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Abstract—Prompted by increasing citizens’ demand, the rapid
evolution of smart- and micro-mobility continues to shape the
landscape of urban transportation services. In light of their
practical benefits in terms of environmental sustainability, public
health, and traffic congestion mitigation, smart cities manage
mobility services by tracking user demand and service utilization
over time. Leveraging this data is crucial for discerning current
patterns and anticipating future trends, thus improving service
provision. In this context, we propose a new interactive dash-
board for the advanced analysis of spatio-temporal data acquired
from bike-sharing systems. Our goal is to show on an interactive
map the city areas with the highest current and future users’
demand and a simulation of the routes suitable for redistributing
bikes across stations according to their predicted occupancy level.
We leverage a clustering algorithm to identify the areas with
currently highest bike demand and a forecasting approach to
predict users’ demand trends. Thanks to multi-resolution time
and path management, end-users can exploit the dashboard to
support their decisions regarding resource shaping. We showcase
the FlowCasting’s capabilities on a opensource dataset collecting
BlueBikes data in Boston (U.S.). The online demo is available at
the following link: https://flowcasting.streamlit.app/

Index Terms—Interactive Dashboard, Data Analytics, Machine
Learning, Smart Mobility

I. INTRODUCTION

Smart mobility and micro-mobility services are becom-
ing increasingly popular in urban areas as citizens look for
convenient, eco-friendly alternatives to traditional means of
transport, especially for short-distance travels. By primarily
using bicycles and scooters, whether electric or traditional,
people can reduce their carbon footprint on air pollution,
which negatively impacts the quality of life in urban areas [1],
and lower their stress level caused by traffic congestion [2],
[3]. This underscores the significance of developing modern
urban transportation services that accommodate the increasing
citizens’ demands, paying particular attention to road safety
and policies to overcome the potential barriers [4].

Bike-sharing systems are one of the most popular smart mo-
bility solutions. Although the diffusion of cycling is influenced
by the presence of well-organized infrastructure and specific
services, such as bike paths and docking stations, the recent
advent of electric vehicles and bikes has brought forth a new
dimension to urban mobility, increasing the diffusion due to
their ease of use but also requiring additional features, such

as recharging stations.
Moreover, the switching process from ownership to an

access-based consumption model is a strong factor that influ-
ences the available market and the allocation of resources [5].
Different kinds of bike-sharing systems have been proposed
in recent years, including Station-based Bike-Sharing (SBBS)
and Free-Floating Bike-Sharing (FFBS) [6], [7]. Such a new
mobility paradigm is enabled by the spread of digital services,
which allow smart citizens to interact with the systems,
exchange data, and get feedback [8]–[10].

However, as service demand grows, it becomes increasingly
important to monitor resource usage to ensure that service
provision remains effective, efficient, and sustainable. Data
mining models and Business Intelligence are nowadays a
cornerstone to understand users’ behaviour, profile services,
and detect users’ demand evolution over time. For example, the
analysis of historical service usage data could help to identify
anomalies, inefficiencies, or common citizens’ habits. On the
other hand, detecting recurrent patterns from past data could
enable the prediction of future users’ demand and the early
identification of potentially critical paths.

The important challenge of transforming historical spatio-
temporal mobility data into actionable knowledge requires
advanced analysis techniques and effective tools to enhance
system planning, demand monitoring and maintenance opera-
tions [11], [12]. Based on this need to support the growth of
Intelligent Transportation Systems, our work proposes Flow-
Casting, an interactive machine learning based dashboard to
visualize relevant city areas, predict upcoming service usage
trends and suggest viable routes according to the bike-sharing
station occupancy levels (Figure 1). The dashboard is dynamic,
highly customizable, and designed for service managers who
are in charge of shaping bike-sharing services and defining
resource allocation.

The main features of our interactive dashboard for visual
bike-sharing data analytics are summarized as follows:

• Clustering: group nearby bike-sharing stations with high
current users’ demand.

• Forecasting: predict the upcoming users’ demand trends.
• Path Manager: simulate the redistribution of bikes across

stations to reallocate the system resources, thus optimiz-
ing service provision.

https://flowcasting.streamlit.app/


Fig. 1: FlowCasting is an interactive dashboard to visualize the current and future (estimated) trends of the utilization of bicycle sharing stations across the city area as well as
a viable plan of bicycle redistribution across urban stations. FlowCasting incorporates four main visual components: (A) Time-based Map: a view of the current and future city
areas with the highest users’ demand, (B) Management Information system: a selector of the starting point of the service and the number of bikes to deploy, (C) Path Manager:
a planner of the bike redistribution routes, and (D) Density Map: a visualization feature offering a better contextualization of bike movements.

II. RELATED WORKS

Numerous studies have explored the use of machine learning
techniques to explore and visualize bike-sharing data. The
common goal is to support either system managers in decision-
making or end-users to browse related content or explore the
outcomes of ad hoc predictors [13]–[15]. Figure 2 shows the
position of the present work, namely FlowCasting, in the re-
lated literature. 1 It is at the intersection of four complementary
research areas that are mostly relevant to bike-sharing systems.
It features all the separate contributions in a single, interactive
dashboard.

a) Forecasting: The use of machine learning techniques
to predict future users’ demand based on historical data is
established [16]–[23], where most common algorithms vary
from RandomForest to LSTM neural networks and ARIMA
models. They are indispensable tools to analyze time-evolving
trends within large bike-sharing datasets.

b) Clustering: These algorithms have been used to detect
spatial and temporal correlations in urban environments [24]–
[27]. Algorithms, such as K-Means, Minimum spanning tree,
and hierarchical clustering, are not only useful for outlier
detection [28] but also to plan bike redistribution actions [29],
[30] and predict users’ demand drift [31].

c) Path Management: Other methods have already stud-
ied the optimal bike distributions under varying conditions,
using different machine learning algorithms, as Random For-
est, Multilayer Perceptron, and clustering to forecast the

1We disregard the comparison between clustering and time series forecast-
ing algorithms used in the literature, as it is out of the scope of the present
study.

bikes availability and support efficiently the rebalancing op-
erations [23], [32]. The goal is to recommend the optimal
routes or eco-friendly paths [33], [34] across the bike-sharing
stations, thus simplifying planning and maintenance opera-
tions [35], [36].

d) Visualization: To guide the decision-making process,
various interactive tools have been proposed in the context
of bike-sharing systems. They propose specific visualizations
and data encoding to detect spatio-temporal patterns for each
station - including demand frequency and trips profiling -
[37], the integration of data science tools for mobility data
analysis with maps and trajectory visualizations [38], and the
development of applications and dashboards to support users
in advanced analytics [39], [40].

Fig. 2: Visual representation of the state of the art and of the position of the work in the
related literature.



Unlike previous solutions, our approach integrates cluster-
ing, forecasting, path management, and visualization methods
into a comprehensive system dashboard, offering a novel
visualization tool for an effective understanding of the system
status according to geographical areas of the city. In detail,
FlowCasting provides an open and user-friendly framework to
support managers in service monitoring and shaping.

III. DESIGN OBJECTIVES AND REQUIREMENTS

According to the literature review we define the interactive
dashboard requirements ensuring an enriched and more pow-
erful bike-sharing data exploration. To fulfill the necessary
design objectives, during our implementation we meet the
following requirements in agreement with smart mobility
experts:

a) R1 - Intuitive and easy-to-use application: We pri-
oritize user-centric design principles, including a simplified
interface with clear navigation and interactive elements to
facilitate data exploration. The main objective is to provide
system managers with a user-friendly application to expedite
the process of data monitoring and decision-making.

b) R2 - Visualization of time-evolving data: This re-
quirement involves implementing key strategies to enhance the
clarity and usability of spatio-temporal data representations for
highlighting moments of intense usage. Visualizations of time-
evolving data, clusters, and predictive analytics are presented
with a clear visual hierarchy, interactive map features, and real-
time updates to enhance comprehension and responsiveness.

c) R3 - Support comparison between current and pre-
dicted critical areas: This involves overlaying current and
predicted areas with high users’ demand on the map. The
goal is to allow end-users to visually assess differences and
emerging trends. Visual cues such as color coding enable
users to identify and anticipate future demand shifts. Inter-
active controls enable users to select specific time frames for
comparison, ensuring focused analysis based on user-defined
criteria.

d) R4 - Optimization for live computation and cus-
tomization of parameters: Flexibility is a key aspect for
data analytics. Thus, FlowCasting is expected to perform live
computations according to the specific user input, allowing
stakeholders to analyze several scenarios and study different
solutions for bike management based on their preferences. In
addition, it should provide multiple alternatives to understand
the most convenient path to cover the predicted areas of
interest.

IV. FRAMEWORK DESIGN

The overall architecture is illustrated in Figure 3. It shows
the dashboard that is accessible through a web browser (R1).
Users can perform analysis on bike-sharing datasets, inter-
acting by adjusting time, management, and route parameters.

Fig. 3: Architecture overview describing the main components of FlowCasting. The
application can be accessed using a simple browser. Based on the input and the historical
mobility data, users can observe the customized visualizations.

Based on these selections, the data, the map displaying areas
of interest and the suggested routes are dynamically updated.

Algorithms design. FlowCasting receives as input data storing
records about trips of bike-sharing systems, including the
arrival and departure station names, station positions, and
time. On this data, we apply clustering to divide city areas
according to bike-station positions (based on latitude and lon-
gitude coordinates). We employ the K-Means [41] algorithm,
where the number of clusters K is chosen in accordance with
the number of neighborhoods in the city under analysis. To
compare current and future city areas of interest, we aim
to identify short-term future bike-station utilization. This is
implemented by forecasting the hourly bike demand for each
station and detecting the expected most relevant clusters. In
detail, the forecasts of the per-station occupancy levels are
generated by the Autoregressive Integrated Moving Average
(ARIMA) [42] model to leverage the stationary properties of
the time series. The clustering and forecasting are computed
each time user-defined values (see Section IV-A) are modified.

Dashboard design. The FlowCasting dashboard is devel-
oped as a web application with the Python language (R1).
Specifically, the front-end interface is based on the Stream-
lit framework 2, while the maps are generated through the
Folium library 3. Additionally, the routes are generated using
the OSMnx and NetworkX libraries [43], [44]. Broadly, our
platform is designed with customization in mind. As such,
the implementation of different clustering, forecasting, and
routing algorithms can be tailored to specific use cases as
needed. Moreover, by leveraging the web-browser properties,
we natively support the most common screen resolutions such
as 1080p, 1440p and 2160p, focusing mainly on the last two.

2https://streamlit.io
3https://python-visualization.github.io/folium/latest/

https://streamlit.io
https://python-visualization.github.io/folium/latest/


In the following, we describe the components of the inter-
face as well as their interactions. The dashboard is made of a
Time-based Map (A), a Management Information (B), a Path
Manager (C) and a Density View (D) (Figure 1).

A. Time-Based Map (A)

The map in Figure 1 represents the city under examination.
Notably, it highlights both current and predicted areas of inter-
est for the upcoming time range (R2, R3). In our case study,
these areas are determined based on the number of departures
of the included stations, a critical factor in comprehending
station utilization.

To access information on these relevant areas, users can
select the desired date and departure time on the sidebar on the
left (R4). This selection prompts the display of current areas
of interest on the map (depicted in red). These areas of interest
are determined through a clustering of bike stations. Indeed,
from the perspective of the service provider, these zones are
defined based on station density rather than geographic regions
within the city. Conversely, specifying forecast hours from the
current time reveals the predicted areas of interest (depicted
in blue). This juxtaposition of significant zones enables the
analysis of how these areas evolve over time.

B. Management Information (B)

Bike-sharing system managers commonly need to schedule
bike rebalancing actions or extensions of the currently offered
services in different locations of the urban environment. To
accommodate this, we allow managers to choose the starting
points (home pin in the map) in the left sidebar, enabling
diverse analyses and informed decisions (R4). Simultaneously,
within the “Management Information” section, managers can
specify the number of bikes that are expected to be relocated.
These bikes may be relocated due to either maintenance action
or the addition of new stations. The starting number can be
interpreted as the maximum number of available bikes, which
is commonly fixed by design. This value may change based
on the number of bikes needing reassignment.

C. Path Manager (C)

Fig. 4: Path Manager drop-down menu with the available routes associated to road
distance. Each route includes the areas of interest and the road distance to cover.

Fig. 5: Patch of the map exemplifying the information provided when a path is selected.
It shows the following elements: (1) home pin for the starting point, (2) the actual and
predicted relevant areas, (3) the road route in blue, (4) the stopping point for each
predicted area with a numerated pin, (5) the popup on the stopping point with the
information on the station name and the number of bikes to deploy, (6) the summary
with the route to follow for the reassignment.

The Path Manager of the FlowCasting dashboard shows the
candidate paths for redistributing bikes across the stations.

In the left-hand drop-down menu (C1) within the “Path
Manager” section (see Figure 4), users can choose among four
possible paths (R4). Notably, the travelled distance (expressed
in kilometers) is calculated based on the road route and
immediately displayed alongside each path. We choose to
provide four alternative options for bike relocation. Each
option is associated with a path from the starting point to the
destination areas, where the bikes are relocated to the selected
stations within the destination area.

Upon selecting a route, the main map is dynamically up-
dated (C2) to display the designated road (in blue), along with
the designated stops (Figure 5). These stops are determined
based on proximity to the predicted areas of interest relative
to the departure location. They are shown on the map through
numbered pinpoints, reflecting the sequence of stops. Regard-
ing the selection of stations for bike insertion, we highlight the
stations for which the gap between daily cumulative departures
and arrivals at a specified point of time is positive (denoting a
decreasing occupancy level trend). Each numbered marker on
the map features a popup (on the left on Figure 5) displaying
the station name and the number of bikes to be allocated. At
the bottom right of the page (Figures 1 and 5) a report (C3)
shows a comprehensive trip summary. It details the stops for
each selected area of interest are shown, listing the stations
(in sequential order) and the corresponding number of bikes
to be assigned.

D. Density View (D)

This visualization element is designed to support the Time-
Based Map, allowing a better generalization (R2). The density
map (see Figure 6) allows end-users to explore and analyze
areas of interest with higher departures (red) or arrivals (blue).
To support targeted analysis, the density map is generated
utilizing historical data corresponding to the same day of the
week. This approach enhances the accuracy and relevance of
the insights derived from the density map and, combined with



Fig. 6: Density Map. It shows areas with more departures (in red) or arrivals (in blue)
on the same day of the week of the selected date. It allows a better generalization and
contextualization of the ongoing situation for the chosen time parameters.

the information in the main map, it provides users with a more
robust understanding of mobility patterns.

V. CASE STUDY

A use case is thoroughly examined using the publicly
available BluBikes Boston dataset [45] to validate the func-
tionality and effectiveness of the dashboard in a real-world sce-
nario, ensuring its reliability and applicability across diverse
contexts. To assess the design choices of our development
team, we collect feedback from six individuals expert in
different fields ranging from computer engineering to design
and transportation sector.

a) Dataset: We use the BlueBikes dataset collected on
the city of Boston [45]. The selection of this dataset was
driven by its comprehensive nature, notably the presence of
geographic and temporal data including latitude, longitude,
and date. Moreover, its extensive temporal coverage enables
the execution of forecasting tasks, amplifying the depth and
breadth of our analysis.

b) Algorithms Configuration: Considering the number
of neighborhoods in the city of Boston where the Blue-
Bikes [45] stations are located, we set the number K of
clusters to 15. Given this dataset, after an exploration of the
parameters, we found effective to employ the ARMA con-
figuration for the forecasting, with the following parameters
p = 2, d = 0, q = 2.

c) Design Peer Review: In our study, we conducted
interviews with five participants from STEM backgrounds,
including engineers and designers, as well as a representa-
tive from a local transportation company, to evaluate design
choices for a dashboard. Participants were shown various
graphical sketches and provided feedback on different aspects.
All participants preferred placing user-modifiable elements on
a sidebar rather than above or below the main map. Five
participants felt that including a frequent flows map was not
essential to the main analyses, with one being neutral. Four
participants favored having immediate route changes on the
map without intermediate views, and all agreed that reloading

the map without preset paths from previous analyses would
minimize confusion. Opinions were divided on whether to
include information popups for station markers, leading to
the addition of popups as complementary information. Five
participants supported showing both actual and forecasted hot
areas, considering it an interesting comparison, while one
was neutral. When it came to the number of hot areas to
display, three participants found three areas to be the most
balanced choice. This feedback was crucial in shaping the
design decisions for the dashboard.

d) Evaluation Peer Review: We evaluate the final dash-
board on the same candidates as the Design Peer Reviews.
Reviewers praised its intuitive interface, facilitating easy
navigation and making it accessible to users. The dynamic
visualizations, particularly the time-based maps and density
views, were commended for effectively showcasing trends and
areas of high demand. This enhances the decision-making
processes with the support of the ability to visualize and
plan bike redistribution routes efficiently. While the interface
was generally user-friendly, reviewers - particularly the local
company candidate - mentioned that certain advanced features
required a steep learning curve, and the customization options
seemed more accessible to users with technical backgrounds.
However, they also highlighted how, after a brief explanation
of the main concepts, the usability became more effective.
There were also concerns about performance issues when
handling large datasets, as the real-time computations could
lead to slower response times. However, following several
tests, the system proved to be consistent in performance.

VI. DISCUSSION AND CONCLUSION

Effectively interacting with temporal data poses a significant
challenge, as creating a user-friendly interface that ensures
readability is not a straightforward task. Furthermore, the
management and optimization of services remain ongoing
challenges of huge interest for service provider companies.
In this context, we have developed FlowCasting, an intuitive
machine learning based dashboard for bike-sharing data vi-
sualization and analytics. The application is driven by key
objectives focused on usability, dynamic spatio-temporal data
representation, comparison of current and predicted high de-
mand areas, and path suggesstion for resource allocation.
Pursuing these objectives, we have developed an interactive
platform that enables users to efficiently and easily explore
and analyze bike-sharing data. Our case study underscores
these considerations, providing a practical application of the
considered concepts and design choices.

As future work, our plan involves implementing a bike
repositioning system to optimize service by redistributing
bikes to areas of interest. Additionally, we aim to enhance
management by integrating a navigation system directly into
the platform to streamline redistribution efforts. We also seek
to refine the prediction system by leveraging additional data
to identify potential areas of interest with insufficient bike



availability. Finally, we aim to extend our work to consider
multiple cities.
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