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Abstract—Deep learning has revolutionized various fields by
enabling highly accurate predictions and estimates. One impor-
tant application is probabilistic prediction, where models estimate
the probability of events rather than deterministic outcomes. This
approach is particularly relevant and, therefore, still unexplored
for segmentation tasks where each pixel in an image needs to be
classified. Conventional models often overlook the probabilistic
nature of labels, but accurate uncertainty estimation is crucial
for improving the reliability and applicability of models.

In this study, we applied Calibrated Probability Estimation
(CaPE) to segmentation tasks to evaluate its impact on model
calibration. Our results indicate that while CaPE improves
calibration, its effect is less pronounced compared to classification
tasks, suggesting that segmentation models can inherently provide
better probability estimates. We also investigated the influence of
dataset size and bin optimization on the effectiveness of calibra-
tion. Our results emphasize the expressive power of segmentation
models as probability estimators and incorporate probabilistic
reasoning, which is crucial for applications requiring precise
uncertainty quantification.

Index Terms—deep probability estimation, image segmenta-
tion, convolutional neural networks

I. INTRODUCTION

Machine learning, particularly deep learning, has trans-
formed various fields by enabling models to achieve excep-
tional accuracy in predictions and estimates. This success is
due to its ability to extract latent patterns from large data sets
and generalize them to new cases. A widely used application
of deep learning is supervised learning, where models learn
to map the input data to a ground truth that represents
the target outcome. Traditionally, this mapping is viewed as
deterministic without considering the probabilistic nature that
these labels may inherently have. However, this view changes
when models answer questions such as will it rain heavily? or
will a forest fire affect a region? where the answer is inherently
probabilistic. Models developed for probabilistic predictions
need to be trained on observed outcomes, which are accessible
parts of the latent probability distribution. This paradigm
shift, which involves aleatory uncertainty quantification within
model prediction, has received only moderate attention, but
traditional models generally yield inconsistent results [/1].

Besides this, an emerging and increasingly popular variant
of classification tasks is segmentation, where the goal is to
assign a class to each pixel in an input image. The probabilistic
interpretation discussed above can of course also be applied
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to segmentation, but with the added complexity that spatial
relationships between the pixels must be taken into account.
Neighboring pixels often share contextual information that
influences their labeling. However, as the image size increases,
so does the uncertainty associated with these labels. This is
due to the potential aleatory uncertainty arising from both the
underlying probability distribution and annotation errors.

Considering this probabilistic view during segmentation is
crucial for improving the reliability and applicability of the
resulting models in practical scenarios. Accurate uncertainty
estimation improves the robustness of segmentation results
and provides valuable insights into the confidence levels of
predictions. This capability is particularly important in areas
where accurate segmentation supports decision making, risk
assessment, and scientific research. Therefore, advanced meth-
ods that integrate probabilistic reasoning into segmentation
models hold great promise for improving their effectiveness
and versatility in various applications. Based on previous
studies using neural networks as probability estimators [[1]], we
aim to extend this idea to segmentation tasks. This will allow
us to investigate the impact of pixel correlations and assess
how the latest models in this field can perform this type of
task.

Our study applied Calibrated Probability Estimation (CaPE)
to segmentation tasks to assess its impact on improving model
calibration. Although CaPE led to improvements in calibra-
tion, its effectiveness appeared somewhat subdued compared
to its performance on classification tasks. This observation
suggests that many segmentation datasets inherently provide
reasonably accurate probability estimates without additional
calibration interventions. We also investigated possible corre-
lations between the target event’s probability distribution and
the training dataset’s size. Furthermore, we performed detailed
investigations on optimizing the number of bins, a critical
hyperparameter within the CaPE method.

By delving deeper into these aspects, we can not only
evaluate the direct benefits of probabilistic modelling in seg-
mentation, but also understand the nuanced factors influencing
the quality of probability estimates in this context. This explo-
ration is crucial for improving the reliability and applicability
of segmentation models in various real-world scenarios, where
accurate uncertainty quantification can significantly improve
decision making and domain-specific applications.



The paper is structured as follows: Section [[I] gives an
overview of related work on probabilistic estimation in neural
networks and its application to segmentation tasks. Section [III|
outlines our methodology, including the implementation of
Calibrated Probability Estimation (CaPE) in segmentation,
details of the validation dataset and the evaluation metrics
used. Section [IV] presents and discusses the results. Section [V]
concludes with a summary of our results and suggestions for
future research directions.

II. RELATED WORKS

Deep neural networks, especially when applied to clas-
sification tasks, often produce probability estimates reflect-
ing the model’s confidence. However, these estimates can
be inaccurate, leading to poorly calibrated predictions. To
overcome this challenge, several methods have been proposed
to improve calibration, including post-processing techniques
and ensembling.

Post-processing techniques aim to refine output probabilities
to improve the calibration of unseen data. Notably, Guo et
al. [2] introduced temperature scaling, incorporating a tem-
perature parameter into the softmax function. This parameter
is optimized to minimize negative log-likelihood loss, thereby
adjusting the model’s confidence levels to improve calibration.
Another approach involves training a recalibration model
based on the outputs of an uncalibrated model [3]. These
methods have demonstrated effectiveness in enhancing the
calibration of deep learning algorithms in a model-agnostic
fashion, without altering their fundamental architectures.

Conversely, ensembling techniques combine multiple mod-
els to enhance generalization and alleviate miscalibration. For
instance, Zhang et al. [4] proposed Mix-n-Match, which em-
ploys a single model and combines predictions using multiple
temperature scaling transformations.

Recently, Liu et al. [1] introduced Calibrated Probability
Estimation (CaPE), a training technique aimed at improving
neural networks’ ability to generate reliable probability esti-
mates. The method ensures that the output probabilities match
the empirical probabilities derived from the data, thereby
calibrating the model results when confronted with aleatory
uncertainty in the data. While this method has proven suc-
cessful on various synthetic and real-world classification tasks,
it has not yet been applied to tasks with non-independently
identically distributed (i.i.d.) data, such as image segmentation
problems or predictions on graph structures. This work aims to
extend this analysis in this direction and show how traditional
models behave when confronted with aleatory uncertainty in
the data and how calibration affects them.

Deep learning segmentation models have been used in
various fields that are inherently fraught with uncertainty.
Among these, medical imaging is a prominent application area
where researchers have grappled with the challenge of over-
coming uncertainty in label assignment. For example, Kohl
et al. [5]] introduced a probabilistic U-Net, which provides
segmentation results along with the uncertainty associated
with these predictions. This capability is crucial in medical

diagnostics, as understanding the confidence level of detection
significantly influences clinical decisions. In addition, Krygier
et al. [[6] investigated the impact of labeling uncertainty in
3D medical images and proposed a method to quantify this
uncertainty through Bayesian convolutional neural networks
and Monte Carlo dropout. Their results illustrate the complex-
ity of uncertainty distributions in simulations that challenge
conventional segmentation boundaries.

In another domain, Hu et al. [[7] explored the use of
deep learning architectures for post-processing deterministic
numerical weather predictions of precipitation, focusing on
improving forecast accuracy and deriving uncertainty esti-
mates. Their segmentation approach, leveraging distributional
parameters of a censored shifted gamma distribution, addresses
the uncertainty arising from the numerical simulation inputs.
However, the applicability of this method is highly task-
dependent.

In addition, Monaco et al. [8] investigated segmentation
models for assessing the severity of wildfires, emphasizing the
challenge posed by unreliable ground truth labels. Their work
emphasizes the importance of understanding the uncertainty of
the input data to predict the severity of wildfires accurately.

To date, the capabilities of these segmentation models
as deep probability estimators have not been systematically
investigated.

III. MATERIAL AND METHODS

A. Case studies

In this study, we use two different datasets to evaluate
the performance of our proposed model in different domains.
The first dataset is the German Weather Service (GWS)
dataset, which focuses on weather forecasting and predicts the
probability of exceeding a certain weather threshold at each
location. The second dataset was developed specifically for
Burned Area Detection (BAD) and estimating the extent of
damage. It includes the segmentation of satellite images and
aims to determine the probability that the area represented by
each pixel is burnt with a predefined severity.

The GWS dataset comprises quality-controlled rainfall-
depth composites gathered from 17 operational Doppler radars,
providing a comprehensive perspective on precipitation pat-
terns. Our analysis uses 30-minute precipitation data, com-
prising three precipitation maps from the past 30 minutes,
to predict the probability of precipitation exceeding various
thresholds in each pixel one hour after the most recent
measurement. Given the size of the dataset, we decided to use
only part of it, as using the entire dataset would not provide
additional valuable information. Therefore, we reduced the
number of events to 3000, which we selected from the 15,000
events with the highest average precipitation, which is in line
with our task. Furthermore, from the original resolution of
900x900, we only considered the central part of 512x384,
which was then scaled to 128x96. This procedure reduced the
demand for computational resources, but we observed that it
did not significantly impact the overall result.



The BAD dataset contains 73 satellite images of various
forests damaged by wildfires across Europe with a resolution
of up to 10 meters per pixel. The Sentinel-2 L2A satel-
lite mission collected the data, while the target labels were
generated from Copernicus Emergency Management Service
annotations, with five severity levels from undamaged to
completely destroyed [[8]], [9]. The images we used were taken
within one month of the wildfire event, ensuring minimal cloud
cover. The original images of the dataset are divided into
tiles of 128x96 pixels. To remain consistent with the previous
dataset, we select only the tiles that contain at least one burned
pixel, resulting in 2,691 valid tiles.

Table [ describes the thresholds that were considered for
each dataset and their respective probabilities of being ex-
ceeded.

TABLE I
THRESHOLDS AND PROBABILITIES FOR EACH DATASET
Dataset Threshold Probability (%)
0.02 30
0.125 14
GWS 0.250 7
0.5 32
0.75 1.1
Severity Level 1 46
BAD Severity Level 3 27
Severity Level 4 14

B. Problem formulation

The probability estimation task involves evaluating the
likelihood of an event of interest based on the available data.
In our context, we consider a dataset comprising n example
images x; of size D x W along with their corresponding
segmentation maps y; of the same dimensions. Each pixel in
y; is binary, with a 0 or 1 value indicating whether the event
occurred at the corresponding position in z;.

To illustrate, consider the example of rainfall estimation
beyond a defined threshold in climate forecasting. Here x;
represents meaningful available quantities from a previous
time step, while y; is the binary map stating if the rain
quantity exceeded the threshold in each pixel in the grid. The
data inherently contains uncertainty. Each pixel’s value may
depend on previous time steps or unavailable meteorological
information. We can consider each pixel y; to be 1 with
a certain probability p; associated with neighbouring pixels
from z;. This is because the input data provides important
information about the event’s occurrence. Then, a probability-
estimation model will be trained to produce the best estimation
p of p on new images z. It is worth noting that this is not
a traditional classification task, as the goal is to predict the
probability of the outcome, which inherently involves aleatory
uncertainty.

To measure the effectiveness of our model, it is useful
to introduce the concept of calibration, which refers to the
correspondence between the predicted probabilities and the
actual results. We need this concept if we rely on the observed

results since the real probability p is unavailable. Then, a
probability-estimation model fy parameterized with weights
0, we define as follows:

Definition 1: The parametric model fy is well-calibrated if
exists a small interval I(q) such that

Py =1|fo(x) € I(q)) = q, V0 <q <1, (1)

where y is the observation associated with the input z and
fo(x) is the probability predicted by model.

C. Evaluation metrics

Expected Calibration Error (ECE) [2] is a standard cal-
ibration assessment. To evaluate the probabilities predicted
by the model, we compare them with empirically observed
probabilities. To do this, we group all pixels x; where the
model’s output matches a certain value and calculate the
proportion of these pixels with a result of 1. If this proportion
is very similar to the probability predicted by the model, the
model is considered to be well-calibrated. In our context, we
have repeated these considerations for each pixel of the input
data x; and the corresponding results y;. Once we gather
the outcomes for all pixels y;, we can partition the model’s
predicted probabilities, represented by fg(z;) , into B bins:
I, I,,...,Ip. This partitioning is based on the predicted
probability values assigned to each pixel. Let Q1,...,Qp—1
be the B-quantiles of the set {fo(z1),..., fo(xn)}, we have

Iy = [Qu1, Qo] N {fo(z:)}iL;  (setting Qo =0).  (2)

For each bin I}, we compute the mean of empirical and
predicted probabilities, defined as

1
P =E(y| folz) € I,) = —

A N ©)
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where Index(ly) = {i | fo(x;) € I}
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i

b=1

ECE =

P, — q(b)’ (5)

Another important metric for quantifying uncertainty is the
Brier score, which measures the mean squared difference
between the predicted probabilities and the actual outcomes
and provides a single score that summarizes the accuracy of
probabilistic predictions.

N

&M—;;mm)mf (6)
where N is the number of predictions, fy(z;) is the predicted
probability for the i-th pixel, and y; is the actual binary
outcome.A lower Brier score indicates better performance
because it means that the predicted probabilities are closer
to the actual results. The Brier score ranges from 0, a perfect



probabilistic prediction, to 1, the worst possible deviation from
the target probability.

Finally, the Kullback-Leibler (KL) divergence is a widely
used evaluation metric in machine learning and information
theory, especially for comparing probability distributions. It
measures the difference between two probability distributions
and indicates how much a distribution deviates from a refer-
ence distribution. Mathematically, the KL divergence between
a distribution @) (the estimated distribution) and a distribution
P (the true distribution) is defined as follows:

De(P [ Q) =Y~ P(i) log (ZZ;) )

In this formula, P () represents the true probability of the
i-th event, and Q(i) represents the predicted probability of
the same event. KL divergence is a valuable tool for eval-
vating the performance of probabilistic models. Quantifying
the divergence between the predicted and true distributions
clearly measures how well a model captures the underlying
data distribution.

D. CaPE regularization

Based on the definition from Liu et al. [1]], we introduce
CaPE regularization to a segmentation pipeline, to evaluate
whether it can improve the model performance. This method
is designed to improve the calibration of probabilistic models
by minimizing a calibration loss alongside the traditional dis-
crimination loss £p, generally Binary Cross Entropy (BCE).
CaPE strategy initially trains the model on L£p with early
stopping to prevent overfitting. It then employs a weighted
sum approach, combining L£p with an extra term Lo en-
forcing model calibration. This second term measures the
cross-entropy between the model’s predicted probabilities and
the empirical probabilities conditioned on the model output.
The discrimination loss compares the predicted probability
for each area with the actual label, penalizing the predictions
based on the difference between the inferred probability and
the true label. In contrast, the calibration loss compares the
predicted probability distribution to the empirical one. This
dual optimization aims to enhance both the discrimination
ability and the calibration of the model, ensuring that the
predicted probabilities align closely with the true likelihood of
outcomes. The two loss functions are formalized as follows:

N
Lp=— [yilog(fo(x:)) + (1 —y:) log(1 — fo(x:))]

i=1

N y .
EC =T Z [pémp 10g (fe(xl)) + (]‘ - pémp) 1Og (1 - f@(xz))]

i=1
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where pim is an estimate of the conditional probability

Ply=1] fo(z) € I(fo(z:))] and I(fp(x;)) is a small interval
centered at f(x;). We consider the bin version of CaPE method
for estimating pimp, which involves dividing the training set
into bins.

We identify the bin b; that contains fy(x) and assign p,,, as
pg’nﬁ in Equation 3| This method can be efficiently executed by
arranging the predictions p;. The calibration loss necessitates
a reasonable estimation of the empirical probabilities pemp (%),

which can be derived from the model after initial training.

E. Experimental design

To determine the ability of the segmentation model to
estimate the probability behind the data, we examine the
performance differences between a traditional training pipeline
and training the same architecture with the CaPE strategy.

For all experiments, we chose a U-Net [|10] as the segmenta-
tion model because it performs best for similar tasks in limited
data domains [[11]]. Our entire pipeline is not dependent on this
choice. We, therefore, also chose this model because it serves
as a solid foundation for the segmentation task, and the results
obtained with this architecture can potentially be transferred
to other related architectures.

Our network has a symmetrical 5-block structure with an
encoder and a decoder. The encoding path sequentially reduces
the spatial dimensions of the feature maps while increasing
the number of channels, starting with 64 channels and dou-
bling with each step until 1024 channels are reached. This
process allows the network to capture increasingly abstract
and detailed features. The decoder path then upsamples these
feature maps back to the original input resolution and reverses
the encoder process. Notably, our implementation does not
use skip connections, which are typically used in U-Net
architectures to combine high-resolution features from the
encoder with high-sampled features in the decoder. The final
output layer of the network generates a segmentation mask in
which the intensity of each pixel indicates the probability that
it exceeds the predefined threshold. This structure allows us
to effectively analyze and segment the input data based on the
learned features. As a loss function, we use the BCE loss, a
common choice for binary segmentation tasks.

The training was performed on a system equipped with 128
GB RAM and an NVIDIA Tesla V100 GPU with 16 GB
memory. We trained over 50 epochs with the Adam optimizer
and a learning rate of 0.0001. The early stopping strategy is
applied to the validation loss, with a patience of 15 epochs and
a minimum delta of 0. To evaluate the model’s performance,
we used a 9-fold cross-validation approach: 7 folds were used
as the training set, 1 fold as the validation set, and 1 fold as
the test set. All results are finally aggregated from the test
sets of each fold. The code used to perform the experiments
is available upon request.

IV. RESULTS AND DISCUSSIONS

One of the main questions is whether the advantages of the
CaPE strategy still apply to the segmentation task. To clarify
this point, Figure [[|shows the learning curve of the model over
the first 50 epochs. The black arrow shows the point at which
early stopping detected an overfitting validation loss, triggering
the start of CaPE application. The red curves represent a model
trained with the combined losses in Equation 8] while the



blue curves represent the model trained with Lp after early
stopping. The presented training refers to the GWS dataset
with the following parameters: dataset size of 1500, number
of bins set to 20, and a threshold of 0.250 mm/h. We present
this setting because, according to our experiments, it represents
an average case. In the remainder of this analysis, we will look
in detail at the contribution of calibration on the distribution
of dataset labels and other relevant hyperparameters.

Training loss Validation loss
0.6 0.45
05 0.40
04
0.35
0.3
0.2 0.30
* .
0.1 CaPE begins 0.25 Vak
Brier score KL
0.1
5
0.10
4
0.09 f
3
0.08 7
0 10 20 30 40 0 10 20 30 40
epoch epoch
—— BCE-only —— CaPE
Fig. 1. Comparison between the learning curves of BCE minimization and

CaPE over 50 epochs, smoothed with a 3-epoch moving average. The numbers
from left to right are the training loss, validation loss, Brier score and KL
divergence, respectively. The softer lines represent the raw data. The CaPE
method starts with the minimum of the validation loss. From this point
onwards, the effect compared to BCE training is evident.

We find that both training and validation losses initially de-
crease. Then, CaPE regularization limits overfitting for about
ten epochs after its first application. This indicates that it can
stabilize the training and provide slightly better results than the
unregularized model. However, this improvement does not re-
flect a significant reduction in Brier score and KL divergence.
This behavior is clearly different from what was observed in
non-segmentation tasks, suggesting that segmentation models
may be inherently better calibrated than other architectures
evaluated in this work.

At this point, we focused our experiments on describing
the different contributions of the CaPE method when the
threshold, and thus the distribution of the event we want to
predict, changes. In particular, we investigated how different
threshold settings affect model calibration and uncertainty
estimates when the size of the training dataset varies. These
two parameters regulate the distribution of positive labels
and may provide different contributions to the regularization
strategy.

Figure [2] shows the best value of ECE achieved by the
models over the variable threshold probability for both datasets
under analysis. Based on the upper graph, we observe a
positive correlation between ECE and the probability of ex-
ceeding the threshold in the GWS dataset. This suggests that as
the probability of exceeding the weather threshold increases,

Dataset Size
0.020
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— 1500
0.015 —— 3000
|
O
w 0.010
0.005
0.000
BAD
0.12 .
Dataset Size
500
0.10 —— 1500
— 2691
0.08
L
O
W 0.06
0.04
0.02
0.0 0.1 0.2 0.3 0.4
Threshold probability
— CaPE == non-CaPE

Fig. 2. Comparison of the Expected Calibration Error (ECE) for the GWS
and BAD datasets across different dataset sizes. The solid lines represent the
results after applying the CaPE method, while the dashed lines represent the
results with early stopping.

the calibration error also tends to increase, indicating greater
uncertainty in these forecasts. This finding is crucial as it
highlights a potential challenge in achieving well-calibrated
probabilities under conditions of high uncertainty. In partic-
ular, when the model predicts a high probability of extreme
weather events, the uncertainty in these predictions becomes
larger, leading to higher calibration errors. Remarkably, the
discrepancies between CaPE and non-CaPE results increase
with the threshold value, especially for curves representing
large training sets.

In contrast, the BAD dataset does not reflect the positive
correlation between threshold and ECE. In this dataset, there
were fewer possible thresholds that were more likely to be
exceeded than in the GWS dataset. This discrepancy could
be due to the nature of the data and the distribution of
events in the BAD dataset. In particular, we can assume
that the higher probability of exceeding the thresholds could
simplify the prediction task and reduce the calibration error.
In addition, the model’s difficulty distinguishing between the
first and subsequent severity levels could also contribute to
this behavior, suggesting that the model may perform better
when the event distribution is less complex. It is worth noting
that CaPE makes no significant contributions in this dataset,
except at the smallest size of the training dataset.



As for ECE, Figure E] illustrates the behaviour of KL
divergence when the threshold probability varies. We observe
a much smaller variation in KL divergence compared to the
previous plot, especially for the GWS dataset. Overall, we
can conclude that the contribution of CaPE in this metric
is negligible in most cases. Furthermore, it is interesting to
note that the two metrics are still highly correlated: the trends
in the KL divergence graphs are very similar to those in the
ECE graphs in Figure [2] This similarity suggests that both
metrics capture related aspects of model performance despite
their different formulations. Both Figures [2)and [3]show data
for a bin number of 20 for the CaPE method. We found that
different numbers of bins in our experiments would lead to
similar results overall, apart from minor local differences.

GWS
6 )
Dataset Size
500
5 —— 1500
— 3000
4
—
X 3
2
1
BAD
6.0 Dataset Size
55 500
— 1500
5.0 — 2691
4.5
)
54
4.0
3.5
3.0
2.5
0.0 0.1 0.2 0.3 0.4
Threshold probability
— CaPE == non-CaPE

Fig. 3. Comparison of KL for the GWS and BAD datasets across different
dataset sizes. The solid lines represent the results after applying the CaPE
method, while the dashed lines represent the results with early stopping.

Finally, this analysis also shows no significant correlation
between the size of the data set, the threshold, and the number
of bins on the effectiveness of the CaPE method. These
parameters appear to be highly task-dependent, suggesting that
their influence depends on the nature of the task in question.
For example, while the number of bins may be critical for one
dataset, it may not have the same impact on another dataset
with different characteristics. This task dependency empha-
sizes the importance of tailoring the calibration approach to
the specific requirements and characteristics of the dataset.

This observation highlights the effectiveness of the calibra-

tion strategy, but also suggests that both regularization against
overfitting and calibration of probabilities in segmentation
tasks seem to have a smaller effect compared to traditional
problems, as shown by Liu et al. [1]. This result suggests the
intriguing possibility that segmentation models are inherently
better calibrated, possibly due to the non-i.i.d. nature of pixels
in image data in such tasks.

V. CONCLUSIONS

In this study, we investigated the application of the Cali-
brated Probability Estimation (CaPE) method to segmentation
tasks specifically targeting weather forecasting and fire area
detection. Our experiments have shown that while CaPE
offers some advantages in model calibration, its impact is
less pronounced than classification tasks. This result suggests
that certain segmentation datasets inherently provide well-
calibrated probability estimates. A key advantage of CaPE was
its role in preventing overfitting by acting as a regularization
technique. Despite minimal improvements in metrics such as
KL and Brier score, CaPE effectively maintained calibration
and improved the robustness of the model to overfitting. Fur-
ther research will aim to corroborate these results by extending
this setting to more diverse datasets, such as medical images.
In these applications, accurate probability estimation is crucial
for segmentation, and the general scarcity of high-quality
data poses a major challenge. Exploring the effectiveness of
the CaPE method or other calibration techniques, such as
semantic-aware grouping [12], will provide deeper insights
into its potential and limitations in these scenarios. This will
ultimately contribute to developing more reliable and well-
calibrated segmentation models.
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