
14 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ScoutDroid: A Tool For Mobile Augmented Testing with Live Feedback / Laudadio, Lorenzo; Coppola, Riccardo;
Torchiano, Marco; Tomic, Stevan. - ELETTRONICO. - (2024), pp. 34-37. (Intervento presentato al convegno
Gamification 2024: 3rd ACM international workshop on gamification in software development, verification, and validation
tenutosi a Vienna, (Austria) nel 17 September 2024) [10.1145/3678869.3685688].

Original

ScoutDroid: A Tool For Mobile Augmented Testing with Live Feedback

Publisher:

Published
DOI:10.1145/3678869.3685688

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992955 since: 2024-10-01T09:02:09Z

ACM

ScoutDroid: A Tool For Mobile Augmented Testing with Live
Feedback∗

Lorenzo Laudadio
lorenzo.laudadio@polito.it

Politecnico di Torino
Turin, Italy

Riccardo Coppola
riccardo.coppola@polito.it

Politecnico di Torino
Turin, Italy

Marco Torchiano
marco.torchiano@polito.it

Politecnico di Torino
Turin, Italy

Stevan Tomic
Blekinge Institute of Technology

Karlskrona, Sweden
stevan.tomic@bth.se

Abstract

In the evolving landscape of mobile applications, e�ective and e�-

cient testing methods are crucial for ensuring high-quality user ex-

periences. This paper introduces a novel end-to-end mobile testing

technique designed to enhance exploratory testing by incorporating

gami�cation strategies. We developed a plugin that integrates these

innovative techniques, aiming to make the testing process more

engaging and e�ective. With the use of a live feedback system, the

plugin drives testers to thoroughly explore the application, leading

to the discovery of more defects and improved software quality.

Preliminary evaluation suggests that this approach could not only

increase tester engagement but also improve the detection rate of

critical issues. This research highlights the potential of merging

exploratory testing with gami�cation, setting the stage for more

dynamic and productive mobile testing methodologies.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

Software Testing, GUI Testing, Gami�cation, Software Engineering,

Mobile Applications

ACM Reference Format:

Lorenzo Laudadio, Riccardo Coppola, Marco Torchiano, and Stevan Tomic.

2024. ScoutDroid: A Tool For Mobile Augmented Testing with Live Feedback.

In Proceedings of the 3rd ACM International Workshop on Gami�cation in

Software Development, Veri�cation, and Validation (Gamify ’24), September

17, 2024, Vienna, Austria. ACM, New York, NY, USA, 4 pages. https://doi.

org/10.1145/3678869.3685688

∗This study was carried out within the “EndGame - Improving End-to-End Testing
of Web and Mobile Apps through Gami�cation” project (2022PCCMLF) – funded by
European Union – Next Generation EU within the PRIN 2022 program (D.D.104 -
02/02/2022 Ministero dell’Università e della Ricerca). This manuscript re�ects only the
authors’ views and opinions and the Ministry cannot be considered responsible for
them.

Gamify ’24, September 17, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1113-8/24/09
https://doi.org/10.1145/3678869.3685688

1 Introduction

End-to-end (E2E) testing plays a crucial role in validating the func-

tionality and performance of software applications by simulating

real-world user scenarios from start to �nish, ensuring that all

integrated components work seamlessly together. This kind of soft-

ware testing is particularly suitable for those applications which

provide a Graphical User Interface (GUI), such as web and mobile

applications. Very often, E2E testing requires the tester to manually

run test cases from start to end several times, which can be time-

consuming. Capture and Replay (CR) testing is a technique which

aims to overcome this limitation [23]. CR consists of recording use

case scenarios while the tester is interacting with the Application

Under Test (AUT) and transforming those scenarios into test cases.

The test cases can later be executed several times without the need

for major human intervention.

In this paper, we present a novel tool for E2E mobile application

testing which aims to produce e�ective test cases and to increase

the tester involvement in the exploratory phase, through the use

of gami�cation. Gami�cation consists of applying game design

mechanics in activities of di�erent nature [5]. The e�ectiveness of

gami�cation in software engineering has been widely witnessed

by several authors [8, 10, 18, 19]. The Octalysis Framework [3] is a

comprehensive evaluation framework developed by Yu-kai Chou

which can be used to assess the presence of gami�cation elements

in a system. It de�nes 8 Core Drives (CDs) which push the human

motivation towards the accomplishment of activities. We used the

Octalysis Framework as inspiration to identify the CDs which could

be integrated into our software.

In particular, we focused on CD3: Empowerment of Creativity &

Feedback, enforced when users are engaged in creative processes

and receive feedback. In our tool, this CD is implemented with a

live feedback system, that allows the testers to interact with the

AUT and experience the consequences of their actions.

2 Background and Related Work

In this sectionwe present background information about Exploratory

(and Augmented) testing and the state of practice of Gami�cation.

2.1 Exploratory and Augmented Testing

Exploratory Testing (ET) is a manual testing technique which is

widely adopted in the assessment of software applications. It con-

sists of generating test cases while the tester interacts with the AUT.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

34

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3678869.3685688
https://doi.org/10.1145/3678869.3685688
https://doi.org/10.1145/3678869.3685688
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678869.3685688&domain=pdf&date_stamp=2024-09-13

Gamify ’24, September 17, 2024, Vienna, Austria Lorenzo Laudadio, Riccardo Coppola, Marco Torchiano, and Stevan Tomic

The e�ectiveness and e�ciency of ET compared to the standard

Scripted Testing (ST) was proven in an experiment by Afzal et al.

[1]. One example in which ET is very e�ective is regression testing.

In the context of software testing, a regression refers to a situa-

tion where a previously functioning feature or functionality stops

working correctly after changes are made to the software. ET is

heavily based on testers’ intuition and experience, and emphasizes

their personal freedom and responsibility. At the same time it is an

highly repetitive and monotonous activity.

Capture and Replay (CR) tools are often used to reduce the repet-

itiveness of ET. CR tools are capable of recording the actions per-

formed by the tester during the exploration of the AUT so that they

can be re-executed later. Several CR tools have been proposed in

the context of web application testing, such as TESTAR [24] and

WebRR [15]. Within the Android ecosystem, CR techniques have

been used widely for testing purposes [7, 11, 14, 17, 20].

The main issue with CR is that the quality of the test cases

produced during the exploratory phase is obviously in�uenced by

human factors, like stress, fatigue and boredom. Most studies in the

�eld of Android E2E testing only focused on the implementation of

CR techniques, while none of them considered the impact that the

aforementioned human factors have on the quality of the produced

test cases.

Augmented Testing (AT) was proposed in the context of E2E

web application testing as a technique to reduce the impact of

these factors [16]. It consists of introducing a visual layer over the

AUT’s GUI, which can display information that could help testers

in making decisions. Such information could include, for example,

suggestions on the possible actions to be performed, comments,

statistics, etc. A web application AT tool called Scout was developed

based on the Selenium driver [12]. Scout was also evaluated in an

industrial workshop which led to promising results. In our work,

we used Scout as a starting point to implement an Android AT tool.

2.2 Gami�cation

Gami�cation is the application of game design elements to other

activities. There is a general trend to bring gami�cation into the

world of software engineering as well. For example, gami�cation

has been successfully applied to project management, coding chal-

lenges and competitions, continuous integration/continuous de-

ployment, etc. The application of gami�cation to software testing

is an emerging �eld aimed at enhancing tester engagement, mo-

tivation, and performance [9, 21, 22]. Gami�cation can transform

the often monotonous task of testing into a more enjoyable and

rewarding activity by incorporating game-like elements such as

points, badges, leaderboards, and rewards. In Scout, this is realized

through live augmented feedback of actions that can be performed

against the GUI. More speci�cally, when the user hovers the mouse

over the widgets it is suggested possible actions to take, and after

the actions have been taken the widgets are surrounded by color-

coded visual overlays. Such overlays can signi�cantly increase the

number of interactions and coverage on a web application [4].

To the best of our knowledge, the existing CR mobile testing

tools do not implement any gami�cation mechanics. Our goal is to

overcome this shortcoming by providing a CR plugin for mobile

testing which implements a live feedback system, associated with

CD3 from the Octalysis Framework.

3 ScoutDroid for Scout

The system which we describe here does not consist of a single

application, but rather includes di�erent pieces of software which

are interconnected. In particular, we can identify three main parts:

(1) The Android Emulator.

(2) The Appium Server, which instruments the Android Emula-

tor through the UiAutomator2 driver.

(3) The ScoutDroid plugin, which runs inside Scout.

Scout is a software product which provides an environment for

augmented testing. The core idea behind augmented testing is to

improve End-to-End (E2E) testing by helping the tester with visual

artifacts superimposed on the GUI of the Application Under Test

(AUT).

Scout adopts a plugin-based architecture: the Scout software

itself does not implement speci�c features, but rather acts as a host

for plugins which can be developed and maintained independently.

Scout uses a binary format which is used to store the testing session

information, such as the interactions performed by the tester, the

assertions, the session duration, etc. ScoutDroid, which we describe

here, can be hosted in Scout, and implements augmented testing for

mobile applications. The ScoutDroid plugin is based upon Appium,

an open-source automation tool which provides an HTTP server

(Appium Server) that waits for commands and re�ects them on the

Android Emulator. The Appium Server needs a driver to operate on

the emulator. The open-source UiAutomator2 driver was chosen

for that purpose, for its extensive documentation and support [2].

The architectural diagram is shown in Figure 1. The ScoutDroid

plugin, hosted in Scout, interacts with the Appium Server, which in

turn instruments the Android Emulator thanks to the UiAutomator2

driver. This modular approach also allows the di�erent processes to

be executed on di�erent machines, communicating through sockets.

When the connection is established, ScoutDroid requests and parses

the XML page source of the application at regular intervals, to see

whether it has changed. When the page changes, ScoutDroid takes

a screenshot of the emulator page and displays it on the Scout’s

frame.

On the other side, user-generated events, like key presses and

mouse motions, are translated by ScoutDroid into commands which

are sent to the Appium Server, and are re�ected in the Android

Emulator.

Figure 2 displays a screenshot of a running session of ScoutDroid.

As can be seen, the Scout + ScoutDroid GUI mirrors the content

of the Android Emulator screen. The Appium Server, which runs

in the background, acts as a bridge between ScoutDroid and the

Android Emulator, directing the plugin requests to the emulator,

and sending back the emulator responses.

ScoutDroid can be used to easily detect regressions which could

be introduced when new versions of an application are released,

since it allows to make assertions on the values of the application

components at some point in time, and later check that those asser-

tions are still true. This process is made easier by the augmented

layer, which associates a color with each assertion value (e.g. if the

35

ScoutDroid: A Tool For Mobile Augmented Testing with Live Feedback Gamify ’24, September 17, 2024, Vienna, Austria

Appium Server

Scout

ScoutDroid

UiAutomator2
Driver

CommandsCommands

XML + PicturesXML + Pictures

Tester

Events

Visual Feedback

Android Emulator

Figure 1: Architectural diagram

Figure 2: Screenshot of Scout and Android Emulator running

assertion value is false, the component on which the assertion is

made gets surrounded by a yellow rectangle).

Figure 3 shows a sample testing session performed with Scout-

Droid on a simple mobile application, in which we identify a re-

gression. The application consists of a button and a text widget.

When the button is pressed, the text widget should display the

string "You clicked!". During the �rst execution (1) the tester clicks

on the button; the string "You clicked!" appears; the tester adds an

assertion on the text widget by clicking on it.1 A green rectangle

which surrounds the text widget appears, by highlighting that the

assertion is true. The second execution (2) targets a di�erent version

of the application, in which we introduced a bug on purpose; at

the beginning, the button is surrounded by a blue rectangle, which

indicates the tester that in a previous execution the button was

clicked; when the tester presses the button, a di�erent text is dis-

played ("You clacked!"); a yellow rectangle is displayed around the

text widget, implying that the assertion is failed; by hovering on the

text widget with the mouse, the tester can see the reason why the

assertion is failing. This is a classical example of regression testing:

we have a working application on which assertions are generated;

the working application gets modi�ed and a bug is introduced; the

regression testing is successful because it allows the tester to detect

the bug (i.e. the regression).

4 Application and Research Directions

ScoutDroid represents a pivotal advancement in the domain of

mobile application testing. It provides a tool designed to easily

investigate the possible regression of the AUT by making assertions

on GUI components. This facilitates the rapid execution of repetitive

1By default, the generated assertion checks for the text content to be equal to the
current text value, but di�erent types of assertion can be speci�ed.

test cases, which is essential for maintaining an e�cient testing

work�ow, especially where scripted solutions are not viable options.

This enhances the overall agility of the development process, which

is a key factor in an industrial environment.

Although the addition of an augmented HUD for the tester does

not inherently qualify as gami�cation, the presence of this layer

can be considered as a proof of concept of the application of visual

elements to the otherwise traditional manual ET activity that can be

carried out with the tool. Also, the provision of live visual feedback

is - according to the Octalysis framework - one of the pillars of

gami�cation, and with this prototype tool we demonstrate the

feasibility of providing such an element for Android ET.

Research directions include the possibility of involving other

gami�cation mechanics in mobile testing, like leaderboards, mis-

sions, rewards, etc. A promising key area to be investigated is the

introduction of mutation testing into the software, which allows to

assess the bug-detection e�ectiveness of test cases. While similar

solutions exist for web application testing ([13]), no studies were

made in the mobile application �eld.

One of the main limitations of our approach lies in the inability

to inject live code into the AUT. Di�erently from the web applica-

tion context, where a JavaScript execution environment is available,

in Android it is not possible to modify the executed code at runtime.

This is due to the internal working of the Android RunTime (ART),

which requires compiled bytecode [6]. This is an important aspect

to take into consideration when implementing, for instance, a mu-

tation testing system. Another primary drawback of the plugin is

the limited speed of interaction. While the usage of the Appium

API facilitates the development of the Appium Plugin, it constitutes

a bottleneck in the live streaming pipeline, due to the creation of an

additional socket: the images �ow from the emulator to the Appium

Server, and from the Appium Server to the client (i.e. ScoutDroid).

Some mitigations have been adopted: for instance, whenever a

change happens in the Android Emulator GUI, ScoutDroid only

requires two screenshots to synchronize with the emulator. This

means that we can avoid continuously fetching images from the

Android Emulator, thus speeding up the whole streaming process.

Our preliminary evaluation of the plugin found a synchronization

speed of just over one second at worst, which in some cases may

have a negative impact on the usability of the system. However,

we are actively exploring several optimization strategies, to further

reduce the synchronization time. As an example, future versions of

the plugin may fetch the video stream directly from the Android

Emulator, without relying on the Appium Server.

36

Gamify ’24, September 17, 2024, Vienna, Austria Lorenzo Laudadio, Riccardo Coppola, Marco Torchiano, and Stevan Tomic

(1)

(2)

Figure 3: Sample testing session with ScoutDroid

5 Conclusion and Future Work

In this paper, we presented a novel tool for the end-to-end testing

of mobile applications, named ScoutDroid. This tool is capable

of helping testers assess mobile applications with an innovative

approach that is based on Exploratory Testing and Augmented

Testing. It also introduces gami�cation mechanics to drive the

tester’s motivation through the testing process.

Further work is currently in progress involving the introduction

of other gami�cation mechanics into the tool. Additionally, we plan

to employ mutation testing techniques to assess the quality of test

cases generated by our tool.

In conclusion, our software application represents a signi�cant

advancement in the �eld of mobile testing, providing a solution to

improve the quality and reliability of mobile applications. By ad-

dressing the critical challenges in end-to-end testing, we contribute

to the development of more e�cient, e�ective, and user-centric

mobile technologies.

References
[1] Wasif Afzal, Ahmad Nauman Ghazi, Juha Itkonen, Richard Torkar, Anneliese

Andrews, and Khurram Bhatti. 2015. An experiment on the e�ectiveness and
e�ciency of exploratory testing. Empirical software engineering : an international
journal 20, 3 (2015), 844–878.

[2] Appium. 2024. Appium - UiAutomator2 Driver. https://github.com/appium/
appium-uiautomator2-driver

[3] Yu-Kai Chou. 2023. The Octalysis Framework for Gami�cation & Behavioral
Design. https://yukaichou.com/gami�cation-examples/octalysis-complete-
gami�cation-framework/

[4] Riccardo Coppola, Tommaso Fulcini, Luca Ardito, Marco Torchiano, and Emil
Alègroth. 2024. On E�ectiveness and E�ciency of Gami�ed Exploratory GUI
Testing. IEEE Transactions on Software Engineering 50, 2 (2024), 322–337. https:
//doi.org/10.1109/TSE.2023.3348036

[5] Sebastian Deterding. 2012. Gami�cation: designing for motivation. Interactions
19, 4 (jul 2012), 14–17. https://doi.org/10.1145/2212877.2212883

[6] Android Developers. 2024. Android runtime and Dalvik. https://source.android.
com/docs/core/runtime

[7] Mattia Fazzini, Eduardo Noronha De A. Freitas, Shauvik Roy Choudhary, and
Alessandro Orso. 2017. Barista: A Technique for Recording, Encoding, and
Running Platform Independent Android Tests. In 2017 IEEE International Con-
ference on Software Testing, Veri�cation and Validation (ICST). 149–160. https:
//doi.org/10.1109/ICST.2017.21

[8] Gordon Fraser. 2017. Gami�cation of Software Testing. In 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST). 2–7. https:
//doi.org/10.1109/AST.2017.20

[9] Tommaso Fulcini and Luca Ardito. 2022. Gami�ed Exploratory GUI Testing of
Web Applications: a Preliminary Evaluation. In 2022 IEEE International Conference
on Software Testing, Veri�cation and Validation Workshops (ICSTW). 215–222.
https://doi.org/10.1109/ICSTW55395.2022.00045

[10] Félix García, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel
Penabad. 2017. A framework for gami�cation in software engineering. Journal of
Systems and Software 132 (2017), 21–40. https://doi.org/10.1016/j.jss.2017.06.021

[11] Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019. Sara:
self-replay augmented record and replay for Android in industrial cases. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2019). Association for Computing Machinery, New York, NY,
USA, 90–100. https://doi.org/10.1145/3293882.3330557

[12] Selenium HQ. 2024. Selenium WebDriver. https://www.selenium.dev/
documentation/webdriver/

[13] Maurizio Leotta, Davide Paparella, and Filippo Ricca. 2024. Mutta: a novel tool
for E2E web mutation testing. Software quality journal 32, 1 (2024), 5–26.

[14] ChienHung Liu, Chien Yu Lu, Shan Jen Cheng, Koan Yuh Chang, Yung Chia Hsiao,
and Weng Ming Chu. 2014. Capture-Replay Testing for Android Applications. In
2014 International Symposium on Computer, Consumer and Control. 1129–1132.
https://doi.org/10.1109/IS3C.2014.293

[15] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020.
WebRR: self-replay enhanced robust record/replay for web application testing.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 1498–1508. https://doi.org/10.1145/3368089.3417069

[16] Michel Nass, Emil Alégroth, and Robert Feldt. 2019. Augmented Testing: Indus-
try Feedback To Shape a New Testing Technology. In 2019 IEEE International
Conference on Software Testing, Veri�cation and Validation Workshops (ICSTW).
176–183. https://doi.org/10.1109/ICSTW.2019.00048

[17] Stas Negara, Naeem Esfahani, and Raymond Buse. 2019. Practical Android Test
Recording with Espresso Test Recorder. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
193–202. https://doi.org/10.1109/ICSE-SEIP.2019.00029

[18] Savas Ozturk. 2022. Gami�cation of exploratory testing process. In Proceedings
of the 1st International Workshop on Gami�cation of Software Development, Ver-
i�cation, and Validation (Singapore, Singapore) (Gamify 2022). Association for
Computing Machinery, New York, NY, USA, 14–17. https://doi.org/10.1145/
3548771.3561411

[19] Wei Ren. 2023. Gami�cation in Test-Driven Development Practice. In Pro-
ceedings of the 2nd International Workshop on Gami�cation in Software Devel-
opment, Veri�cation, and Validation (San Francisco, CA, USA) (Gamify 2023).
Association for Computing Machinery, New York, NY, USA, 38–46. https:
//doi.org/10.1145/3617553.3617889

[20] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and Manuel Egele.
2019. RANDR: Record and Replay for Android Applications via Targeted Runtime
Instrumentation. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 128–138. https://doi.org/10.1109/ASE.2019.00022
ISSN: 2643-1572.

[21] Philipp Straubinger and Gordon Fraser. 2022. Gamekins: gamifying software
testing in jenkins. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 85–89. https:
//doi.org/10.1145/3510454.3516862

[22] Philipp Straubinger and Gordon Fraser. 2024. Improving Testing Behavior by
Gamifying IntelliJ. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing
Machinery, New York, NY, USA, Article 49, 13 pages. https://doi.org/10.1145/
3597503.3623339

[23] Mario Linares Vasquez, Kevin Moran, and Denys Poshyvanyk. 2018. Continuous,
Evolutionary and Large-Scale: A New Perspective for Automated Mobile App
Testing. arXiv (Cornell University) (2018).

[24] Tanja E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes, and
Ad Mulders. 2021. testar – scriptless testing through graphical user interface.
Software Testing, Veri�cation and Reliability 31, 3 (2021), e1771. https://doi.org/
10.1002/stvr.1771 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1771
e1771 stvr.1771.

37

https://github.com/appium/appium-uiautomator2-driver
https://github.com/appium/appium-uiautomator2-driver
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://doi.org/10.1109/TSE.2023.3348036
https://doi.org/10.1109/TSE.2023.3348036
https://doi.org/10.1145/2212877.2212883
https://source.android.com/docs/core/runtime
https://source.android.com/docs/core/runtime
https://doi.org/10.1109/ICST.2017.21
https://doi.org/10.1109/ICST.2017.21
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1109/ICSTW55395.2022.00045
https://doi.org/10.1016/j.jss.2017.06.021
https://doi.org/10.1145/3293882.3330557
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1109/IS3C.2014.293
https://doi.org/10.1145/3368089.3417069
https://doi.org/10.1109/ICSTW.2019.00048
https://doi.org/10.1109/ICSE-SEIP.2019.00029
https://doi.org/10.1145/3548771.3561411
https://doi.org/10.1145/3548771.3561411
https://doi.org/10.1145/3617553.3617889
https://doi.org/10.1145/3617553.3617889
https://doi.org/10.1109/ASE.2019.00022
https://doi.org/10.1145/3510454.3516862
https://doi.org/10.1145/3510454.3516862
https://doi.org/10.1145/3597503.3623339
https://doi.org/10.1145/3597503.3623339
https://doi.org/10.1002/stvr.1771
https://doi.org/10.1002/stvr.1771
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1771

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Exploratory and Augmented Testing
	2.2 Gamification

	3 ScoutDroid for Scout
	4 Application and Research Directions
	5 Conclusion and Future Work
	References

