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Detecting Stubborn Behaviors in Influence
Networks: A Model-Based Approach for

Resilient Analysis
Roberta Raineri, Graduate Student Member, IEEE , Chiara Ravazzi, Member, IEEE , Giacomo Como,

Member, IEEE and Fabio Fagnani, Member, IEEE

Abstract— The wide spread of on-line social networks
poses new challenges in information environment and cy-
bersecurity. A key issue is detecting stubborn behaviors to
identify leaders and influencers for marketing purposes, or
extremists and automatic bots as potential threats. Existing
literature typically relies on known network topology and
extensive centrality measures computation. However, the
size of social networks and their often unknown structure
could make social influence computation impractical.

We propose a new approach based on opinion dynamics
to estimate stubborn agents from data. We consider a DeG-
root model in which regular agents adjust their opinions as
a linear combination of their neighbors’ opinions, whereas
stubborn agents keep their opinions constant over time.
We formulate the stubborn nodes identification and their
influence estimation problems as a low-rank approximation
problem. We then propose an interpolative decomposition
algorithm for their solution. We determine sufficient condi-
tions on the model parameters to ensure the algorithm’s
resilience to noisy observations. Finally, we corroborate
our theoretical analysis through numerical results.

Index Terms— Network analysis and control; Identifica-
tion; Social networks; Detection.

I. INTRODUCTION

ON-LINE social networks have reached a large pervasive-
ness and relevance in opinion formation and content

dissemination. Understanding the dynamics of information
propagation within these networks is crucial for predicting in-
clinations and preferences in order to design targeting actions
or to prevent critical issues. However, individuals often exhibit
stubborn behaviors [1] and tend to resist changes, leading to
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the emergence of phenomena such as opinion polarization and
the diffusion of fake news [2]. For this reason, a main research
problem in opinion dynamics is the detection of stubborn
individuals [2], [3], extremists, and automatic bots [2], [4], [5],
providing tools to intervene and take specific countermeasures.

Most state-of-the-art inference methods are based on the
extensive collection and processing of data, often requiring
preliminary network knowledge [2], [5], [6] and the computa-
tion of centrality measures [7]. This approach implies multiple
limitations, as observing and analyzing the complete structure
of social networks can be difficult or totally impossible.
Examples can be deliberative groups or forum discussions,
where interpersonal influences can be inferred only a posteriori
after deliberation [8], or platforms like Truth or 4chan, for
which there is no clear definition of social structure due
to user anonymity and without the concept of “friends” or
“followers”. Classical system identification techniques used
in control theory (see [9] and references therein) also find
limited applicability in this context. Indeed, without additional
assumptions about the network structure, they typically require
a number of observations proportional to the number of links,
leading to a too high computational cost [10].

In this paper, we address the issue of detecting stubborn
agents without network knowledge and without the need to
reconstruct it. Specifically, we consider the classical French-
DeGroot opinion dynamics model where some of the agents
are stubborn and persistently express a fixed opinion. This
is equivalent to the Friedkin-Johnsen model and is a well-
established framework in sociology, already adopted to model
opinion formation in deliberative groups [8] and validated with
real experimental data [11]. In the asymptotic equilibrium,
each non stubborn agent reaches an opinion that is a convex
combination of the stubborn agents’ ones. Weights of such
combinations depend on the topology of interactions and form
the so called influence matrix. We assume our data to be a
noisy observation of the complete set of such equilibrium
opinions for a number of different discussions (e.g. initial
conditions) and our goal is to estimate the set of stubborn
nodes and the influence matrix.

Our contribution is two-fold. First, we formulate the es-
timation problem model-based approach as an optimization
problem tailored to be computationally efficiently solved by
Interpolative Decomposition techniques. Second, we derive
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sufficient conditions on the model parameters and on the
noise’s size guaranteeing that any solution of the optimization
problem will correctly determine the set of stubborn nodes and
well approximate the influence matrix. Finally, we corroborate
our analysis through numerical results.

II. STUBBORN NODES DETECTION AND INFLUENCE
ESTIMATION IN SOCIAL NETWORKS

Let us first introduce some notational conventions adopted
throughout the paper. Matrices are bold capital, vectors are
bold lowercase and scalars or entries are not bold. X⊤ and
x⊤ are the transpose of matrices X and vector x respectively.
We denote the identity matrix by I , where the dimension
will be clear from the context. For a rectangular matrix X ,
σk(X) denotes its k-th largest singular value and rank(X)
its rank. The spectral norm of a matrix is denoted by ∥X∥2
and it coincides with the maximum singular value σ1(X).
The Frobenius or Hilbert-Schmidt norm is denoted by ∥X∥F .
The maximum entry of X (in absolute value) is denoted by
∥X∥max = max(i,j) |Xij |. A matrix X is row stochastic when
its entries are non-negative and X1 = 1. A matrix X is said
to be Schur stable if the absolute value of all its eigenvalues
is strictly smaller than 1. Given a matrix X in RV×V where
V is a finite set and given A,B ⊆ V , we indicate with XAB
the submatrix of X having rows in A and columns in B. We
use the notation XB for XVB.

A. Opinion dynamics model

We model social influence networks as finite directed
weighted graphs G = (V, E ,Q) where the set of nodes V
represents the agents, the set of (directed) edges E represents
pairwise interactions, and the weight matrix Q in RV×V

+ is
such that (i, j) ∈ E if and only if Qij > 0, in which case Qij

measures the strength of the direct influence of j on i.
Every agent i in V is endowed with a state xi(t) in R

representing its opinion at time t = 0, 1 . . .. Opinions vary in
time according to the French-DeGroot model with stubborn
agents. Precisely, let the set of nodes be partitioned into two
disjoint sets: V = R∗ ∪ S∗. Nodes in S∗ (called stubborn
agents) maintain their opinion fixed at all times, while nodes
in R∗ (regular agents) update their opinion as follows:

xi(t+ 1) =

{ ∑
j∈V Pijxj(t), ∀i ∈ R∗

xi(t), ∀i ∈ S∗ (1)

where Pij = Qij/(
∑

h Qih) is the nomalized weight of link
(i, j). We assemble opinions of regular and stubborn agents
into row vectors, respectively, xR∗(t) and xS∗ (note that the
latter does not depend on t), and all normalized weights Pij

in a matrix P .
The following result holds true [12].
Proposition 1: For a social influence network G =

(V, E ,Q) and a partition R∗ ∪ S∗ = V such that from every
regular agent there exists a path in G to some stubborn agent,
the matrix I − P T

R∗R∗ is invertible and for every initial

condition x(0) = (xR∗(0),xS∗), the opinion dynamics (1)
converges to a limit profile x∗ = (xR∗ ,xS∗) with

xR∗ = xS∗Γ∗ , Γ∗ = P T
R∗S∗(I − P T

R∗R∗)−1 ∈ RS∗×R∗

+ .
(2)

The column-stochastic matrix Γ∗ in (2) is referred to as the
influence matrix: its entries Γ∗

ij measure the relative influence
of stubborn agent i on the final opinion of regular agent j.

B. Stubborn nodes detection and influence estimation
For a social influence network G = (V, E ,Q), and a binary

partition V = S∗ ∪ R∗, consider the opinion dynamics as in
Eq. (1) with distinct initial conditions representing different
discussion topics l in T . Stack the row vectors of the stubborn
agents opinions in a matrix XS∗ in RT ×S∗

.
Assumption 1: The matrix XS∗ has rank k∗ = |S∗|.
Assumption 2: There exists δ > 0 such that for every v in

R∗, there exist s1 ̸= s2 in S∗ with min{Γ∗
s1v,Γ

∗
s2v} ≥ δ.

Assumption 1 requires that |T | ≥ |S∗|, i.e., the number of
topics is at least equal to the number of stubborn agents, and
that the k∗ column vectors that gather the initial conditions
of each stubborn agent on the different topics are linearly
independent. Assumption 2 requires instead that every regular
agent is influenced by at least two stubborn agents and is thus
stronger than the assumption in Proposition 1.

Both assumptions are necessary for the correct identification
of the stubborn agents in a situation where the network is
unknown and observations are only asymptotic. Indeed, if
the profile of opinions of one stubborn agent s was a linear
combination of the opinion profiles of other stubborn agents,
s would be undistinguishable from a regular agent influenced
by such stubborn agents through the same linear combination.
Similarly, if a regular node v was influenced by just one
stubborn node s, then the role of v and s could be interchanged
with no possibility to distinguish their roles.

Notice that Assumption 1 holds true (with large probability)
if stubborn nodes’ opinions are considered exogenous inputs
modeled as i.i.d. random variables, which is a common as-
sumption in the opinion dynamics literature (see [13], [14]).
Finally, observe that in many applicative scenarios for the
detection of trolls and bots [2], [5], [6], [8] the number of
stubborn nodes is a small percentage of the total number of
nodes so that Assumption 1 is computationally feasible.

We assemble now the row vectors of the asymptotic opin-
ions of all agents into a matrix X in RT ×V so that Xℓi

represents the asymptotic opinion of agent i in V under the
discussion on topic ℓ in T . It follows from Eq. (2) that

XR∗ = XS∗Γ∗ , (3)

where XR∗ and XS∗ indicate the sub-matrices of X consist-
ing of the columns in R∗ and S∗, respectively.

We now assume to have access to the observations

Y = X +Ξ , (4)

where Ξ in RT ×V is a noise matrix. Our goal is to identify the
stubborn set S∗ and estimate the influence matrix Γ∗ starting
from the observation of Y , without any prior knowledge of
the network. We formalize it as follows.
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Problem 1 (Detection and estimation): For a tolerance ε ≥
0, consider the following low-rank approximation problem

minS⊆V |S|
∃Γ ∈ RS×R

+ s.t. ∥Y R − Y SΓ∥2 ≤ ε, ∥Γ∥max ≤ 1
(5)

We denote by Ŝε a solution of the problem and with Γ̂ε any
corresponding matrix Γ of minimum 2-norm, satisfying the
constraints.

Problem 1 is an optimization, with an external combinatorial
optimization over a domain of exponential size 2|V|. In spite
of its complexity, we shall prove in the following sections
how this problem can be efficiently attacked by Interpolative
Decomposition (ID), a matrix decomposition method used
to obtain approximate factorizations of low-rank matrices,
specifically in the version proposed in [15]. ID allows op-
timizing over the domain specified in Eq. (5) (in particular to
impose the non-negativity of the matrix Γ) and, adopting the
version in [15], to solve the optimization typically requiring
only O(|S||R||T |) floating-point operations [16]. Numerical
simulations based on ID will be presented in Section IV.

III. THEORETICAL ANALYSIS

We now present our main theoretical results regarding the
behavior of solutions of Problem 1, particularly its consistency
in the noise-free case and its robustness with respect to noise.

We first focus on the noise-free case. The following prelim-
inary result ensures uniqueness of the partition V = R∗ ∪ S∗

when a linear relation as Eq. (3) holds with Γ∗ in [0, 1]S×R.
Lemma 1: Let Assumptions 1 and 2 hold true. Let V =

R∪ S be a binary partition such that k∗ = |S| = rank(XS),
S ≠ S∗, and let Γ in RS×R be such that

XR = XSΓ . (6)

Then, there exists some (i, j) in V × V such that

Γij /∈
(
− δ

2(1− δ)
, 1 +

δ

2(1− δ)

)
. (7)

Proof: See Appendix A.

A direct consequence of Lemma 1 is the following.
Proposition 2 (Noise free scenario): Let Assumptions 1

and 2 hold true. If Ξ = 0 and ε = 0, then Problem 1 admits
a unique optimal solution (Ŝ0, Γ̂0) = (S∗,Γ∗).

Proof: First, note that, for ε = 0, the first constraint in
Eq. (5) is equivalent to Eq. (6). Since Assumption 1 implies
that Eq. (6) cannot be satisfied by any Γ if |S| < k∗,
there cannot be any feasible pair (S,Γ) for Problem 1 with
|S| < k∗ and the S columns of X must be independent, i.e.
rank(XS) = k∗. On the other hand, it follows from Eq. (3)
that (S∗,Γ∗) is feasible for Problem 1 when Ξ = 0 and ε = 0.
Therefore, (S∗,Γ∗) is an optimal solution for Problem 1.

Moreover, Lemma 1 implies that, if |S| = k∗, S ≠ S∗,
then there is no Γ in RS×R

+ s.t. ∥Γ∥max ≤ 1 and Eq. (6) is
satisfied. Hence, every optimal solution (Ŝ0, Γ̂0) of Problem
1 is such that Ŝ0 = S∗. Finally, observe that if Γ̂0 in RS∗×R∗

+

is such that XR∗ = XS∗Γ̂0, then XS∗(Γ∗−Γ̂0) = 0, so that
Assumption 1 implies that Γ̂0 = Γ∗. This proves that (S∗,Γ∗)
is the unique optimal solution for Problem 1.

Let us denote by

∆ := ∆(X,S∗) =
∥XR∗∥2
σk∗(XS∗)

,

the ratio between spectral norm of XR∗ and the minimum
positive singular value of XS∗ .

The following result provides sufficient conditions for every
solution of Problem 1 to exactly detect the set of stubborn
nodes S∗ and accurately estimate the influence matrix Γ∗.

Theorem 1: Let Assumption 1 and 2 hold true. If

∥Ξ∥2 ≤ γσk∗(X)/(2(1 + ∆)) , (8)

where γ = δ/((4− δ)(1 + ∆)− 3δ∆), and

∥Ξ∥2(1 + ∆) ≤ ε ≤ γσk∗(X)− ∥Ξ∥2(1 + ∆) , (9)

then every optimal solution (Ŝε, Γ̂ε) of Problem 1 is such that

Ŝε = S∗, ∥Γ̂ε − Γ∗∥2 ≤ ε+ ∥Ξ∥2(1 + ∆)

σk∗(XS∗)
. (10)

Proof: The proof is obtained through intermediate steps
(see Appendix B - D).

Notice that Eq. (8) implies that the range of values of the
admissible tolerance ε in Eq. (9) is nonempty. Thus, Theorem
1 guarantees that for sufficiently small noise, we can find
tolerance values ε for which every optimal solution of Problem
1 correctly identifies the subset S∗ and yields an influence
matrix Γ̂ε close to Γ∗.

Example 1: Let Ξ have i.i.d. Gaussian random entries with
zero mean and variance ξ2. Then, by [17, Corollary 5.35],
∥Ξ∥2 ≤ 3ξ

√
n with high probability as n grows large. Let also

XS∗ have i.i.d. sub-Gaussian random entries with zero mean
and unitary variance and assume that |S∗|/n → θ ∈ (0, 1) and
|T |/n → β > θ. Then, [17, Theorem 5.31] implies that

(
√
β−

√
θ)
√
n+ o(

√
n)≤σk∗(XS∗)

≤∥XS∗∥2 ≤ (
√
β+

√
θ)
√
n+ o(

√
n) ,

as n → +∞, so that with high probability

∆=
∥XR∗∥2
σk∗(XS∗)

≤ ∥XS∗∥2∥Γ∗∥2
σk∗(XS∗)

≤
√
β+

√
θ

√
β−

√
θ
∥Γ∗∥2(1+o(1)) .

It follows that the right hand side of Eq. (8) satisfies

γσk∗(X)

2(1+∆)
≥ δσk∗(XS∗)

2(4−δ)(1+∆)2
≥ δ(

√
β−

√
θ)
√
n

2(4−δ)(1+∆)2
(1+o(1)) .

Therefore, Eq. (8) is satisfied with high probability if

ξ ≤ δ(
√
β −

√
θ)3

6(4− δ)(
√
β −

√
θ + (

√
β +

√
θ)∥Γ∗∥2)2

,

subjected to ∥Γ∗∥2 being bounded. Due to Γ∗ stochasticity,

∥Γ∗∥22 ≤ ∥Γ∗∥1∥Γ∗∥∞ = max
s∈S∗

∑
j∈R∗

Γ∗
js ,

so that ∥Γ∗∥2 is guaranteed to remain bounded whenever the
total influence of every stubborn agent remains bounded.

Remark 1 (Observation at finite time): The case when the
opinions are observed at finite time t < +∞ can be cast
into our framework by letting Ξ = Y −X be the difference
between the opinion matrix at time t and the equilibrium
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opinion matrix. As it is known [18] that ∥Ξ∥2 ≤ λtobs
max∥X(0)−

X∥2 , where λmax < 1 denotes the dominant eigenvalue of the
substochastic matrix PR∗R∗ , one can readily derive sufficient
conditions on t to ensure that Eq. (8) holds true, thus enabling
the application of Theorem 1.

IV. NUMERICAL RESULTS

Here, we illustrate some numerical simulations to corrob-
orate our theoretical results. The method was implemented
using the interpolative module from Python’s scipy.linalg
library. The metrics employed to assess the accuracy of the
prediction include:

• relative error on Γ∗ estimate, defined as

err := ||Π[I Γ̂ε]− [I Γ∗]||2/||[I Γ∗||2
where Π is a permutation matrix which reorders the
columns to put on the left the ones corresponding to S∗.

• true positive rate (or sensitivity) and false positive rates

TPR = |S∗ ∩ Ŝε|/|S∗| FPR = |R∗ ∩ Ŝε|/|R∗| .
We consider two scenarios for our simulations. In the first one
we assume the observations to be taken at steady state, while in
the second observations are taken at finite time. For the sake
of simplicity, in all the simulations the initial opinions are
randomly generated uniformly in the range [0, 1]. We indicate
with n the number of nodes, k∗ the number of stubborn agents,
and m the number of observations.

A. Watts-Strogatz influence network with noisy
observations

We consider a French-DeGroot influence system over a
Watts-Strogatz random graph, where observations are taken
at steady state and are corrupted by Gaussian noise with zero
mean and variance ξ2.

In the first set of simulations, we have chosen the size equal
to n = 200 nodes with k∗ = 12 stubborn nodes. Figure
1 displays the indices err, TPR, and FPR, as function both
of variance ξ2 and number of observations m, for a fixed
tolerance ε satisfying Eq. (9). As expected from Theorem 1,
we notice the existence of a threshold ξ̄ > 0 such that if
ξ < ξ̄ the algorithm succeeds both in the estimation of Γ∗

and in the correct detection of stubborn nodes S∗. Conversely,
the stubborn nodes are overestimated and the relative error
on Γ∗ prediction is higher. However, simulations point out
the robustness of the method that produces a good estimation
of Γ∗ even for variance values greater than ξ̄. Finally, we
observe that in case of high noise on data the stubborn nodes
are overestimated (see the two indices TPR and FPR in Figure
1): all stubborn nodes are indeed correctly detected as stubborn
(no false negative) together with some nodes that were instead
regular (false positive).

Finally, the plot in Figure 2 shows the performance of the
method with respect to network size. For a fixed fraction of
stubborn nodes equal to 20% of the nodes, the plot shows the
behavior of the relative error as a function of the number of
nodes for different percentages of observations. The simulation
corroborates our approach highlighting its scalability with
respect to network size.

Fig. 1: Watts-Strogatz graph with n = 200, k∗ = 12.
Additional noise Ξ ∼ N(0, ξ2). Relative error on Γ∗,
TPR and FPR for stubborn nodes detection, for ξ2 ∈
{10−2, 10−3, 10−5} .

Fig. 2: Relative error as a function of size of the network n
with k∗/n = 0.2 and m/n ∈ {0.2, 0.25, 0.3, 0.35, 0.4}.

B. A case with finite-time observations

Here, we collect opinions over a certain time interval for a
Watts-Strogatz random graph with n = 100 nodes and k∗ = 12
stubborn nodes. For the sake of simplicity, we assume no
observation noise. Figure 3 illustrates the proposed method’s
performance, i.e., the average relative error on the estimation
Γ∗ and the average false positive rate as function of different
parameters. The color intensity of each cell represents the
magnitude of the error, where blue color indicates success
and red color highlights error. We limit the time window
shown to the interval 15 ≤ t ≤ 25 observing that for
t > 24 the behavior is comparable with the equilibrium one.
Consistently with Remark 1, as the observation time increases,
the method’s performance improves. The TPR is not displayed
in figure because all stubborn nodes are accurately detected.
The FPR error shown in Fig. 3-(b) can instead be interpreted

(a) (b)

Fig. 3: Watts-Strogatz graph with n = 100, k∗ = 12. (a)
Relative error on Γ∗ estimation; (b) FPR for stubborn nodes
detection as function of number of observations m and tobs.
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in terms of residual influence among regular agents far from
the equilibrium.

V. CONCLUDING REMARKS

In this paper, we have studied stubborn nodes’ detection
and influence matrix estimation in social networks though a
model-based approach, casting the problem as a low-rank fac-
torization. Moreover, we have provided a detailed theoretical
analysis of method performance and robustness.

The applicability of the proposed method goes beyond the
French-DeGroot model, to opinion dynamics models where
few degrees of freedom can describe steady state opinions
and observed opinions are sufficiently close to them. The
linear relation between initial and final opinions can be seen
as an approximation through linearization, with the nonlinear
contributions incorporated into the error term. Moreover, for
simplicity of exposition, we have restricted the scenario to
agents communicating in synchronous way, assuming a static
communication network. However, the model can be extended
also to asynchronous communications [4], and to influence
networks characterized by a continuous transition process
that evolve toward oligarchic forms where the social power
increasingly accumulates within a small group [3].

Future works will explore how bounds depend on network
topology and apply the proposed framework to real datasets,
comparing our approach with state-of-the-art methods.

APPENDIX

A. Proof of Lemma 1

Define A = R∗∩R, B = R∗∩S , C = S∗∩S , D = S∗∩R.
Since S ≠ S∗, B and D are nonempty. Since |S| = |S∗|, we
have |B| = |D|. From Eq. (3) and Eq. (6), respectively, we get
XB = XCΓ

∗
CB+XDΓ

∗
DB and XD = XBΓBD+XCΓCD. So,

XB −XCΓ
∗
CB = XDΓ

∗
DB = XBΓBDΓ

∗
DB +XCΓCDΓ

∗
DB ,

that can be rearranged as

XB(I − ΓBDΓ
∗
DB) = XC(Γ

∗
CB + ΓCDΓ

∗
DB) .

Since rank(XS) = |S| and B ∪ C = S, the columns of XB
and XC are linearly independent, so that the above implies

ΓBDΓ
∗
DB = I , Γ∗

CB = −ΓCDΓ
∗
DB . (11)

Now, for b in B and d in D, let γ+
b = maxi∈D Γbi , γ+

bd =
maxi∈D\{d} Γbi , γ

−
bd = mini∈D\{d} Γbi . Now, we distinguish

two cases. On the one hand, if Γ∗
cb ≥ δ, for some c in C and

b in B, then
∑

d∈D Γ∗
db ≤ 1 − δ, as Γ∗ is column stochastic.

Then, by the first equation in (11) we get

1 =
∑

d∈D
ΓbdΓ

∗
db ≤ γ+

b

∑
d∈D

Γ∗
db ≤ γ+

b (1− δ) ,

which implies that γ+
b ≥ 1/(1 − δ) = 1 + δ/(1 − δ). On

the other hand, if Γ∗
cb < δ, for every c in C and b in B,

then, by Assumption 2, every column of Γ∗
DB contains two

entries not smaller than δ, and, since |B| = |D|, so does at
least one of its rows, i.e., there exists d in D, and b ̸= i in B
such that Γ∗

db ≥ δ and Γ∗
di ≥ δ. Since Γ∗ is column stochastic,

Γ∗
−db =

∑
j ̸=d Γ

∗
jb and Γ∗

−di =
∑

j ̸=d Γ
∗
ji satisfy Γ∗

−db ≤ 1−δ
Γ∗
−di ≤ 1− δ. Moreover, the first equation in (11) yields

ΓbdΓ
∗
db + γ+

bdΓ
∗
−db ≥ 1 , ΓbdΓ

∗
di + γ−

bdΓ
∗
−di ≤ 0 . (12)

Now, if Γbd ≤ 0, then 1 ≤ ΓbdΓ
∗
db + γ+

bdΓ
∗
−db ≤ γ+

bdΓ
∗
−db ≤

γ+
bd(1−δ), so that γ+

bd ≥ 1/(1−δ) = 1+δ/(1+δ). Similarly, if
γ+
bd ≤ 0, then Γbd ≥ 1+δ/(1+δ). Conversely, if Γbd > 0 and

γ+
bd > 0, then the second inequality in Eq. (12) implies that

γ−
bd < 0. Substituting now in Eq. (12) Γ∗

−db = 1 − Γ∗
db and

Γ∗
−di = 1 − Γ∗

di, we get 1−γ+
bd(1−Γ∗

db)

Γ∗
db

≤ −γ−
bd

1−Γ∗
di

Γ∗
di

. Here
we can distinguish two cases. First, if γ+

bd ≤ 1 we retrieve
−γ−

bd
1−Γ∗

di

Γ∗
di

≥ 1 which implies −γ−
bd ≥ δ

1−δ . Second, if γ+
bd >

1 then necessarily, given that γ−
bd < 0, the following inequality

must hold −γ−
bd ≥ Γ∗

di

1−Γ∗
di

(1−γ+
bd(1−Γ∗

db))+
Γ∗
db

. Since 1 < γ+
bd ≤

1
1−Γ∗

db
, the above implies that −γ−

bd ≥ δ
1−δ .

B. Conditions for exact recovery of number of stubborn
nodes

Lemma 2: If Assumption 1 holds true, then

∥Y R∗−Y S∗Γ∗∥2 ≤ ∥Ξ∥2(1+∥Γ∗∥2) , ∥Γ∗∥2 ≤ ∆ . (13)
Proof: It follows from Eq. (3) and Eq. (4) that

∥Y R∗ − Y S∗Γ∗∥2 ≤ ∥Y R∗−XR∗∥2+∥XR∗−XS∗Γ∗∥2
+∥XS∗Γ∗ − Y S∗Γ∗∥2

≤ ∥Ξ∥2(1 + ∥Γ∗∥2) .

Moreover, ∥XR∗∥2 = ∥XS∗Γ∗∥2 ≥ σk∗(XS∗)∥Γ∗∥2 ,
where the last inequality follows from the fact that XS∗ is

left invertible and σk∗(XS∗) = ∥X−1
S∗ ∥−1

2 . Thus, ∥Γ∗∥2 ≤ ∆.

The following result determines conditions under which, for
any solution of Problem 1, the number of stubborn nodes is
not over or underestimated.

Proposition 3: Suppose Assumption 1 holds true and let
(Ŝε, Γ̂ε) be a solution of Problem 1. Then:

(i) if ε > ∥Ξ∥2(1 + ∆), then |Ŝε| ≤ k∗;
(ii) if ε < σk∗(X)− ∥Ξ∥2, then |Ŝε| ≥ k∗.

Proof: (i): It follows from Eq. (13) and the assumption
on ε in Problem 1 that ∥Y R∗ −Y S∗Γ∗∥2 ≤ ε. Consequently,
optimality of Ŝε yields |Ŝε| ≤ |S∗| = k∗.

(ii): By contradiction, assume that |Ŝε| < k∗. From char-
acterization of singular values (see Section 7.4.2 in [19]) and
Weyl’s Inequality (see (3) in [20]), we have that

∥Y R̂ε
− Y Ŝε

Γ̂ε∥2 ≥ σ|Ŝε|+1(Y ) ≥ σk∗(Y )

≥ σk∗(X)− ∥Ξ∥2 > ε .

This contradicts the assumption made on ε in Problem 1 .
Proposition 4: Let Assumption 1 and 2 be satisfied. If

∥Ξ∥2 ≤ σk∗(X)/(2(1 + ∆)) (14)
ε ∈ [∥Ξ∥2(1 + ∆), σk∗(X)− ∥Ξ∥2(1 + ∆)] (15)

then every solution (Ŝε, Γ̂ε) of Problem 1 is such that
(i) |Ŝε| = k∗.

(ii) ∥XR̂ε
−X Ŝε

Γ̂ε∥2 ≤ ε+ ∥Ξ∥2(1 + ∆)
(iii) The columns of X Ŝε

are linearly independent.
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Proof: (i) follows directly from Proposition 3.
(ii) Applying Eq. (4) and triangular inequality, we estimate:

∥XR̂ε
−X Ŝε

Γ̂ε∥2≤∥Y R̂ε
− Y Ŝε

Γ̂ε∥2 + ∥ΞR̂ε
−ΞŜε

Γ̂ε∥2
≤ε+ ∥ΞR̂ε

∥2 + ∥ΞŜε
∥2∥Γ̂ε∥2≤ε+ ∥Ξ∥2(1 + ∥Γ̂ε∥2)

≤ε+ ∥Ξ∥2(1 + ∆) ,

where the last inequality follows from the fact that since |Ŝε| =
|S∗| and given that from Lemma 2, given ε as in Eq. (15),
(S∗,Γ∗) is a feasible solution of Problem 1, then by optimality
it must hold ∥Γ̂ε∥2 ≤ ∥Γ∗∥2 ≤ ∆.

(iii) If the columns of X Ŝε
were linearly dependent, then,

∥XR̂ε
−X Ŝε

Γ̂ε∥2 ≥ σk⋆(X). This coupled with the inequal-
ity in (ii) contradicts the assumptions on ε. Finally, condition
in Eq. (14) guarantees that interval Eq. (15) is non-empty.

C. The estimation of Γ∗

Lemma 3: Suppose the assumptions in Proposition 4 to be
true, and let (Ŝε, Γ̂ε) be a solution of Problem 1, then

σk∗(X Ŝε
) ≥ σk∗(X)− ∥Ξ∥2(1 + ∆)− ε

1 + ∆
(16)

Proof: Let Z be the best rank k∗ − 1 approximation of
X Ŝε

. Characterization of singular values [19] yields ∥X Ŝε
−

Z∥2 = σk∗(X Ŝε
) . This equality and Proposition 4 - (ii) imply

σk∗(X) ≤ ∥[XR̂ε
X Ŝε

]−Z[Γ̂ε I]∥2
≤ ∥XR̂ε

−X Ŝε
Γ̂ε∥2 + ∥(X Ŝε

−Z)∥2∥[Γ̂ε I]∥2
≤ ε+ ∥Ξ∥2(1 + ∆) + σk∗(X Ŝε

)(1 + ∆).

Proposition 5: Suppose the assumptions in Proposition 4 to
be true, and let (Ŝε, Γ̂ε) be a solution of Problem 1. Then there
exists a matrix Γ̄ such that XR̂ε

= X Ŝε
Γ̄, which satisfies

∥Γ̂ε − Γ̄∥2 ≤ (1 + ∆)(ε+ ∥Ξ∥2(1 + ∆))

σk∗(X)− ∥Ξ∥2(1 + ∆)− ε
. (17)

Proof:
Existence of Γ̄ follows from the fact that, thanks to Propo-

sition 4, the rank of X is |Ŝε| = k∗ and the columns of X Ŝε

are linearly independent.
Moreover, the following series of equations holds true

Y R̂ε
− Y Ŝε

Γ̂ε = XR̂ε
+ΞR̂ε

− (X Ŝε
+ΞŜε

)Γ̂ε

= X Ŝε
Γ̄+ΞR̂ε

− (X Ŝε
+ΞŜε

)Γ̂ε ,

from which, using triangular inequality and recalling that
∥Y R∗ − Y S∗Γ∗∥2 ≤ ε, we obtain ∥X Ŝε

(Γ̄ − Γ̂ε)∥2 ≤
ε + ∥ΞR̂ε

∥2 + ∥ΞŜε
∥2∥Γ̂ε∥2. Since X Ŝε

is left invertible
and recalling that ∥Γ̂ε∥2 ≤ ∆, it follows ∥Γ̂ε − Γ̄∥2 ≤
ε+∥Ξ∥2(1+∆)

σk∗ (XŜε
) . Finally, using Eq. (16), we conclude the proof.

D. Proof of Theorem 1
Notice that all assumptions of Proposition 4 hold true due

to Eq. (8), Eq. (9) and the fact that γ ≤ 1. In particular, there
exists a matrix Γ̄ as in Proposition 5 satisfying Eq. (17). Using
the upper bound on ε in Eq. (9) inside Eq. (17), it holds

∥Γ̂ε − Γ̄∥2≤
γ(1 + ∆)σk∗(X)

(1− γ)σk∗(X)
<

δ

2(1− δ)
(18)

where last inequality follows from the way γ has been defined.
If, by contradiction, Ŝε ̸= S∗, given that from Proposition

4 X Ŝε
has linearly independent columns, then from Lemma

1 and the fact that Γ̂ε has all entries in [0, 1], we would have
∥Γ̂ε−Γ̄∥2 ≥ ∥Γ̂ε−Γ̄∥max ≥ δ

2(1−δ) contradicting Eq. (18).
Then, Ŝε = S∗. It follows that

Y R∗ − Y S∗Γ̂ε = XR∗ +ΞR∗ − (XS∗ +ΞS∗)Γ̂ε

= XS∗Γ∗ +ΞR∗ − (XS∗ +ΞS∗)Γ̂ε ,

so that ∥XS∗(Γ∗ − Γ̂ε)∥2 ≤ ε + ∥ΞR∗∥2 + ∥ΞS∗∥2∥Γ̂ε∥2 .
The fact that XS∗ is left-invertible and ∥Γ̂ε∥2 ≤ ∥Γ∗∥2 ≤ ∆
now yield Eq. (10).
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