-hinged pendulum: Dynamic equations

After the definition of the system kinematics, the kinetic energy of
he system under analysis can be derived through the application of

he kinetic and potential energy formulation, as described in Eqs. (56)

11 
nd (57), recalling that such an IRM system is schematized exclusively
hrough a single rigid body, i.e. 𝑛 = 1, whose inertia tensor 𝐼𝑝 =
iag(𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧), encloses the diagonal terms 𝐼𝑥𝑥 ∈ R+, 𝐼𝑦𝑦 ∈ R+

nd 𝐼𝑧𝑧 ∈ R+. To avoid overflowing this section, Appendix C reports
he explicit formulation of the energy term for the described system.
owever, the Lagrange equation characterizing the pendulum proper
ynamics, on its related DoF is explicitly stated hereafter
𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜁

− 𝜔𝜂
𝜕
𝜕𝜔𝜉

+ 𝜔𝜉
𝜕
𝜕𝜔𝜂

− 𝑣𝜂
𝜕
𝜕𝑣𝜉

+ 𝑣𝜉
𝜕
𝜕𝑣𝜂

+ 𝐺𝑟𝜁 = 𝐶1. (38)

In particular, applying the Lagrange equation, in matrix form, for the
6 DoF, the whole IRM dynamics can be computed on the (𝜉𝜂𝜁)
eference frame, whose complete expression is stated as follows

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑝 0 0 0 0 0
0 𝑚𝑝 0 0 0 𝑚𝑝𝑙𝑝
0 0 𝑚𝑝 0 −𝑚𝑝𝑙𝑝 0
0 0 0 𝐼𝜉 0 0
0 0 −𝑚𝑝𝑙𝑝 0 𝐼𝜂 0
0 𝑚𝑝𝑙𝑝 0 0 0 𝐼𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣̇𝜉
𝑣̇𝜂
𝑣̇𝜁
𝜔̇𝜉
𝜔̇𝜂
𝜔̇𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝑚𝑝𝜔𝜁 𝑚𝑝𝜔𝜂 0 −𝑚𝑝𝑙𝑝𝜔𝜂 −𝑚𝑝𝑙𝑝𝜔𝜁
𝑚𝑝𝜔𝜁 0 −𝑚𝑝𝜔𝜉 0 −𝑚𝑝𝑙𝑝𝜔𝜉 0
−𝑚𝑝𝜔𝜂 𝑚𝑝𝜔𝜉 0 0 0 𝑚𝑝𝑙𝑝𝜔𝜉

0 0 0 0 𝐼𝜁𝜔𝜁 −𝐼𝜂𝜔𝜂
𝑚𝑝𝑙𝑝𝜔𝜂 −𝑚𝑝𝑙𝑝𝜔𝜉 0 −𝐼𝜁𝜔𝜁 0 𝐼𝜉𝜔𝜉
𝑚𝑝𝑙𝑝𝜔𝜁 0 −𝑚𝑝𝑙𝑝𝜔𝜉 𝐼𝜂𝜔𝜂 −𝐼𝜉𝜔𝜉 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝜉
𝑣𝜂
𝑣𝜁
𝜔𝜉
𝜔𝜂
𝜔𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

−𝖳
𝐺

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝜕
𝜕𝜃
𝜕
𝜕𝛿
𝜕
𝜕𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝜉
𝐹𝜂
𝐹𝜁
𝑇𝜉
𝑇𝜂
𝑇𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(39)

ote that 𝑚𝑝 is the total mass of the pendulum, while the inertia terms
𝐼𝜉 , 𝐼𝜂 , 𝐼𝜁} ⊂ R3×3 are defined as

𝜉 = 𝐼𝑥𝑥 , 𝐼𝜂 = 𝐼𝑦𝑦 + 𝑚𝑝𝑙2𝑝 , 𝐼𝜁 = 𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝 . (40)

Eq. (39) displays the set of equations related to the reacting mass.
otably, the vertically-hinged pendulum is free to rotate about the
ertical axis, which is defined by the versor 𝜁 . Consequently, the sixth
ow of the proposed equation specifies the set of parametric forcing
unctions activating the pendulum, hereafter stated:

𝐼𝑧𝑧+𝑚𝑝𝑙2𝑝)𝜔̇𝜁+𝑚𝑝𝑙𝑝𝑣̇𝜂+(𝐼𝑦𝑦−𝐼𝑥𝑥)𝜔𝜂𝜔𝜉−𝑚𝑝𝑙𝑝𝑣𝜁𝜔𝜉+𝑚𝑝𝑙𝑝𝑣𝜉𝜔𝜂+𝐺𝑟𝜁 = 𝑓𝑝𝑡𝑜.

(41)

The remaining equations represent the forces generated by the
pendulum that are exerted on the floater, to which it is constrained.
Such a reaction forces, are computed on the IRM frame, hence further
transformation are required to define them on the floater frame, or
inertial frame, according to the requirement, as shown in Section 4.2.
Appendix C computes in detail the potential energy of the system, high-
lighting that the gravity effect generates a coupling of the system with
the roll and pitch DoF, i.e. 𝐺𝑟𝜁 = 𝑚𝑝𝑔(𝑙𝑝𝑠𝛿𝑠𝛾 + 𝑙𝑝𝑐𝛿𝑠𝜃𝑐𝛾 ). However, the
couplings will be further emphasized in a subsequent section through
the linear representation of the system.

5.3. Vertically-hinged pendulum: Linearized dynamics

This section aims to simplify Eq. (39), and to express the reaction
forces as a function of the generalized coordinate vector 𝑞. For this
purpose we adopt the assumption of small roll 𝜃, pitch 𝛿, and yaw 𝜓
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𝑀̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑝 0 0 0 𝑚𝑝𝑧0 −𝑚𝑝𝑦0 0
0 𝑚𝑝 0 −𝑚𝑝𝑧0 0 𝑚𝑝(𝑥0 + 𝑙𝑝) 𝑚𝑝𝑙𝑝
0 0 𝑚𝑝 𝑚𝑝𝑦0 −𝑚𝑝(𝑥0 + 𝑙) 0 0
0 −𝑚𝑝𝑧0 𝑚𝑝𝑦0 𝐼𝑥𝑥 + 𝑚𝑝(𝑦0 + 𝑧0)2 −𝑚𝑝𝑦0(𝑥0 + 𝑙𝑝) −𝑚𝑝𝑧0(𝑥0 + 𝑙𝑝) −𝑚𝑝𝑙𝑝𝑧0

𝑚𝑝𝑧0 0 −𝑚𝑝𝑥0 𝑚𝑝𝑥0𝑦0 𝐼𝑦𝑦 + 𝑚𝑝𝑧20 + 𝑚𝑝(𝑙𝑝 − 𝑥0)
2 −𝑚𝑝𝑧0𝑦0 0

−𝑚𝑝𝑦0 𝑚𝑝(𝑥0 + 𝑙𝑝) 0 −𝑚𝑝(𝑥0 + 𝑙𝑝)𝑧0 −𝑚𝑝𝑦0𝑧0 𝐼𝑧𝑧 + 𝑚𝑝𝑦20 + 𝑚𝑝(𝑥0 + 𝑙𝑝)
2 𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝 + 𝑚𝑝𝑙𝑝𝑥0

0 𝑚𝑝𝑙𝑝 0 −𝑚𝑝𝑙𝑝𝑧0 0 𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝 + 𝑚𝑝𝑙𝑝𝑥0 𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐾̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −𝑚𝑝𝑔𝑧0 0 0 𝑚𝑝𝑙𝑝𝑔
0 0 0 0 −𝑚𝑝𝑔𝑧0 0 0
0 0 0 0 0 0 0
0 0 0 𝑚𝑝𝑙𝑝𝑔 0 0 𝑚𝑝𝑙𝑝𝑔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(42)

Box I.
h
s
S
S
v
r
a
d
m
t
t

otation and we consider that the dynamics of the pendulum is close to
he zero equilibrium, implying that the system dynamics, in linearized
orm, can be expressed through two different matrices, stated as (see
ox I).
here 𝑀̄ ∈ R7×7 and 𝐾̄ ∈ R7×7 are the linearized mass and stiffness
atrices, respectively. Note that no damping matrix results from lin-

arization. The reader can refer to the Appendix C for further details
n the overall linearization procedure. The linear representation ef-
ectively demonstrates how the main floater modes are coupled with
he IRM. The primary effects arise from stiffness coupling which links
loater’s roll motion with the pendulum rotation angle. Moreover, the
endulum couples in terms of mass with the sway, heave, and yaw
oF, noting that the latter DoF is parallel to the pendulum’s axis of

otation. In particular, the reaction force expression and the system
ass matrices, expressed in nonlinear form in Eq. (43), can be stated,

fter the linearization procedure, as follows:
[

𝑓𝑏𝑘
𝐶1

]

= 𝐾̄𝑞,

𝑀𝑚 𝐼𝑚𝑓
𝐼𝑓𝑚 𝐼𝑚

]

= 𝑀̄.
(43)

.4. Generalization of the IRM equation of motion

The motion of the floater represents a parametric excitation for
his family of devices. For this purpose, Table 4 displays the equa-
ions of motion that characterize the dynamics of the reacting mass.
pecifically, for each system considered, the nonlinear equation is pre-
ented along with its linearized version. Notably, several adjustments
an be made in cases involving gyroscopic effects and the horizontal
endulum. Gyroscopes, both vertical and perpendicular, can stall if the
ime-varying polar axis of the flywheel becomes parallel to the floater’s
otation axis. This issue is addressed in the literature by adding a recall
ass [83] or unbalancing the gimbal, which introduces stiffness to

he system and alters the equilibrium point. Meanwhile, the vertical
endulum stalls if the arm vector 𝑟𝑚𝑣 becomes perpendicular to the
loater’s rotation axis. This problem is typically resolved by designing
loaters that can pitch and roll simultaneously, such as the unbalanced
loater in the case of the Penguin device [22]. Note that for the
imbaled pendulum, three equations are introduced because they are
xpressed in relation to the frame associated with the last joint, within
he 𝜉𝜂𝜁 frame. Specifically, 𝛽 is obtained by integrating the second
quation with respect to 𝜔𝜂 = 𝑉𝐼2 + 𝛽̇. To determine 𝛼, both the
irst and third equations are required, where 𝜔𝜉 = 𝑉𝐼1 + cos 𝛽𝛼̇ and

𝜁 = 𝑉𝐼3 + sin 𝛽𝛼̇. S

12 
For each device, under the assumption of small rotations, the cor-
responding linear equations are presented. Specifically, the linear rep-
resentation of the system provides an initial insight into the system
dynamics, highlighting the primary coupling between the floater and
the considered IRM, which are reported in Table 5. It emphasizes
that the pendulum and sliding mass introduce inertial and elastic
interaction, while gyroscopic systems exhibit Coriolis-like coupling,
which is proportional to the spinning velocity of the flywheel 𝜑̇. Note
that each system introduces a coupling where rotational and linear
interactions coexist within the same plane. However, the gimbaled
pendulum, because of its nature, is activated regardless of the floater’s
motion. Note that the sliding mass introduces a static effect due to the
weight of the mass, which does not need to be considered in dynamic
analysis since it can be treated as statically balanced.

6. A comparison with a benchmark numerical solver

Following the procedure discussed in the previous section, includ-
ing the computations performed in the Appendix C, we compare the
analytical model derived using the proposed methodology, with a
numerical solution computed using Simscape multi-body, which is part
of the Matlab Simulink suite. In particular, the output of such consid-
ered approaches are compared, to showcase a numerical validation of
the general modeling procedure proposed in this paper. Therefore,
Section 6.1 introduces the comparison of output signals between the
analytical model and the commercial software Simscape, while Sec-
tion 6.2 presents an additional methodology for computing the load
on supporting mechanical components such as the bearings.

6.1. Results

As a case study, we select a hinged vertical pendulum, which has
been modeled through a very basic geometry, based on a parallelepiped
solid, with its main dimensions being the length 𝑎, the width 𝑏, and the
eight ℎ. The selected pendulum mass is 65 tons, considering a concrete
olid material, whose main inertia value are reported in Table 6.
imscape enables the rapid modeling of physical systems within the
imulink environment by connecting block diagrams and integrating
arious modeling paradigms, making it easier to simulate complex,
eal-world behaviors. In this environment, kinematic transformations,
re implemented through a structured scheme, generating an intuitive
ynamic representation of the system. A possible base diagram to
odel such a system is reported in Fig. 6, whose main characteris-

ics are hereafter introduced: The light orange diagram illustrates the
ransformation between reference frames, as specified in Section 3.1.

pecifically, the first two blocks on the left of the figure replicate the
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Table 4
Equation of motion related to the reacting mass dynamics.
Table 5
Visualization of the floater DoF coupled with the reacting mass.
transformation from (𝑂𝑋𝑌𝑍) ↦ (′𝑥𝑦𝑧), while the hinge block
on the right represents the projection of the kinematics onto (𝜉𝜂𝜁 ),
through the angle 𝛾. The gray ‘Rigid transform’ block facilitates the
mapping of kinematics from (′𝑥𝑦𝑧) to (𝛯), taking into ac-
count the 𝑟 vector, which expresses the position of the second frame
with respect to the first one. The body blocks represent a fictitious hull,
included for visualization purposes exclusively, considering that the
system kinematics is posed through the 𝑝 vector. On the other hand, the
pendulum mass blocks encapsulate all the inertial properties of the IRM
system. Note that the green tag highlights the measured system output,
encompassing the pendulum rotation angle 𝛾, the reaction forces 𝑓𝑟𝑐
acting on the inertial frame, and the vector of reaction forces acting on
13 
the shaft. The nature and significance of the latter forces are discussed
in Section 6.2.

Inputs are simple sinusoidal functions, that mimic a prescribed
floater motion obtained through a regular wave condition [62]. In
particular, the input function 𝑓 (𝑡) ∈ R, 𝑡 ↦ 𝑓 (𝑡) has the following
prescribed form

𝑓 (𝑡) = 𝐴0 sin(𝜔0𝑡), (44)

where 𝜔0 = 2𝜋∕𝑇0, with 𝑇0 = 5 s, that is the most representative
period of the Mediterranean Sea [84], and the amplitude 𝐴0 is set
equal to 1 m, for the linear DoFs, and 20◦ for the rotating ones. We
simulate the analytical equations using the Runge–Kutta method [85]
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Fig. 6. Block diagram representation in the Simscape environment. Each block color represents a specific meaning: orange blocks denote the joints, including the floater-associated
joint and the mechanism-related joint. The blue blocks represent fictitious bodies, inserted exclusively for visualization purposes. The pink block signifies the pendulum mass,
encompassing its mass and inertia.
T
C

f

𝑅

𝐹

in the MATLAB-Simulink environment with the ode4 function, applying
a fixed step size of 0.01 s.

The resolution procedure is summarized in the Algorithm 1, where
every calculation step, executed by the solver, is detailed, i.e. the
kinematic definition, the solution for the pendulum rotation, that with
its first and second derivatives, define the forces acting on the floater.

Algorithm 1 Algorithm for dynamic interactions computation
Require: 𝑝[𝑛] ∶ ∀𝑛 ∈ N,

Set the pendulum initial position and velocity (𝛾[0], 𝛾[1])
for k = 2, k ≤ 𝑇𝑠𝑖𝑚∕𝛥𝑡, 𝑘 + + do

[𝑉𝐼 [𝑘 − 1] 𝛺𝐼 [𝑘 − 1]] ← (35) ⊳ System velocity vector
[𝑉𝐼 [𝑘] 𝛺𝐼 [𝑘]] ← (63) ⊳ System acceleration vector
𝛾(𝑘) ← (41) ⊳ Pendulum angular acceleration
𝑀𝐼 [𝑘], 𝐵𝐼 [𝑘], 𝐾𝐼 [𝑘] ← (39) ⊳ Coupling matrices in the

pendulum space
𝑀𝑖[𝑘], 𝐵𝑖[𝑘], 𝐾𝑖[𝑘] ← (30) ⊳ Coupling matrices in the inertial

space
𝑓𝑟𝑐𝑚 ← (31) ⊳ Reaction forces

end for

Note that the reaction force here incorporates inertial effects, Cori-
lis and centrifugal forces, and action due to the gravity. Neverthe-
ess, for a further simulation of a WEC system, the inertial terms
ave to be separated and to be added to the floater inertia matrix
o solve the differential equation, avoiding any potential algebraic
oop. Moreover, the pendulum control torque is parameterized through
he damping parameter 𝑐𝑝𝑡𝑜 ∈ R+, which is designed leveraging the

so-called impedance-matching conditions [10,86].
In Fig. 7, we observe a comparison of the pendulum rotation 𝛾,

demonstrating a precise match over the simulated 300 s. A zoom in the
last 100 s of simulation showcases the alignment between the proposed
analytical framework and the Simscape simulation, accounting for both
transient and steady-state conditions. Moving to Fig. 8, which presents
the load feedback to the floater, indistinguishable responses can be
appreciated, further validating the proposed analytical framework.

For sake of completeness, Fig. 7 represents the instantaneous ab-
sorbed mechanical power 𝑃𝑎 ∈ R+, 𝑡 ↦ 𝑃𝑎, computed as follows:

= 𝐶 𝛾̇ ⟹ 𝑃 = 𝑐 𝛾̇2. (45)
𝑎 1 𝑎 𝑝𝑡𝑜

14 
able 6
ase study: pendulum main properties.
Name Symbol Value Unit

Pendulum mass 𝑚𝑝 65 × 103 kg
Pendulum arm 𝑙𝑝 1.5 m
Pendulum mass length 𝑎 3 m
Pendulum mass width 𝑏 2 m
Pendulum mass height ℎ 5 m
Pendulum inertia wrt 𝑥-axis 𝐼𝑥𝑥 1.5708 × 105 kgm2

Pendulum inertia wrt 𝑦-axis 𝐼𝑦𝑦 1.8417 × 105 kgm2

Pendulum inertia wrt 𝑧-axis 𝐼𝑧𝑧 7.0417 × 104 kgm2

Pendulum shaft position on wrt 𝑥-axis 𝑥0 2 m
Pendulum shaft position on wrt 𝑦-axis 𝑦0 2 m
Pendulum shaft position on wrt 𝑧-axis 𝑧0 0 m
Control damping 𝑐𝑝𝑡𝑜 5 × 105 Nms/rad

recalling that the control action is 𝐶1 = 𝑐𝑝𝑡𝑜𝛾̇. Note that the Appendix D
provides an explicit expression for the reaction force vector and pen-
dulum angle, considering the associated floater input, generated by an
irregular wave simulation.

6.2. Bearings loads computation

The proposed method for computing dynamic couplings can be
applied to perform an analysis on the loads on the rotating shaft
of the pendulum. This information is crucial for sizing mechanical
components, e.g. the bearings linking the shaft to the floater frame.
These play a crucial role in supporting the pendulum and absorbing
the radial load resulting from the coupling between the IRM and the
floater. Typically, when a vertical rotating shaft is involved, an axial
bearing is chosen to bear the axial load, while a pair of radial bearings
is selected to handle the radial load. Firstly, it is relevant to project
the loads computed through Eq. (27) into the 𝑅(𝛯) frame, and the
ollowing relation

̄ 𝛾𝑀𝐼𝐽𝐼𝑞 + 𝑅̄𝛾𝑀𝐼 𝐽̇𝐼 𝑞̇ + 𝑅̄𝛾𝐵𝐼𝐽𝐼 𝑞̇ + 𝐽−𝖳
𝑀 𝐺(𝑞) = 𝑓𝑟𝑐𝛯

. (46)

holds, where 𝑓𝑟𝑐𝛯
= [𝐹𝛯 𝐹 𝐹 𝑇𝛯 𝑇 𝑇]𝖳, and 𝐹𝛯 ∈ R, 𝐹 ∈ R,

 ∈ R, 𝑇𝛯 ∈ R, 𝑇 ∈ R and 𝑇 ∈ R are the reaction forces acting
along the pendulum rotating shaft. Moreover, the rotation matrix 𝑅̄𝜀
to project the reaction forces from 𝑅(𝜉𝜂𝜁 ) to 𝑅(𝛯) can explicitly
expressed as follows:

𝑅̄𝛾 =
[

𝑅𝛾 0
]

. (47)

0 𝑅𝛾



F. Carapellese and N. Faedo

Fig. 7. Comparison of signals between the analytical model and the Simscape model, simulating a regular wave. (a) Pendulum rotation angle for the entire simulation duration
of 300 s. (b) Zoomed-in view of the pendulum rotation between 200 s and 300 s. (c) Power production considering a predefined damping factor 𝑐𝑝𝑡𝑜 for both modeling approaches,
with a zoom-in on a specific signal window.

Fig. 8. Reaction forces acting on the floater through the pendulum constraints: comparison between the analytical model and the Simscape model, simulating a regular wave
signal. The panel figure shows (a) the reaction force acting on the 𝑥-axis, (b) the reaction torque acting on the 𝑥-axis, (c) the reaction force acting on the 𝑦-axis, (d) the reaction
torque acting on the 𝑦-axis, (e) the reaction force acting on the 𝑧-axis, and (f) the reaction torque acting on the 𝑧-axis.

International Journal of Mechanical Sciences 284 (2024) 109731 
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Fig. 9. Schematic representation of a possible bearing configuration. (a) Bearing configuration with a pair of radial bearings and an axial bearing. (b) Related scheme for load
computation, considering the shaft as a supported beam on two perpendicular planes, A and B. 𝐴 and 𝐵.
The proposed configuration is represented in terms of a schematic
diagram in Fig. 9. The computation of the overall load acting on the
bearings can be decomposed into two different planes, 𝐴 and 𝐵, that
llows to model the bearing configuration in terms of a fixed and a
inged support, with the former constraining the system over the axial
oads. In particular, knowing that 𝑙𝑠 is the inter-axial distance between
he two radial bearings, the constraints forces 𝑅𝐴1

∈ R and 𝑅𝐴2
∈ R,

acting over the radial direction on the 𝐴 plane, are computed solving
the beam element, and hence the following relation

𝑅𝐴1
=
𝐹𝛯
2

−
𝑇
𝑙𝑠
, 𝑅𝐴2

=
𝐹𝛯
2

+
𝑇
𝑙𝑠
, (48)

olds, while the constraints forces 𝑅𝐵1
∈ R and 𝑅𝐵2

∈ R, acting over
he radial direction on the 𝐵 plane, can be computed as follows:

𝐵1
=
𝐹
2

−
𝑇𝛯
𝑙𝑠
, 𝑅𝐵2

=
𝐹
2

+
𝑇𝛯
𝑙𝑠
. (49)

Finally the total radial force acting on each bearings 𝑅𝑏𝑒𝑎𝑟1 ∈ R+ and
𝑏𝑒𝑎𝑟1 ∈ R+ is obtained summing the two components in terms of the

ollowing relation:

𝑏𝑒𝑎𝑟1 =
√

𝑅2
𝐴1

+ 𝑅2
𝐵1
, 𝑅𝑏𝑒𝑎𝑟2 =

√

𝑅2
𝐴2

+ 𝑅2
𝐵2
, (50)

here 𝑅𝑏𝑒𝑎𝑟1 and 𝑅𝑏𝑒𝑎𝑟2 are the radial loads required for a suitable
election of bearings for such an application. The computation of the
xial load 𝐴𝑡𝑜𝑡 ∈ R for sizing the radial bearings is then straightforward,
oting that it corresponds directly to the force 𝐹, i.e. 𝐴𝑡𝑜𝑡 = 𝐹.

7. Conclusions

This paper presents a comprehensive framework for modeling the
mechanical interactions of IRM WECs. It emphasizes a versatile mod-
eling scheme applicable across a broad spectrum of IRM WECs. The
methodology is detailed through a step-by-step procedure, covering
the derivation of the reacting system’s dynamic equations and the
characterization of the reaction forces exerted by the reacting system
on the floater. This comprehensive mechanical model is valuable for
WEC simulation, taking into account 6 DoF.

The analytical model provides distinct advantages for a deep un-
derstanding of physical interactions and facilitates the formulation
of a modeling approach tailored for control applications. Due to its
analytical nature, the model can be readily linearized, allowing the
application of established linear control strategies.

This approach, in particular, highlights the strongest modes of
motion involved in the interactions between the floater and the internal
16 
reacting system. Specifically, it has been observed that the pendulum
and sliding system primarily introduce inertial and elastic coupling.
In contrast, for technologies relying on the gyroscopic system the
Coriolis coupling, due to the interaction between the flywheel’s angular
momentum and the floater’s rotational velocity, is the most relevant
effect.

Furthermore, to illustrate the applicability of this framework, we
conduct a case study, choosing a mechanism commonly employed in
the WEC literature for harnessing energy, i.e. the vertically-hinged
pendulum. By comparing the time series of resulting reaction forces
𝐹𝑟𝑐 , and the rotation angle 𝛾 with the simulation tool Matlab Simscape,
we verify the consistency of our proposed approach, showing a perfect
match against this well-established numerical solver.
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Appendix A

The Euler equation for a body moving in 6 DoF is expressed as
follows
𝑚𝑓 𝑣̇𝑥 + 𝑚𝑓𝜔𝑦𝑣𝑧 − 𝑚𝑓𝜔𝑧𝑣𝑦 = 𝐹𝑥,

𝑓 𝑣̇𝑦 + 𝑚𝑓𝜔𝑧𝑣𝑥 − 𝑚𝑓𝜔𝑥𝑣𝑧 = 𝐹𝑦,

𝑓 𝑣̇𝑧 + 𝑚𝑓𝜔𝑥𝑣𝑦 − 𝑚𝑓𝜔𝑦𝑣𝑥 = 𝐹𝑧,

𝐼𝑥𝜔̇𝑥 + 𝜔𝑦𝜔𝑧(𝐼𝑧 − 𝐼𝑦) =𝑀𝑥,

𝐼𝑦𝜔̇𝑦 + 𝜔𝑥𝜔𝑧(𝐼𝑥 − 𝐼𝑧) =𝑀𝑦,

𝐼𝑧𝜔̇𝑧 + 𝜔𝑥𝜔𝑦(𝐼𝑦 − 𝐼𝑥) =𝑀𝑧,

(51)

where 𝐹𝑒𝑥𝑡 = [𝐹𝑥 𝐹𝑦 𝐹𝑧 𝑀𝑥 𝑀𝑦 𝑀𝑧]𝖳 ∈ R6 is the vector of external
forces in the body-fixed frame. In matrix form, Eq. (51) can be rewritten
as follows:

𝑀𝐹 𝑤̇𝑥𝑦𝑧 + 𝐵𝐹 (𝑤𝑥𝑦𝑧)𝑤𝑥𝑦𝑧 = 𝐹𝑒𝑥𝑡, (52)

with the matrices 𝑀𝐹 and 𝐵𝐹 explicitly computed as

𝑀𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑓 0 0 0 0 0
0 𝑚𝑓 0 0 0 0
0 0 𝑚𝑓 0 0 0
0 0 0 𝐼𝑥 0 0
0 0 0 0 𝐼𝑦 0
0 0 0 0 0 𝐼𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐵𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝑚𝑓𝜔𝑧 𝑚𝑓𝜔𝑦 0 0 0
𝑚𝑓𝜔𝑧 0 −𝑚𝑓𝜔𝑥 0 0 0
−𝑚𝑓𝜔𝑦 𝑚𝑓𝜔𝑥 0 0 0 0

0 0 0 0 𝐼𝑧𝜔𝑧 −𝐼𝑦𝜔𝑦
0 0 0 −𝐼𝑧𝜔𝑧 0 𝐼𝑥𝜔𝑥
0 0 0 𝐼𝑦𝜔𝑦 −𝐼𝑥𝜔𝑥 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(53)

Appendix B

This appendix explores kinematic relations and concepts fundamen-
tal for analyzing the kinematics of IRM WECs. Initially, we introduce
the concept of quasi-coordinates. If 𝑞(𝑡) is the vector of generalized
coordinates, and 𝑞𝑘(𝑡) are its components, referred as 𝑡𝑟𝑢𝑒-𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠.
This terminology implies that if the 𝑞̇𝑘(𝑡) is a known function of time,
integrating it with respect to time, yields the corresponding vector
component 𝑞𝑘(𝑡). However, it is also feasible to establish a set of
differential equations that do not solely rely on true coordinates. A
vector 𝜔𝑠 can be defined as a linear combination of 𝑛 independent
velocity vector component 𝑞̇𝑘. Fr such a case the variables 𝜔𝑠 cannot
be integrated to obtain the true coordinates 𝑞̇𝑘. These variables, called
𝑞𝑢𝑎𝑠𝑖-𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 are expressed in the form

𝜔𝑠 = 𝛼𝑠1𝑞̇1 + 𝛼𝑠2𝑞̇2 +⋯ + 𝛼𝑠𝑛𝑞̇2, (54)

where the coefficients 𝛼𝑠𝑟, 𝑟 ∈ N𝑛, are known functions of the gener-
alized coordinates component 𝑞𝑘. The Lagrange equations for quasi-
coordinates are expressed, in matrix form, as follows:

𝑑
𝑑𝑡

(

𝜕
𝜕𝑉𝐼

)

+ 𝛺̃𝐼
𝜕
𝜕𝑉𝐼

+ 𝑗𝖳1,1
𝜕
𝜕𝑋

+ 𝑗𝖳2,1
𝜕
𝜕𝛷

= 𝐹𝑔 ,

𝑑
𝑑𝑡

(

𝜕
𝜕𝛺𝐼

)

+ 𝛺̃𝐼
𝜕
𝜕𝛺𝐼

+ 𝑉𝐼
𝜕
𝜕𝑉𝐼

+ 𝑗𝖳1,2
𝜕
𝜕𝑋

+ 𝑗𝖳2,2
𝜕
𝜕𝛷

= 𝑇𝑔 ,

(55)

where 𝑗1,1, 𝑗1,2, 𝑗2,1, 𝑗2,2 are the block matrices of the inverse of the

inematic link matrix defined in Eq. (12), i.e. 𝐽−1
𝐺 =

[

𝑗1,1 𝑗1,2
𝑗2,1 𝑗2,2

]

.

Furthermore  (𝑉𝑔 , 𝛺𝑔) ∈ R and  (𝑞) ∈ R represent the kinetic and
potential energy of the system, respectively. These are defined for
every discrete body within the mechanical system. In particular, the
expression for the kinetic energy is the following:

 =
𝑛
∑ 1𝛺𝖳

𝐸𝐹 𝑖
𝐼𝑚𝑖𝛺𝐸𝐹 𝑖 +

𝑛
∑ 1𝑉 𝖳

𝐸𝐹 𝑖
(𝑚𝑚𝑖 I3)𝑉𝐸𝐹 𝑖 , (56)
𝑖=1 2 𝑖=1 2
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where 𝑚𝑚 ∈ R+ and 𝐼𝑚 ∈ R3×3 are the mass (scalar) and the inertia
tensor referred to the IRM CoG, respectively. Moreover, 𝑛 represents
the number of discrete masses, on which the reacting system is decom-
posed into. Furthermore, the expression for the potential energy is the
following:

 = −
𝑛
∑

𝑖=1
𝑚𝑚𝑖𝑔

𝖳
0 𝑝𝑚𝑖 , (57)

where 𝑔0 is the gravity acceleration vector in the base frame, e.g. 𝑔0 =
[0 0 −𝑔]𝖳, and 𝑝𝑚𝑖 is a function only of the joint variable itself, and not
of the joint velocity 𝑞̇.

Additionally, the development of dynamic equations for IRM WECs
necessitates the computation of the derivative of the Jacobian matrix.
In particular, the derivative of the matrices 𝐶𝖳 and 𝐷, are respectively:

̇𝐶𝖳 = −𝑅𝖳
𝜃 𝜔̃𝜃𝑅

𝖳
𝛿𝑅

𝖳
𝜓 − 𝑅𝖳

𝜃𝑅
𝖳
𝛿 𝜔̃𝛿𝑅

𝖳
𝜓 − 𝑅𝖳

𝜃𝑅
𝖳
𝛿𝑅

𝖳
𝜓 𝜔̃𝜓 , (58)

where the matrices 𝜔̃𝜃 , 𝜔̃𝛿 and 𝜔̃𝜓 are the skew-symmetric matrices
defined as:

𝜔𝜃 =
⎡

⎢

⎢

⎣

0 0 0
0 0 −𝜃̇
0 𝜃̇ 0

⎤

⎥

⎥

⎦

, 𝜔𝛿 =
⎡

⎢

⎢

⎣

0 0 𝛿̇
0 0 0
−𝛿̇ 0 0

⎤

⎥

⎥

⎦

, 𝜔𝜓 =
⎡

⎢

⎢

⎣

0 −𝜓̇ 0
𝜓̇ 0 0
0 0 0

⎤

⎥

⎥

⎦

. (59)

Further more the so called analytical Jacobian of an object rotating
into space is defined by the matrix 𝐷 ∈ R3×3, i.e.

𝐷 =
⎡

⎢

⎢

⎣

1 0 −𝑠𝛿
0 𝑐𝜃 𝑐𝛿𝑠𝜃
0 −𝑠𝜃 𝑐𝛿𝑐𝜃

⎤

⎥

⎥

⎦

, (60)

whose derivative is

𝐷̇ =
⎡

⎢

⎢

⎣

0 0 −𝛿̇𝑐𝛿
0 −𝜃̇𝑠𝜃 −𝛿̇𝑠𝛿𝑠𝜃 + 𝜃̇𝑐𝛿𝑐𝜃
0 −𝜃̇𝑐𝜃 −𝛿̇𝑠𝛿𝑐𝜃 − 𝜃̇𝑐𝛿𝑠𝜃

⎤

⎥

⎥

⎦

. (61)

Finally, we can compute the derivative of the Jacobian matrix 𝐽𝐼 .
Recalling that it appears as follows

𝐽𝐼 =
[

𝑅(𝜀, 𝜁 )𝖳𝐶𝖳 −𝑅(𝜀, 𝜁 )𝖳𝑟𝐷 0
0 𝑅(𝜀, 𝜁 )𝖳𝐷 𝐼

]

, (62)

can be written as a general block matrix as follows

𝐽𝐼 =
[

𝐽𝐼11 𝐽𝐼12 0
0 𝐽𝐼22 𝐼

]

⟹ 𝐽̇𝐼 =
[

𝐽̇𝐼11 𝐽̇𝐼12 0
0 𝐽̇𝐼22 0

]

, (63)

where 𝐽𝐼11 ∈ R3×3, 𝐽𝐼12 ∈ R3×3, and 𝐽𝐼22 ∈ R3×3 are the block matrices,
composing 𝐽𝐼 and 𝐽̇𝐼11 , 𝐽̇𝐼12 , and 𝐽̇𝐼22 are their derivative matrices,
respectively. Furthermore, the following relations hold

𝐽̇𝐼11 = 𝑑
𝑑𝑡

(𝑅𝖳
𝛾𝐶

𝖳) = −𝑅𝖳
𝛾 𝜔̃𝜀𝐶

𝖳 + 𝑅𝖳
𝛾 𝐶̇

𝖳,

̇𝐼12 = 𝑑
𝑑𝑡

(𝑅𝖳
𝛾 𝑟𝐷) = 𝑅𝖳

𝛾 𝜔̃𝜀𝑟𝐷 − 𝑅𝖳
𝛾 𝑟𝐷̇,

̇𝐼22 = 𝑑
𝑑𝑡

(𝑅𝖳
𝛾𝐷) = −𝑅𝖳

𝛾 𝜔̃𝛾𝐷 + 𝑅𝖳
𝛾𝐷.

(64)

where for sake of brevity 𝑅𝛾 denotes 𝑅(𝛾, 𝜁 ), and 𝜔̃𝛾 indicates the skew-
symmetric matrix associated to the proper pendulum velocity vector
𝜔𝑚 = [0 0 𝛾̇]𝖳.

Appendix C

For the computation of the dynamic equation the Lagrange equation
for quasi-coordinates is applied. On this purpose, the computation of
the kinetic and potential energy is required. On this purpose, the kinetic
energy of the vertically-hinged pendulum is the following:

 = 1𝑚 [𝑣2+(𝑣 +𝜔 𝑙 )2+(𝑣 −𝜔 𝑙 )2]+ 1 𝐼 𝜔2+ 1 𝐼 𝜔2+ 1 𝐼 𝜔2 , (65)

2 𝑝 𝜉 𝜂 𝜁 𝑝 𝜁 𝜂 𝑝 2 𝑥𝑥 𝜉 2 𝑦𝑦 𝜂 2 𝑧𝑧 𝜁



F. Carapellese and N. Faedo

a

(

𝐺

l

F
n

𝜔

c

International Journal of Mechanical Sciences 284 (2024) 109731 
where its derivatives, with respect to the quasi-coordinates vector 𝑉𝐼
nd 𝛺𝐼 is the following:

𝜕
𝜕𝑣𝜉

= 𝑚𝑝𝑣𝜉 ⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜉

= 𝑚𝑝𝑣̇𝜉 ,

𝜕
𝜕𝑣𝜂

= 𝑚𝑝(𝑣𝜂 + 𝜔𝜁 𝑙𝑝) ⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜉

= 𝑚𝑝(𝑣̇𝜂 + 𝜔̇𝜁 𝑙𝑝),

𝜕
𝜕𝑣𝜁

= 𝑚𝑝(𝑣𝜁 − 𝜔𝜂𝑙𝑝) ⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜉

= 𝑚𝑝(𝑣̇𝜁 − 𝜔̇𝜂𝑙𝑝),

𝜕
𝜕𝜔𝜉

= 𝐼𝑥𝑥𝜔𝜉 ⟹
𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜉

= 𝐼𝑥𝑥𝜔̇𝜉 ,

𝜕
𝜕𝜔𝜂

= (𝐼𝑦𝑦 + 𝑚𝑝𝑙2𝑝)𝜔𝜂 − 𝑚𝑝𝑙𝑝𝑣𝜁 ⟹
𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜂

= (𝐼𝑦𝑦 + 𝑚𝑝𝑙2𝑝)𝜔̇𝜂 − 𝑚𝑝𝑙𝑝𝑣̇𝜁 ,

𝜕
𝜕𝜔𝜁

= (𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝)𝜔𝜁 + 𝑚𝑝𝑙𝑝𝑣𝜂 ⟹
𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜁

= (𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝)𝜔̇𝜁 + 𝑚𝑝𝑙𝑝𝑣̇𝜂 .

(66)

Such a derivatives are useful to solve the following Lagrange equations,

explicitly defined for each DoF:

𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜉

− 𝜔𝜁
𝜕
𝜕𝑣𝜂

+ 𝜔𝜂
𝜕
𝜕𝑣𝜁

+ 𝐺𝑙𝜉 = 𝐹𝑔𝜉 ,

𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜂

+ 𝜔𝜁
𝜕
𝜕𝑣𝜉

− 𝜔𝜉
𝜕
𝜕𝑣𝜁

+ 𝐺𝑙𝜂 = 𝐹𝑔𝜂 ,

𝑑
𝑑𝑡
𝜕
𝜕𝑣𝜁

− 𝜔𝜂
𝜕
𝜕𝑣𝜉

+ 𝜔𝜉
𝜕
𝜕𝑣𝜂

+ 𝐺𝑙𝜁 = 𝐹𝑔𝜁 ,

𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜉

− 𝜔𝜁
𝜕
𝜕𝜔𝜂

+ 𝜔𝜂
𝜕
𝜕𝜔𝜁

− 𝑣𝜁
𝜕
𝜕𝑣𝜂

+ 𝑣𝜂
𝜕
𝜕𝑣𝜁

+ 𝐺𝑟𝜉 = 𝑇𝑔𝜉 ,

𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜂

+ 𝜔𝜁
𝜕
𝜕𝜔𝜉

− 𝜔𝜉
𝜕
𝜕𝜔𝜁

+ 𝑣𝜁
𝜕
𝜕𝑣𝜉

− 𝑣𝜉
𝜕
𝜕𝑣𝜁

+ 𝐺𝑟𝜂 = 𝑇𝑔𝜂 ,

𝑑
𝑑𝑡

𝜕
𝜕𝜔𝜁

− 𝜔𝜂
𝜕
𝜕𝜔𝜉

+ 𝜔𝜉
𝜕
𝜕𝜔𝜂

− 𝑣𝜂
𝜕
𝜕𝑣𝜉

+ 𝑣𝜉
𝜕
𝜕𝑣𝜂

+ 𝐺𝑟𝜁 = 𝑇𝑔𝜁 .

(67)

Finally, substituting Eq. (66) into (67), the following relations hold

𝑚𝑝𝑣̇𝜉 − 𝑚𝑝𝜔𝜁 (𝑣𝜂 + 𝜔𝜁 𝑙𝑝) + 𝑚𝑝𝜔𝜂(𝑣𝜁 − 𝜔𝜂𝑙𝑝) + 𝐺𝑙𝜉 = 𝐹𝑔𝜉 ,

𝑚𝑝𝑣̇𝜂 − 𝑚𝑝𝜔𝜁𝑣𝜉 − 𝑚𝑝𝜔𝜉 (𝑣𝜁 − 𝜔𝜂𝑙𝑝) + 𝐺𝑙𝜂 = 𝐹𝑔𝜂 ,

𝑚𝑝𝑣̇𝜁 − 𝑚𝑝𝜔𝜂𝑣𝜉 − 𝑚𝑝𝜔𝜉 (𝑣𝜂 − 𝜔𝜁 𝑙𝑝) + 𝐺𝑙𝜁 = 𝐹𝑔𝜁 ,

𝐼𝜉𝜔̇𝑥𝑖 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝜔𝜂𝜔𝜁 + 𝐺𝑟𝜉 = 𝑇𝑔𝜉 ,

𝐼𝑦𝑦 + 𝑚𝑝𝑙2𝑝)𝜔̇𝜂 − 𝑚𝑝𝑙𝑝𝑣̇𝜁 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝜔𝜁𝜔𝜉 + 𝑚𝑝𝑙𝑝𝑣𝜉𝜔𝜂

+ 𝑚𝑝𝑙𝑝𝜔𝜉𝑣𝜂 + 𝐺𝑟𝜂 = 𝑇𝑔𝜂 ,

(𝐼𝑧𝑧 + 𝑚𝑝𝑙2𝑝)𝜔̇𝜁 + 𝑚𝑝𝑙𝑝𝑣̇𝜂 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝜔𝜂𝜔𝜉

− 𝑚𝑝𝑙𝑝𝑣𝜁𝜔𝜉 + 𝑚𝑝𝑙𝑝𝑣𝜉𝜔𝜂 + 𝐺𝑟𝜁 = 𝑓𝑝𝑡𝑜,

(68)

where 𝐺𝑙𝜉 , 𝑡 ↦ 𝐺𝑙𝜉 , 𝐺𝑙𝜂 , 𝑡 ↦ 𝐺𝑙𝜂 , 𝐺𝑙𝜁 , 𝑡 ↦ 𝐺𝑙𝜁 , 𝐺𝑟𝜉 , 𝑡 ↦ 𝐺𝑟𝜉 , 𝐺𝑟𝜂 , 𝑡 ↦ 𝐺𝑟𝜂
and 𝐺𝑟𝜁 , 𝑡 ↦ 𝐺𝑟𝜁 are the effect of the gravity force acting on the

system, mapped into the pendulum-fixed reference frame. In particular,

the gravity effects are normally computed with respect to the inertial

reference frame, going through the computation of the system potential

energy:
 = 𝑚𝑝𝑔(𝑧 − 𝑙𝑝𝑠𝛿𝑐𝛾 + 𝑙𝑝𝑐𝛿𝑠𝜃𝑠𝛾 − 𝑧0𝑠𝛿 + 𝑦0𝑐𝛿𝑠𝜃 + 𝑧0𝑐𝛿𝑐𝜃). (69)
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Therefore, the resulting forces are

𝐺𝑙𝜁 = 𝜕
𝜕𝑧

= 𝑚𝑝𝑔,

𝐺𝑟𝜉 =
𝜕
𝜕𝜃

= 𝑚𝑝𝑔(𝑙𝑝𝑐𝛿𝑐𝜃𝑠𝛾 + 𝑦0𝑐𝛿𝑐𝜃 − 𝑧0𝑐𝛿𝑠𝜃),

𝐺𝑟𝜂 =
𝜕
𝜕𝛿

= 𝑚𝑝𝑔(−𝑙𝑝𝑐𝛿𝑐𝛾 − 𝑙𝑝𝑠𝛿𝑠𝜃𝑠𝛾 − 𝑥0𝑐𝛿 − 𝑦0𝑠𝛿𝑠𝜃 − 𝑧0𝑠𝛿𝑐𝜃),

𝑟𝜁 = 𝜕
𝜕𝜀

= 𝑚𝑝𝑔(𝑙𝑝𝑠𝛿𝑠𝛾 + 𝑙𝑝𝑐𝛿𝑠𝜃𝑐𝛾 ).

(70)

Alternatively, the dynamic equation can be directly computed in
inear form, applying the following expression

𝑑
𝑑𝑡
𝜕
𝜕𝑝̇

− 𝜕
𝜕𝑝

+ 𝜕
𝜕𝑝

= 𝐹𝑟𝑐 . (71)

or such a case, the velocity of the pendulum is defined in linear force,
eglecting all the nonlinear effects, hence looking as follows:

𝑣𝐸𝐹𝜉 = 𝑥̇ + 𝑧0𝛿̇ − 𝑦0𝜓̇ ,

𝑣𝐸𝐹𝜂 = 𝑦̇ − 𝑧0𝜃̇ + 𝑥0𝜓̇ + 𝑙𝑝(𝜓̇ + 𝛾̇),

𝑣𝐸𝐹𝜁 = 𝑧̇ + 𝑦0𝜃̇ − 𝑥0𝛿̇ − 𝑙𝑝𝛿̇,

𝜔𝐸𝐹𝜉 = 𝜃̇,

𝜔𝐸𝐹𝜂 = 𝛿̇,

𝐸𝐹𝜁 = 𝜓̇ + 𝛾̇ .

(72)

Finally, each term of the Lagrangian of Eq. (71) is explicit ally
omputed, and expressed as follows

𝜕
𝜕𝑥̇

= 𝑚𝑝(𝑥̇ + 𝑧0𝛿̇ − 𝑦0𝜓̇)

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑥̇

= 𝑚𝑝(𝑥̈ + 𝑧0𝛿 − 𝑦0𝜓̈),

𝜕
𝜕𝑦̇

= 𝑚𝑝(𝑦̇ − 𝑧0𝜃̇ + 𝑥0𝜓̇ + 𝑙𝑝(𝜓̇ + 𝜀̇))

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑦̇

= 𝑚𝑝(𝑦̈ − 𝑧0𝜃̈ + 𝑥0𝜓̈ + 𝑙𝑝(𝜓̈ + 𝛾̈)),

𝜕
𝜕𝑧̇

= 𝑚𝑝(𝑧̇ + 𝑦0𝜃̇ − 𝑥0𝛿̇ − 𝑙𝑝𝛿̇)

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝑧̇

= 𝑚𝑝(𝑧̈ + 𝑦0𝜃̈ − 𝑥0𝛿 − 𝑙𝑝𝛿),

𝜕
𝜕𝜃̇

= 𝐼𝑥𝑥𝜃̇ + 𝑚𝑝𝑦0(𝑧̇ + 𝑦0𝜃̇ − 𝑥0𝛿̇ − 𝑙𝑝𝛿̇) − 𝑚𝑝𝑧0(𝑦̇ − 𝑧0𝜃̇ + 𝑥0𝜓̇ + 𝑙𝑝𝜓̇)

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝜃̇

= 𝐼𝑥𝑥𝜃̈ + 𝑚𝑝𝑦0(𝑧̈ + 𝑦0𝜃̈ − 𝑥0𝛿̇ − 𝑙𝑝𝛿)

− 𝑚𝑝𝑧0(𝑦̇ − 𝑧0𝜃̈ + 𝑥0𝜓̇ + 𝑙𝑝𝜓̈),
𝜕
𝜕𝛿̇

= 𝐼𝑦𝑦𝛿̇ + 𝑚𝑝𝑧0(𝑥̇ + 𝑧0𝛿̇ − 𝑦0𝜓̇) − 𝑚𝑝(𝑥0 + 𝑙𝑝)(𝑧̇ + 𝑦0𝜃̇ − 𝑥0𝛿̇ − 𝑙𝑝𝛿̇)

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝛿̇

= 𝐼𝑦𝑦𝛿 + 𝑚𝑝𝑧0(𝑥̈ + 𝑧0𝛿 − 𝑦0𝜓̈)

− 𝑚𝑝(𝑥0 + 𝑙𝑝)(𝑧̈ + 𝑦0𝜃̇ − 𝑥0𝛿 − 𝑙𝑝𝛿),
𝜕
𝜕𝜓̇

= −𝑚𝑝𝑦0(𝑥̇ + 𝑧0𝛿̇ − 𝑦0𝜓̇) + (𝑥0 + 𝑙𝑝)𝑚𝑝(𝑦̇ − 𝑧0𝜃̇ + (𝑥0 + 𝑙𝑝)𝜓̇ + 𝑙𝑝𝛾̇)

+ 𝐼𝑧𝑧(𝜓̇ + 𝛾̇)

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝜓̇

= −𝑚𝑝𝑦0(𝑥̈ + 𝑧0𝛿 − 𝑦0𝜓̈)

+ (𝑥0 + 𝑙𝑝)𝑚𝑝(𝑦̈ − 𝑧0𝜃̈ + (𝑥0 + 𝑙𝑝)𝜓̈ + 𝑙𝑝𝛾̈) + 𝐼𝑧𝑧(𝜓̈ + 𝛾̈),
𝜕
𝜕𝛾̇

= 𝑚𝑝𝑙𝑝(𝑦̇ − 𝑧0𝜃̇ + 𝑥0𝜓̇ + 𝑙𝑝(𝜓̇ + 𝛾̇) + 𝐼𝑧𝑧(𝜓̇ + 𝛾̇))

⟹
𝑑
𝑑𝑡
𝜕
𝜕𝛾̇

= 𝑚𝑝𝑙𝑝(𝑦̈ − 𝑧0𝜃̈ + 𝑥0𝜓̈ + 𝑙𝑝(𝜓̈ + 𝛾̈) + 𝐼𝑧𝑧(𝜓̈ + 𝛾̇)).

(73)
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Fig. 10. Pendulum rotation angle simulating the floater motion generated by an irregular wave signal: (a) Jonswap Spectrum representation and time series of an irregular wave
characterized by 𝑇𝑒 = 6.2 s and 𝐻𝑠 = 2 m, (b) Comparison between the analytical model and the Simscape model, simulating an irregular wave signal, (c) Zoom in on the generated
pendulum motion.
Fig. 11. Reaction forces acting on the floater through the pendulum constraints: comparison between the analytical model and the Simscape model, simulating an irregular wave
signal. The panel figure shows (a) the reaction force acting on the 𝑥-axis, (b) the reaction torque acting on the 𝑥-axis, (c) the reaction force acting on the 𝑦-axis, (d) the reaction
torque acting on the 𝑦-axis, (e) the reaction force acting on the 𝑧-axis, and (f) the reaction torque acting on the 𝑧-axis.
a
g
J

Appendix D

Figs. 10 and 11 compare the time series of the reaction forces 𝐹𝑟𝑐
nd pendulum rotation angle 𝛾, as obtained from both the analytical
19 
nd Simscape models. In this case, the pre-defined signal vector 𝑞 is
enerated by an irregular wave, obtained through the simulation of a
ONSWAP spectrum [67] characterized by 𝑇𝑒 = 6.2 s and 𝐻𝑠 = 2 m.
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