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A B S T R A C T   

Hydrogen is considered as one of the key energy carrier for the forthcoming green transition because of its high 
energy content and harmless combustion products. Water electrolysis, powered by green electricity, is one of the 
most efficient and promising technologies for H2 production. Cheap and earth abundant metals-based electro
catalysts for Hydrogen Evolution Reaction (HER) are needed to drive a green transition based on hydrogen 
produced by water electrolysis. 

Perforated plate type Ni electrodes are prepared by a cost-effective electroforming process, designed to work 
for water electrolysis in alkaline environment in a flow-through configuration facilitating the release of bubbles 
produced by HER. The aim of this work is to synthesize a catalyst layer based on NiCuMo alloy produced by an 
electrodeposition process tailored to maximize electrocatalytic performances, increasing the electrochemical 
surface active area (more than 50 times) and its activity. HER is studied in aqueous 1 M KOH solution and an 
overpotential of only 95 mV is measured to reach 100 mA cm− 2, assessing a Tafel slope of 61 mV dec− 1. 100 h 
durability test is successfully carried out demonstrating the high chemical and mechanical stability of so- 
prepared electrodes for next generation alkaline electrolyzers.   

1. Introduction 

Hydrogen is considered one of the most crucial chemicals for the 
immediate future of global economy since it can be used as energy 
carrier, facilitating the decarbonization of modern society [1–3]. Thus, it 
is vital to adopt alternative processes for hydrogen production. Among 
these alternatives, water electrolysis receives much attention due to its 
ability to facilitate a rapid transition from a fossil fuel-based economy to 
a hydrogen-based one on a global scale. Moreover, when water elec
trolysis is powered by renewable electricity, it allows to transition to
wards a sustainable, renewable energy-driven economy [4–6]. 

Water electrolysis is a process carried out in an electrochemical cell 
and it foresees gaseous hydrogen production at the cathode (Hydrogen 
Evolution Reaction, HER) and gaseous oxygen production at the anode 
(Oxygen Evolution Reaction, OER) [7,8]. The minimum (thermody
namic) cell voltage to electrochemically split a water molecule is 1.23 V 

at room temperature, which means a change in Gibbs free energy (ΔG) 
of ~237 kJ mol− 1. Large-scale deployment of green water electrolysis 
can be achieved only by decreasing the costs of the process by, for 
example, using renewable energy or bringing down the cost of electro
lyzers. Although today green hydrogen production is still more expen
sive than blue hydrogen production (i.e. H2 produced using fossil fuels, 
with carbon capture and storage) [9], renewable energy costs continue 
to decrease. The high costs of electrolyzers are in part due to expensive 
platinum group metals (PGMs)-based electrodes used to catalyze HER 
and OER reactions with the lowest possible applied cell voltage. Alter
natively, much cheaper non-noble electrocatalytic materials could be 
used instead. For alkaline water electrolysis, nickel-based HER electro
catalysts are the most used electrode materials [10–12]. However, Ni 
does not outperform PGM-based electrocatalysts. Thus, alloying Ni with 
other transition metals (TMs) is one of the approaches to enhance Ni 
activity for HER. Ni-Co [13], Ni-Mo [14–17] and NiCuMo [18–21] have 
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been shown in previous works as the most active and stable Ni-based 
electrocatalysts. An electrocatalytic material’s performance can be 
further enhanced by increasing its electrochemical surface area (ECSA), 
i.e. the number of active sites available for the reaction. ECSA can be 
increased by optimizing the morphology of the electrocatalytic mate
rials and by a proper selection of a metal substrate hosting the catalytic 
layer. The substrate must be mechanically and chemically stable, since 
alkaline water electrolyzers commonly operate at elevated pressures and 
temperatures, with electrodes submerged in corrosive alkaline electro
lyte solution. Moreover, electrodes must be robust enough to withstand 
to the electrolyte flowing, which facilitates the release of gas bubbles 
whose accumulation otherwise causes large ohmic drop in the process 
[22–24], avoiding any possible detachment of catalyst layer with 
consequent degradation in performances during time. 

Despite the active research field, the optimization of functionalized 
Ni-based electrodes for HER is still far from being optimized. In partic
ular, a chemical formulation based on abundant and cost-effective 
metals is of outmost importance to reduce electrode costs and allow 
large-scale electrolyzer manufacturing [25]. 

In this work we exploited the possibility to use a nickel electrode 
with a tailored distribution of holes that can be easily prepared by Veco 
with the idea of optimizing in the follow up research activity to optimize 
their design to improve products degassing. The latter can be an issue 
especially with foam-type electrodes (depending on their thickness and 
on the micro-holes diameter). Notably, both foam and mesh need a 
surface functionalization to enhance their electrocatalytic activity. 
Therefore, we prepared electrodes for HER by depositing electro
catalytic material (a ternary coating containing Ni, Cu and Mo) on a 
perforated Ni plate substrate, using an optimized electrodeposition 
process to produce cost-effective, highly active and stable electrodes. 
Electrodes were characterized with Scanning Electron Microscopy 
(SEM) to study the morphology of the electrocatalytic coatings, and by 
Energy Dispersive X-ray (EDX) and X-Ray Photoelectron Spectroscopy 
(XPS) analysis to estimate the composition of the coatings. Electro
chemical performances, i.e. activity toward HER, were studied in 
aqueous 1 M KOH solution by galvanodynamic measurements and EIS 
(Electrochemical Impedance Spectroscopy). The stability of the coating 
was assessed by galvanostatic measurements (0.1 A cm− 2) in a flow- 
through cell configuration for 100 h. 

2. Materials and methods 

2.1. Electrodeposition of electrocatalysts 

Perforated Ni plate electrodes (thickness 300 μm, hole diameter 1 
mm) were provided by Veco Precision BV (The Netherlands) and used as 
a substrate for the coatings. The electrodeposition has been carried out 
in a three-electrode cell with the perforated Ni plate substrate, a plat
inum mesh and silver/silver chloride electrode (SSC, Eeq = 200 mV SHE) 
being working, counter and reference electrode, respectively. Ni sub
strate was first ultrasonically cleaned in 5 M HCl aqueous solution (10 
min treatment), then cleaned with milliQ water and, finally, dried in air. 
Electrodeposition bath consisted of an aqueous solution containing Ni- 
based (0.5 M NiSO4) and Cu-based (12.5 mM CuSO4) salts, boric acid 
(H3BO3, concentration: 0.5 M) with varying Mo-based salt 
(NH4)6Mo7O24 concentration (i.e. 0.014 M, 0.028 M, 0.042 M or 0.056 
M). Solution pH was brought to 2.5 by adding of H2SO4. Catalytic layer 
electrodeposition was performed with a VERSASTAT 3 potentiostat at 
electrode potential = − 2 V Ag/AgCl (deposition time: 10 min) at Troom. 
Electrocatalyst layers with ternary coatings were called NiCuMo14, 
NiCuMo28, NiCuMo42 and NiCuMo56 depending on Mo ions concen
tration in the electrodeposition electrolyte. 

2.2. Electrochemical measurements 

Electrochemical measurements have been executed through a 

PARSTAT 2263. Any further treatments were carried out on as-prepared 
electrode obtained by electrodeposition. Geometric area of the elec
trodes was 2 cm2. In these measurements, mercury/mercuric oxide/1 M 
NaOH electrode was used as reference. Electrode potential values were 
converted to Reversible Hydrogen Electrode (RHE) through the 
following expression:  

ERHE = EHg/HgO + 0.098 V + 0.059 pH                                           (1) 

Double Layer capacitance was estimated by recording EIS spectra at 
0.13 V RHE (frequency: 100 mHz–100 kHz, ac signal amplitude: 0.01 V) 
in neutral electrolyte (0.1 M ammonium biborate tetrahydrate aqueous 
solution, ABE, (NH4)2B4O7 × 4H2O, pH ~ 9) in a N2-saturated 
atmosphere. 

To have information about the electrochemical performances, EIS 
spectra with the same settings were also carried out at − 0.15 V RHE in 1 
M KOH. Impedance spectra have been modelled through the software 
ZSimpWin using a proper equivalent electrical circuit (EEC), as reported 
below. 

Linear sweep galvanodynamic measurements were performed at 
0.001 A cm− 2 s− 1 between − 0.001 and − 0.1 A cm− 2, with 95% IR drop 
correction. The stability of the coatings was evaluated by galvanostatic 
measurements (0.1 A cm− 2, t = 100 h) but in a flow-through cell 
configuration with a flow rate of 420 mL min− 1. EIS spectra were 
recorded at − 0.15 V RHE during the stability test at 25, 50, 75 and 100 
h. 

2.3. Morphological and structural characterization 

Electrodes’ morphology was studied by using a FEI Quanta 200 FEG 
SEM (Scanning Electron Microscope) (operating at 30 kV), joined to an 
X-ray energy dispersive system (EDX). A PanAnalytical Empyrean 
diffractometer with a Cu Kα anode (λ = 0.15405 nm) equipped with 
PIXCel1D detector was used to perform X-ray diffraction (XRD) mea
surements. The XRD patterns were collected over the 2θ angle range of 
30◦–80◦ using as operating conditions 40 kV and 40 mA. 

Electrocatalysts surface composition was studied by X-ray Photo
electron Spectroscopy (XPS) analysis, carried out with a PHI 5000 
VersaProbe II scanning microprobe (ULVAC-PHI), using a Al Kα source 
(1486.6 eV) and a X-ray beam of 100 μm diameter. A take-off angle of 
the emitted photoelectrons of 45◦ relative to the surface was used. 
Fitting procedure was carried out using MultiPak 9.9.0.8 software 
(ULVAC-PHI, Inc.), using Gauss-Lorentz model for peaks, an asymmet
rical line shape for metallic species and a Shirley background. 

2.4. Inductively Coupled Plasma-Optical Emission Spectroscopy 

To estimate metal ions release to the testing solution during stability 
test, Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- 
OES) tests (PerkinElmer Inc.-Optima 2100 DV) were performed. A 
calibration with 0 (ultrapure water), 5, 10, 50, 100, 200, 500, 1000 ppb 
of Ni, Cu and Mo standard solution was carried out. Samplings were 
carried out at 25, 50, 75, 100 h. 

3. Results and discussion 

Ni substrate morphology is shown in Fig. 1. 
Electrocatalyst layers for HER reaction were prepared by an elec

trodeposition route that allowed to deposit NiCuMo-based coatings on 
the surface of Ni substrates. Briefly, Ni, Cu and Mo are electrodeposited 
on the Ni substrate by applying a potential during the electrodeposition 
process (see experimental section) that is more cathodic than the equi
librium potential value for the reduction reaction of metal ions at pH =
2.5 [18,26]. The latter was set to 2.5 because working at higher pH can 
induce the precipitation of metal oxide/hydroxide at the electro
de/electrolyte interface due to the low solubility products at high pH 
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(see the Pourbaix diagrams for Ni, Cu and Mo [26]). Notably, under so 
strong cathodic polarization, hydrogen evolution can also occurs 
inducing a local pH increase on the electrode surface which can induce 
the deposition of the oxides due to electrogeneration of base. Setting pH 
= 2.5 and adding boric acid to the electrodeposition bath led to maintain 
acidic pH conditions at the electrode/electrolyte allowing the successful 

electrodeposition of metal species. To understand the effect of each 
metal on the catalyst activity, as well as any synergistic effect between 
Ni, Cu and Mo in improving HER performance, we synthesized coatings 
using pure metals (Ni, Cu, and Mo), binary mixtures (NiCu, NiMo, and 
CuMo), and ternary (NiCuMo) mixture. In the latter case (NiCuMo 
coating), several Mo molar concentrations in electrodeposition bath 
were investigated in order to maximize the electrocatalyst performance, 
i.e. to minimize the cathode overpotential at 100 mA cm− 2 (η100). 

SEM images reported in Figs. S1–S3 show the morphologies of the 
coatings of pure metals, Ni, Cu and Mo, respectively. These SEM images 
demonstrated that the electrodeposition was successful. Moreover, EDX 
analyses confirmed the presence of Ni, Cu and Mo in the coating, 
depending on the electrodeposition bath composition. Notably, 
regardless of the coating composition, all the deposits were homoge
neous throughout the whole substrate surface. Whilst Ni and Mo de
posits are quite compact (see Figs. S1 and S3), Cu deposits have a higher 
roughness since the coating is formed by thin metallic needles (see 
Fig. S2). This indicates a significantly higher surface area of Cu coating 
with respect to Ni and Mo-based coatings. The influence of Cu increase 
on the ECSA can be also assessed by looking at the morphology of binary 

Fig. 1. SEM images of perforated plate type Ni electrode at different 
magnifications. 

Fig. 2. Micrographs of NiCu coating on Ni substrate (a and b), of CuMo coating (c and d) and of NiMo coating (e and f) at different magnifications.  

F. Di Franco et al.                                                                                                                                                                                                                              



International Journal of Hydrogen Energy 70 (2024) 548–556

551

coatings. In fact, NiCu and CuMo electrodes’ morphology is formed by 
clusters of nanoparticles (see Fig. 2a)-d)) even if the coatings deposited 
in these process conditions are not homogeneous (see Figs. S4 and S5). 

The morphology of the NiMo coating is very similar to the 
morphology of the pure Mo coating (see Fig. S3) i.e. a compact deposit 
with lower surface area with respect to the other binary coatings. 
Morphologies of ternary coatings are shown in SEM images reported in 
Fig. 3 and Fig. S6 as a function of Mo molar concentration in electro
deposition bath. Regardless on Mo concentration, all the coatings are 
formed by particles, whose diameter depends on the composition of the 
electrodeposition bath, i.e. 1.1 ± 0.3 μm and 0.8 ± 0.25 μm for 
NiCuMo14 and NiCuMo42 coatings, respectively. High surface area is 
likely due to the presence of Cu, in agreement with the morphology of 
the pure Cu coating and all Cu-containing binary coatings. 

To further confirm the successful electrodeposition of Ni, Cu, Mo, 
binary and ternary metallic mixtures, we also analyzed the samples 
using XRD, whose data are reported in Fig. 4. 

All the samples, regardless on specific coating composition, are 
characterized by three main reflections related to the Ni substrate, i.e. 
2θ = 44.4◦, 51.3◦, and 76.4◦, matching (111), (200), and (220) planes, 
respectively, of face-centered cubic crystalline structure [18]. Adding Cu 
in the coating, mentioned reflections are shifted toward lower diffrac
tion angle, since Cu atomic radius (1.278 Å) is higher than Ni atomic 
radius (1.245 Å) causing an expansion of Ni lattice [27,28]. The 
shoulder present at the base of (200) plane reflection is influenced from 
both Cu and Mo presence, as it is possible to note from the XRD patterns 
related to NiCu, NiMo and NiCuMo42 sample. To have a better picture of 
crystalline structure of investigated samples, we also carried out the 
electrodeposition processes on glass/FTO substrate [29] in the attempt 
to avoid recording the reflections coming from the Ni substrate and to 
have flat layers (see Fig. S7). Pure Ni coating is crystalline since Ni main 
reflections (see before) add to glass/FTO reflections. In the case of NiCu 
sample, shoulder peaks appear at the base of pure Ni sample (111) and 
(200) reflections, leading to the conclusion of a partial formation of 
NiCu alloy [30]. Addition effect of Mo in the coating is represented by 
the XRD pattern of NiCuMo42 sample electrodeposited on glass/FTO 
substrate. As it is possible to note, all the main reflections of pure Ni 
disappear, suggesting a highly disordered or poor crystalline structure. 
Moreover, no characteristic reflections of Mo or NiMo samples are 
detected, indicating that Mo atoms are probably dissolved into the lat
tice of Ni. A small and broad peak at ~43.5◦ was detected, which further 

suggests the poor crystallization of metallic Ni coating in spite Mo 
co-deposition. 

Elemental composition of NiCu and of Mo-containing electrodes’ 
surfaces was determined using XPS, whose survey scans are reported in 
Fig. 5a). XPS analysis of representative NiCuMo42 sample was shown 
where Ni 2p, Mo 3d and Cu 2p core level spectra are reported in Fig. 5b), 
c) and 5d), respectively. 

Core level peak at 856.1 eV present in Ni 2p spectrum (see Fig. 5b)) is 
related to NiOOH species (i.e. Ni(III)) [31–33], probably derived from 
the oxidation of Ni contained in the coating due to air exposure. The 
formation of an oxyhydroxide could be also due to the local alkalin
ization of the environment close to the electrode surface during the 
electrodeposition due to hydrogen evolution. A small peak can be 
observed at 862.6 eV also due to the presence of NiOOH species [31–33]. 
In Fig. 5d) the Cu 2p core level spectrum exhibits a main peak at 932.2 
eV, which is related to metallic Cu, and another two small peaks at 
934.9 eV and 944.7 eV related to Cu(II) species [34–36]. Regarding Mo, 
as shown in Fig. 5c), two peaks are present, at 232.2 eV and 235.3 eV, 
both related to the oxidation of Mo to MoOx. In Table 1 we reported the 
estimated surface composition of discussed samples. 

The presence on the surface of oxidized species can be explained 
taking into account the formation of a thin passive layer on the samples 
[18]. Anyway, this phenomenon does not influence the activity of the 
electrodes (see below the electrochemical performances), since they 
work under cathodic polarization to activate HER, leading to the elec
trochemical reduction of the passive layer annulling the effect of air 
exposure on the samples. 

3.1. Estimate of Electrochemical Active Surface Area 

To further investigate the active area of the electrodeposited coat
ings, we estimated the Electrochemical Active Surface Area (ECSA), i.e. 
the electrode area that effectively contributes to the target reaction. 
ECSA estimate can be done by measuring electrodes’ double layer 
capacitance, Cdl. For that, testing conditions were chosen to measure 
only non-Faradaic current, i.e. that related to the charging of double 
layer at electrode/electrolyte interface [37]. Subsequently, EIS spectra 
were recorded at 0.13 V RHE (− 0.6 V SSC) electrode potential to ther
modynamically avoid HER and also oxygen evolution reaction (OER), in 
an O2-free environment to avoid the possible oxygen reduction reaction 
(ORR). EIS spectra for ternary coating are shown in Fig. 6a), and for Ni 
substrate, mono and binary coatings in Fig. S8. Furthermore, in Fig. 6b) 
equivalent electrical circuit used to fit the impedance data is reported. 
The circuit constitutes of a resistor Rel and a resistor Rct in parallel with a 
constant phase element (CPE) Qdl, where Rel represents the electrolyte 
resistance, Rct the charge transfer resistance, and Qdl the non-ideal 
double layer capacitance. Spectra fitting parameters are reported in 
Table 2. 

Fig. 3. SEM images of NiCuMo14 coating on Ni substrate (a and b) and of 
NiCuMo42 coating (c and d) at different magnifications. 

Fig. 4. XRD diffraction patterns of Ni substrate and several electrodeposited 
coatings (Cu, NiCu, NiMo and NiCuMo42). 
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It can be noted that Rct is, in any case, higher than 900 Ω cm2, as 
expected in these operating conditions, showing the behaviour of an 
ideally polarizable interface. To estimate the effective double layer 
capacitance from the CPE value, we used the following relationship 

[38]: 

Cdl =Qdl
1/nRel

(1− n)/n (2) 

By knowing electrodes’ Cdl values, it is possible to estimate the 
roughness factor, r, as an indication of the ECSA by the following 
relationship: 

r=
Cdl

40 μF cm− 2 (3) 

considering as reference value 40 μF cm− 2, that is the double layer 
capacitance value we measured for a flat mirror-finished Ni sample. All 
the roughness factors estimated for initial Ni substrate and for ternary 
coatings are reported in Table 3, whilst those estimated for the other 
coatings are reported in Table S2. 

The pristine Ni substrate has r = 0.8 due to the presence of holes 
whilst electrodeposited electrodes have a higher r, with NiCuMo56 
electrode showing more than a 100-fold increase in ECSA with respect to 
initial substrate. This result is in agreement with information collected 
by SEM images, i.e. a higher surface area of ternary coating electrodes 
due to the formation of particles clusters during the electrodeposition 
process. It is noteworthy to mention that a higher ECSA is beneficial for 
an improvement in HER performance, increasing the activity of the 
electrodes [39–41]. 

3.2. Evaluation of the electrocatalytic performance of the electrodes 

Electrocatalytic performance of electrodeposited NiCuMo on Ni 
substrate toward HER in alkaline environment (1 M KOH) was studied 
by galvanodynamic measurements and by recording EIS spectra. For 
these measurements, a typical three-electrode setup was used where 
NiCuMo electrode was the working electrode. Regardless on reference 
electrode used for the electrochemical characterization, all the electrode 
potential values are referred to RHE (see eq. (1)). Fig. 7a) shows current 
density vs electrode potential curves recorded with bare Ni substrate, 
NiCu electrode and all the electrodes with ternary coatings, corrected 
with 95% IR drop. 

Ni substrate reported worst performance in terms of overpotential 
needed for the activation of HER. In fact, to reach a current density value 
of 10 mA cm− 2 and 100 mA cm− 2, 330 mV and 480 mV are needed, 
respectively. Better performances were reached with the addition of Cu, 
leading to cathodic overpotential of η10 = 280 mV and η100 = 390 mV (at 
corresponding current densities of 10 mA cm− 2 and 100 mA cm− 2, 

Fig. 5. a) XPS survey scans of NiCu and of Mo-containing samples. b) Ni 2p, c) Mo 3d and d) Cu 2p core level spectra of representative NiCuMo42 sample.  

Table 1 
Elemental composition of NiCu and of Mo-containing samples estimated by XPS. 
Balance at.% is related to adventitious carbon.  

Sample O [at%] Ni [at%] Cu [at%] Mo [at%] 

NiCu 48.3 15.4 21.6 – 
NiCuMo14 67.1 8.8 15.2 5.3 
NiCuMo28 64.6 11.5 6.0 7.0 
NiCuMo42 58.0 5.9 5.0 13.7 
NiCuMo56 62.3 2.8 6.4 14.1  

Fig. 6. a) Nyquist plot of the EIS spectra recorded at 0.13 V RHE in 0.1 M ABE. 
b) Electrical circuit used for modelling and fitting EIS spectra. 

Table 2 
Fitting parameters of EIS spectra recorded at 0.13 V RHE in 0.1 M ABE related to 
all the ternary coating electrodes.  

Sample Rel [Ω cm2] Qdl [S sn cm− 2] n Rct [Ω cm2] 

NiCuMo14 30 2.9 10− 3 0.71 970 
NiCuMo28 40 2.8 10− 3 0.81 1060 
NiCuMo42 22 4.6 10− 3 0.77 900 
NiCuMo56 30 6.2 10− 3 0.82 1040  
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respectively). The addition of Mo further enhances HER performance. In 
particular, as shown in Fig. 7a), best performance is reached with 
NiCuMo42 electrode, especially at high current densities, with a η100 =

95 mV. The cathodic overpotential at 10 mA cm− 2 (η10 = 36 mV) is 
similar or lower [42] than values previously reported in the literature for 
HER electrocatalysts in alkaline solutions. Moreover, η10 and η100 values 
are lower with respect to other Ni-based electrocatalysts (e.g. Ni phos
phides, Ni chalcogenides, Ni nitrides, Ni carbides and Ni borides), pro
duced through different synthesis ways, tested in alkaline environment 
[12]. All η10 and η100 values estimated with galvanodynamic measure
ments are reported in Table 4. 

Mono and binary electrocatalysts showed worse overall perfor
mances than ternary (Mo-containing) electrodes, as reported in Fig. S9. 

Fig. 7b shows Tafel plots (η vs log(i) plot) derived from polarization 
curves reported in Fig. 7a. Slope of Tafel line is an important kinetic 
parameter since it is related to the reaction mechanism, identifying what 
is the rate determining step of the overall mechanism. The HER reaction 
can be written in two steps. 

First step: 

H2O+M+ e − ↔ M − H ∗ +OH − b=29 mV dec− 1 (4) 

Second step: 

H2O+M − H ∗ + e − ↔ H2+M+OH − b= 39 mV dec− 1

(5)  

2M − H ∗ ↔ 2M+H2 b= 116 mV dec− 1 (6) 

Depending on the Tafel slope, Volmer step (hydrogen adsorption, see 
eq. (4)), Heyrovsky step (electrochemical hydrogen desorption, see eq. 
(5)) or Tafel step (reaction of two adsorbed hydrogen atoms, see eq. (6)) 

can be identified as rate determining step [43]. Moreover, the lower the 
Tafel slope, the lower is the overpotential needed to deliver a certain 
current density value, i.e. the electrocatalytic activity of the electrode is 
increased. Tafel slope of Ni substrate is 156 mV dec− 1 whilst the lowest 
Tafel slope value is reported for the reaction carried out with NiCuMo42 
electrode, namely 61 mV dec− 1. Notably, Mo and NiMo-based electrodes 
showed low Tafel slopes (63 and 69 mV dec− 1, see Fig. S9) demon
strating the beneficial effect of Mo in improving HER performance, even 
though these electrodes have higher onset overpotential values, there
fore η10 and η100 values. It is noteworthy to mention that the increase in 
electrochemical performance of Mo-based electrodes is also surely 
related to the higher estimated ECSA with respect to that estimated for 
bare Ni substrate, highlighting the synergistical effect of composition 
and morphology in obtaining highly active electrodes. 

To gain more insight about HER kinetics, we also recorded EIS 
spectra at − 0.15 V RHE to have information about the charge transfer 
resistance. EIS spectra are reported in Fig. 8 in Nyquist representation, 
and they were modelled and fitted considering the electrical circuit re
ported in Fig. 6b). 

Lowest Rct was estimated for NiCuMo42 electrode (0.4 Ω cm2), in 
agreement with what observed from polarization curves shown in 
Fig. 7a), whilst the highest Rct (the lowest electrocatalytic activity) was 
estimated for perforated plate type Ni electrode, i.e. 600 Ω cm2 (see 
Fig. S10). Therefore, our strategy to maximize electrochemical perfor
mance of the electrodes for HER was synthesizing Ni-based electrode 
and, at the same time, increasing ECSA by adding Cu to the coating and 
optimizing Mo content to maximize the intrinsic electrocatalytic activ
ity. This is also in agreement with the Brewer-Engel valence-bond the
ory, i.e. metals having empty or half-filled d-orbitals (e.g. Mo) alloyed 
with metals (e.g. Ni) having internally paired d-electrons (which would 
not be available for bonding) have electrocatalytic activity toward HER 
higher than single metal electrocatalytic activity [44]. Moreover, Cu 
shows weak M − H bond whilst Mo shows strong M − H bond, allowing a 
good compromise with an improvement of electrocatalytic activity. 

3.3. Investigation of coating stability via long-run tests 

Besides the electrocatalytic activity, another crucial parameter to 
have efficient electrodes is the stability of the coating. To test the long- 
term stability of the best performing electrode (NiCuMo42), we carried 
out galvanostatic measurements at 0.1 A cm− 2 for 100 h in 1 M KOH 

Table 3 
Roughness factor of Ni substrate and all the electrodes with ternary coatings produced by electrodeposition process on Ni substrate.   

Ni substrate NiCuMo14 electrode NiCuMo28 electrode NiCuMo42 electrode NiCuMo56 electrode 

Roughness factor r 0.8 27 42 57 105  

Fig. 7. a) Polarization curves recorded in 1 M KOH for several electrodes with 95% IR drop correction (including pristine Ni substrate). b) Tafel plot with corre
sponding slope values. Benchmark: Pt/C [29]. 

Table 4 
η10 and η100 values of Ni substrate, NiCu and all the electrodes with ternary 
coatings produced by electrodeposition process on Ni substrate.  

Sample η10 [mV] η100 [mV] 

Ni substrate 330 480 
NiCu 280 390 
NiCuMo14 43 150 
NiCuMo28 35 110 
NiCuMo42 36 95 
NiCuMo56 38 120  
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electrolyte. Resulting electrode potential vs time curve is shown in 
Fig. 9a. 

We carried out stability test in a flow cell to mimic industrial elec
trolyzers which have defined flow conditions, and consequently to check 
the adhesion of our catalyst layer when it is exposed to an electrolyte 
flow. For optimized bubble management, we opted for a flow-through 
electrolyte flow configuration where the electrolyte flow path goes 
through the electrode (from its back side to its front side), thus flushing 
the produced gas bubbles from the electrode. After an initial increase in 
overpotential (first 20 h), no significant degradation in electrocatalytic 
performance was observed, proving the good stability of the electrode. 
To further study the stability of the electrode, we also recorded EIS 
spectra at − 0.15 V RHE every 25 h of stability test, that are shown in 
Fig. 9b). Impedance spectra fitting parameters are reported in Table 5. 

Notably, with time there was a decrease of the double layer capaci
tance (considering that the n exponent of the CPE element is almost 
constant with time) and an increase in Rct value. These two parameters 
can be considered as the result of a decrease in ECSA during the stability 
test. This effect can be also assessed from the SEM image reported in 
Fig. 10 where electrode morphology after long-term stability test is 
shown. Although electrocatalyst layer morphology changed, such 
change did not significantly compromise the electrocatalytic activity of 
the electrode. 

Regarding electrode stability, it is important to understand if during 
operating and shutdown conditions of the electrolyser some of the 

metallic components of electrocatalytic layer could be lost by dissolu
tion. To this aim, we analyzed samples of the solution where we carried 
out stability test by ICP-OES. Whilst Ni and Cu content in the solution 
were totally negligible, Mo content was detected proving a slow disso
lution rate, with a maximum content of Mo equal to 2.1 ppm and a 
release rate of 0.0435 mg cm− 2 h− 1, also proving the high durability of 
the electrode. 

4. Conclusions 

In this work, functionalized Ni-based electrodes to be used as cath
odes in alkaline electrolyzers were prepared and characterized. Catalyst 
layers were composed of Ni, Cu and Mo-based coatings prepared by a 
one step electrodeposition process, easily scalable at the industrial level. 
The effect of every single coating component on the ECSA and on the 
catalytic activity of the electrodes was evaluated by electrochemical 
investigation and imaging. Our results showed NiCuMo42 to be the best 
of the tested catalyst compositions, having a cathodic overpotential of 
36 mV at 10 mA cm− 2, and 95 mV at 100 mA cm− 2 which is one of the 
lowest overpotential values reported in literature for PGM-free elec
trodes for HER. 

The electrode sustained its electrocatalytic performance throughout 
a 100 h long durability test, even if with a slight increase in over
potential value, including a good chemical stability since Ni and Cu 
content in the electrolyte after the test were negligible, whilst Mo 
dissolution was detected but with a low rate. Notably, our tests were 
carried out with the electrolyte flowing through the electrode, further 
proving the good adhesion and stability of the coating. 

Fig. 8. Nyquist plot of EIS spectra recorded at − 0.15 V RHE for the ternary 
coating electrodes. 

Fig. 9. a) Potential vs time curve related to stability test at 0.1 A cm− 2. b) EIS spectra recorded after every 25 h during stability test.  

Table 5 
Fitting parameters of EIS spectra recorded at − 0.15 V RHE in 1 M KOH related to 
NiCuMo42 electrode at different times of stability test.  

Time [h] Rel [Ω cm2] Qdl [S sn cm− 2] n Rct [Ω cm2] 

25 1.4 4.2 10− 2 0.72 4.95 
50 1.7 4.0 10− 2 0.76 6.51 
75 1.7 3.4 10− 2 0.73 6.80 
100 1.9 3.1 10− 2 0.72 8.35  

Fig. 10. SEM images of NiCuMo42 electrode after 100 h of stability test at 
different magnifications (a and b). 
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An optimized catalyst layer led to very high performances, 
combining the presence of PGM-free elements with a high electro
chemical activity, which are crucial characteristics for next-generation 
zero-gap alkaline electrolyzers. Future works should be focused on 
further optimization of Ni substrate geometry, electrocatalyst compo
sition and on the accelerated stress testing under industrially-relevant 
conditions. 
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