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Abstract—Approximate Computing (AxC) techniques trade
off computational accuracy for gains in performance, energy
efficiency, and area reduction. This trade-off is particularly
advantageous when applications, like Spiking Neural Networks
(SNNs), are naturally tolerant to some degree of accuracy loss.
SNNs are especially practical when the target hardware is pushed
to the edge of its computing capabilities, necessitating area
minimization strategies. In this work, we utilize an Interval
Arithmetic (IA)-based model that propagates approximation
errors through the application’s computation flow to assess these
approximations’ impact on the outputs. We enhance this IA-
based model by introducing observation points within the com-
putation flow to quickly detect when the level of approximation
surpasses a set threshold. Experimental results demonstrate the
model’s effectiveness in significantly reducing exploration time,
enabling more precise and fine-grained approximations that
further minimize network parameters.

Index Terms—approximate computing, spiking neural net-
works, interval arithmetic, design space exploration

I. INTRODUCTION

Approximate Computing (AxC) techniques enable a con-
trolled reduction in computational accuracy to improve various
design metrics, including power consumption, memory utiliza-
tion, and execution time [1], [2]. These benefits are particularly
appealing in applications such as Artificial Neural Networks
(ANNs), which are inherently tolerant to some degree of ac-
curacy loss in computation [3], [4]. When AxC techniques are
introduced into applications, the key challenge is determining
which parts of the computation can be approximated and how
to implement these approximations. Various methods can be
used together, requiring tools and methodologies to assess how
different combinations of AxC techniques affect the overall
computation accuracy [5]. This decision-making process is
complex because each application has its inherent tolerance
for accuracy degradation. The two main strategies to address
this challenge are executing the application multiple times with
different configurations [6], [7] or using abstract models to
predict the final application error [8], [9]. The first approach
can provide precise analysis, but the time required increases
with the number of available options, making exhaustive
design space exploration impractical. The second approach
balances the accuracy of the analysis with exploration time,
enabling thorough exploration of the design space.

Spiking Neural Networks (SNNs) are a type of ANNs that
mimics human brain functionality. SNNs support information
exchange based on binary spikes [10] and unsupervised learn-
ing with unlabeled data. Each neuron in an SNN performs
arithmetic operations on weights and thresholds to process
input spikes and generate output spikes. Due to the large size
of SNN models, which involve extensive arrays of registers
to store these weights and thresholds, SNNs can significantly
benefit from using AxC techniques [11], especially when tar-
geting deployment at the edge. For example, when deploying
SNNs on FPGA devices, AxC techniques can help reduce the
storage required for weights and thresholds, as well as the
complexity of the arithmetic components [12]–[14].

Some previous works use Interval Arithmetic (IA) to modify
Neural Networks (NNs) for achieving different goals. In [15],
the authors propose using interval arithmetic for SNN compu-
tations and apply two specific AxC techniques. The results of
the precision range analysis for a few neurons seem promising.
While, in other works, for example, in [16], authors introduce
an Interval Genetic Algorithm (IGA) for the neuro-evolution
of nterval Neural Networkss (INNs) with interval weights
and biases. The aim is to facilitate the unsupervised learning
of INNs. Though the results demonstrate their capability to
approximate test functions, this work does not consider the
effect of approximation. While in [17], a computation flow
representation is proposed to model the approximation error
range for the entire SNN, using an abstract numerical model
based on IA [18], which enables tracking the introduced error
and offers further tuning optimization opportunities.

Using IA for error propagation is not new. In [19], authors
proposed using it to analyze the error propagation through the
program data flow. They perform the data flow analysis in
two steps. First, during the range analysis, the tool computes
the output ranges. Second, during the error analysis, the
tool propagates errors and computes the worst-case round-
off errors using the previously calculated ranges. The goal is
to increase code readability, extensibility, and not necessarily
performance. The analysis is performed once for the exact
application and once for the round-off error estimation. In
[17], the IA-based model provides an abstract representation
of the SNN computation flow while enabling tracking of how
approximation-induced errors propagate from the inputs to the
outputs. The proposed method focuses on data reduction in
fixed-point quantization of internal parameters to reduce the
final size of the SNN model. The goal of [17] is to efficiently979-8-3503-6312-8/24/$31.00 ©2024 IEEE



and quickly estimate the approximation-induced errors for an
SNN to reduce the SNN model size as much as possible
for FPGA implementations while the [19] framework pursues
distinct goals at the software level, such as increasing code
readability and extensibility, unconcerned about reducing the
exploration time.

This paper modifies the approach proposed in [17] by
presenting a Design Space Exploration (DSE) technique based
on the previous IA model coupled with the concept of watchers
during the analysis. Watchers are specific observation points
that can be placed in critical points of the computation
flow to monitor violations of the acceptable accuracy of the
application and help drive the DSE, thus saving time. The
main benefit of this modification is that the exploration can
generate the minimum bit-width required for each neuron,
hence providing fine-tuning opportunities. Experiments were
performed on a trained SNN designed for deploying FPGA
hardware accelerators at the edge [20]. The proposed approach
explored reducing the network parameters’ size to fit the
network in small FPGAs used for edge applications.

The rest of the paper is organized as follows: section II
provides the background, while section III describes the pro-
posed methodology. The experimental results are reported and
analyzed in section section IV. And finally, section V provides
the conclusions and future works.

II. BACKGROUND

This section introduces an excerpt about the SNN architec-
ture and the applied precision reduction technique from [20]
and the fundamentals of the error propagation model from
[17].

A. Spike Neuron Model and Network Description

Figure 1 shows the general organization of an SNN, high-
lighting the connections in one layer of neurons. This SNN
model is based on the model employed in [20] that mimics
the network structure with hardware components, and the ap-
proximation goal is to reduce the SNN size to be deployed on
an FPGA. The input layer transforms the input data, the image
pixels for the case study, into a sequence of spikes. Spikes are
boolean single-bit information that enters the neuron through
the excitatory step. Every time a spike enters the neuron, the
membrane potential (V0 in Figure 2) is accumulated. An output
spike is generated when the membrane potential exceeds a
threshold as indicated by the green arrows going out of the
excitatory step in Figure 1. Output spikes of each layer serve
as input spikes for the next layer and as inputs to the inhibitory
steps inside the same layer. If other connected neurons to each
neuron’s inhibitory step generate any spikes, the inhibitory step
decreases the neuron’s membrane potential. Finally, the last
SNN layer is followed by an output layer that can transform
the received spikes into the network’s final classification result.

Figure 2) depicts the computation flow of a single neuron.
Suppose M different input spikes enter each neuron, and N
different neurons exist in a layer. In that case, each neuron
input has M weights (wi,j) where i goes from 0 to n − 1,

indicating the neuron number in the layer and j goes from 0
to m − 1 indicating the weight number in the neuron. Like
other ANNs, the weights result from the training phase and
are used in the inference phase [21].

Each time a spike is detected in a neuron’s input connection,
there is a chance to increase the Vi, which is Neuroni

membrane potential. The sum of all neuron weights calculated
in Equation 1 is used for increasing the Vi. Here, inpj is the
input spike and is set to 1 if a spike is detected at this input;
otherwise, it is set to 0.

sumi =

m−1∑
j=0

inpj · wi,j (1)

When the membrane potential reaches its maximum (Vi >
Vthresh), the neuron fires a spike, while Vi is reset to a special
reset value (Vreset), as depicted in Figure 2 following the
”Yes” branch. Whereas, if no active input spike is detected, Vi

should decrease, following the ”No” branch in Figure 2, which
indicates an exponential decay of the membrane potential. This
happens by multiplying the Vi by 1− ∆t

τ .
The authors in [20] apply some simplifications to obtain

a specific implementation of an SNN. For example, a single
membrane potential threshold (Vthresh) is used for the whole
layer to reduce the number of parameters of the network. Also,
the exponential decay has been transformed into a right shift
to employ a fixed-point number representation. Eventually, the
classification method in [20] sees each neuron associated with
an output spike counter, and decisions are based on the value
of such counters. The presence of counters is not mandatory
and is specific to that work.

B. Precision reduction

Authors in [20] converted the trained SNN parameters from
floating-point to fixed-point format (expressed in Equation 2)
to explore the precision reduction of the fractional part.

v =

31∑
i=16

bi · 2(i−16)

︸ ︷︷ ︸
integer

+
15∑
i=0

bi · 2−(16−i)

︸ ︷︷ ︸
fractional

(2)

For a k-bit precision reduction of the fractional part, the
approximation error ϵ follows Equation 3, where bi is the value
of the removed bit [17].

ϵ =

k∑
i=0

bi · 2−(16−i) (3)

Equation 4 shows the approximation error limits [17]. The
maximum error happens when each removed bit (bi) is 1, while
the minimum error occurs when each removed bit (bi) is 0.

0︸︷︷︸
∀bi=0

≤ ϵ ≤
k∑

i=0

2−(16−i)

︸ ︷︷ ︸
∀bi=1

= −1− 2k

32768
(4)
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Fig. 2. Computation Flow of an SNN layer modified by the watchers for the exploration algorithm.

Using Equation 2, any approximated value v can be ex-
pressed as v − ϵ, where ϵ represents a value subtracted from
the fractional part of each number [17].

C. The Interval Arithmetic Error Propagation Model

Based on the error limits defined in Equation 4, [17]
introduced an error propagation model resorting to the IA
theory.

IA [18] defines mathematical operations over intervals
instead of single values. An interval is defined as [v] ≡
[vmin, vmax], where vmin and vmax are respectively the
minimum and maximum numbers included in the interval.
The exact value v can be replaced with an interval ([v]),
where the two boundaries are the original v value itself
([v] ≡ [v, v]). Equation 4 already defines the error due to a
precision reduction as a range [ϵ]. Hence, [17] defines a generic

approximated value as a IA number (denoted as |ian|) as a
pair, including two intervals {[v], [ϵ]}.

Since the applied approximation technique in [17] is preci-
sion reduction, the [ϵ] is subtracted from [v]. So, here, |ian| ≃
[v] − [ϵ]. Also, the precision reduction errors formulated in
Equation 4 are monotonic, hence, [ϵ] ≡ [ϵmin, ϵmax]. These
formulations still support the IA operators introduced in [18].

|ian1|+ |ian2| = {[v1min
+ v2min

, v1max
+ v2max

]︸ ︷︷ ︸
[v]

,

[ϵ1min + ϵ2min , ϵ1max + ϵ2max ]︸ ︷︷ ︸
[ϵ]

} (5)



|ian1| − |ian2| = {[v1min
− v2max

, v1max
− v2min

]︸ ︷︷ ︸
[v]

,

[ϵ1min
− ϵ2max

, ϵ1max
− ϵ2min

]︸ ︷︷ ︸
[ϵ]

} (6)

Using IA theory, [17] modeled addition, subtraction, mul-
tiplication, right shift, and comparison operators required
by subsection II-A. For example, addition and subtraction
between two values (|ian1| and |ian2|) can be defined using
the linearity of the two mathematical operations and the mono-
tonic shape of the ranges as in Equation 5 and Equation 6.
For more details on how the other mathematical operators are
modeled, the reader may refer to [17], from which the IA-
based modeling for this work was obtained.

III. METHODOLOGY

This section describes how the DSE methodology in [17]
was modified by adding the watchers to the DSE framework,
which is the main contribution of this paper.

The proposed modifications to accelerate the DSE method-
ology of [17] is depicted in Figure 2. The idea is to observe
the approximation effects at specific points of the computation
flow to monitor the output of the chosen arithmetic operation
and modify the precision reduction procedure accordingly. The
watchers are placed after every mathematical operation and
are of two types: (i) hidden watchers are placed within the
computation flow and evaluate intermediate computations, and
(ii) active watchers observe the output of a neuron. Watchers
allow a comparison between the interval at the monitored point
and the acceptable error range.

Algorithm 1 outlines the evaluation strategy. The explo-
ration process begins by setting the maximum precision re-
duction for all values in the model, including weights and
thresholds (lines 5-9). The minimum error corresponds to a 1-
bit precision reduction, while the maximum error occurs when
a 15-bit precision reduction is applied (line 7). The IA model,
introduced in subsection II-C, enables a rapid evaluation of
the impact across the full range of precision reductions from
1-bit to 16-bit in a single step.

Implementing Watchers involves creating two key methods.
The first method, compareData(...), checks whether the
error range at the observed point, expressed as an |ian|,
falls within an acceptable error range using the redefined
comparison operator provided by IA. An internal flag is set to
True if the error range exceeds the acceptable limits. This flag
can be checked using a second method, watchFired().

The acceptable error range for all watchers is determined
as the mathematical average between the minimum and max-
imum possible approximation errors, as calculated in Equa-
tion 4. The approximation-induced errors are also uniformly
distributed because the network parameters, such as weights
and thresholds, follow a uniform distribution. Thus, the mathe-
matical average between the minimum and maximum approx-
imation errors serves as the acceptable error threshold.

The definitions provided in subsection II-B, based on IA,
enable any operation on the |ian| and facilitate the imple-
mentation of the compareData() method. This versatile
approach can be applied to the computation flow of any other
application modeled using IA.

1 N := Number of Neurons;
2 A := Number of Active Watchers;
3 H := Number of Hidden Watchers;
4 explorationDone← False;
5 for i = 0; i < N ; i++ do
6 for j = 0; j < H; j ++ do
7 kbest[i][j]← 15;
8 end
9 end

10 while explorationDone <> True AND ∀kbest > 0
do

11 explorationDone← True;
12 runExploration();
13 for i = 0; i < N ; i++ do
14 if actWatcher[i].watchF ired() == True

then
15 explorationDone← False;
16 for j = 0; j < H; j ++ do
17 if hidWatcher[i][j].watchF ired() ==

True then
18 kbest[i][j]− = 1;
19 end
20 end
21 end
22 end
23 end

Algorithm 1: DSE algorithm

In algorithm 1, lines 10 to 23 handle the exploration proce-
dure. The iterative process continues until either all model
values have no further approximation (when the condition
∀k > 0 at line 10 is no longer true) or when no active
watcher is triggered after a full iteration, indicated by the
explorationDone flag remaining False. The first condition
addresses the scenario where no further approximation is
possible because all precision reductions have already been
set to 0-bit reduction.

Line 12 is where the model processes all inputs within the
while loop. After the model run, the watchers are checked
as outlined in lines 13 to 22. If none of the active watchers,
as depicted in Figure 2, detect an error range violation, the
explorationDone flag stays False (set in line 15), signaling
the end of the exploration process. However, a backward anal-
ysis is performed if some active watchers detect a violation.
This involves checking the hidden watchers from the end to the
beginning of the computation flow to identify which watchers
were triggered. The corresponding weights are then adjusted
by reducing the number of cut bits by 1. This adjustment is
possible because the IA model differentiates between the error
and the value.



IV. EXPERIMENTAL RESULTS

The proposed approach was employed to modify the DSE
performed using the methodology in [17] to optimize the
trained SNN from [20]. This use case was selected to allow
a fair comparison with the original work and evaluate if the
proposed modification to the methodology in [17] can provide
benefits. The reference SNN was trained with the images
from the MNIST dataset [22]. The MNIST dataset consists of
70,000 handwritten images of digits (from 0 to 9), of which
60,000 images are in the training set and 10,000 are in the test
set. For generating the input spikes from the MNIST images,
authors in [20] converted the 784 pixels composing each image
of size 28x28 pixels into a sequence of spikes employing a
random Poisson process [23], which finally resulted in 3,500
input spikes for each pixel.

The reference SNN has one layer with 400 neurons.
The structure of the network decision model comprises 400
counters placed at the end of each neuron, which are split
into groups of 40 counters, and the classification is made
by selecting the group with the highest number of counts.
Since the SNN performs a digit classification task on the
MNIST dataset, each of the ten groups represents a digit.
The SNN primary outputs are the output spike counters, and
the secondary outputs are the classification decisions made by
majority voting among the spike counters at the final decision
layer. Since the approximation impacts the number of output
spikes indicated by the spike counter, if the majority voting
results are unaffected for a specific approximation compared
to the exact SNN, the SNN classification accuracy remains
the same. In other words, the change in counters value due
to approximation can change the classification results only if
the counter of the right group does not show the highest value
compared to the counters of the wrong groups. As a result,
applying approximation can decrease the network classifica-
tion accuracy when the number of times a handwritten digit
image is classified into the wrong group increases.

The proposed approach was applied considering the network
behavior when processing 1,000 images of the MNIST test set.
The IA-based model was built based on the computational
flow in Figure 2. Using the algorithm 1 described previously,
the model was then enhanced to have watchers in place. On
average, the exploration stopped after eight iterations when
no active watcher went off anymore. Figure 3 shows the
number of neurons updating the precision reduction cut at
each iteration. In the highest precision reduction case, the
final reduction was down to 10 bits removed from almost
all weights as in the reference work [20]. Nevertheless, the
exploration pointed out some weights that were kept with
an even higher reduction of 11 bits removed. This is a
huge difference from the reference work, where the authors
proposed a fast approach to size reduction and imposed the
same precision reduction on all values in the model.

To double-check the obtained results at the end of the ex-
ploration, the classification results obtained from the counters
computed by the model were compared with the classification

results of the original approximate SNN in [20] when applied
the least bit reduction. The classification accuracy for the
approximated SNN version obtained here compared to the
original approximated SNN was untouched. This approach for
comparing the reduced size SNN results with the approximated
SNN results from the original work [20] is the same approach
taken by [17]. It is impossible to seek exact correspondence
of counters values since this approach’s reduced size SNN
includes different bit precision reductions for different net-
work weights. At the same time, the original work applied
a precision reduction with a specific number of bits to all
the network parameters each time to obtain an approximated
SNN. For better comparison, the least bit reductions obtained
by the proposed approach can be denoted as l and the highest
bit reductions as h. Hence, the original approximated SNN
with l bit reduction for all network weights could be further
approximated with some weights undergoing h bit reduction.
In contrast, this higher approximation does not impact the
resulting network classification accuracy. It is important to
mention that on average, for the 1000 images from the MNIST
test set, the h equals 10 bits and l equals 8 bits.

Fig. 3. Percentage of neurons that needed more precision for the weights at
each iteration of exploration for one image.

Regarding time impact, the reference system is a laptop
computer with 16GB RAM and an Intel Core i7 processor. In
the experiments with 1,000 images, eight iterations required a
total exploration time of 539.842 seconds, with each iteration
averaging 67.480 seconds. In contrast, without the IA model
and watchers, the reference network takes 0.159 seconds to
complete a single image inference. Although the raw numbers
suggest that the original model is faster, further evaluation
is necessary from an exploration perspective. Considering
the model size, each neuron has 784 weights, and with 400
neurons, the SNN contains a total of 313,600 weights to
optimize. Since the precision reduction involves 16 different
values (ranging from 15 to 0 bits removed), this results in a
potential number of combinations of different approximated
values equal to 4.18 × 1074, as defined by the combination
formula in Equation 7.



(
n

r

)
=

n!

r!(n− r)!
=

(
313600

16

)
=

313600!

16!(313584)!
(7)

To fairly compare the exploration approach with the ref-
erence network, it is necessary to evaluate the time required
to explore all possible combinations of approximations. Run-
ning the inference, which takes 0.159 seconds per instance,
across all 4.18×1074 combinations would take approximately
6.65 × 1073 seconds, which is unfeasible. It is important
to note that the authors in [20] did not explore the entire
space, which is a critical consideration when interpreting the
results. By approximating each value in the model, the final
configuration is fine-tuned compared to the original, allowing
the proposed approach to apply different precision reductions
to different SNN parameters, resulting in a more optimized
final configuration.

V. CONCLUSION

This paper modified a previously proposed DSE approach
for precision reduction of an SNN model. The algorithm
builds upon an IA-based model of the SNN computation flow
that allows tracking the error propagation and comparing the
approximation error value to its threshold at each point of
the computation flow. The experiments on a trained SNN
available in the literature with a preliminary model reduction
obtained the same results as the original work using the DSE
methodology reasonably quickly. Experimental results com-
paring this modified model to the original work confirm that
the exploration time is reduced significantly while providing
the opportunity to reduce the precision of weights with more
fine-tuned bit precision reductions.

The model can extend to other applications with complex
computations, specifically other ANNs and even more complex
SNNs. Also, different AxC techniques can be employed and
compared to further investigate this approach’s extensibility.
Another direction might include exploiting this approach to
enhance the exploration with a multi-objective evaluation,
including other design parameters, such as power consumption
and application execution time.
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