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Abstract 

Dynamic muscle activity can be quantitatively and non-invasively investigated during several 

cyclical movements by acquiring surface electromyographic (sEMG) signals. The accurate 

temporal analysis of muscle activations is of great importance in several research areas 

spanning from the assessment of altered muscle activation patterns in orthopaedic and 

neurological patients to the monitoring of their motor rehabilitation. Several studies have 

highlighted the challenge of understanding and interpreting muscle activation patterns due to 

the high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results 

and to use sEMG signals in the clinical practice. To overcome this limitation, specific 

algorithms are needed to help scientists to easily characterize and assess muscle activation 

patterns during cyclical movements. In this perspective, 𝐶𝐼𝑀𝐴𝑃 (Clustering for the 

Identification of Muscle Activation Patterns) is an open-source Python toolbox based on 

agglomerative hierarchical clustering that aims at characterizing muscle activation patterns 

during cyclical movements by grouping movement cycles showing similar muscle activity. 

From muscle activation intervals to the graphical representation of the agglomerative 

hierarchical clustering dendrograms, the proposed toolbox offers a complete analysis 

framework for enabling the assessment muscle activation pattern. The toolbox can be flexibly 

modified to comply with the necessities of the scientist. 𝐶𝐼𝑀𝐴𝑃 is addressed to scientists of 

any programming skill level working in different research areas such as biomedical 

engineering, robotics, sports, clinics, biomechanics, and neuroscience. CIMAP is freely 

available on GitHub (https://github.com/Biolab-PoliTO/CIMAP). 

Keywords: clustering, cyclical movements, EMG, machine learning, muscle activation patterns. 

 

1. Introduction 

Surface electromyography (sEMG) is commonly used, in 

several research areas, to quantitatively and non-invasively 

assess dynamic muscle activity in both physiological and 

pathological conditions. Among the most studied sEMG-

derived parameters, the identification of the onset and offset 

instants of muscle activity plays a fundamental role. The 

assessment of sEMG activation intervals achieved great 

interest among researchers in a wide variety of clinical, 

robotic, and sports applications. In particular, muscle 

activation intervals are used to assess altered sEMG patterns 

in patients affected by orthopaedic or neurological diseases 

(Hsu et al 2019, Castagneri et al 2019), to define rehabilitation 

protocols tailored to the patient needs (Akef Khowailed and 

Abotabl 2019), to study posture control (Labanca et al 2021), 

to control prostheses and exoskeletons (Micera et al 2010, Li 

et al 2023), and to evaluate return-to-sport of athletes after 

injury (Rocchi et al 2020). 
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However, sEMG signals during gait are characterized by 

high cycle-by-cycle variability that makes it difficult to 

interpret the results and to use sEMG data in clinical practice 

(Agostini et al 2020, Winter and Yack 1987). For a specific  

muscle of a subject, different activation patterns are usually 

assessed during cyclical movements, each of them 

characterized by a specific frequency of occurrence (Di Nardo 

et al 2017). Considering the walking task, even in healthy 

subjects, a single muscle does not show a single preferred 

pattern of activation, but up to 4-5 distinct sEMG patterns, 

each characterized by a different number of activation 

intervals occurring within the stride (Agostini et al 2010, 

2015). To overcome this limitation, specific algorithms are 

needed to help scientists to easily characterize and assess 

muscle activation patterns during cyclical movements. 

Cluster analysis may represent a useful tool for helping 

scientists to study the different muscle activation patterns 

during cyclical movements. In this perspective, 𝐶𝐼𝑀𝐴𝑃 

(Clustering for the Identification of the Muscle Activation 

Patterns) algorithm was proposed and validated in different 

healthy and pathological conditions (Rosati et al 2017a, 

2017b). The 𝐶𝐼𝑀𝐴𝑃 algorithm is based on agglomerative 

hierarchical clustering and aims at characterizing muscle 

activation patterns during cyclical movements by grouping 

movement cycles showing similar muscle activity. It was 

specifically developed to assess muscle activity patterns 

during walking in both physiological and pathological 

conditions and it was successfully applied to the study of gait 

asymmetry in healthy, orthopaedic, and neurological patients 

(Castagneri et al 2019, Rosati et al 2021). Moreover, the study 

by Ghislieri et al. used the 𝐶𝐼𝑀𝐴𝑃 algorithm as a pre-

processing step before muscle synergy extraction to evaluate 

human motor control during locomotion (Ghislieri et al 2019, 

2020). Notice that the 𝐶𝐼𝑀𝐴𝑃 algorithm was originally 

proposed for assessing gait in both physiological and 

pathological conditions. Nevertheless, 𝐶𝐼𝑀𝐴𝑃 can be 

potentially applied to other cyclical movements, as cycling 

and reach-to-grasp movements. 

In this contribution, to support researchers interested in the 

analysis of muscle activation pattern, we distribute an open-

source Python toolbox (𝐶𝐼𝑀𝐴𝑃) that allows for obtaining all 

the representative muscle activation patterns of a  muscle. The 

number of clusters identified by the 𝐶𝐼𝑀𝐴𝑃 toolbox and the 

cluster size (i.e., the number of elements belonging to the same 

cluster), may represent meaningful information in clinics, 

since they indicate how many sEMG patterns were found and 

how frequently they occur during the analyzed movement 

(Agostini et al 2014). The proposed toolbox adopts an object-

oriented programming approach that allows a clear definition 

of a few classes incorporating data structure and data 

processing methods, empowering researchers to easily extend 

and customize the toolbox to meet specific data and protocol 

needs. To better describe the processing pipeline and to 

provide a set of practical guidelines, an example of 𝐶𝐼𝑀𝐴𝑃 

application is presented considering sEMG signals acquired 

from a lower-limb muscle of a representative healthy subject 

during a 5-minute walking task. 

Researchers with little coding experience will find in the 

Python toolbox 𝐶𝐼𝑀𝐴𝑃 a complete framework for the 

assessment of muscle activation patterns during cyclical 

movements, from the pre-processing of muscle activation 

intervals to the graphical representation of the clustering 

results. 

2. Methods 

𝐶𝐼𝑀𝐴𝑃 toolbox is implemented in Python and includes all 

the required steps for performing the analysis of muscle 

activation patterns. This toolbox incorporates functions for all 

the analysis steps, from data preparation to the graphical 

representation of the clustering results and data saving. 

The following section provides a brief description of the 

main steps of the 𝐶𝐼𝑀𝐴𝑃 toolbox: 

a) Dataset preparation: 𝐶𝐼𝑀𝐴𝑃 toolbox requires as input 

the muscle activation intervals (i.e., the time intervals 

characterized by muscle activity). From the muscle 

activation intervals, the onset and offset instants are 

extracted, representing the beginning and the end of 

each muscle activation, respectively; 

b) Pre-processing: movement cycles characterized by the 

same number of activation intervals occurring within 

the cycle duration are grouped into sub-groups (or 

“modalities”). Modalities characterized by a small 

number of movement cycles (𝑛𝑢𝑚. 𝑐𝑦𝑐𝑙𝑒𝑠 < 𝑇ℎ) are 

considered as non-representative and thus discarded 

from the following analyses. Based on a previous study 

by Dotti et al. (Dotti et al 2021), the value of 𝑇ℎ was 

set equal to 10 movement cycles. 𝑇ℎ value can be 

easily adjusted to meet specific data needs, as a small 

number of movement cycles; 

c) Agglomerative hierarchical clustering: considering 

each modality separately, agglomerative hierarchical 

clustering is applied. From a number of clusters equal 

to the number of cycles belonging to the modality 

under consideration (i.e., each cluster is 

characterized by a single movement cycle), 

agglomerative hierarchical clustering iteratively 

merges the two “closest” clusters, until a single 

cluster is obtained (i.e., a single cluster containing all 

the movement cycles belonging to the modality 

under consideration). The complete linkage method 

is used to select the two “closest” clusters to be 

merged, considering both Manhattan (L1 norm) and 

Page 2 of 9AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal XX (XXXX) XXXXXX Dotti et al. 

 3  
 

Chebyshev (Linf norm) as distance metrics 

(Kaufman and Rousseeuw 1990). Thus, for each 

modality, agglomerative hierarchical clustering is 

applied twice (the first time considering L1 norm and 

the second time considering Linf norm as distance 

metric). The cutoff points of the dendrograms (i.e., 

the final number of clusters) are selected applying to 

each dendrogram the cutoff rule proposed by Rosati 

et al. (Rosati et al 2017b). Finally, after comparing 

the dendrograms obtained considering the L1 norm 

and Linf norm metrics, the one showing the lowest 

intra-cluster variability is selected for the following 

analyses; 

d) Clustering analysis representation: this toolbox 

includes several visualization methods that allow for 

the examination of data throughout the entire analysis 

process. In particular, dendrograms showing clustering 

results can be represented for each muscle and each 

modality, separately; 

e) Data saving: to increase   the accessibility of results, 

their interpretability and interoperability, clustering 

results can be exported in .csv format. 

Further details about the implemented Python classes and 

the default setting parameters are freely available on the 

GitHub repository (https://github.com/Biolab-

PoliTO/CIMAP). 

3. Results 

This section describes all the steps involved in the analysis 

of muscle activation patterns of a sample dataset of sEMG data 

acquired from two lower-limb muscles (left and right Lateral 

Gastrocnemius muscle) of a healthy subject during a 5-minute 

overground walking task. 

The first step is the loading of muscle activation intervals 

contained in the sample dataset (′𝑖𝑛𝑝𝑢𝑡_𝑓𝑖𝑙𝑒′) through the 

‘𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑𝑖𝑛𝑔’ function. The ‘𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑𝑖𝑛𝑔’ function can 

be called as follows: 

s,muscles = CIMAP.data_reading(input_file = 

input_file) 

where 𝑠 represents a data structure containing the muscle 

activation intervals to be processed through the 𝐶𝐼𝑀𝐴𝑃 

algorithm and 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 represents a data dictionary 

containing sEMG information (i.e., muscle labels, side, sensor 

placement, … .). 

Then, the ‘𝑟𝑒𝑚𝑜𝑣𝑒𝑎𝑑𝑑𝑖𝑛𝑡𝑠’ function is called to remove (if 

any) outliers of muscle activation intervals (i.e., movement 

cycles characterized by always-ON or always-OFF muscle 

activation patterns). Further details about the outlier removal 

process can be found in the study by Rosati et al. (Rosati et al 

2017b). The outlier removal process can be performed through 

the ‘𝑟𝑒𝑚𝑜𝑣𝑒𝑎𝑑𝑑𝑖𝑛𝑡𝑠’ function as follows: 

s = CIMAP.removeaddints(s) 

where 𝑠 contains the muscle activation intervals after the 

outlier removal step. 

Muscle activation intervals can be graphically represented 

using the ‘𝑎𝑐𝑡𝑝𝑙𝑜𝑡’ function. In the following, the ‘𝑎𝑐𝑡𝑝𝑙𝑜𝑡’ 

function is called to represent all the muscle activation 

 

Figure 1: Example of muscle activation intervals for the left and right Lateral Gastrocnemius muscles (LGS_L and LGS_R, respectively) 
of a healthy volunteer during a 5-minute overground walking task. The blue horizontal lines represent muscle activation intervals 
expressed as a percentage of the cycle duration (BLUE = muscle active, WHITE = muscle inactive). 
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intervals of the left and right Lateral Gastrocnemius muscles 

(LGS_L and LGS_R, respectively): 

CIMAP.actplot(s,target=‘LGS’) 

where 𝑠 represents the data structure containing the pre-

processed muscle activation intervals and 𝑡𝑎𝑟𝑔𝑒𝑡 is a variable 

containing the labels of the muscles to be represented. 

Figure 1 shows the output of the ‘𝑎𝑐𝑡𝑝𝑙𝑜𝑡’ function 

considering data from the sample dataset included in the 

toolbox. More specifically, it represents the muscle activation 

intervals obtained from the left and right LGS muscles of a 

healthy volunteer during a 5-minute overground walking. 

Each horizontal blue line represents a muscle activation 

interval extracted from a single gait cycle expressed in 

percentage of cycle duration (blue = muscle active, white = 

muscle inactive). It can be observed that, despite intra-cycle 

variability, LGS muscle activity mainly occurs between 20% 

and 50% of the gait cycle for both the left and right sides. The 

muscle activation intervals included in the sample dataset 

were computed using the LSTM-MAD algorithm proposed by 

Ghislieri et al. (Ghislieri et al 2021). 

Before clustering, muscle activation intervals are divided 

into modalities (i.e., movement cycles characterized by the 

same number of activation intervals occurring within the cycle 

duration) by using the ‘𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛’ function as 

follows: 

muscles = CIMAP.modalitydivision(s,muscles) 

where 𝑠 contains the muscle activation intervals and 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 

represents the data dictionary suitable for the following 

clustering analysis. 

To visualize the modality distribution and to assess the 

number of movement cycles belonging to each modality, the 

‘𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛’ function can be used as follows: 

CIMAP.modality_distribution(s,target=‘LGS’) 

where 𝑠 contains the muscle activation intervals and 𝑡𝑎𝑟𝑔𝑒𝑡 

is the variable containing the labels of the muscles to be 

represented. 
Figure 2 shows the output of the ‘𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛’ 

function representing the histogram of the movement 

modalities extracted from the muscle activation intervals of 

the left and right Lateral Gastrocnemius muscles (LGS_L and 

LGS_R, respectively) included in the sample dataset. In 

particular, Figure 2 shows the number of gait cycles 

belonging to each modality for both the left and right sides. 

For example, considering the right side, more than 50 gait 

cycles are characterized by a single muscle activation 

(Modality 1), approximately 15 gait cycles are characterized 

by 2 muscle activations (Modality 2), and less than 5 gait 

cycles are characterized by 3 muscle activations (Modality 3). 

The agglomerative hierarchical clustering is then 

performed using the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠’ function, which 

computes two different dendrograms by using the L1 norm 

and Linf norm, respectively. To select the optimal cutting 

point from the two dendrograms (L1 norm and Linf norm), the 

‘𝑐𝑢𝑡𝑠’ function is applied to each dendrogram. The optimal 

cutting point is selected based on the rules defined by Rosati 

et al. (Rosati et al 2017b). The clustering analysis can be 

performed by calling the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠’ and ‘𝑐𝑢𝑡𝑠’ functions 

as follows: 

muscles = CIMAP.dendrograms(muscles) 

muscles = CIMAP.cuts(muscles) 

The ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠’ and ‘𝑐𝑢𝑡𝑠’ functions can be easily 

customized by users to meet specific data and protocol needs. 

The toolbox documentation available on GitHub 

(https://github.com/Biolab-PoliTO/CIMAP) includes further 

details on the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠’ and ‘𝑐𝑢𝑡𝑠’ functions. 

Clustering results can be graphically represented through 

the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑝𝑙𝑜𝑡’ function as follows: 

CIMAP.dendroplot(muscles,target=‘LGS’) 

 

Figure 2: Histograms of movement modalities obtained from the muscle activation intervals of the left and right Lateral Gastrocnemius 
muscles (LGS_L and LGS_R, respectively) included in the sample dataset. Each histogram represents the number of gait cycles belonging 
to each modality. 
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where 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 contains the clustering results obtained 

through the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠’ and ‘𝑐𝑢𝑡𝑠’ functions and 𝑡𝑎𝑟𝑔𝑒𝑡 

is the variable containing the labels of the muscles to be 

represented. 

Figure 3 represents the output of the ‘𝑑𝑒𝑛𝑑𝑟𝑜𝑝𝑙𝑜𝑡’ 

function. For each movement modality, the computed 

dendrograms are represented. Above each dendrogram, the 

specific metric and cutting point used are represented, as 

defined by Rosati et al. (Rosati et al 2017b). The clusters 

identified after the cutting point selection are represented in 

different colors. 

To save the CIMAP output, the ‘𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑜𝑢𝑡𝑝𝑢𝑡’ and 

‘𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑎𝑣𝑒𝑟’ functions can be called as follows: 

cimap_out = CIMAP.algorithm_output(s,muscles) 

CIMAP.resultsaver(cimap_out) 

where 𝑐𝑖𝑚𝑎𝑝_𝑜𝑢𝑡 is a data dictionary containing the 

clustering results of each muscle after discarding non-

significant modalities. 

𝐶𝐼𝑀𝐴𝑃 results are saved in an easy-to-read and open-

source format (.csv). More specifically, results are in a 

𝑀 × (𝐶 + 1) matrix, where M represents the number of 

muscles and C the total number of cycles. Notice that the first 

column should contain the labels of each muscle as defined in 

the input file. 

Finally, the sEMG activation intervals clustering computed 

through 𝐶𝐼𝑀𝐴𝑃 can be represented using the ‘𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑝𝑙𝑜𝑡’ 

function as follows: 

CIMAP.clustersplot(cimap_out,target=‘LGS’, 

color = True) 

where 𝑐𝑖𝑚𝑎𝑝_𝑜𝑢𝑡 is a data dictionary containing the 

clustering results and 𝑡𝑎𝑟𝑔𝑒𝑡 is the variable containing the 

labels of the muscles to be represented. The toolbox 

documentation freely available on GitHub 

(https://github.com/Biolab-PoliTO/CIMAP) includes further 

details on the ‘𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑝𝑙𝑜𝑡’ function. 

Figure 4 shows the clustering of the sEMG activation 

intervals computed through 𝐶𝐼𝑀𝐴𝑃. The sEMG activation 

intervals are color-coded according to the colors used in the 

agglomerative hierarchical clustering dendrograms (Figure 

3). In each row, the colored lines depict the sEMG activation 

intervals within a gait cycle. The sEMG activation intervals 

are grouped into clusters, indicated by different colors. The 

black lines represent the cluster centroids. Gait cycles 

belonging to non-representative modalities (i.e., characterized 

by a small number of gait cycles) are represented in the 

‘Modality under Th = 10’ panel.   

4. Discussion and Conclusions 

𝐶𝐼𝑀𝐴𝑃 is an open-source and comprehensive toolbox for 

the assessment of muscle activation pattern from surface 

 

Figure 3: Agglomerative hierarchical clustering dendrograms of the sEMG activation intervals displaying a single modality (at the top) 
and two modalities (at the bottom). SEMG activation intervals that belong to the same cluster are represented with the same color. 
Both dendrograms were created using the L1 norm as the distance metric. 
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Figure 4: Example of clustering of sEMG activation intervals (muscles: left and right lateral gastrocnemius) computed by means of 
𝐶𝐼𝑀𝐴𝑃. In each row, the colored lines represent the sEMG activation intervals within a gait cycle. SEMG activation intervals are grouped 
in clusters (represented by different colors) based on CIMAP output. Black lines represent cluster centroids. Gait cycles belonging to 
non-representative modalities (i.e., characterized by a small number of gait cycles) are represented in the ‘Modality under Th = 10’ 
panel. 
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electromyographic (sEMG) data. The proposed toolbox offers 

a complete analysis framework for enhancing the assessment  

of muscle activation pattern from pre-processing of muscle 

activation intervals to the representation of agglomerative 

hierarchical clustering dendrograms. 𝐶𝐼𝑀𝐴𝑃 adopts an 

object-oriented programming approach allowing scientists of 

any programming skill level to easily extend and customize 

the toolbox to meet specific data and protocol needs. To better 

explain the toolbox and offer practical guidance, an example 

of 𝐶𝐼𝑀𝐴𝑃 application was presented. This example involved 

analyzing a sample dataset of sEMG signals acquired from a 

lower-limb muscle of a healthy subject during a 5-minute 

walk. 

𝐶𝐼𝑀𝐴𝑃 requires as input the muscle activation intervals 

extracted from the sEMG data of the muscles of a subject. 

However, this toolbox does not include a muscle activation 

interval detection step. Therefore, researchers who want to 

analyze muscle activation patterns using 𝐶𝐼𝑀𝐴𝑃 should first 

apply a muscle activity detector before using this toolbox. In 

the last years, several muscle activity detectors have been 

proposed, spanning from approaches based on single- 

(Hodges and Bui 1996, Solnik et al 2008) or double-threshold 

(Bonato et al 1998) to more complex approaches based on 

machine- (Di Nardo et al 2022) or deep-learning techniques 

(Ghislieri et al 2021). In particular, muscle activation intervals 

included in the sample dataset were computed using the 

LSTM-MAD algorithm proposed by Ghislieri et al. (Ghislieri 

et al 2021). 

It is well known that muscle activations are characterized 

by high cycle-to-cycle variability that may strongly reduce the 

interpretability of the results. In this perspective, 𝐶𝐼𝑀𝐴𝑃 

represents a first resource to be used for dealing with 

variability in muscle activation patterns analysis during 

cyclical movements. In the last years, CIMAP was validated 

in clinics considering different kinds of disorders affecting 

gait (such as orthopedic and neurological diseases). Even if 

the 𝐶𝐼𝑀𝐴𝑃 toolbox was originally developed for clinical gait 

analysis, the clustering approach is independent from the set 

of muscles considered, it can be easily extended to the study 

of other cyclical movements, and it can be applied to research 

areas different from clinics and rehabilitation (e.g., 

ergonomics, robotics, and sports). 

From 𝐶𝐼𝑀𝐴𝑃 outputs, several parameters can be extracted 

to deeply understand motor control strategies during 

movement. For example, the size and variability of each 

representative cluster can be easily extracted to study muscle 

activation pattern consistency of a subject muscle over the task 

duration. During walking tasks, healthy subjects are 

characterized by an increased cluster size (i.e., gait cycles are 

described by the same number of muscle activation intervals 

within the gait cycle duration) and a reduced within-cluster 

variability (i.e., gait cycles are characterized by similar onset 

and offset timings within gait cycle duration) compared to 

pathological conditions. Thus, these parameters can be used to 

distinguish between physiological and pathological gait 

conditions. 

One of the limitations of this toolbox is the absence of a 

dedicated Graphical User Interface (GUI). Although a GUI 

could improve accessibility, custom code may be needed to 

adapt the assessment of muscle activation intervals for 

different movements and datasets, which could be challenging 

to implement in a GUI. However, the CIMAP toolbox 

includes several visualization functions that enable 

researchers to easily track each processing step. Another 

limitation of the toolbox is the absence of a muscle activation 

interval detection step. Nevertheless, the main goal of the 

toolbox is to offer scientists a standardized method for 

analyzing muscle activation patterns. This allows researchers 

the possibility to extract muscle activation intervals based on 

the specific requirements of their dataset. 

In conclusion, an open-source Python toolbox for the 

assessment of muscle activation intervals was presented to 

help scientists to easily interpret muscle activation patterns 

during cyclical movements. This approach might provide a 

step forward to the understanding of motor control strategies 

from muscle activation intervals in different pathological 

conditions affecting movement. 

5. Data availability 

The latest stable release of 𝐶𝐼𝑀𝐴𝑃 toolbox, the detailed 

documentation, and a sample dataset are freely available on 

GitHub (https://github.com/Biolab-PoliTO/CIMAP). 
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