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A B S T R A C T

The paper focuses on rotordynamics analyses of various rotating variable-angle-tow (VAT) composite cylindri-
cal structures using both low- and high-fidelity structural models. To model the spatially varying composite
shell structures, the Carrera Unified Formulation (CUF) is employed. The CUF provides a hierarchical and
automated approach for developing shell finite element models. Various shell models are created using different
kinematics models based on Taylor or Lagrange expansion functions. The linearized equations of motion
include the Coriolis and initial stress contributions. Several VAT composite curved panels and thin and thick
cylinders have been analyzed to validate the presented approach and provide benchmark solutions. The results
are discussed and compared with commercial software solutions. The results demonstrate the good accuracy
and reliability of the proposed numerical methodology.

1. Introduction

Cylindrical shell structures have gained significant attention in the
industrial sector due to their advantageous strength-to-weight ratio and
manufacturing convenience. They have emerged as essential compo-
nents in various machines, including jet engines, centrifugal separa-
tors, rockets, missiles, offshore drilling systems, and spinning satellite
structures. During operation, these structures are subjected to several
dynamic forces that can affect their integrity and the efficiency of
the equipment they support. Consequently, performing comprehensive
vibrational analysis on these structures is crucial for their design and
performance assessment.

The existing shell theories widely used today are based on linear
elasticity principles and classical shell theory (CST). The pioneering
work in this field was carried out by Love [1], who introduced a
successful thin shell theory based on classical linear elasticity. Subse-
quently, Donnell [2], Sanders [3], and Leissa [4] incorporated their
assumptions into linear elasticity shell theories, deriving different equa-
tions of motion that exhibited improved accuracy in predicting shell
structure behaviors. To overcome the limitations of the classical theory,
Reissner [5] and Mindlin [6] introduced the First-order Shear Defor-
mation Theory (FSDT). Over time, various high-order two-dimensional
(2D) theories have been developed to overcome the limitations of
classical studies’ assumptions. For instance, Reddy [7] introduced a
refined approach that incorporates through-the-thickness kinematics
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and considers high-order shear deformations. This theory has been
particularly useful in analyzing 2D composite structures. Carrera [8]
unified the refined theories of shell models in his work.

The investigation of dynamic analysis of rotating cylindrical shells
has a rich history spanning approximately a century. Bryan [9] was the
pioneering researcher who studied rotating cylindrical shells, specifi-
cally focusing on a rotating ring. In his work, he observed the occur-
rence of traveling modes for the first time. Building upon this research,
DiTaranto and Lessen [10] further advanced the research by consider-
ing the Coriolis effect in their analysis of rotating shells. Padovan [11]
investigated the natural frequencies of rotating pre-stressed cylindrical
structures using a thin shell theory. An exact solution for free vibration
analyses of thin rotating composite cylindrical shells was presented
by Rand and Stavsky [12]. High-speed rotating shells were analyzed
by Chen et al. [13] by adopting the Novoshilov theory. Loveday and
Rogers [14] conducted various free vibration analyses of elastically
supported thin rotating cylindrical shells, accounting for the gyroscopic
effect with the Flogged shell theory. Spinning laminated composite
cylindrical shells were investigated by Lam and Loy [15]. They derived
a quadratic order equation that describes the frequencies of infinitely
long rotating laminated cylinders. Lee and Kim [16] conducted vi-
bration analyses of orthogonally stiffened composite cylinders under
rotation. Zhao et al. [17] studied the free vibration characteristics
of laminated composite rotating cylinders under various conditions,
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Fig. 1. Representative VAT composite shell model.

Fig. 2. Graphical representation of spatially varying fibers path over a representative domain.

Fig. 3. Geometry, boundary conditions and mesh discretization of the curved panel.

using the Ritz method and considering the presence of added stringer
and ring stiffeners. Sivadas [18] performed vibration analyses of pre-
stressed rotating thick conical shell structures, investigating the effect
of shear deformation and material damping on frequencies and damp-
ing factors. Guo et al. [19] investigated the influence of rotation on
the vibrations of thick cylindrical shell structures by employing a non-
linear plate-shell theory. More recently, Filippi et al. [20] conducted
rotordynamic analyses of cylindrical models using high-order 2D shell
models based on the Carrera Unified Formulation (CUF), including both
Coriolis and spin-softening contributions. Azzara et al. [21] proposed
a novel approach for rotordynamic analyses of stiffened cylinders and

disks, adopting high-fidelity shell models with three-dimensional (3D)
capabilities.

Advancements in automated manufacturing processes have revolu-
tionized the use of composite materials, leading to the development
of innovative techniques that offer improved repeatability, higher pro-
duction rates, and fewer defects in composite structures. Automation
provides the added benefit of fiber steering, providing designers greater
flexibility in customizing the characteristics of composites compared
to conventional straight fiber reinforcements. By tailoring the fiber
path in different layers, the vibration performance of structures can
be further improved. One technique that enables the fabrication of
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Fig. 4. Comparison of the first buckling mode shape of the VAT composite curved panel [0◦ ± ⟨0◦∕30◦⟩]2𝑠.

Fig. 5. Variation of the first buckling load with respect to the T1 parameter. VAT
composite curved panel subjected to in-plane compressive loads.

variable-angle-tow (VAT) composites involves curvilinear steering of
the fiber tow paths within the lamina plane. This approach allows for
variations in stiffness distribution, leading to load redistribution in criti-
cal regions of the structure. Manufacturing methods, such as automated
fiber placement (AFP), automated tape laying (ATL), and continuous
tow shearing (CTS), are employed to produce VAT composites, as
documented in studies by Kim et al. [22] and Dirk et al. [23], among
others. Pioneering research conducted by Hyer and Lee [24] explored
the effects of curvilinear fibers around a cutout in a flat composite plate.
Further numerical studies by Hyer and Charette [25] and by Schueler
and Hale [26] provided additional evidence of the advantages offered
by curvilinear fibers. Tatting and Gurdal [27] demonstrated significant
improvements in strength, stiffness, and buckling load through their
experimental study on the development, production, and evaluation
of flat variable stiffness plates. Other researchers, such as Peeters and
Abdalla [28], Van Campen et al. [29], and White et al. [30], have
also contributed to the understanding of flat tow-steered laminated
plate structures. Accurate stress analyses of VAT shell structures via
variable-fidelity models were provided in [31].

While numerous studies have focused on variable stiffness plates,
only a minority have centered their attention on VAT cylindrical shells.
For example, Tatting [32] investigated variations in circumferential
stiffness on cylindrical shells. Wu [33] utilized advanced fiber place-
ment technology to circumferentially tailor the stiffness of cylinders
in bending. White and Weaver [34] employed optimized variable-
angle-tow techniques in the lamination of cylindrical shells to mit-
igate the sensitivity of these structures to geometric imperfections.
Blom et al. [35] examined the maximization of fundamental frequency
of conical shells with variable stiffness, finding that VAT laminates
could enhance the fundamental frequency compared to laminates with
straight fiber paths, even considering manufacturing limitations. The
dynamic behavior of doubly-curved panels reinforced by curvilinear
fibers was presented by Tornabene et al. [36].

The existing literature on the natural frequencies of rotating struc-
tures primarily focuses on isotropic or classical composite structures,
with a gap in research regarding VAT composite cylindrical structures.
To address this research gap, this paper aims to introduce various
rotordynamics analyses of VAT shell structures. The primary goal of
this work is to accurately predict the dynamic response of rotating tow-
steered composite shells and provide vibration benchmarks for future
evaluations.

The proposed methodology relies on the Carrera Unified Formu-
lation (CUF) [37]. This formulation allows for the straightforward
adoption of classical to high-order models by expressing any theory
as generalized kinematics through the expansion of generalized vari-
ables. By employing this approach, the governing equations and the
corresponding finite element (FE) arrays of 2D theories are expressed in
terms of Fundamental Nuclei (FNs), which represent the main building
blocks of the presented methodology. In this research, the formulation
is specifically applied to address rotordynamics analyses of shell struc-
tures, taking into account all effects stemming from rotation, such as
the Coriolis force, centrifugal force, spin-softening matrix, and stress-
stiffening matrix. For subsequent analyses of rotating thin and thick
cylinders, a linearized approach has been employed.

This article is organized as follows: (i) Section 2 provides the rotor-
dynamics equations in CUF formalism, including a description of the
VAT technique; (ii) then, Section 3 presents various numerical results
and (iii) finally, some conclusions are drawn in Section 4.

2. Vibrations of rotating VAT shells

2.1. Preliminaries

A shell geometry is described employing an orthogonal curvilinear
reference system (𝛼; 𝛽; 𝑧), as reported in Fig. 1, where 𝛼 − 𝛽 indicates
the in-plane surface and 𝑧 the thickness direction. The displacement,
strain and stress fields for each layer 𝑘 are expressed as follows:

𝒖𝑘 = { 𝑢𝑘𝛼 , 𝑢
𝑘
𝛽 , 𝑢

𝑘
𝑧 }T

𝝐𝑘 = {𝜖𝑘𝛼𝛼 , 𝜖
𝑘
𝛽𝛽 , 𝜖

𝑘
𝑧𝑧, 𝜖

𝑘
𝛼𝑧, 𝜖

𝑘
𝛽𝑧, 𝜖

𝑘
𝛼𝛽}

T

𝝈𝑘 = {𝜎𝑘𝛼𝛼 , 𝜎
𝑘
𝛽𝛽 , 𝜎

𝑘
𝑧𝑧, 𝜎

𝑘
𝛼𝑧, 𝜎

𝑘
𝛽𝑧, 𝜎

𝑘
𝛼𝛽}

T

(1)
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Fig. 6. First buckling mode shape with respect to the T1 parameter. VAT composite curved panel subjected to in-plane compressive loads. 𝜃 = [0◦ ± ⟨0◦∕T1⟩]2𝑠.

Fig. 7. Geometry and mesh discretization of the VAT composite thin cylinder.
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Fig. 8. Mode shapes of the thin cylinder with [90◦∕0◦]𝑠.

Fig. 9. Effect of T0 and T1 parameters on the first natural frequency. Thin cylinder
with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩]𝑠.

where the superscript T denotes transposition. In a total Lagrangian
scenario, the displacement–strain relation and the Hooke’s law are
written as follows:
𝝐𝑘 = 𝝐𝑘𝑙 + 𝝐𝑘𝑛𝑙 = (𝒃𝑙 + 𝒃𝑛𝑙)𝒖𝑘

𝝈𝑘 = 𝝈𝑘
𝑙 + 𝝈𝑘

𝑛𝑙 = 𝑪𝑘(𝝐𝑘𝑙 + 𝝐𝑘𝑛𝑙)
(2)

where 𝝐𝑘 is the full Green–Lagrange strain tensor, 𝑪𝑘 represents the
linear elastic matrix for orthotropic materials, 𝒃𝑙 and 𝒃𝑛𝑙 stand for
the 6 × 3 linear and nonlinear differential operators, respectively.
For brevity, readers are referred to Refs. [38,39] for details of these
matrices.

Since VAT structures are analyzed in this work, the fibers are
placed following an arbitrary orientation function of spatial coordi-
nates, i.e., 𝜃(𝛼; 𝛽). Therefore, we write:

𝝈𝑘 = �̃�
𝑘
𝝐𝑘 (3)

where:

�̃�
𝑘
= 𝑻 T𝑪𝑘𝑻 (4)

The rotation matrix, denoted by 𝑻 , represents the orientation of the
fibers in VAT structures. In these structures, the fibers have the ability
to change along a curved path within each layer. As a result, the
laminate exhibits varying stiffness values at different positions. This
work considers linear variations in fiber angles across each lamina and
employs the expression proposed by Gürdal and Olmedo [40]. It reads:

𝜃(𝛼′) = 𝛷 + T0 +
(T1 − T0)

𝑑
|𝛼′| (5)

In this scenario, the fiber path undergoes a rotation by an angle 𝜃
relative to a specific reference direction. The fiber orientation angle
at this reference point is denoted as T0 and varies along a direction
𝛼′, which is oriented at an angle 𝛷 from the original coordinate axis
𝛼. At a characteristic distance 𝑑 from the reference point, the fiber
orientation angle becomes T1. By considering this rotation angle, the
fiber orientation path 𝜃(𝛼, 𝛽) can be expressed as 𝜃(𝛼′), where 𝛼′ =
𝛼𝑐𝑜𝑠𝛷 + 𝛽𝑠𝑖𝑛𝛷. The parameter 𝑑 is typically equal to 𝑎∕2 or 𝑏∕2 when
𝛷 = 0◦ or 𝛷 = 90◦, respectively, where 𝑎 and 𝑏 represent the width and
length of the 2D structure. Fig. 2 illustrates two fiber path variations
in a representative domain.

2.2. Rotordynamics equations in CUF

In this study, the VAT composite shells are modeled within the
CUF framework by using classical to high-order shell models. Accord-
ing to CUF, the 3D displacement field is expressed as an arbitrary
through-the-thickness expansion of the in-plane variables.

𝒖𝑘(𝛼, 𝛽, 𝑧; 𝑡) = 𝐹 𝑘
𝜏 (𝑧)𝒖

𝑘
𝜏 (𝛼, 𝛽; 𝑡), 𝜏 = 1,… ,𝑀, (6)

in which 𝐹 𝑘
𝜏 indicates a set of thickness expansion functions, 𝑢𝑘𝜏 is the

generalized displacement vector, 𝑀 stands for the order of expansion
in the thickness direction, 𝑡 represents the time and the repeated index
indicates summation. The choice of 𝐹 𝑘

𝜏 is arbitrary and determines the
class of Layerwise (LW) and Equivalent Single Layer (ESL) theories that
can be directly developed within CUF. This paper considers both the
ESL based on Taylor Expansion (TE) and LW adopting the Lagrange
Expansion (LE). The acronyms LDN and TEN, used in the following
section, refer to LE and TE of order N, respectively. For example, LD1
stands for the linear (two-node) Lagrange expansion functions, whereas
TE1 represents Taylor expansion functions of order one. For a detailed
description of these theories, refer to Refs. [41,42].
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Fig. 10. Frequency variations for various rotational speeds of the thin cylinder with 𝜃 = [90◦ + ⟨0◦∕T1⟩∕ 0◦ + ⟨0◦∕T1⟩]𝑠. Comparison between the classical composite model (T1 = 0◦)
and the VAT ones (T1 = 30◦).

Independently of the selected shell model kinematics, the finite
element method (FEM) is employed to approximate the in-plane gen-
eralized displacement vector by using shape functions 𝑁𝑖(𝛼, 𝛽).

𝒖𝑘𝜏 (𝛼, 𝛽; 𝑡) = 𝑁𝑖(𝛼, 𝛽)𝒒𝑘𝜏𝑖(𝑡), 𝑖 = 1,… , 𝑁𝑛, (7)

in which 𝒒𝑘𝜏𝑖 stands for the unknown nodal variables and 𝑁𝑛 denotes
the number of nodes per element. In this research, the classical 2D nine-
node quadratic (Q9) FEs are chosen for the shape functions in the 𝛼-𝛽
plane.

To derive the nonlinear finite element (FE) governing equations, the
Principle of Virtual Work (PVW) is employed.

𝛿𝐿𝑖𝑛𝑡 + 𝛿𝐿𝑖𝑛𝑒 − 𝛿𝐿𝑒𝑥𝑡 = 0 (8)

where 𝛿𝐿𝑖𝑛𝑡, 𝛿𝐿𝑖𝑛𝑒 and 𝛿𝐿𝑒𝑥𝑡 represent the virtual internal, inertial
and external works, respectively. The virtual works are expressed in
terms of FNs of the secant stiffness matrix 𝑲 𝑖𝑗𝜏𝑠

𝑠 , mass matrix 𝑴 𝑖𝑗𝜏𝑠,
Coriolis matrix 𝑮𝑖𝑗𝜏𝑠, spin softening matrix 𝑲 𝑖𝑗𝜏𝑠

𝛺 , centrifugal force
vector 𝑭 𝑠𝑗

𝛺 , and nodal force vector 𝑭 𝑠𝑗 . The superscripts 𝑖, 𝑗, 𝜏, 𝑠 are
used to assemble the global matrices and vectors. When the structure
rotates about the 𝛽-axis at a rotational speed 𝛺, the inertial forces can
be expressed as follows:

𝑭 𝐼 = −𝜌

⎧

⎪

⎨

⎪

⎩

̂̈𝑢𝛼
̂̈𝑢𝛽
̂̈𝑢𝑧

⎫

⎪

⎬

⎪

⎭

− 2𝜌𝛺

⎧

⎪

⎨

⎪

⎩

̂̇𝑢𝛼
0
̂̇𝑢𝑧

⎫

⎪

⎬

⎪

⎭

+ 𝜌𝛺2

⎧

⎪

⎨

⎪

⎩

�̂�𝛼
0
�̂�𝑧

⎫

⎪

⎬

⎪

⎭

− 𝜌𝛺2

⎧

⎪

⎨

⎪

⎩

0
0
𝑧𝑒

⎫

⎪

⎬

⎪

⎭

(9)

𝛿𝐿𝑖𝑛𝑡 = ∫𝑉 𝛿𝝐T𝝈𝑑𝑉 = 𝛿𝒒T
𝑠𝑗 (𝑲

𝑖𝑗𝜏𝑠
0 +𝑲 𝑖𝑗𝜏𝑠

𝑙𝑛𝑙 +𝑲 𝑖𝑗𝜏𝑠
𝑛𝑙𝑙 +𝑲 𝑖𝑗𝜏𝑠

𝑛𝑙𝑛𝑙 )𝒒𝜏𝑖
= 𝛿𝒒T

𝑠𝑗𝑲
𝑖𝑗𝜏𝑠
𝑆 𝒒𝜏𝑖

𝛿𝐿𝑖𝑛𝑒 = ∫𝑉 𝛿�̂�T𝑭 𝐼𝑑𝑉 = 𝛿𝒒T
𝑠𝑗 (𝑴

𝑖𝑗𝜏𝑠�̈�𝜏𝑖 +𝑮𝑖𝑗𝜏𝑠�̇�𝜏𝑖 +𝑲 𝑖𝑗𝜏𝑠
𝛺 𝒒𝜏𝑖 + 𝑭 𝑠𝑗

𝛺 )

𝛿𝐿𝑒𝑥𝑡 = 𝛿𝒒T
𝑠𝑗𝑭

𝑠𝑗

(10)

For completeness, complete derivations of the 3-by-3 FNs of Coriolis
and spin softening matrices, and the 3-by-1 FN of the centrifugal force
vector are reported in Appendix. Further details of these matrices and
vectors can be found in Refs. [20,43].

If external loads 𝑭 are applied, the nonlinear equation to be solved
is:

𝑲𝑆𝒒𝑒 = 𝑭 + 𝑭𝛺 (11)

The solution 𝒒𝑒 is computed with a Newton–Raphson linearization
scheme.

Specifically, the FNs of the tangent stiffness matrix (𝑲𝑇 ) and geo-
metric stiffness matrix (𝑲𝜎) are introduced by linearizing the virtual
internal work.

𝛿(𝛿𝐿𝑖𝑛𝑡) = 𝛿𝒒T
𝑠𝑗 (𝑲

𝑖𝑗𝜏𝑠
0 +𝑲 𝑖𝑗𝜏𝑠

𝑇 1 )𝛿𝒒𝜏𝑖 + 𝛿𝒒T
𝑠𝑗𝑲

𝑖𝑗𝜏𝑠
𝜎 𝛿𝒒𝜏𝑖 = 𝛿𝒒T

𝑠𝑗𝑲
𝑖𝑗𝜏𝑠
𝑇 𝛿𝒒𝜏𝑖 (12)

where 𝑲 𝑖𝑗𝜏𝑠
0 indicates the linear component of 𝑲𝑇 , while 𝑲 𝑖𝑗𝜏𝑠

𝑇 1 =
2𝑲 𝑖𝑗𝜏𝑠

𝑙𝑛𝑙 +𝑲 𝑖𝑗𝜏𝑠
𝑛𝑙𝑙 +2𝑲 𝑖𝑗𝜏𝑠

𝑛𝑙𝑛𝑙 denotes the nonlinear contribution. For a detailed
derivation of the tangent stiffness matrix, please refer to Ref. [44].

This work employs a linearized methodology, wherein the stiffness
matrix is simplified as:

𝑲 ≈ 𝑲0 +𝑲∗
𝜎 (13)

The term 𝑲∗
𝜎 is the new geometric stiffness matrix that derives from

the nonlinear strain vector multiplied by the linear component of the
initial rotation-induced stress vector, which is computed through a
linear static analysis, considering the rotational speed 𝛺 = 1 rad/s. To
compute the natural frequencies (𝜔) and their associated mode shapes
(�̄�) for small-amplitude vibrations, a harmonic solution (�̂� = �̄�𝑒𝑖𝜔𝑡)
is assumed. The quadratic eigenvalue problem is solved following the
approach described in Ref. [45].

𝑴 ̈̂𝒒 +𝛺𝑮 ̇̂𝒒 + (𝑲0 +𝛺2𝑲∗
𝜎 +𝛺2𝑲𝛺)�̂� = 0 (14)

3. Numerical examples

This section presents an overview of vibration analyses performed
on both non-rotating and rotating VAT shell structures. The initial
step involves conducting free vibration and buckling analyses on VAT
composite curved panels in order to validate the proposed approach.
The obtained results are compared with published data and finite
element solutions to ensure accuracy. Subsequently, rotordynamics
results of various VAT composite thin and thick cylinders are pro-
vided. The Mixed Interpolation of Tensorial Components (MITC) tech-
nique was adopted to overcome the shear and membrane locking
phenomena [46].
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Fig. 11. MAC between the models with T1 = 0◦ and T1 = 30◦ at different rotational speeds 𝛺 for the thin cylinder with 𝜃 = [90◦ + ⟨0◦∕T1⟩∕ 0◦ + ⟨0◦∕T1⟩]𝑠.

3.1. Curved panel

The first example deals with a curved VAT composite panel simply-
supported (SS) on all edges. The curved panel’s configuration is de-
picted in Fig. 3. This structure consists of eight composite laminae
where the fibers are steered following the stacking sequence: 𝜃 = [0◦ ±
⟨0◦∕30◦⟩]2𝑠. This shell model has the following dimensions: 𝑎 = 𝑏 = 0.3
m and the thickness ℎ is equal to 1.05 × 10−3 m. The material data of
the considered structure are: 𝐸1 = 163 GPa, 𝐸2 = 10 GPa, 𝐺12 = 5 GPa,
𝜈12 = 0.3 and 𝜌 = 1480 kg/m3.

Firstly, the accuracy of the presented methodology is verified by
comparing the free natural frequencies with the results found in the lit-
erature or obtained using commercial software. A convergence analysis
is conducted to determine the mesh that yields the convergent results.
Subsequently, a comparison between ESL and LW models is reported.
Table 1 shows the non-rotating natural frequencies for various in-plane
mesh approximation. Additionally, Table 2 illustrates the effect of the
kinematics theories, from low- to high-order models. The relative errors
between the results obtained with and without the MITC correction are
provided in brackets. It is evident that the model utilizing a 10 × 10 Q9

FEs for the in-plane mesh discretization and only one LD1 for each layer
achieves good convergence.Table 3 presents a comparison between CUF
and FEMAP solutions. In particular, a subroutine was developed to
generate FE models consisting of 4-node shell elements (QUAD4), in
which the fiber orientations changes element by element. The table
demonstrates that the use of the proposed approach allows the adoption
of a lighter mesh than that which must be adopted in software such as
FEMAP.

Next, buckling analyses of VAT shells subjected to in-plane compres-
sive loads are performed to also validate the geometric stiffness matrix.
Considering the previous configuration, the critical buckling load was
obtained for various fiber angle orientations. Table 4 shows the critical
buckling values obtained through the presented approach and using
FEMAP. Additionally, the comparison between the first buckling mode
shapes is given in Fig. 4. Moreover, also the effect of the fiber angle
orientation T1 on the critical buckling load was investigated. The
related variation is shown in Fig. 5. Fig. 6 displays the first buckling
mode shapes as a function of the T1 parameter. The results suggest
that low-order kinematics theories provided similar frequency solutions
with those obtained using high-order models. The MITC correction is
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Fig. 12. Effect of T1 on the Campbell diagram of the first two vibration modes. Thin cylinder with 𝜃 = [90◦ + ⟨0◦∕T1⟩∕ 0◦ + ⟨0◦∕T1⟩]𝑠. 𝑓 ∗
𝑛 indicates the value of the considered

frequency at 𝛺 = 0 rad/s.

Table 1
Effect of the in-plane mesh approximation on the first ten free natural frequencies [Hz] of the VAT composite curved panel [0◦ ± ⟨0◦∕30◦⟩]2𝑠.
Lagrange model employing one LD1 for layer. The number of the total degrees of freedom (DOFs) is reported in brackets at the top.
No. mode Natural frequency

5 × 5 Q9 (3267) 10 × 10 Q9 (11907) 20 × 20 Q9 (45387) 30 × 30 Q9 (100467)

1 232.06(−2.38%) 231.12(−1.31%) 230.99(−0.21%) 230.94(−0.06%)

2 236.55(−6.03%) 236.61(−0.08%) 236.52(−0.02%) 236.41(−0.02%)

3 337.97(−4.70%) 336.63(−0.79%) 336.33(−.014%) 336.15(−0.05%)

4 489.07(−5.33%) 479.18(−2.76%) 478.43(−0.50%) 478.34(−0.14%)

5 493.45(−12.58%) 488.27(−1.12%) 487.59(−0.19%) 487.30(−0.07%)

6 543.02(−6.85%) 534.44(−2.12%) 533.62(−0.36%) 533.40(−0.11%)

7 596.32(−5.55%) 594.87(−0.36%) 594.30(−0.08%) 593.76(−0.05%)

8 630.47(−9.62%) 618.83(−1.98%) 617.68(−0.36%) 617.37(−0.12%)

9 680.54(−6.78%) 663.87(−1.41%) 662.19(−0.30%) 661.73(−0.12%)

10 770.22(−7.88%) 748.32(−2.22%) 746.19(−0.44%) 745.78(−0.16%)

Table 2
Effect of kinematics theories on the natural frequencies [Hz]. VAT composite curved panel [0◦ ± ⟨0◦∕30◦⟩]2𝑠. 10 × 10 Q9 model.

No. mode Natural frequency

LD1 (11907) LD2 (22491) LD3 (33075) CLT (1323) FSDT (2205) TE1 (2646) TE2 (3969) TE3 (5292)

1 231.12 231.08 231.08 233.51 232.32 232.73 231.16 231.11
2 236.61 236.48 236.47 243.90 243.88 237.04 236.76 236.75
3 336.63 336.54 336.54 342.15 341.86 339.23 336.74 336.65
4 479.18 479.08 479.08 483.23 482.53 482.44 479.31 479.14
5 488.27 488.07 488.07 496.27 495.90 492.78 488.50 488.37
6 534.44 534.26 534.26 540.89 540.08 538.66 534.67 534.45
7 594.87 594.35 594.32 605.04 604.89 596.63 595.52 595.44
8 618.83 618.54 618.53 628.59 627.71 625.85 619.14 618.84
9 663.87 663.65 663.65 674.33 673.66 671.15 664.15 663.97
10 748.32 747.96 747.95 761.89 760.80 758.52 748.63 748.28

crucial when utilizing a coarse mesh, as it can significantly affect the
results. However, when using a finer mesh, the MITC correction does
not have a noticeable impact on the outcome. The CUF solutions are in
good agreement with the FEMAP ones. Finally, in the considered case,
increasing the parameter T1 led to an increase in the critical buckling
load value.

3.2. Thin cylinder

The second example concerns a clamped–clamped thin variable-
angle-tow composite cylinder, analyzed in both rotating and non-
rotating conditions. The material properties are as follows: the elastic
Young moduli 𝐸1 = 224 GPa, 𝐸2 = 𝐸3 = 12.7 GPa, shear moduli
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Table 3
Natural frequencies [Hz] of the VAT composite curve panel [0◦ ± ⟨0◦∕30◦⟩]2𝑠.

Table 4
First linearized buckling load value of the VAT composite curved panel [0◦±⟨0◦∕30◦⟩]2𝑠.

Model 𝑃𝑐𝑟 [N/m]

Present (10 × 10 Q9+LD1) 12 172.79
FEMAP (100 × 100) 12 032.65

𝐺12 = 𝐺23 = 𝐺13 = 4.42 GPa, Poisson ratio 𝜈12 = 0.256, and density 𝜌
= 2527 kg/m3. The dimensions are: length 𝐿 = 5 m, thickness 𝑡 = 0.02
and the diameter is equal to 1 m. This particular structure, illustrated
in Fig. 7, has been previously examined in unstiffened and stiffened
isotropic and classical composite configurations [20,21,43].

Table 5 shows the first five non-rotating natural frequencies of the
thin cylinder, computed using various meshes, including the compari-
son with the FEMAP solution. Specifically, various discretization from
32 Q9 to 288 Q9 FEs are considered for the surface approximation,
while one LD1 is employed along the thickness. The 20 × 10 Q9
mesh provided a reliable approximation for the in-plane description.
Table 6 provided the effect of the kinematic theory on the non-rotating
natural frequencies. For completeness, the mode shapes of the first
five frequencies are depicted in Fig. 8. The results suggest that low-
order models (LD1) are sufficient to accurately predict the frequencies,
while some discrepancies are noted when the classical theories (Clas-
sical lamination theory (CLT), First shear deformation theory (FSDT))
or TE1 are employed. Furthermore, the importance of considering
the MITC locking correction in the analysis of thin cylinders is evi-
dent in Table 7. Notably, substantial disparities arise when employing
coarse meshes, with differences reaching approximately a maximum
of 48.21%. Although the percentage gap diminishes (a maximum of
13.80%) with the adoption of a finer mesh, disparities persist between
results with and without the MITC correction. The incorporation of
MITC correction enables the utilization of significantly lighter meshes,
providing a significant computational advantage. Table 8 provides a
comparison between the CUF frequency solutions and those achieved
using the commercial software FEMAP for the thin cylinder with the
lamination 𝜃 = [90◦ + ⟨0◦∕15◦⟩∕ 0◦ + ⟨0◦∕15◦⟩]𝑠. Some discrepancies are
observed, which can be attributed to variations in the application of
VAT rolling. In particular, commercial software tools typically assume
a constant lamination angle throughout the entire element domain,
while the proposed methodology allows for the fiber angle to vary

at each Gaussian point within the shell element. The effect of the T0
and T1 parameters variation on the first natural frequency for the thin
cylinder with lamination 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩]𝑠 is shown
in Fig. 9. It is noted the maximum value of the first natural frequency
is obtained adopting T0 = 90◦ and T1 = 75◦. The specific numerical
values for the forward and backward first and second vibration modes
can be found in Tables 9 and 10. In contrast to a classical composite
material where the frequencies for forward and backward behavior are
identical, a variable lamination introduces a slight difference between
these values. This discrepancy becomes evident when T0 and T1 are
not equal. Fig. 10 depicts the frequency variations with respect to the
rotational speed for the thin cylinder, comparing the solutions obtained
using T1 = 0◦ or T1 = 30◦. The same figure shows the vibration mode
shapes for the two models analyzed. It is evident that the use of a VAT
models led to increase the frequencies. For completeness, a comparison
of the first ten vibration mode shapes of the thin cylinder is conducted
for two cases: T1 = 0◦ or T1 = 30◦. The comparison utilizes a Modal
Assurance Criterion (MAC) graphical representation, as illustrated in
Fig. 11. MAC is a scalar that measures the similarity between two
sets of mode shapes [47,48]. Specifically, Fig. 11a and b illustrate the
comparison of frequencies between the two models at 𝛺 = 0 rad/s
and 𝛺 = 40 rad/s, respectively. Instead, Fig. 11c and d provide the
frequency changes within the same model at two different rotational
speed values. The effect of the T1 parameter on the Campbell diagram
for the first two vibration modes is presented in Fig. 12, showing that as
the T1 value increases the structure shows a stiffer behavior, i.e., the
frequencies increase. Table 11 provides the specific numerical values
for the forward and backward second vibration mode for different T0
and T1 combinations at 𝛺 = 50 rad/s.

3.3. Thick cylinder

The last case deals with a VAT composite thick cylinder. For this
case, both stress and vibration analyses with different boundary con-
ditions are presented. The dimensions of this structure are: thickness
equal to 0.0381 m, length is 0.254 m, and mean radius equal to
0.09525 m. The material data are the following: 𝐸1 = 224 GPa, 𝐸2 = 𝐸3
= 12.7 GPa, 𝐺12 = 𝐺23 = 𝐺13 = 4.42 GPa, 𝜈12 = 0.256, and 𝜌 =
2527 kg/m3. After convergence studies, 12 × 6 Q9 FEs were adopted
for the in-plane mesh discretization.

Thin-Walled Structures 205 (2024) 112446 

9 



R. Azzara et al.

Fig. 13. Through-the-thickness stress distributions for the clamped–clamped VAT composite thick cylinder with 𝜃 = [90◦ + ⟨0◦∕30◦⟩∕ 0◦ + ⟨0◦∕30◦⟩∕ 90◦ + ⟨0◦∕30◦⟩], considering
various kinematics theories and 𝛺 = 200 rad/s.

In order to show the effectiveness of this methodology in calculating

the stresses and emphasize the importance of adopting high-fidelity

models, Fig. 13 depicts the 3D stress distributions along the thickness

at the structure’s center, comparing low- and high-order kinematics

Thin-Walled Structures 205 (2024) 112446 

10 



R. Azzara et al.

Fig. 14. Effect of T0 and T1 parameters on the first natural frequency. Free–free VAT
composite thick cylinder with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩∕ 90◦ + ⟨T0∕T1⟩].

Table 5
Natural frequencies [Hz] at standstill of the thin cylinder with [90◦∕0◦]𝑠 for different
in-plane mesh approximations using one LD1 for layer, along with the DOFs.

Model No. mode

1 2 3 4 5

8 × 4 Q9+LD1 (2160) 66.33 91.49 116.69 120.92 132.29
12 × 6 Q9+LD1 (4680) 66.23 91.24 115.95 116.72 132.26
14 × 8 Q9+LD1 (7140) 66.21 91.20 115.34 116.64 132.26
20 × 10 Q9+LD1 (12600) 66.21 91.19 114.77 116.65 132.25
24 × 12 Q9+LD1 (18000) 66.21 91.18 114.70 116.65 132.25
FEMAP (125 × 78) 66.18 91.10 114.55 116.58 132.17

Table 6
Effect of the kinematics theories on the natural frequencies [Hz] at standstill of the
thin cylinder with [90◦∕0◦]𝑠. Model with 20 × 10 Q9.

Model No. mode

1 2 3 4 5

LD1 (12600) 66.21 91.19 114.77 116.65 132.25
LD2 (22680) 66.17 91.18 114.57 116.62 132.25
LD3 (32760) 66.17 91.18 114.57 116.62 132.25
CLT (2520) 66.76 91.44 117.02 117.40 132.25
FSDT (4200) 65.58 90.65 114.41 114.79 132.25
TE1 (5040) 65.57 90.65 114.40 114.77 132.25
TE2 (7560) 66.23 91.20 115.04 116.69 132.25
TE3 (10080) 66.19 91.18 114.70 116.63 132.25

theories. The results suggest that low-order ESL models are sufficient to
predict the in-plane circumferential normal stress (𝜎𝛼𝛼) distribution. In
contrast, when shear stresses are calculated through the Hooke’s Law,
higher-order LW theories are necessary. In fact, ESL models are not
able to describe the distribution, even if high-order theories (i.e., TE5)
are considered. The transverse shear stress plot points out that the
traction-free conditions at the top and bottom positions are satisfied
only by considering the cubic Lagrange polynomials (LD3). The TE5
solutions show good agreement with the LD2 and LD3 models for both
normal, 𝜎𝛽𝛽 , and in-plane shear, 𝜎𝛼𝛽 , stresses. Table 12 provides the
first ten non-rotating natural frequencies of the thick cylinder with
lamination 𝜃 = [90◦ + ⟨0◦∕30◦⟩∕ 0◦ + ⟨0◦∕30◦⟩∕ 90◦ + ⟨0◦∕30◦⟩]. The
table includes a comparison between different kinematics theories and
also provides the associated mode shapes. The results highlight the
significant inaccuracies that emerge when applying the classical theory
to a thick cylindrical structure. The LD1 model will be adopted for the
following analyses. The influence of T0 and T1 parameters on the first
natural frequency of the thick cylinder is illustrated in Fig. 14. It is
evident that the highest frequency value is achieved when both T0 and

Table 7
Effect of locking correction on the natural frequencies [Hz] for two different mesh
approximations. Thin cylinder with [0◦∕90◦]𝑠.

T1 are set to 90◦. Fig. 15 presents the Campbell diagrams of the first two
vibration modes for three different models: (A): classical composite; (B)
T0 = 0◦ and T1 = 30◦; (C) T0 = 75◦ and T1 = 30◦. The results show that
Model C is more rigid than the others. Furthermore, Tables 13 and 14
provide the specific numerical values of the first and second vibration
modes for various combinations of T0 and T1 when 𝛺 = 0 rad/s. For
completeness, the MAC graphical representation between the modes of
the thick cylinder with T0 = 0◦ and T1 = 30◦ at two different rotational
speeds (𝛺 = 400 rad/s versus 𝛺 = 800 rad/s) is presented in Fig. 16.
The figure demonstrates the mode changes that occur as the rotational
speeds progressively increase.

4. Conclusions

Rotordynamics analyses of various variable-angle-tow (VAT) com-
posite curved panels and thin and thick cylinders were conducted using
low- and high-fidelity models. Two-dimensional (2D) shell finite ele-
ments formulated in the Carrera Unified Formulation (CUF) framework
were employed to model these structures. The equations of motion
were derived in a co-rotating frame of reference, including all rota-
tional speed contributions, such as Coriolis and spin softening effects.
For computational efficiency, a linearized approach was employed to
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Fig. 15. Campbell diagrams of the free–free thick cylinder with: Model A = [90◦∕0◦∕90◦]; Model B = [90◦ + ⟨0◦∕30◦⟩∕ 0◦ + ⟨0◦∕30◦⟩∕ 90◦ + ⟨0◦∕30◦⟩]; Model C = [90◦ + ⟨75◦∕30◦⟩∕ 0◦ +
⟨75◦∕30◦⟩∕ 90◦ + ⟨75◦∕30◦⟩]. 𝑓 ∗

𝑛 indicates the value of the associated frequency at 𝛺 = 0 rad/s.

Table 8
Comparison between CUF and FEMAP frequency solutions [Hz]. Thin cylinder with 𝜃 = [90◦ + ⟨0◦∕15◦⟩∕ 0◦ + ⟨0◦∕15◦⟩]𝑠.

investigate several cylindrical structures. It was observed that, in many
cases, a low-order shell model proved sufficient to accurately capture
the dynamic response of rotating structures. Practical examples were
utilized to showcase the capabilities of the presented approach and

provide benchmark solutions. The numerical results demonstrated the

accuracy and reliability of the proposed methodology and highlighted

the potential of the presented numerical tool.
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Table 9
Variation of the first vibration mode [Hz] as a function of the T0 and T1 parameters at 𝛺 = 0 rad/s. Thin cylinder with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩]𝑠.

T0 – T1 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1

0◦ 66.21 66.21 68.61 68.78 70.48 70.53 71.85 72.11 74.40 74.97 78.19 79.00 81.66 82.80
15◦ 67.00 67.16 68.32 68.32 68.02 68.01 69.22 69.56 72.60 73.21 77.60 78.41 82.37 83.34
30◦ 65.90 65.92 64.38 64.74 65.14 65.14 67.35 67.44 71.95 72.16 78.25 78.46 84.41 84.53
45◦ 64.75 65.17 64.98 64.74 65.18 65.28 68.61 68.61 74.25 74.26 81.43 81.50 88.24 88.50
60◦ 65.42 66.16 65.99 66.60 68.19 68.38 72.85 72.86 79.36 79.36 87.09 87.13 93.49 93.70
75◦ 67.89 68.80 69.98 70.70 73.82 73.98 79.75 79.83 87.11 87.15 94.53 94.53 93.93 94.40
90◦ 71.62 72.40 75.32 76.08 81.10 81.10 88.26 88.57 95.57 95.92 98.93 99.19 90.64 90.64

Table 10
Variation of the second vibration mode [Hz] as a function of the T0 and T1 parameters at 𝛺 = 0 rad/s. Thin cylinder with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩]𝑠.

T0 – T1 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2

0◦ 66.21 66.21 99.19 99.96 113.95 115.87 122.41 123.12 131.18 133.28 139.64 140.48 140.38 143.92
15◦ 95.70 96.35 111.64 111.64 115.11 115.23 122.46 122.85 131.96 132.56 140.92 143.54 138.77 145.47
30◦ 103.32 105.52 109.52 109.64 115.37 115.37 125.40 125.44 132.40 135.23 129.64 137.56 118.54 131.39
45◦ 108.16 108.24 111.21 111.64 120.02 120.07 130.77 130.77 129.69 130.77 123.88 127.98 111.45 116.85
60◦ 111.01 111.32 116.37 117.01 127.33 128.39 131.30 132.34 129.13 129.13 118.20 118.99 103.22 103.70
75◦ 116.29 117.01 124.95 126.32 130.07 134.93 135.19 138.27 131.23 131.45 111.86 111.86 99.06 99.23
90◦ 123.32 125.20 132.67 139.19 132.54 140.03 135.45 140.86 123.27 124.09 100.43 100.69 101.10 101.10

Table 11
Variation of the second vibration mode [Hz] as a function of the T0 and T1 parameters at 𝛺 = 50 rad/s. Thin cylinder with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩]𝑠.

T0 – T1 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2

0◦ 83.23 99.14 91.76 107.41 107.54 122.36 119.27 129.09 127.05 137.12 130.68 136.74 120.75 136.61
15◦ 88.20 103.87 108.45 118.01 111.95 121.52 119.34 128.99 128.24 138.62 129.94 139.09 120.42 137.29
30◦ 96.85 112.01 106.42 116.03 112.20 122.21 112.09 131.77 126.89 142.45 125.66 139.11 115.39 133.74
45◦ 102.02 114.41 108.24 117.94 116.78 126.48 123.36 138.24 122.82 137.75 118.20 133.26 106.28 122.00
60◦ 105.26 117.16 113.07 123.29 122.01 134.55 124.48 139.30 121.55 136.74 110.89 126.31 95.88 111.11
75◦ 108.30 122.49 117.22 130.99 125.49 136.90 129.39 144.62 124.16 139.53 104.01 119.72 93.19 106.01
90◦ 109.74 121.63 119.50 132.60 128.70 142.25 130.38 145.21 116.02 131.27 94.33 107.92 95.19 107.91

Fig. 16. MAC between two different rotational speeds 𝛺 for the free–free VAT
composite thick cylinder with T0 = 0◦ and T1 = 30◦.
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Appendix. Derivation of FNs

Consider shells with constant thickness and constant radii of curva-
ture 𝑅𝛼 and 𝑅𝛽 , and rotating around the 𝑦-axis. So, we have:

𝐻𝛼 =
(

1 +
𝜁
𝑅𝛼

)

, 𝐻𝛽 =
(

1 +
𝜁
𝑅𝛽

)

(15)

where 𝜁 stands for the distance of the point from the reference surface.
Particularly, cases with 𝐻𝛽 = 1, i.e., only curvature 𝑅𝛼 , are considered
in this work. For brevity, ⟨(⋅)⟩ = ∫𝑉 (⋅) 𝑑𝑉 .

A.1. Coriolis matrix

𝑮𝑖𝑗𝜏𝑠[1, 3] = 2𝜌⟨𝐹𝜏𝐹𝑠𝑁𝑖𝑁𝑗𝐻𝛼⟩𝛺

𝑮𝑖𝑗𝜏𝑠[3, 1] = −2𝜌⟨𝐹𝜏𝐹𝑠𝑁𝑖𝑁𝑗𝐻𝛼⟩𝛺
(16)
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Table 12
Natural frequencies [Hz] of the free–free VAT composite thick cylinder with 𝜃 = [90◦ + ⟨0◦∕30◦⟩∕ 0◦ + ⟨0◦∕30◦⟩∕ 90◦ + ⟨0◦∕30◦⟩]. 12 × 6
Q9 model.

Table 13
Variation of the first vibration mode [Hz] as a function of the T0 and T1 parameters at
𝛺 = 0 rad/s. Free–free thick cylinder with 𝜃 = [90◦+⟨T0∕T1⟩∕ 0◦+⟨T0∕T1⟩∕ 90◦+⟨T0∕T1⟩].

T0 – T1 0◦ 30◦ 75◦

𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1 𝑓 𝑓
1 𝑓 𝑏

1

0◦ 1270.34 1270.34 1245.27 1248.88 1410.49 1429.78
30◦ 1252.69 1257.02 1251.23 1251.23 1523.33 1532.50
75◦ 1432.86 1454.02 1528.92 1539.88 2025.25 2025.25

Table 14
Variation of the second vibration mode [Hz] as a function of the T0 and T1 parameters
at 𝛺 = 0 rad/s. Free–free thick cylinder with 𝜃 = [90◦ + ⟨T0∕T1⟩∕ 0◦ + ⟨T0∕T1⟩∕ 90◦ +
⟨T0∕T1⟩].

T0 – T1 0◦ 30◦ 75◦

𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2 𝑓 𝑓
2 𝑓 𝑏

2

0◦ 1384.10 1384.10 1487.51 1494.03 1423.81 1746.34
30◦ 1526.43 1533.87 1723.87 1723.87 2010.19 2031.09
75◦ 1829.08 1855.17 2085.65 2110.57 2378.69 2378.69

A.2. Spin softening matrix

𝑲 𝑖𝑗𝜏𝑠
𝛺 [1, 1] = −𝜌⟨𝐹𝜏𝐹𝑠𝑁𝑖𝑁𝑗𝐻𝛼𝐻𝛽⟩𝛺2

𝑲 𝑖𝑗𝜏𝑠
𝛺 [3, 3] = −𝜌⟨𝐹𝜏𝐹𝑠𝑁𝑖𝑁𝑗𝐻𝛼𝐻𝛽⟩𝛺2

(17)

A.3. Centrifugal force vector

𝑭 𝑠𝑗
𝛺 [3] = 𝜌𝑧𝑒⟨𝐹𝑠𝑁𝑗𝐻𝛼𝑅𝛼⟩𝛺

2 (18)
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