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Cellular Potts models are broadly applied across developmental biology and cancer research. We
overcome limitations of the traditional approach, which reinterprets a modified Metropolis sampling as
ad hoc dynamics, by introducing a physical timescale through Poissonian kinetics and by applying
principles of stochastic thermodynamics to separate thermal and relaxation effects from athermal noise and
nonconservative forces. Our method accurately describes cell-sorting dynamics in mouse-embryo
development and identifies the distinct contributions of nonequilibrium processes, e.g., cell growth and

active fluctuations.

DOI: 10.1103/PhysRevLett.132.248401

The dynamics of many nonequilibrium systems
can be described by a time-dependent phenomenological
Hamiltonian which actively controls transitions through a
sequence of target states. Widely adopted frameworks of
vertex, cellular Potts, and other methods rely on this
effective energy-based principle to explain spatial organi-
zation in living systems [1-11].

Whereas the optimum of the system’s energy specifies a
target state of such an active transformation, the unfolding
of the modeled process in time is determined by its kinetic
parameters. In vertex or subcellular-element models with a
continuous phase space, these parameters correspond to the
transport properties—the damping coefficients. However,
the traditional cellular Potts models (CPMs), whose dis-
crete-state dynamics are implemented by a modified
Metropolis sampling, lack an explicit control over such
kinetic parameters.

Transport properties and the timescales they control are
especially important when multiple processes evolve inter-
dependently. In the course of embryonic development,
numerous cellular and tissue-level processes require precise
mutual coordination [12]. For example, the sorting of cell
types in the early mouse embryo must be completed before
the subsequent morphogenetic events commence [13,14].
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To introduce kinetic parameters into CPMs we invoke
the theory of stochastic thermodynamics [15,16], which
comprehensively describes discrete-state physical proc-
esses driven by changes of free energy. As shown further,
the transport properties control the system’s frenetic activ-
ity [17], which constitutes the time-symmetric component
of a stochastic action—the complement of entropic
changes of a system’s trajectory.

While being less demanding than the subcellular-
element method, CPMs can treat composite materials
and describe more intricate shapes than vertex models
[4,18-21]. Each cell in three dimensions corresponds
to a contiguous collection of voxels with the same “spin”
value—Ilabels distinguishing individual objects in the
system [Fig. 1(a)].

CPMs were first introduced by Graner and Glazier [4] to
study how differences of surface energy between homo-
typic and heterotypic contacts cause cell sorting in develop-
ment. Using the modified Metropolis algorithm they found
that clusters of cells emerge in a typical configuration
favored by the system’s energy function

Jij(6;,0}) Ke(Vi — Vi)?
E:ZT+;f’ (1)
ij

in which the first sum runs over spin pairs ¢; and ¢; with
symmetric coefficients J;;(0;,0;) = J;(6;,0;) encoding
the surface interactions, whereas the second term penalizes
deviations of the volume V, of the kth cell from its

preferred value V. Usually J;;(0;, 6;) are identically zero

Published by the American Physical Society
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FIG. 1. (a) Schematic of a CPM: simply connected regions of a
voxel grid with “spin” values 1 (green) and 2 (red) represent two
cells in a medium with value 0. (b) Poissonian dynamics of three
Ising spins 6 = (6, 65, 63): the system’s configuration &(f) may
change within a small time df into one of the target states (¢, 6",
6""), which differ from the original one by the value of a single
spin o0;_;,3, because Poissonian events never occur simulta-
neously.

unless the spins o; and o; are in direct contact. As the
method of Graner and Glazier [4] evolved beyond a mere
proof of concept, it was further generalized to include
nonequilibrium aspects, such as cell division and active
motility [4,11,18-38].

The modified Metropolis algorithm of modern CPMs is
not the most general kinetic model for discrete systems
[39-43] and has limitations [29,44]. In fact, the Metropolis
scheme was originally designed to bypass slow simulations
of systems’ dynamics when sampling equilibrium ensem-
bles ([45,46], Chap. 7). Since the early days of CPMs,
questions have therefore been raised regarding the inter-
pretation of time, temperature, dissipation effects, and
nonequilibrium aspects of this approach [44].

As discrete-state Markovian systems, which describe
continuous-time physical phenomena, CPMs can be most
naturally regarded as Poissonian processes ([47], Sec. 1).
The framework proposed here leverages this result of
queuing theory [59] to address the above questions.
Through Poissonian kinetics and stochastic thermodynam-
ics we introduce interpretable time and energy scales,
account for response coefficients and forces not incorpo-
rated in the Hamiltonian, and finally separate thermal and
athermal fluctuations.

Framework.—As an illustration of our approach we first
consider a paradigmatic example of discrete systems
and a special case of the Potts model [60]—an Ising
chain 6 = (0, 0,,...,0y) with nearest-neighbor inter-
actions. Arranged on a one-dimensional lattice, N spins
6i—12..nE{-1.1} with a periodic boundary condition
on41 = o are described by the Hamiltonian

N.J
H= ZEGiUHI
pn

with an interaction constant J.

To define dynamics of the Ising chain we assume that
each spin flips its sign with a Poissonian transition rate
k;(¢), which in general depends on the current state &
[Fig. 1(b)]. Within a sufficiently small time dt at most one
spin can change its value. In equilibrium, the detailed-
balance condition for such a spin o; requires

exp [— hl;(g"T)] ki(07) = exp {— H}E;;")] k(=) (2)

in which H(o;) and k;(o;) are, respectively, the spin’s
energy and transition rate, given the values of ¢;,;. From
Eq. (2) it follows then

5 3

y TP [ ks T
with AH(—Gl) = H(—Ui) - H(Gi).

The chain’s stochastic kinetics is then given by a master
equation, once a common factor between k;(o;) and
ki(—o;) in Eq. (3) is specified [39,61-63]. In a general
context each spin may be characterized by a state-
dependent action rate a;(o;), which determines the prob-
ability

1- e_“"("")d’ ~ a,-(a,-)dt

for the ith spin to attempt a sign change. When such an
attempt occurs, the transition probability p(c; — o}) is
determined by a directing function L(c}) with a normali-
zation constant Z [64]

4)

For the two possible outcomes—no change, ¢} = o;, and a
transition, ¢ = —o,—the normalization constant expands

to Z = el(9) 4 ¢L(=%) and Eq. (4) yields

1
ploi = 0;) = m, (5)
eAL(_"i)
ploi = —0;) = mv (6)

with AL(—0;) = L(—0;) — L(0;). With the transition rate
given by the product of the attempt rate and the transition
probability

we find from Eq. (3)
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FIG. 2. Simulations of an Ising chain with N = 10 spins. (a) Distribution of the total energy in the canonical ensemble at T = 2J/ kg
(J = 1 arb. units). Tau-leap simulations in discrete time (DT, dt = 10~ arb. units) match the exact distribution (theory); p value of the
multinomial test 0.997 [66,67]. The continuous-time simulations (CT) and the Metropolis algorithm (MA) produce comparable results
(p values 0.966 and 0.986, respectively). In the DT and CT models the chain is inhomogeneous with action rates (a,;,; = 0.1 for the odd
indices, a,; = 0.3 arb. units for the even). Error bars are given by three standard deviations of 10 realizations. (b) Relaxation of the
chain energy between two equilibrium states with average values (H), and (H), at temperatures T (¢ < ty) = T, = 1.8]J| and
T(t> 1)) =Ty + AT = 2.0|J|/kg, respectively (J = —1 arb. units). The results of MA sampling are reported alongside the CT
simulations of a slow (a,; = 0.05 and a,;,; = 0.08 arb. units) and fast (ay; = 0.5 and a,;,; = 0.7 arb. units) kinetics. Each curve traces

an average over 107 trajectories with a standard-error band.

Mol

a;(0;) P {_ kgT

A complete specification of the Ising chain now requires
both the Hamiltonian and the spins’ action rates. Such a
system can be simulated exactly in continuous time by the
standard techniques for master equations, or approximately
by using a tau-leap algorithm with a step dr [65].

The action rates do not compromise the canonical
distribution of the Ising chain in equilibrium [Fig. 2(a)].
These parameters control the unfolding of dynamical
processes, such as relaxation of transients. For example,
chains with larger action rates, initially prepared in equi-
librium at temperature 7, and subject to a sudden tempe-
rature change AT, relax to the new steady state faster
[Fig. 2(b)]. By design, the Metropolis scheme renders
samples of the target equilibrium ensemble after a very
short transient trajectory, which cannot be controlled by
algorithmic or system parameters.

Model analysis.—To analyze the Poissonian dynamics of
the Ising chain we apply the theory of stochastic thermo-
dynamics. Any given trajectory of the system € from an
initial state 6° to a final state 6™ can be decomposed into a
sequence of M elementary paths

9 - TMTM—I"'TI'

Each path 7 consists of n quiescent intervals of arbitrarily
small time dt in the same configuration o, followed by a
sign change of the ith spin which produces the next state ¢”.
The probability of this change is p; ~ k;(o;)dt, whereas the
probability of the quiescent period lasting n steps is

q, = [1 - dtzjkj(d)} "~ e_"dfzjk-"<”). 9)

With these definitions, the probability of the elementary
path from a given initial condition is

p(Tle) = q,pi- (10)

Now we can decompose the stochastic action A of the
elementary path into the entropic and frenetic components
[17] AS and D, respectively:

A

(11)

1
—kgInp(T|o) =D - EAS'

Indeed, the probability of a time-reverse trajectory 7—a
change of the ith spin conditioned on the initial configu-
ration ¢’ and followed by n quiescent steps—is

p(Tle') = piq,, (12)

in which p/ ~ k;(—o;)dt. Because of Egs. (7) and (8) the
time-asymmetric part of the action yields

p(Tlo’)
=yt =BT )

The time-symmetric part renders a more involved expres-
sion approximated by
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kg

D= [p(Tlo)p(Tle")] » ~ndky ) _k;(c)

+ kg In[\/k;(0;)k;(—0;)d1] (14)

for small dr. The total action of the whole trajectory is
A0) =S A(T,,) with the components

AS(O) = 1 {HIG" - (")), (19)
D(6) = Z D(T,,). (16)

Without compromising the entropic activity, action rates
control the system’s frenesy through transition rates k;,
cf. Egs (7), (14), and (16). The entropy change of a
relaxation process is entirely determined by the energy
difference between the initial and final configurations of the
system [Eq. (13), Fig. 2(b)]. In contrast, the frenesy
depends on the kinetics of each state transition in a system’s
trajectory.

Poissonian cellular Potts models.—We now construct a
three-dimensional Poissonian CPM [68]. Voxels on a cubic
lattice describe the state of K distinct cells and a medium,
taking values ; € {0, 1,2, ..., K} (Fig. 1). The coefficients
Jij(0;,0;) in Eq. (1) vanish when voxels i and j are both
occupied by the same object, or when the voxel i is not
within the Moore neighborhood of the voxel j [29].
Otherwise, J;; assume constant positive values encoding
the surface interactions between objects.

For each of the total v object types, our framework
introduces a Poissonian state-dependent action rate
a(o;) €{ay, ay, ...,a,}, with which an ith voxel attempts
to change its current value o;. Its possible target values o'gj )
are chosen from the Von Neumann neighborhood like in the
standard CPMs [29], with the transition probabilities given
by a general version of Egs. (4) and (8)

Gy _ et
p(o'i - 0; ) = e (17)
AL(o:
5 oAl
AL(G(])) a(at(J)> ex H(Gt(j)) B H(O-i> (18)
e i = _
a(o;) P kgT

Temperature in traditional CPMs is a fictitious parameter
manipulated to adjust the level of fluctuations [69]. In
contrast, our approach regards it as a physical variable that
is set at an experimentally controlled value. To prevent cell
fragmentation, usually suppressed by a periodically applied
annealing, we adopt the local-connectivity test of Durand
and Guesnet [29] in a modified form ([47], Sec. 3).

An extension of the directing-function formalism
([64], Appendix B) can also incorporate more general

nonequilibrium forces into Eq. (17) as

0 AL )+ (o10!) |
p(G,' O )= Z4€AL(Uﬁj))+¢(0'i-05j)) ’ ( 9)
J

in which the active exponents qb(a,-,og’)) are functions

()
. . !

general ¢(c,,0\") # (6", 5;). When this perturbation

breaks the detailed-balance condition, such a transition

incurs an irreversible thermodynamic work.

Active exponents can introduce non-Hamiltonian forces
and, by violating the fluctuation-dissipation theorem,
athermal noise ([47], Sec. 2). Here, we focus on noise
amplification by nonequilibrium processes, which are
usually present inside cells, such as the chemically driven
polymerization of cytoskeletal filaments or molecular
motor activity [70-72]. If we set

associated with a specific transition o; — ¢;”/, and in

¢(o;,0:) =0, (o, 05/') #0;) = ¢ = const, (20)

all transitions ¢; — agj ), except for the trivial ones agj ) = o;
are promoted. Nonconservative forces are not generated by
active exponents, whose asymmetric components vanish
¢(6i»0'§j>) - 45(65!)701‘) =0.

Specific active processes can be modeled more explicitly
as well. Cell growth is typically implemented by a time-
dependent preferred volume V, in Eq. (1). Persistent
cell motility can be incorporated by additional terms of
the Hamiltonian [30,32-34,73], or by asymmetric active
exponents.

Cell sorting during embryonic development.—As a
biophysical example, we consider the sorting of epiblast
(EPI) and primitive endoderm (PrE) cells in the early
mouse embryo. These cells form the inner cell mass (ICM)
aggregate and sort into an outer single layer of PrE cells
separating the epiblast from the medium [Ref. [74],
Fig. 3(a)].

Recent advances provide unprecedented experimental
access to the dynamics of isolated ICMs [75-79]. We
quantify the segregation of the two cell types by a sorting
score computed from distances of EPI and PrE cells
(rf™ and 7", respectively) from their common geometric
center:

NEPI NPrE

1
_ . PiE PI
s = NPrENEPIE :E :s1gn(rj‘ -,

i=1 j=1

in which NP'E and NFP! are the numbers of PrE and EPI
cells. By definition the score s € [—1, 1] is close to zero for
unsorted cells, and —1 or 1 when all PrE cells are inside or
outside the aggregate, respectively. To model the sorting
process, we chose the five interaction constants J cqium:EpI»

248401-4
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FIG. 3. Sorting of epiblast (EPI) and primitive endoderm (PrE) cells in ICMs isolated from mouse blastocysts. (a) Immunostaining
images on embryonic day 3.5 and 8 h later ([47], Sec. 4). (b) Cellular-Potts simulation in the initial configuration and 8 h later.
(c) Sorting score of live-imaging data averaged over eight experiments compared to a mean trend of 500 simulations
[ao Eppre = (0.95,0.69,2.12) min~']; standard-error band shown only for the experiments. (d) Average cellular aspect ratios
characterized in the maximum-projection planes of experimental data and by the eigenvalues of the 3D gyration tensors in the

simulations.

Jmedium:PrE> JEPI:EPI, JEPI:PrE> JPE:pE from a physiologi-
cally relevant range of the EPI and PrE surface tensions, set
the temperature to the experimental value at 310.15 K, and
calibrated the growth parameters to match the observed
proliferation dynamics ([47], Sec. 3).

Almost perfect sorting is achieved within 480 min
of CPM simulations for a wide range of parameters
[Fig. 3(b)]. The action rates control the relaxation dynamics
of the sorting process, cf. Fig. 3(c) and Supplemental
Material, Fig. S1(b) [47]. We sampled 100 combinations of
the values {ag, agpr, apg }, with each entry chosen from the
interval (0.10, 3.57) min~!. The best match is closest to the
experimental curve in the least-squares sense.

(b)

Sorting score

Furthermore, our simulations predict distinct shape
dynamics of the two cell types, which quantitatively agree
with the experimental data in a parameter-free comparison
of cellular aspect ratios [Fig. 3(d)]: EPI cells tend to more
rounded shapes, whereas PrE cells stretch normally to the
radial direction at the outermost shell of ICM. For more
details on ICM sorting in vivo, see Ref. [79].

Faster kinetics of PrE cells promote sorting [Fig. 4(a)].
This effect of inhomogeneous action rates can neither be
modeled in the traditional CPMs ([47], Sec. 1), nor can
it be compensated by time rescaling, as the curves para-
metrized by o gpy pip in general belong to different families
[Fig. 4(a)].

(©

1.01 Sorting score

0.8
4] 0.8 1
0 0.6
2 4 0.4 - 0.4 1
024 — 021 T T T T
O Loppr Py Growth rate (pm?®/min) # (10' k,T) --0 2 -4-6-8
14 709 0 -04-08-12 16  o4/kT 00k -107 01-1-3-5
100 200 300 400 500 100 200 300 400 0 100 200 300 400 500

Time (min)

Time (min)

Time (min)

FIG. 4. Kinetic and nonequilibrium aspects of Poissonian CPMs. (a) Convergence of sorting log(1 —s) for different values of
heterogeneity da = (apg — agpi) /a0, ap = 1 min~!]. Inset: scores at = 480 min show that faster PrE kinetics promotes sorting.
Heterogeneous kinetic properties produce nonrescalable differences in the sorting dynamics—note the two-point intersection between
the black dashed curve with homogeneous action rates (ay = agp; = ap;g = 0.2 min~!) and the green curve (5o = —0.5 min™"). (b),(c)
Either cell growth and division, or active fluctuations (¢), or extreme values of an effective temperature kT, are required for complete
sorting. Curves in panels (a), and (b)—(c) represent averages over 1000 and 500 trajectories, respectively [parameters set to values as in
Fig. 3(c) unless noted otherwise].
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Without cell growth and division [Fig. 4(b)], or active
fluctuations [Fig. 4(c)], sorting is hindered. Both mecha-
nisms do a thermodynamic work on the system: the growth
of cells generates stresses, and new cell boundaries increase
the total surface energy, whereas the active fluctuations
inject energy by breaking detailed balance. Responding to
these nonequilibrium processes, the system rapidly
acquires the energetically favored sorted state. Modeling
active fluctuations by an effective temperature is also
viable [80,81], but may misrepresent the system’s response
to thermodynamic forces ([47], Sec. 2).

In fact, the response coefficients of cells’ surfaces are
directly related to action rates ([47], Sec. 2). Because
energy is a derived unit of time, “independent” rescaling of
time or temperature, afforded by the traditional CPMs at the
account of fictitious energy scales, is forbidden once the
experimental data fix kg7 and J;;.

Conclusions.—Poissonian CPMs provide a physically
consistent framework to study complex materials with
active properties, which is generally applicable to other
discrete-state systems [61-63,82]. Its kinetic parameters
control transport coefficients and permit an unambiguous
interpretation of time. Active fluctuations and nonequili-
brium processes are clearly separated from thermal effects
and passive relaxation. We applied this framework to
examine the roles of distinct nonequilibrium processes in
embryonic cell sorting, and show that either growth and
division, or active shape fluctuations are required for
successful segregation of cell types.
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