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Abstract

In the evolving landscape of mobile applications, e�ective and e�-

cient testing methods are crucial for ensuring high-quality user ex-

periences. This paper introduces a novel end-to-end mobile testing

technique designed to enhance exploratory testing by incorporating

gami�cation strategies. We developed a plugin that integrates these

innovative techniques, aiming to make the testing process more

engaging and e�ective. With the use of a live feedback system, the

plugin drives testers to thoroughly explore the application, leading

to the discovery of more defects and improved software quality.

Preliminary evaluation suggests that this approach could not only

increase tester engagement but also improve the detection rate of

critical issues. This research highlights the potential of merging

exploratory testing with gami�cation, setting the stage for more

dynamic and productive mobile testing methodologies.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

End-to-end (E2E) testing plays a crucial role in validating the func-

tionality and performance of software applications by simulating

real-world user scenarios from start to �nish, ensuring that all

integrated components work seamlessly together. This kind of soft-

ware testing is particularly suitable for those applications which

provide a Graphical User Interface (GUI), such as web and mobile

applications. Very often, E2E testing requires the tester to manually

run test cases from start to end several times, which can be time-

consuming. Capture and Replay (CR) testing is a technique which

aims to overcome this limitation [23]. CR consists of recording use

case scenarios while the tester is interacting with the Application

Under Test (AUT) and transforming those scenarios into test cases.

The test cases can later be executed several times without the need

for major human intervention.

In this paper, we present a novel tool for E2E mobile application

testing which aims to produce e�ective test cases and to increase

the tester involvement in the exploratory phase, through the use

of gami�cation. Gami�cation consists of applying game design

mechanics in activities of di�erent nature [5]. The e�ectiveness of

gami�cation in software engineering has been widely witnessed

by several authors [8, 10, 18, 19]. The Octalysis Framework [3] is a

comprehensive evaluation framework developed by Yu-kai Chou

which can be used to assess the presence of gami�cation elements

in a system. It de�nes 8 Core Drives (CDs) which push the human

motivation towards the accomplishment of activities. We used the

Octalysis Framework as inspiration to identify the CDs which could

be integrated into our software.

In particular, we focused on CD3: Empowerment of Creativity &

Feedback, enforced when users are engaged in creative processes

and receive feedback. In our tool, this CD is implemented with a

live feedback system, that allows the testers to interact with the

AUT and experience the consequences of their actions.

2 Background and Related Work

In this sectionwe present background information about Exploratory

(and Augmented) testing and the state of practice of Gami�cation.

2.1 Exploratory and Augmented Testing

Exploratory Testing (ET) is a manual testing technique which is

widely adopted in the assessment of software applications. It con-

sists of generating test cases while the tester interacts with the AUT.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.
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The e�ectiveness and e�ciency of ET compared to the standard

Scripted Testing (ST) was proven in an experiment by Afzal et al.

[1]. One example in which ET is very e�ective is regression testing.

In the context of software testing, a regression refers to a situa-

tion where a previously functioning feature or functionality stops

working correctly after changes are made to the software. ET is

heavily based on testers’ intuition and experience, and emphasizes

their personal freedom and responsibility. At the same time it is an

highly repetitive and monotonous activity.

Capture and Replay (CR) tools are often used to reduce the repet-

itiveness of ET. CR tools are capable of recording the actions per-

formed by the tester during the exploration of the AUT so that they

can be re-executed later. Several CR tools have been proposed in

the context of web application testing, such as TESTAR [24] and

WebRR [15]. Within the Android ecosystem, CR techniques have

been used widely for testing purposes [7, 11, 14, 17, 20].

The main issue with CR is that the quality of the test cases

produced during the exploratory phase is obviously in�uenced by

human factors, like stress, fatigue and boredom. Most studies in the

�eld of Android E2E testing only focused on the implementation of

CR techniques, while none of them considered the impact that the

aforementioned human factors have on the quality of the produced

test cases.

Augmented Testing (AT) was proposed in the context of E2E

web application testing as a technique to reduce the impact of

these factors [16]. It consists of introducing a visual layer over the

AUT’s GUI, which can display information that could help testers

in making decisions. Such information could include, for example,

suggestions on the possible actions to be performed, comments,

statistics, etc. A web application AT tool called Scout was developed

based on the Selenium driver [12]. Scout was also evaluated in an

industrial workshop which led to promising results. In our work,

we used Scout as a starting point to implement an Android AT tool.

2.2 Gami�cation

Gami�cation is the application of game design elements to other

activities. There is a general trend to bring gami�cation into the

world of software engineering as well. For example, gami�cation

has been successfully applied to project management, coding chal-

lenges and competitions, continuous integration/continuous de-

ployment, etc. The application of gami�cation to software testing

is an emerging �eld aimed at enhancing tester engagement, mo-

tivation, and performance [9, 21, 22]. Gami�cation can transform

the often monotonous task of testing into a more enjoyable and

rewarding activity by incorporating game-like elements such as

points, badges, leaderboards, and rewards. In Scout, this is realized

through live augmented feedback of actions that can be performed

against the GUI. More speci�cally, when the user hovers the mouse

over the widgets it is suggested possible actions to take, and after

the actions have been taken the widgets are surrounded by color-

coded visual overlays. Such overlays can signi�cantly increase the

number of interactions and coverage on a web application [4].

To the best of our knowledge, the existing CR mobile testing

tools do not implement any gami�cation mechanics. Our goal is to

overcome this shortcoming by providing a CR plugin for mobile

testing which implements a live feedback system, associated with

CD3 from the Octalysis Framework.

3 ScoutDroid for Scout

The system which we describe here does not consist of a single

application, but rather includes di�erent pieces of software which

are interconnected. In particular, we can identify three main parts:

(1) The Android Emulator.

(2) The Appium Server, which instruments the Android Emula-

tor through the UiAutomator2 driver.

(3) The ScoutDroid plugin, which runs inside Scout.

Scout is a software product which provides an environment for

augmented testing. The core idea behind augmented testing is to

improve End-to-End (E2E) testing by helping the tester with visual

artifacts superimposed on the GUI of the Application Under Test

(AUT).

Scout adopts a plugin-based architecture: the Scout software

itself does not implement speci�c features, but rather acts as a host

for plugins which can be developed and maintained independently.

Scout uses a binary format which is used to store the testing session

information, such as the interactions performed by the tester, the

assertions, the session duration, etc. ScoutDroid, which we describe

here, can be hosted in Scout, and implements augmented testing for

mobile applications. The ScoutDroid plugin is based upon Appium,

an open-source automation tool which provides an HTTP server

(Appium Server) that waits for commands and re�ects them on the

Android Emulator. The Appium Server needs a driver to operate on

the emulator. The open-source UiAutomator2 driver was chosen

for that purpose, for its extensive documentation and support [2].

The architectural diagram is shown in Figure 1. The ScoutDroid

plugin, hosted in Scout, interacts with the Appium Server, which in

turn instruments the Android Emulator thanks to the UiAutomator2

driver. This modular approach also allows the di�erent processes to

be executed on di�erent machines, communicating through sockets.

When the connection is established, ScoutDroid requests and parses

the XML page source of the application at regular intervals, to see

whether it has changed. When the page changes, ScoutDroid takes

a screenshot of the emulator page and displays it on the Scout’s

frame.

On the other side, user-generated events, like key presses and

mouse motions, are translated by ScoutDroid into commands which

are sent to the Appium Server, and are re�ected in the Android

Emulator.

Figure 2 displays a screenshot of a running session of ScoutDroid.

As can be seen, the Scout + ScoutDroid GUI mirrors the content

of the Android Emulator screen. The Appium Server, which runs

in the background, acts as a bridge between ScoutDroid and the

Android Emulator, directing the plugin requests to the emulator,

and sending back the emulator responses.

ScoutDroid can be used to easily detect regressions which could

be introduced when new versions of an application are released,

since it allows to make assertions on the values of the application

components at some point in time, and later check that those asser-

tions are still true. This process is made easier by the augmented

layer, which associates a color with each assertion value (e.g. if the
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Figure 1: Architectural diagram

Figure 2: Screenshot of Scout and Android Emulator running

assertion value is false, the component on which the assertion is

made gets surrounded by a yellow rectangle).

Figure 3 shows a sample testing session performed with Scout-

Droid on a simple mobile application, in which we identify a re-

gression. The application consists of a button and a text widget.

When the button is pressed, the text widget should display the

string "You clicked!". During the �rst execution (1) the tester clicks

on the button; the string "You clicked!" appears; the tester adds an

assertion on the text widget by clicking on it.1 A green rectangle

which surrounds the text widget appears, by highlighting that the

assertion is true. The second execution (2) targets a di�erent version

of the application, in which we introduced a bug on purpose; at

the beginning, the button is surrounded by a blue rectangle, which

indicates the tester that in a previous execution the button was

clicked; when the tester presses the button, a di�erent text is dis-

played ("You clacked!"); a yellow rectangle is displayed around the

text widget, implying that the assertion is failed; by hovering on the

text widget with the mouse, the tester can see the reason why the

assertion is failing. This is a classical example of regression testing:

we have a working application on which assertions are generated;

the working application gets modi�ed and a bug is introduced; the

regression testing is successful because it allows the tester to detect

the bug (i.e. the regression).

4 Application and Research Directions

ScoutDroid represents a pivotal advancement in the domain of

mobile application testing. It provides a tool designed to easily

investigate the possible regression of the AUT by making assertions

on GUI components. This facilitates the rapid execution of repetitive

1By default, the generated assertion checks for the text content to be equal to the
current text value, but di�erent types of assertion can be speci�ed.

test cases, which is essential for maintaining an e�cient testing

work�ow, especially where scripted solutions are not viable options.

This enhances the overall agility of the development process, which

is a key factor in an industrial environment.

Although the addition of an augmented HUD for the tester does

not inherently qualify as gami�cation, the presence of this layer

can be considered as a proof of concept of the application of visual

elements to the otherwise traditional manual ET activity that can be

carried out with the tool. Also, the provision of live visual feedback

is - according to the Octalysis framework - one of the pillars of

gami�cation, and with this prototype tool we demonstrate the

feasibility of providing such an element for Android ET.

Research directions include the possibility of involving other

gami�cation mechanics in mobile testing, like leaderboards, mis-

sions, rewards, etc. A promising key area to be investigated is the

introduction of mutation testing into the software, which allows to

assess the bug-detection e�ectiveness of test cases. While similar

solutions exist for web application testing ([13]), no studies were

made in the mobile application �eld.

One of the main limitations of our approach lies in the inability

to inject live code into the AUT. Di�erently from the web applica-

tion context, where a JavaScript execution environment is available,

in Android it is not possible to modify the executed code at runtime.

This is due to the internal working of the Android RunTime (ART),

which requires compiled bytecode [6]. This is an important aspect

to take into consideration when implementing, for instance, a mu-

tation testing system. Another primary drawback of the plugin is

the limited speed of interaction. While the usage of the Appium

API facilitates the development of the Appium Plugin, it constitutes

a bottleneck in the live streaming pipeline, due to the creation of an

additional socket: the images �ow from the emulator to the Appium

Server, and from the Appium Server to the client (i.e. ScoutDroid).

Some mitigations have been adopted: for instance, whenever a

change happens in the Android Emulator GUI, ScoutDroid only

requires two screenshots to synchronize with the emulator. This

means that we can avoid continuously fetching images from the

Android Emulator, thus speeding up the whole streaming process.

Our preliminary evaluation of the plugin found a synchronization

speed of just over one second at worst, which in some cases may

have a negative impact on the usability of the system. However,

we are actively exploring several optimization strategies, to further

reduce the synchronization time. As an example, future versions of

the plugin may fetch the video stream directly from the Android

Emulator, without relying on the Appium Server.
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(1)

(2)

Figure 3: Sample testing session with ScoutDroid

5 Conclusion and Future Work

In this paper, we presented a novel tool for the end-to-end testing

of mobile applications, named ScoutDroid. This tool is capable

of helping testers assess mobile applications with an innovative

approach that is based on Exploratory Testing and Augmented

Testing. It also introduces gami�cation mechanics to drive the

tester’s motivation through the testing process.

Further work is currently in progress involving the introduction

of other gami�cation mechanics into the tool. Additionally, we plan

to employ mutation testing techniques to assess the quality of test

cases generated by our tool.

In conclusion, our software application represents a signi�cant

advancement in the �eld of mobile testing, providing a solution to

improve the quality and reliability of mobile applications. By ad-

dressing the critical challenges in end-to-end testing, we contribute

to the development of more e�cient, e�ective, and user-centric

mobile technologies.
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