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A GAME FOR BAIRE’S GRAND THEOREM

LORENZO NOTARO

Abstract. Generalizing a result of Kiss, we provide a game that characterizes

Baire class 1 functions between arbitrary separable metrizable spaces. We show

that the determinacy of our game is equivalent to a generalization of Baire’s
grand theorem, and that both these statements hold under AD and in Solovay’s

model.

1. Introduction

A Polish space is a separable, completely metrizable topological space. Given
two topological spaces X,Y , a function f : X → Y is said to be Baire class 1 if,
for every open subset V of Y , the pre-image f−1(V ) is an Fσ subset of X, i.e. a
countable union of closed subsets. If X is metrizable, then the open subsets of X
are also Fσ subsets. All continuous functions with metrizable domain are Baire
class 1.

A classical result concerning this class of functions is the following theorem of
Baire — known as Baire’s grand theorem — which provides a characterization of
Baire class 1 functions from a Polish space to a separable metrizable space (e.g. see
[5, Theorem 24.15]).

Theorem (Baire). Let X be a Polish space, Y a separable metrizable space, and
f : X → Y . Then the following are equivalent:

1) f is Baire class 1
2) f↾K has a point of continuity for every compact K ⊆ X

Actually, the separability hypothesis onX can be avoided [4, Corollary 1; 12, Ch.
II, §31, X], but in this article we are interested in the separable case.

We note that Baire class 1 functions have been, and still are, sometimes defined
as pointwise limits of continuous functions — e.g. [17–19], Baire himself originally
stated his grand theorem for pointwise limits of continuous real functions [14].
This definition and ours are equivalent only under certain hypotheses — e.g. see
[5, Theorem 24.10; 16].

In this article, we study the generalization of Baire’s grand theorem in which
the domain’s hypothesis is weakened from Polish to separable metrizable, and its
relationship with the determinacy of a two-player game. The use of infinite two-
player, perfect information games to characterize certain classes of functions has
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2 LORENZO NOTARO

a long and established history — e.g. [1, 2, 6, 7, 13, 20–22], see [11] for a detailed
introduction on this subject.

In Section 2, we define our game G(f), where f is a function between separable
metrizable spaces. We prove that Player II has a winning strategy in G(f) if and
only if f is Baire class 1 (Theorem 2.2). Then we show that Player I has a winning
strategy in G(f) if and only if there is a compact K ⊆ X such that f↾K has no
points of continuity (Theorem 2.3).

In Section 3, we discuss the determinacy of our game. We start by observing
that the determinacy of our game for every function is equivalent to GBT, the gen-
eralization of Baire’s grand theorem in which the domain’s hypothesis is weakened
from Polish to separable metrizable (Corollary 3.1). We note that AC and GBT are
mutually inconsistent (Proposition 3.2). Then we show that GBT is equivalent to
a separation property coming from Descriptive Set Theory (Theorem 3.4) and that
both these statements hold under AD, the axiom of determinacy, and in Solovay’s
model.

2. The game

Given X a topological space and (Un)n∈N a sequence of open subsets of X, we
say that (Un)n∈N is convergent if it is decreasing with respect to ⊆, and if it is a
local basis of some x ∈ X. In that case we write limn→∞ Un = x.

Definition 2.1. Let X,Y be separable metrizable spaces and let f : X → Y . In
our game G(f), at the nth round, Player I plays a nonempty open subset Un of X,
and then Player II plays yn ∈ ran(f),

I U0 U1 U2 ...
II y0 y1 y2 ...

with the rule: Un+1 ⊆ Un for each n ∈ N. At the end of a game run, Players
I and II have produced a sequence (Un)n∈N of nonempty open subsets of X and
a sequence (yn)n∈N in ran(f), respectively. Player II wins the run if either the
sequence (Un)n∈N is not convergent or it converges to an x ∈ X and (yn)n∈N
converges to f(x).

This game is an elaboration of Kiss’ game [1] and a further generalization of
Duparc’s eraser game [7].

Since we use trees and operations over finite sequences throughout, we briefly
recall their classical definition and notation. Let X be a nonempty set. We denote
by X<N the set of finite sequences of elements of X, with ∅ being the empty
sequence. Let u ∈ X<N and v ∈ X≤N. We write u ⊑ v when u is an initial segment
of v, and we say that v extends u. We call u⌢v the concatenation of u and v. For
each n ≤ lenght(u), we let u↾n be the initial segment ⟨u(0), u(1), . . . , u(n − 1)⟩ if
n > 0; otherwise, we let it be the empty sequence. Given an x ∈ X, we write u⌢x to
denote the finite sequence u⌢⟨x⟩, where ⟨x⟩ is the sequence of length 1 containing
only x. Sometimes we use the notation s⃗ to denote a sequence. A tree T on X
is a subset of X<N closed under initial segments. A tree is said to be pruned if
all its nodes have a proper extension. Given a tree T , we denote by [T ] the set
{r ∈ XN | ∀n r↾n ∈ T}, whose elements are called branches of T . The family
{Ns | s ∈ N<N} with Ns = {r ∈ NN | s ⊑ r}, is the standard basis of the Baire
space.
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A partial play of Player I (resp. Player II) in G(f) is a nonempty finite sequence
of open subsets ofX decreasing with respect to ⊆ (resp. a finite sequence of elements
of ran(f)). A strategy for Player I (resp. Player II) in G(f) is a function that maps
each partial play of Player II (resp. Player I) to an open subset of X (resp. to an
element of ran(f)). A strategy σ for Player I is winning if for every infinite sequence
y⃗ = (yn)n∈N of elements of ran(f), Player I wins the run of the game in which at
each turn n Player I plays σ(y⃗ ↾ n) and Player II plays yn. Winning strategies for
Player II are analogously defined.

Kiss [1, Theorem 1] used his game to characterize Baire class 1 functions between
separable complete metric spaces. The following theorem generalizes this result
by providing an analogous characterization for Baire class 1 functions between
arbitrary separable metrizable spaces.

Theorem 2.2. Let X,Y be separable metrizable spaces and f : X → Y . Then
Player II has a winning strategy in G(f) if and only if f is Baire class 1.

Proof. (⇐=): Assume that the function f is Baire class 1. As every separable
metrizable space embeds into RN (i.e. the space of infinite sequences of real numbers
with the product of the Euclidean topology), we can assume Y ⊆ RN without loss
of generality.

By a theorem of Lebesgue, Hausdorff and Banach [5, Theorem 24.10] there exists
a sequence (fn)n∈N of continuous functions fromX to RN (with range not necessarily
in Y ) converging pointwise to f . Fix such a sequence, and also fix a compatible
metric d on RN and a sequence (qn)n∈N ⊂ ran(f) dense in ran(f). Given two
nonempty A,B ⊆ RN, we let d(A,B) be inf{d(z0, z1) | z0 ∈ A, z1 ∈ B}.

In the next paragraph, we define by induction a map σ⋆ that maps partial plays
of Player I into Y ×N. Then πY ◦σ⋆ is shown to be a winning strategy for Player II,
where πY , πN are the canonical projections. We denote by σ⋆

Y and σ⋆
N the functions

πY ◦ σ⋆ and πN ◦ σ⋆, respectively.
Here is the definition on σ⋆ by induction on the lengths of Player I’s partial

plays: set σ⋆(U0) = (q0, 0) for each nonempty open subset U0 of X; fix k ∈ N,
suppose that we have defined σ⋆ for all Player I’s partial plays of length up to k

and consider a partial play U⃗⌢Uk of length k + 1, then

1) if there is an n > σ⋆
N(U⃗) such that diam(fn[Uk]) ≤ 2−n: fix an n satisfying

the condition and an m such that d(qm, fn[Uk]) ≤ d(ran(f), fn[Uk]) + 2−n;

set σ⋆(U⃗⌢Uk) = (qm, n).

2) otherwise: we set σ⋆(U⃗⌢Uk) = σ⋆(U⃗).

We now show that σ⋆
Y is a winning strategy for Player II in G(f). Fix an infinite

play (Uk)k∈N of Player I in G(f). If (Uk)k∈N is not convergent, then Player II wins.
Assume that (Uk)k∈N converges to an x ∈ X, and set yk = σ⋆

Y (U0, . . . , Uk), nk =
σ⋆
N(U0, . . . , Uk) for each k ∈ N. We now need to show limk→∞ yk = f(x).

Claim 2.2.1. The sequence (nk)k∈N is nondecreasing and unbounded in N.

Proof. The fact that (nk)k∈N is nondecreasing is a direct consequence of the defini-
tion of σ⋆. Next, note that, for all n ∈ N, the diameters of the sets in the sequence
(fn[Uk])k∈N converge to 0, as fn is continuous and (Uk)k∈N is a local basis of x,
decreasing with respect to ⊆.

Fix a k ∈ N and an n > nk. By the previous observation, there exist a k′ > k such
that diam(fn[Uk′ ]) ≤ 2−n. Fix one such k′, there are two cases: either nk′−1 > nk
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or nk′−1 = nk. In the latter case, the first condition in the inductive definition of
σ⋆ happens at the k′-th round, hence nk′ > nk′−1 = nk. In either case, nk′ > nk.
We just proved that for every k there is a k′ > k such that nk′ > nk, therefore
(nk)k∈N is unbounded. □

Let k̄ be the least k such that nk > 0.

Claim 2.2.2. For all k ≥ k̄, d(yk, fnk
(x)) ≤ d(f(x), fnk

(x)) + 21−nk .

Proof. Fix a k ≥ k̄ and pick the smallest l ≤ k such that nl = nk. Note that
yk = yl, as from the l-th round to the k-th σ⋆ does not change its response. From
the minimality of l it follows that the first condition of the inductive definition of
σ⋆ happens at the l-th round, therefore d(yl, fnl

[Ul]) ≤ d(ran(f), fnl
[Ul]) + 2−nl

and diam(fnl
[Ul]) ≤ 2−nl . Since we assumed x = limn→∞ Un, x belongs to Ul and

fnl
(x) belongs to fnl

[Ul], hence d(ran(f), fnl
[Ul]) ≤ d(f(x), fnl

(x)), and, overall,

d(yl, fnl
(x)) ≤ d(yl, fnl

[Ul]) + diam(fnl
[Ul]) ≤ d(f(x), fnl

(x)) + 21−nl .

As nl = nk and yl = yk we are done. □

Then, for each k ≥ k̄,

d(yk, f(x)) ≤ d(fnk
(x), f(x)) + d(yk, fnk

(x)) ≤ 2d(fnk
(x), f(x)) + 21−nk .

Since (nk)k∈N is unbounded and the fn’s converge pointwise to f , these inequalities
imply that (yk)k∈N converges to f(x) and therefore σ⋆

Y wins the run. As (Uk)k∈N
was an arbitrary play of Player I, we have shown that σ⋆

Y is a winning strategy for
Player II in G(f).

(=⇒): Suppose that Player II has a winning strategy in G(f), we show that the
function f is Baire class 1.

Fix a winning strategy σ for Player II in G(f) and fix a compatible metric d
on X. As X is separable, there exists a scheme (Us)s∈N<N of open subsets of X
satisfying the following properties:

1) U∅ = X.
2) For all s ∈ N<N,

⋃
n Us⌢n = Us.

3) For all s ∈ N<N, diam(Us) ≤ 2−length(s).

For each s ∈ N<N let
ys = σ(Us↾0, Us↾1, Us↾2, . . . , Us).

In other words, ys is the response of Player II following σ to the partial play
(Us↾0, . . . , Us) of Player I. For every x ∈ X, let Tx be the tree {s ∈ N<N | x ∈ Us}.
It follows directly from properties 1) and 2) of the scheme that all such trees are
nonempty and pruned.

Claim 2.2.3. For all x ∈ X and all open neighborhoods V of f(x), there is an
s ∈ Tx such that for all t ∈ Tx if s ⊑ t then yt ∈ V .

Proof. Assume for a contradiction that there is an x ∈ X and a V , open neighbor-
hood of f(x), such that for all s ∈ Tx there is a t ∈ Tx that extends s and such that
yt ̸∈ V . Then there exists a branch r ∈ [Tx] such that {n ∈ N | yr↾n ̸∈ V } is infinite.
Fix one and note that Player I wins in G(f) by playing the sequence (Ur↾n)n∈N, as,
by property 3) of the scheme, this sequence converges to x, while the corresponding
play of Player II according to σ does not converge to f(x). Since we have assumed
σ to be a winning strategy for Player II, we have reached a contradiction. □
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Fix V open subset of Y and a sequence (Vn)n∈N of open subsets of V such that
V =

⋃
n∈N Vn =

⋃
n∈N Vn.

Claim 2.2.4.

f−1(V ) =
⋃
n∈N

⋃
s∈N<N

(
Us \

⋃
{Ut | t ⊒ s and yt ̸∈ Vn}

)
.

Proof. Take x in the set on the right-hand side. By definition, there exists an n ∈ N
and an s ∈ N<N such that s ∈ Tx and for all t ∈ Tx extending s, yt ∈ Vn. Fix a
branch r ∈ [Tx]∩Ns, then the sequence (yr↾k)k∈N is eventually in Vn, i.e. yr↾k ∈ Vn

for all k greater than some m ∈ N. As (Ur↾k)k∈N converges to x by property 3) of
the scheme, and σ is a winning strategy for Player II, we have limk→∞ yr↾k = f(x),

and therefore f(x) ∈ Vn ⊆ V .
Now pick an x in f−1(V ). There must be an n such that f(x) ∈ Vn. By Claim

2.2.3, there exists an s ∈ N<N such that for all t ∈ Tx extending s, yt ∈ Vn. But
this means that x belongs to the set on the right-hand side. □

Since the set on the right-hand side is an Fσ subset of X and V was an arbitrary
open subset of Y , we have shown that pre-images of open subsets of Y by f are Fσ

sets. So f is Baire class 1. □

Theorem 2.3. Let X,Y be separable metrizable spaces and f : X → Y . Then
Player I has a winning strategy in G(f) if and only if there exists a compact set
K ⊆ X such that f↾K has no points of continuity.

To prove this theorem, we need the notion of pointwise oscillation of a function.
Given X a topological space, Y a metric space and f : A → Y for some nonempty
A ⊆ X, we define oscf (x) for each x ∈ X as

oscf (x) = inf{diam(f(U ∩A)) | U ⊆ X open neighborhood of x}.

The function oscf is upper semi-continuous, i.e. for every ϵ > 0 the set {x ∈ X |
oscf (x) ≥ ϵ} is closed.

Lemma 2.4. Let X,Y be separable metric spaces, ϵ > 0 and f : X → Y such that
oscf (x) ≥ ϵ for all x ∈ X. Then there is a countable Q ⊆ X such that oscf↾Q(x) ≥ ϵ
for all x ∈ X.

Proof. Let dY be the metric on Y and fix a sequence (yn)n∈N dense in Y . For each
n,m ∈ N, let Qn,m be a countable and dense subset of f−1(B(yn, 2

−m)). We claim
that the countable set Q =

⋃
n,m Qn,m has the desired property.

Fix x ∈ X, m ∈ N and an open neighborhood U of x. By assumption, there
are x0, x1 ∈ U such that dY (f(x0), f(x1)) ≥ ϵ − 2−m. Let n0, n1 be such that
f(xi) ∈ B(yni

, 2−m) for i = 0, 1. In particular, U ∩ f−1(B(yni
, 2−m)) ̸= ∅, and

therefore U ∩ Qni,m ̸= ∅ for i = 0, 1. Pick q0, q1 in U ∩ Qn0,m and U ∩ Qn1,m,
respectively. Then,

dY (f(q0), f(q1)) ≥ dY (f(x0), f(x1))− dY (f(x0), f(q0))− dY (f(x1), f(q1))

≥ (ϵ− 2−m)− 21−m − 21−m = ϵ− 5 · 2−m.

Indeed, for i = 0, 1, f(xi) and f(qi) both belong to B(yni
, 2−m), and therefore their

distance is less or equal to 21−m.



6 LORENZO NOTARO

We have shown that for each x ∈ X, for every open neighborhood U of x and for
all m there are q0, q1 ∈ U ∩Q such that dY (f(q0), f(q1)) is greater than ϵ− 5 · 2−m.
In particular, diam(f(U ∩Q)) ≥ ϵ. Hence, for all x ∈ X, oscf↾Q(x) ≥ ϵ. □

Proof of Theorem 2.3. (⇐=) : Fix a compact set K ⊆ X such that f↾K has no
points of continuity. The winning strategy for Player I that we define is essentially
the one defined by Kiss1 in [1, §2], the only difference being that we deal with a bit
more care the amount of choice used in the construction (see Remark 2.5).

Fix a compatible metric dX on X and dY on Y . Since f↾K has no points of
continuity, it follows that oscf↾K(x) > 0 for every x ∈ K. In particular, K =⋃

n Kn, where

Kn =

{
x ∈ K | oscf↾K(x) ≥ 1

n

}
.

By Baire’s category theorem, there is a nonempty open U ⊆ X and an n such
that Kn ∩ U = K ∩ U . Let C be the closure of Kn ∩ U and ϵ = 1/n, then
oscf↾C(x) ≥ ϵ for every x ∈ C.

By Lemma 2.4, we know that there is a countable Q ⊆ C such that oscf↾Q(x) ≥ ϵ
for every x ∈ Q. Let (qn)n∈N be an enumeration of Q. We now define a winning
strategy τ for Player I by induction on the lengths of Player II’s partial plays. In
particular, the map τ ranges among the open balls of X centered in Q, i.e. open
sets of the form B(x, ρ) for some x ∈ Q and radius ρ > 0: first set τ(∅) = B(q0, 1)
— we are setting the first move of Player I; fix k ∈ N, suppose that we have defined
τ for all partial plays of Player II of lengths up to k and consider the partial play
y⃗ ⌢yk of length k + 1 with B(qnk

, ρk) = τ(y⃗), then

1) if dY (yk, f(qnk
)) ≤ ϵ/8:

let nk+1 be an n such that qn ∈ B(qnk
, ρk) and dY (f(qn), f(qnk

)) ≥ ϵ/3;
let ρ be the greatest ρ ≤ ρk such that B(qnk+1

, ρ) ⊆ B(qnk
, ρk) and set

τ(y⃗ ⌢yk) = B(qnk+1
, ρ/2).

2) otherwise:
τ(y⃗ ⌢yk) = B(qnk

, ρk/2).

We now prove that τ is a winning strategy for Player I. Fix an infinite play y⃗ =
(yk)k∈N of Player II and set Bk = B(xk, ρk) = τ(y⃗ ↾ k) for every k ∈ N. First
we show that the sequence (Bk)k∈N converges to an x ∈ K. Indeed, it follows
directly from τ ’s inductive definition that

⋂
k Bk =

⋂
k Bk; the compactness of K

guarantees that K ∩
⋂

k Bk ̸= ∅; finally, the radii of (Bk)k∈N converge to 0, hence
K ∩

⋂
k Bk is a singleton {x} and (Bk)k∈N converges to x.

So we are left to prove that the sequence (yk)k∈N does not converge to f(x).
Suppose first that condition 1) of τ ’s inductive definition happens only finitely
many times during this game run. This means that there exists an n such that for
all k ≥ n, xk = x, and therefore dY (yk, f(x)) > ϵ/8 for all k ≥ n. In this case
(yk)k∈N certainly does not converge to f(x).

Now suppose otherwise, and let the increasing sequence (kn)n∈N be such that
condition 1) happens at the kn+1-th round for each n. More precisely, (kn)n∈N
is the increasing sequence such that dY (yk, f(xk)) ≤ ϵ/8 if and only if k = kn for

1Kiss’ strategy, in turn, is based on the one defined by Carroy in [2, Theorem 4.1]



A GAME FOR BAIRE’S GRAND THEOREM 7

some (unique) n. For every n,

dY (ykn
, ykn+1

) ≥ dY (f(xkn
), f(xkn+1

))− dY (f(xkn
), ykn

)− dY (f(xkn+1
), ykn+1

)

= dY (f(xkn), f(xkn+1))− dY (f(xkn), ykn)− dY (f(xkn+1), ykn+1)

≥ ϵ/3− ϵ/8− ϵ/8 = ϵ/12

where the equality follows from xkn+1
= xkn+1, which holds because in the rounds

between kn +1 and kn+1 the strategy τ does not change the center of its balls; the
last inequality follows directly from the definition of τ . Therefore, as (kn)n∈N is
unbounded, the sequence (yk)k∈N does not converge.

In either case (yk)k∈N does not converge to f(x), therefore τ wins the run. As
(yk)k∈N was an arbitrary play of Player II, we have shown that τ is a winning
strategy for Player I in G(f).

(=⇒) : Suppose that Player I has a winning strategy in G(f), we want to prove
that there exists a compact set K ⊆ X such that f↾K has no points of continuity.

We show instead that there exists a compact K ⊆ X such that Player I has a
winning strategy in G(f↾K). Indeed, if we do so, it would mean that the function
f↾K is not Baire class 1, as otherwise Player II would have a winning strategy in
G(f↾K) by Theorem 2.2. Then, by Baire’s grand theorem — which can be applied
as K, being a compact separable metrizable space, is a Polish space — there would
be a compact K ′ ⊆ K such that f↾K ′ has no points of continuity.

Fix a winning strategy τ for Player I and also fix an enumeration (qn)n∈N of
a countable dense subset of ran(f). Denote by S the tree {s ∈ N<N | s(n) ≤
n for all n < length(s)}. Note that [S] is a compact subset of the Baire space.

Consider the following map:

φ : [S] −→ X

r 7−→ lim
n→∞

τ(qr(0), qr(1), . . . , qr(n)).

Since we are assuming τ winning for Player I, the limits in the definition always
exist, and the map φ is well-defined. We now show that φ is continuous. Given
an r ∈ [S] and V open neighborhood of φ(r), there exists an n ∈ N such that
τ(qr(0), qr(1), . . . , qr(n−1)) ⊆ V , by definition of limit of sequences of open sets. But
then the rules of the game force every t ∈ [S] ∩ Nr↾n to be mapped by φ into
τ(qr(0), qr(1), . . . , qr(n−1)) ⊆ V . Therefore φ is continuous and K = ran(φ) is a
compact subset of X.

Next, we show that Player I has a winning strategy in G(f↾K). Fix dY com-
patible metric on Y . For each y ∈ Y and k ∈ N, pick an n ≤ k such that
dY (qn, y) = minm≤k dY (qm, y) and let q(y, k) = qn.

We define the strategy τ ′ for Player I in G(f↾K) as follows: for each (y0, . . . , yk)
partial play of Player II in G(f↾K), we let

τ ′(y0, y1, . . . , yk) = τ(q(y0, 0), q(y1, 1), . . . , q(yk, k)) ∩K.

We claim that τ ′ is a winning strategy for Player I in G(f↾K). Take an infinite
play (yk)k∈N of Player II. For each k, let nk be such that nk ≤ k and qnk

= q(yk, k).
Then (nk)k∈N belongs to [S], and the limit of the sequence (τ ′(y0, . . . , yk))k∈N is
φ((nk)k∈N) ∈ K, by definition of φ.
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If (yk)k∈N is not convergent, then Player I wins the run. So suppose that (yk)k∈N
converges to y ∈ ran(f). Then,

dY (q(yk, k), y) ≤ dY (yk, y) + dY (q(yk, k), yk) = dY (yk, y) + min
m≤k

dY (qm, yk)

≤ 2dY (yk, y) + min
m≤k

dY (qm, y).

Since limk→∞ yk = y by assumption, and limk→∞ minm≤k dY (qm, y) = 0 by the
density of (qn)n∈N in ran(f), it follows from the above inequalities that (q(yk, k))k∈N
converges to y. Therefore,

lim
k→∞

yk = lim
k→∞

q(yk, k) ̸= f( lim
k→∞

τ(q(y0, 0), . . . , q(yk, k))) = f( lim
k→∞

τ ′(y0, . . . yk)).

The ̸= follows from having assumed τ winning strategy for Player I in G(f),
and the last equality instead comes directly from having defined τ ′(y0, . . . , yk) as
τ(q(y0, 0), . . . , q(yk, k)) ∩K.

Hence (yk)k∈N does not converge to f(limk→∞ τ ′(y0, . . . yk)), and τ ′ wins the
run. Since (yk)k∈N was an arbitrary play of Player II, τ ′ is a winning strategy for
Player I in G(f↾K). □

Remark 2.5. The careful reader may have noticed that in this section we didn’t use
the axiom of choice, or even the axiom of dependent choice, in their full potential.
Indeed, all the proofs contained or cited in this section go through assuming only
ACω(R), the axiom of countable choice over the reals: “Every countable family of
nonempty subsets of R has a choice function”.

3. On the determinacy of G(f)

Recall that a two-player game G is determined if either Player I or Player II
has a winning strategy. Carroy [2, Theorem 4.1] proved that Duparc’s eraser game
Ge(f), which characterizes Baire class 1 functions from and into NN, is determined
for every function f , and used this determinacy result to give a new game-theoretic
proof of Baire’s grand theorem restricted to functions between 0-dimensional Polish
spaces [2, Theorem 4.6]. On the other hand, Kiss [1, §2] used Baire’s grand theorem
to prove the determinacy of his game. Our game G(f) is a further generalization
of both these games, and, again, a strong relationship between its determinacy and
Baire’s grand theorem emerges as a direct corollary of the two main theorems of
the previous section. Let us introduce the following statement, which is the same
as Baire’s grand theorem with the hypothesis on the domain weakened from Polish
to separable metrizable:

(GBT)
For all X,Y separable metrizable spaces and f : X → Y , f
is Baire class 1 if and only if f↾K has a point of continuity
for every compact K ⊆ X.

The following is a direct corollary of Theorems 2.2 and 2.3.

Corollary 3.1. The following are equivalent:

1) G(f) is determined for every f .
2) GBT

But unlike Duparc’s and Kiss’ games, ours is not determined in general, as the
next folklore proposition shows.

Proposition 3.2. (AC) GBT is false.
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Proof. Under the axiom of choice, there exists a set of reals with cardinality of the
continuum that does not contain any uncountable closed set. Let X be such a set.
Since the family of the Fσ subsets of a second countable space has at most the
cardinality of the continuum, it follows from Cantor’s theorem that there must be
a subset A ⊂ X which is not an Fσ subset of X.

The function 1A : X → 2, with 1A(x) = 1 iff x ∈ A, is not Baire class 1, as A is
not an Fσ subset of X. Nonetheless, we claim that 1A↾K has a point of continuity
for every compact K ⊆ X. Fix a compact K ⊆ X, then K needs to be countable, as
we have assumed X not to contain any uncountable closed set. But then K, being
a countable and compact subset of R, has an isolated point, which is, in particular,
a continuity point of 1A↾K. □

Note that the same argument shows that G(1A) is undetermined.
A separable metrizable space is (absolutely) analytic precisely when it is the

continuous image of a Polish space. Gerlits and Laczkovich [4, Theorem 2] showed
that Baire’s grand theorem holds if the domain is assumed only to be an abso-
lutely analytic metrizable space — actually, they stated this generalization for real
functions, but their argument goes through assuming only separable metrizable
codomains. From the theorems of the previous section, it follows that the game
G(f) is determined for every function f with analytic domain.

We cannot hope to extend tout court this determinacy result to functions with
co-analytic domains, where a separable metrizable space is said to be co-analytic
if it is homeomorphic to the complement of an analytic set in a Polish space. In
fact, the existence of a co-analytic set of cardinality of the continuum that doesn’t
contain any uncountable closed set is consistent with ZFC — in particular, it follows
from V = L, see [10, Theorem 13.12] — and the example defined in Proposition 3.2
would give us a function f with separable metrizable co-analytic domain witnessing
the failure of GBT and the undeterminacy of G(f).

We now focus on GBT, which, by Proposition 3.2, is inconsistent with AC. We
first introduce a couple of statements coming from Descriptive Set Theory that are
strictly related to GBT. We recall that, given three sets A,B, S we say that S
separates A from B if A ⊆ S and B ∩ S = ∅.

(HSP)
For every disjoint A,B ⊆ NN such that there is no Fσ set
separating A from B, there is a Cantor set C ⊆ A ∪B with
C ∩B countable and dense in C.

where HSP stands for Hurewicz’ Separation Property. The fact that the trace of B
on C (i.e. B ∩ C) is countable and dense not only means that B ∩ C is Fσ in C, but
also that it is Fσ-complete [5, Theorem 22.10]. HSP is known to hold under AD
[3, Theorem 4.2; 5, §21.F].

Fact 3.3. HSP is a strong statement, in the sense that HSP+DC is equiconsistent
with the existence of an inaccessible cardinal. Indeed, HSP+ DC implies PSP, the
perfect set property for every subset of NN, and it is well-known that PSP+ DC
implies the consistency of an inaccessible cardinal [10, Propositions 11.4 and 11.5];
on the other hand, Todorčević and Di Prisco [8, Theorem 4.1] proved that HSP
holds in Solovay’s model, hence the equiconsistency.
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Consider now this seemingly weaker statement:

(WHSP)
For every disjoint A,B ⊆ NN such that there is no Fσ set
separating A from B, there is a Cantor set C ⊆ A ∪B with
C ∩A dense and codense in C.

This statement is clearly a consequence of HSP, but it doesn’t tell us anything
about the definability of the trace of A or B on C.

Theorem 3.4. The following are equivalent:

1) GBT
2) WHSP

Proof. 1) =⇒ 2): let A,B ⊆ NN be disjoint subsets of the Baire space such that A
cannot be separated from B by an Fσ set. Equivalently, A is not Fσ with respect
to the relative topology on A ∪ B. Therefore, the function 1A : A ∪ B → 2, with
1A(x) = 1 iff x ∈ A, is not Baire class 1, and by GBT there exists a compact set
K ⊆ A ∪ B such that 1A↾K has no points of continuity. This means that A ∩K
is both dense and codense in K, as otherwise 1A would have a point of continuity.
Finally, notice that K, being a compact and perfect subset of NN, is actually a
Cantor set [5, Theorem 7.4]. Hence WHSP holds.

2) =⇒ 1): let X,Y be separable metrizable spaces and f : X → Y a function
which is not Baire class 1. Every Polish space is the image of NN by a continuous
and closed map [9]. As every separable metrizable space embeds into a Polish space,
there exists a closed and continuous surjection g : X ′ → X for some X ′ ⊆ NN. Since
the image of a closed set by a closed function is still closed by definition, images of
Fσ sets by a closed function remain Fσ. Therefore, the function h = f ◦g : X ′ → Y
is still not Baire class 1.

As h is not Baire class 1, there is an open set V ⊆ Y such that h−1(V ) is not an
Fσ set of X ′. Fix such V and also fix a sequence of closed sets (Fn)n∈N such that
V =

⋃
n Fn. It must be the case that, for some n, h−1(Fn) is not separable from

h−1(Y \ V ) by an Fσ set, as otherwise h−1(V ) would be a countable union of Fσ

sets, which is still Fσ. Fix such an n, then, by WHSP, there is a Cantor set C ⊆ X ′

with both h−1(Fn) ∩ C and h−1(Y \ V ) ∩ C dense in C.
By continuity of g, the set g[C] is compact in X and f−1(Fn)∩g[C], f−1(Y \V )∩

g[C] are both dense in g[C].
We claim that the function f↾g[C] has no points of continuity. Take an x ∈ g[C],

and fix two sequences (xk)k∈N ⊂ f−1(Fn) ∩ g[C], (x′
k)k∈N ⊂ f−1(Y \ V ) ∩ g[C]

converging to x. Such sequences exist because f−1(Fn)∩g[C] and f−1(Y \V )∩g[C]
are both dense in g[C]. If the sequences (f(xk))k∈N and (f(x′

k))k∈N converged in Y ,
they would converge in Fn and in Y \V , respectively, as both these sets are closed.
Thus, even if their limits were to exist, they could not coincide. In particular, x is
not a point of continuity of f↾g[C]. Since x ∈ g[C] was arbitrary, we have that no
x ∈ g[C] is a continuity point of f↾g[C].

Given a function f : X → Y between separable metrizable spaces which is not
Baire class 1, we have found a compact K ⊆ X such that f↾K has no points of
continuity. On the other hand, if f : X → Y is Baire class 1, then the classical
argument used in the proof of Baire’s grand theorem shows that f↾K has a point
of continuity for every compact K ⊆ X (e.g. see [5, Theorem 24.15]), with no need
to invoke WHSP. Hence GBT holds. □
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As HSP, and in particular WHSP, holds under AD [3, Theorem 4.2; 5, §21.F]
and in Solovay’s model [8, Theorem 4.1], we can say the same of GBT and the full
determinacy of our game, by Theorem 3.4 and Corollary 3.1. However, the precise
consistency strength of these three statements (+DC) is still unknown.

WHSP, compared to HSP, seems to be weak enough to be proved consistent
relative to ZF, with no large cardinals needed (see Fact 3.3). Hence, the following
conjecture.

Conjecture. GBT+ DC is consistent relative to ZF.

Lastly, notice that the definition of our game does not rely on the separability or
the metrizability of the function’s domain and codomain, and it would make perfect
sense to study it on broader classes of functions. Future research can shed light on
how our game behaves on the class of functions with metrizable (not necessarily
separable) domains and separable metrizable codomains. Would our results of
Section 2 still hold? How much choice would be needed to prove them?
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