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COVID-19 detection from exhaled 
breath
Nicolò Bellarmino1,5, Riccardo Cantoro1,5, Michele Castelluzzo2,5, Raffaele Correale2,5, 
Giovanni Squillero1,5, Giorgio Bozzini3, Francesco Castelletti4, Carla Ciricugno2, 
Daniela Dalla Gasperina4, Francesco Dentali4, Giovanni Poggialini4, Piergiorgio Salerno4 & 
Stefano Taborelli4

The SARS-CoV-2 coronavirus emerged in 2019 causing a COVID-19 pandemic that resulted in 7 million 
deaths out of 770 million reported cases over the next 4 years. The global health emergency called 
for unprecedented efforts to monitor and reduce the rate of infection, pushing the study of new 
diagnostic methods. In this paper, we introduce a cheap, fast, and non-invasive COVID-19 detection 
system, which exploits only exhaled breath. Specifically, provided an air sample, the mass spectra 
in the 10–351 mass-to-charge range are measured using an original micro and nano-sampling device 
coupled with a high-precision spectrometer; then, the raw spectra are processed by custom software 
algorithms; the clean and augmented data are eventually classified using state-of-the-art machine-
learning algorithms. An uncontrolled clinical trial was conducted between 2021 and 2022 on 302 
subjects who were concerned about being infected, either due to exhibiting symptoms or having 
recently recovered from illness. Despite the simplicity of use, our system showed a performance 
comparable to the traditional polymerase-chain-reaction and antigen testing in identifying cases 
of COVID-19 (that is, 95% accuracy, 94% recall, 96% specificity, and 92% F1-score). In light of these 
outcomes, we think that the proposed system holds the potential for substantial contributions to 
routine screenings and expedited responses during future epidemics, as it yields results comparable to 
state-of-the-art methods, providing them in a more rapid and less invasive manner.

The COVID-19 pandemic, that began in late 2019, had an unprecedented global impact, with the World Health 
Organization (WHO) reporting over 770 million infections and more than 7 million deaths worldwide. The 
rapid spread of the virus prompted a global health emergency that lasted from January 2020 to May 2023, 
during which extraordinary efforts were made to monitor and reduce the infection rate. These efforts included 
widespread social restrictions, mass testing, and the development of vaccines and treatments to manage the 
crisis effectively1,2.

Among the diagnostic tools utilized, real-time quantitative polymerase chain reaction (RT-qPCR) has 
been the gold standard for detecting SARS-CoV-2, the virus responsible for COVID-19. This technique relies 
on identifying viral ribonucleic acid (RNA) in nasopharyngeal or oropharyngeal swab samples, allowing for 
accurate and timely diagnosis3,4. Despite its widespread use, RT-qPCR has several limitations that can hinder the 
effectiveness of large-scale testing programs. The high sensitivity of RT-qPCR requires meticulous experimental 
design and a deep understanding of normalization procedures to avoid false-negative results, which can occur 
due to technical issues during sample collection, transportation, and processing, as well as biological factors 
like genetic variations, sample types, viral load, and the timing of sample collection relative to viral exposure5. 
Additionally, the necessity for authorized laboratories with at least Biosafety Level 2 (BSL-2) certification can 
place significant strain on laboratory resources, potentially leading to delays in processing and reporting test 
results. These challenges are compounded by the high costs associated with the equipment and reagents needed 
for RT-qPCR6.

In light of these challenges, there has been a growing interest in developing alternative diagnostic methods 
that are rapid, cost-effective, non-invasive, and capable of detecting infections at an early stage7–11. One 
promising approach is the analysis of exhaled breath, which contains respiratory droplets and a variety of small 
molecules produced through metabolic and catabolic processes. Breath analysis has already been explored for 
the detection of several diseases, including lung diseases9,10, breast cancer, diabetes, and infectious conditions 
such as influenza. Expanding the application of breath analysis to detect COVID-19 presents several significant 
advantages over traditional methods12,13.
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In parallel, artificial intelligence (AI) has emerged as a particularly promising area of research for enhancing 
COVID-19 detection. AI has the potential to improve the accuracy and efficiency of diagnostics by analyzing 
complex patterns in various data types, including medical imaging, genomic sequences, and physiological 
signals. Recent studies have demonstrated the efficacy of AI models in analyzing chest X-rays, computed 
tomography (CT) scans, and even voice and cough sounds to identify COVID-19 infections with high 
accuracy14,15. Furthermore, AI-driven analysis of exhaled breath is gaining traction as a non-invasive and rapid 
diagnostic method. Machine learning (ML) algorithms can detect volatile organic compounds (VOCs) in breath 
samples that are indicative of SARS-CoV-2 infection. These AI-based methods could revolutionize COVID-19 
diagnostics by enabling real-time, on-site testing that is both cost-effective and accessible9,10,16,17. However, 
related work mainly rely on analyze breath samples for specific VOC patterns.

This paper presents a novel approach to COVID-19 detection by integrating AI-based analysis with breath 
sampling techniques. The primary objective of this work is to evaluate the effectiveness of AI in detecting SARS-
CoV-2 from exhaled breath, leveraging ML algorithms to detect the positivity to COVID-19 without the need 
for identify unique VOC signatures associated with the virus, but relying only on breath fingerprint. Unlike 
traditional RT-qPCR, this method aims to provide a rapid, non-invasive, and portable diagnostic solution that 
can be used in various settings, including high-traffic areas like airports and public transportation hubs. The 
developed system achieved results comparable to other classical COVID-19 detection systems: 95% accuracy, 
94% recall, 96% specificity, and an F1-score of 92%.

This approach not only addresses the need for faster and more comfortable testing methods but also offers a 
scalable solution that could be deployed in resource-limited environments. This system can be extended to other 
infectious conditions and diseases.

Code for spectra analysis and the outcomes of the experiments have been released in a public GitHub 
repository1.

The organization of the paper is as follows: the Method section describes the method and experimental setup, 
including breath sample collection, pre-processing and AI model development. Section Experimental Evaluation 
presents the experimental evaluation, focusing on patients sample collection and performance evaluation 
of the predictive models. Section Results summarize the main results of the proposed approach in terms of 
final accuracy of the developed models. Finally, the Conclusions concludes the paper by summarizing the key 
contributions, potential limitations, and future research directions.

Method
We propose a detection system that leverages mass spectrometry and AI to rapidly assess exhaled breath samples 
from patients and identify the presence of COVID-19. Recent studies have shown that COVID-19 patients 
exhibit distinct VOC profiles in their breath7,18,19.

VOCs are a significant group of chemicals that can easily evaporate at room temperature. They are present in 
various products, including paints, cleaning agents, and building materials. The expelled breath from individuals 
contains several VOCs in addition to nitrogen, oxygen, carbon dioxide, and water vapor. Recent studies have 
identified specific VOCs as biomarkers for several respiratory diseases, including lung cancer, cystic fibrosis, 
asthma, chronic obstructive pulmonary disease (COPD), and COVID-19. Furthermore, variations in VOC 
profiles can help distinguish between smokers and non-smokers. Certain VOCs have also been associated with 
lung cancer. For example, elevated levels of specific VOCs in exhaled breath have been correlated with lung 
cancer diagnosis, suggesting their potential utility in early detection20. In cystic fibrosis, VOCs may indicate 
disease severity and exacerbations, providing a non-invasive monitoring tool20. However, analyzing VOC 
necessitates the use of specialized techniques and hardware for detecting and selecting specific VOC7,9,10,16,21,22. 
Electronic nose technology and other analytical methods have demonstrated high sensitivity and specificity in 
detecting these compounds, making VOC analysis a promising tool for rapid COVID-19 diagnosis7,9,10,21.

The proposed approach completely eliminates the need for prior identification of specific VOCs, focusing 
instead on the direct analysis of the breath fingerprint through its mass spectrum. This method is straightforward, 
easy to implement, and aims to establish a correlation between a specific breath fingerprint and the presence of 
COVID-19 without explicitly defining or detecting individual VOCs. Breath samples can be conveniently stored 
in specialized containers, simplifying collection procedures that can be performed by non-specialized personnel 
in various locations.

Our system utilizes a proprietary nano-sampling device coupled with a high-precision mass spectrometer 
capable of performing efficient mass spectrum analysis within the 10–351 m/z range23; this analysis requires 
usually few seconds, and never more than few minutes. The raw data are processed by in-house developed 
python tools: first they are aligned to the baseline, then filtered to reduce measurement noise, and eventually 
a process of data augmentation enhances the robustness and diversity. We employed standard ML classifiers 
from a state-of-the-art data analysis library24 to detect the presence of COVID-19. Notably, this system operates 
without the need for reagents, and it generates no hazardous waste, making it both efficient and environmentally 
friendly.

Breath samples collection
For each patient under test, ambient air was sampled to verify environmental parameters and ensure the stability 
of the instrument. Then, the subject’s breath is collected into a sampling tedlar bag with a defined volume of 3 L, 
by having the subject blow through a straw directly into the bag. Each patient exhales into the bag until it is filled 
with approximately 3 L of air. This large volume is necessary to establish the stable sampling pressure required 

1 https://github.com/BellaNico4/COVID-19-Detection-from-Exhaled-Breath
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by the adopted technology23,25,26 and also implicitly averages the different phases of the expiratory flow. Then, 
the filled bag is connected to the inlet valve of the MS apparatus. The inlet valve can have two possible settings: 
the first setting allows for the sample mixture, at atmospheric pressure, to flow from the bag to the ionization 
chamber, directly through an original Micro Electro-Mechanical System (MEMS) interface27; the second setting 
connects the MEMS interface to a membrane pump, in order to clean the inlet line, bringing it to vacuum 
conditions (≃ 1e−3mbar).A schematic of the sampling system is provided in Fig. 1, and an illustrative diagram 
of the sample collection process is shown in Fig. 2.

Mass spectra are recorded via a Varian 1200L mass analyzer software, which allows the setting of some 
acquisition parameters like mass range, acquisition time, and electron multiplier (EM) voltage. The latter 
parameter ultimately sets the detector amplification factor. We recorded mass spectra in the following ranges:

• 10–51 m/z, with an acquisition time of 10 s and EM voltage of 1000 V;
• 49–151 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;
• 149–251 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;
• 249–351 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;To avoid signal saturation, the am-

plification in the first mass range was reduced due to the presence of the most abundant breath components, 
namely CO2 (44 m/z) main peak, N2 (28 m/z) main peak and O2 (32 m/z) main peak. For each breath sample, 
10–20 acquisitions were taken at fixed time intervals, allowing for the collection of multiple data points from 
each patient. This approach of acquiring multiple samples per patient enhances the robustness of the mass 
spectrum analysis by averaging out potential variations and noise in individual measurements. Finally, the 
raw spectra are filtered and analyzed using our proposed method. The successive analysis of these multiple 
acquisitions improves the reliability and accuracy of the breath fingerprint profile, leading to more consistent 
and representative results. This methodology ensures that the breath fingerprint are not anomalies but are 
reflective of the patient’s actual metabolic state, thereby increasing the diagnostic precision of the breath 
analysis.

The acquisition of each mass range for a subject under test takes less than two minutes (approximately one and 
a half minutes), requiring about six minutes to acquire all 4 ranges and thus obtain the complete spectrum. 
Although the approach is not real-time, it is still significantly faster than traditional methods.

Figure 2. Diagram of the sampling and processing procedure.

 

Figure 1. Schematic of the Mass Spectra analyzer.
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By summing all the intensities for each m/z in each acquisition, we can obtain the Total Ion Current (TIC) 
curve plot. Figure 3 shows the TIC behavior when the breath sample flows into the MS system: the initial increase 
is due to the abrupt pressure change at the valve opening and, after a few tens of seconds, the TIC curve reaches 
a plateau region27, when the flux stabilizes. These procedures allowed for storing a dataset composed of the 
acquisitions of the spectra for each patient.

Pre-processing
Once the raw measures have been obtained, data are cleaned through a pre-processing procedure that reduces 
noise and machine variation of the acquisitions.

For each acquisition, the recorded m/z positions may be shifted with a specific alignment when the machine 
records the quantity of the ionized molecules due to measurement noise. A peak-alignment procedure is thus 
necessary. This procedure enables reducing the noise of the machine and compacting information. The peak 
alignment procedure is based on moving the peak to the nearest integer position, using them as anchors. 
The curves between two nearby peaks are stretched or compressed to sustain their original shape, preventing 
information loss. Stretching and compression between peaks are done by linear interpolation to fit the 
corresponding segments in the reference. A graphical plot after the peak alignment can be seen in Fig. 4.

As previously mentioned, multiple acquisitions are taken for each patient to ensure the accuracy of the 
breath analysis. To mitigate potential noise in the measurements and enhance the stability of breath fingerprint 
recognition, these multiple acquisitions are agglomerated into a single robust mass spectrum. This is achieved 
by focusing on the plateau zone of the TIC curve, thus the region where the signal stabilizes, indicating that the 
breath sample flux has reached a steady state.

The plateau zone is composed of the most stable acquisitions, which are indicative of a consistent breath 
sample. To accurately combine these acquisitions, the first step is to identify the plateau in the TIC curve. A 

Figure 4. Aligned and non-aligned peaks of the mass spectrum of a single patient.

 

Figure 3. TIC of a recording from one sample. The recording is made up of about 10 acquisitions (green dots), 
each corresponding to a mass spectrum. The spectra used for the analysis are selected on the plateau of TIC 
(red dotted region).
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plateau-searching procedure is implemented, which involves detecting acquisitions that show minimal variation 
from one another. This is done by computing the gradient of the signal; acquisitions within the plateau zone are 
those where the gradient is minimal, indicating a stable signal.

Once the plateau zone is identified, the acquisitions within this region are averaged to produce a single, 
robust mass-spectra measurement. This averaging process reduces the influence of any outlier data points or 
transient fluctuations, resulting in a more reliable representation of the patient’s breath fingerprint. This method 
enhances the overall robustness and accuracy of the mass spectrometry analysis, ensuring that the VOC profile 
obtained is both stable and reflective of the true metabolic state of the patient.

The plateau searching procedure was implemented as follows:

• For each acquisition, we computed the gradient of the signals.
• The plateau is defined as a zone that is nearly flat, ideally where the gradient is zero or where the gradient does 

not vary significantly from zero. To identify this flat zone, we compute a tolerance guard-band, denoted as ϵ, 
which allows us to classify a region as “flat” if the absolute value of the gradient remains below ϵ. The value of ϵ 
is determined based on the q-th quantile of the gradient distribution, where q is a parameter within the range 
[0, 1]. This parameter q controls the stringency of the requirement for a constant slope in the plateau region; a 
lower q value indicates a stricter requirement, leading to a narrower definition of the plateau, while a higher q 
value allows for more variation in the gradient, resulting in a broader plateau definition.

• The TIC curve may present more than one plateau: the first one is in the region in which the breath sample has 
not flown yet into the MS machine. This can be composed of 1–3 acquisitions. Thus, to avoid potential errors, 
we considered the plateau of maximum length, that is, in the region where the ion flow stabilizes.

• Once the plateau of maximum length is found (which varies from 3 to 5 acquisitions for each patient), we 
computed the standard deviations of acquisitions in this region by deploying a rolling window of size 4. We 
then chose the 4 acquisitions that minimized the standard deviation, and we computed the mean among 
these, obtaining a single spectrum for each patient.Computing the average of the 4 acquisitions with mini-
mum standard deviation permits the extraction of a single robust spectrum for each patient.

An alternative approach to artificially increase the dataset is to not average the selected 4 acquisitions but instead 
insert all of them into the dataset. This approach allows for an increase in both the number of training samples 
(by a factor of 4) and the variability in the data, which can lead to more accurate models. During the testing 
phase, instead, we average the acquisitions to obtain a single spectrum for each tested patient.

Some samples may present high noise in the mass spectrum, which can adversely affect the analysis. To 
address this issue, we identified outlier samples as those with a z-score greater than 8 for at least one feature. 
Additionally, for some patients, it was not possible to identify a plateau in the TIC curve, leading to their 
exclusion from the dataset.

To overcome noise in the measurements and possible variations in the machine’s settings, a signal filtering 
and smoothing procedure was applied to the remaining patient samples. The steps involved in this procedure 
are as follows: 

 1.  Normalization: Each spectrum was normalized by dividing by the TIC value to obtain relative information 
about the breath composition. This step scaled each intensity by the sum of all intensities, bringing the fea-
tures within the range (0, 1).

 2.  Initial High-Pass Filtering: A high-pass filter was applied, treating as zero any intensity below 0.0001, which 
was considered noise. This helped in filtering out low-intensity signals that might contribute to noise.

 3.  Savitzky–Golay Smoothing and Differentiation: The Savitzky–Golay Smoothing and Differentiation Fil-
ter28,29 was used to reduce high-frequency noise and align the signals to the baseline. This filter is effective in 
spectral analysis as it smooths the data while preserving important spectral features.

 4.  Secondary High-Pass Filtering: After smoothing, the high-pass filter was reapplied, treating as zero any 
intensity below 0.001. This step removed any artifacts that may have been introduced during the smoothing 
process.The filtering and pre-processing procedures were applied separately to each mass range. Once these 
steps were completed, the spectra obtained from the 4 mass ranges could be combined to produce a single, 
comprehensive spectrum spanning the range of 10–351.

If different acquisitions were previously considered for each mass range, merging them involved computing all 
possible combinations of acquisitions across the mass ranges. This approach effectively augmented the dataset 
by creating new combinations of the different acquisition spectra for each patient. This procedure can be likened 
to generating artificial patients, where each new patient varies based on one of the 4 segments of the spectrum. 
An example of the resulting augmented dataset is shown in Table 1.

Finally, the entire spectrum was normalized again by dividing it by the total sum of the intensities, ensuring 
that only relative information was retained.

Machine-learning models
The mass spectrum analysis was conducted using a comprehensive pipeline comprising several key steps: 
data normalization, feature selection, dimensionality reduction, and classification. Each stage in this pipeline 
contributes to the development of a complete ML model. The results of these models are presented in the 
following sections.

Initially, a Variance Threshold filter was applied to the dataset. This filter removes features with zero variance, 
thereby eliminating m/z values for which no intensities were measured post-filtering.
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Subsequently, each feature was individually normalized using one of two methods: the Standard Scaler (SS) 
or the Robust Scaler (RS). The Standard Scaler normalizes features by subtracting the mean and scaling according 
to the variance. In contrast, the Robust Scaler subtracts the median and scales based on the interquartile range 
(the range between the first and third quartiles), which mitigates the impact of outliers.

Further feature reduction was performed to retain only the most informative features. Some of the 
experiments involved the use of a supervised feature selection method, SURF*, a Relief-based algorithm30, to 
select 100 m/z features. To further reduce dimensionality, Principal Component Analysis (PCA)31,32 was applied 
to linearly combine the selected features, utilizing 20 principal components.

Finally, a range of ML classification models was trained to distinguish between COVID-19 positive and 
negative patients. Various ML techniques have been explored in the context of COVID-19 detection9,10,15,33,34. 
We utilized a combination of state-of-the-art models from24, including K-Nearest Neighbors (KNN), Random 
Forest (RF), Logistic Regression (LR), Gradient Boosting (xGB), and Support Vector Machine (SVM) with an 
RBF kernel. Additionally, we implemented an ensemble model that integrates all the aforementioned classifiers 
using a soft-voting approach (Ens).

In soft voting, predictions from an ensemble of classifiers are amalgamated by considering the probabilities 
assigned to each class by individual classifiers. The final prediction is determined by selecting the class with the 
highest cumulative probability across all classifiers involved in the ensemble.

Experimental evaluation
Samples collection
Breath samples were collected from patients and medical personnel at Varese Hospital (Ospedale di Circolo—
Fondazione Macchi, ASST Sette Laghi) during an uncontrolled clinical trial conducted as part of a descriptive 
study. In our sampling setup, humidity and temperature were not directly monitored during sample acquisition. 
The MS analyzer was stationed in the COVID-19 ward of the hospital, where temperature and humidity were 
controlled, but specific data on these conditions were not recorded. To minimize variability from uncontrolled 
factors, all trials and sample collections were conducted in the same room under consistent environmental 
conditions. No formal sample size evaluation was performed. The volunteers primarily consisted of individuals 
who suspected they had COVID-19, including those with no symptoms or only mild symptoms.

The acquisition lasted one year, from March 2021 to March 2022, for a total of 302 tested subjects, divided 
into 91 positive and 211 negative records. The ages of the patients in the study varied from 16 to 88 years. The 
statistical summary of the ages is as follows:

• Mean age: 55 years
• Standard deviation: 18 years
• Minimum age: 16 years
• 25th percentile: 42 years
• Median age: 57 yearsSome patients have been tested more than once to calibrate the system. The mass spectra 

have been collected with a Varian 1200L mass analyzer, combined with the MEMS interface. As ground truth 
to confirm SARS-CoV-2 infection, a RT-qPCR nasopharyngeal swab testing has been performed on all sub-
jects. Medical records with detailed information on past health status were available for 176 patients. Among 
these patients, several had breath-related comorbidities:

• 
• 5 Patients had Obstructive Sleep Apnea Syndrome (OSAS).
• 4 Patients had Bronchial Asthma.
• 3 Patients had Sarcoidosis.
• 2 Patients had Pulmonary Fibrosis.
• 13 Patients were diagnosed with Chronic Obstructive Pulmonary Disease (COPD).Additionally, 48 patients 

had received at least one dose of the COVID-19 vaccine. Respiratory failure was noted in 85 patients, of whom 
76 were COVID-19 positive, while the remaining 9 tested negative for the virus. Patients did not undergo 
physical exercise before the test.35,36.

Patient-ID

Acquisitions

Mass-Range 1 Mass-Range 2 Mass-Range 3 Mass-Range 4

1-AAAA 1 1 1 1

1-AAAB 1 1 1 2

1-AAAC 1 1 1 3

…

1-ABCD 1 2 3 4

…

1-DDDD 4 4 4 4

2-AAAA 1 1 1 1

…

Table 1. An example of the dataset augmentation procedure. Each row is a pseudo-patient, generated by a 
particular combination of the different mass-range acquisitions of each actual patient.
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The raw dataset presents breath samples for a total of 1,208 acquisitions among the 302 patients. After the 
outliers’ removal procedures and plateau identification, only 287 patients for mass-range 2 and 203 for the whole 
spectrum 10-351 were retained (Fig. 5). These problems were caused by the highly prototypical nature of the 
equipment; it is worth noticing that, in a real application, it would have been possible to repeat the measurement.

A graphical view of the spectra resulting from the proposed preprocessing filtering procedure described 
earlier can be found in Fig. 6 for mass-range 2 and in Fig. 5 for the entire range under analysis.

The data-augmentation procedure, by considering all the different combinations of the acquisitions, leads to 
the generation of 47,084 samples. A graphical 2D representation of the points obtained with t-SNE dimensionality 
reduction37 is presented in Fig. 7. There, a sharp boundary between positive and negative samples can be seen.

Performance evaluation
Patients have been split into training and test data: the training data are used to create the ML models, while the 
testing data are used only for evaluation purposes. We evaluated the experiments on 10 different training-test 
splits, averaging the results to obtain an unbiased estimation of the generalization performances of our models. 
We used a 10-fold stratified cross validation: the acquisitions of each patient are not mixed among training and 
test sets, to avoid potential information leakages. Thus, each evaluation metric is the mean over 10 run.

Figure 5. Examples of whole spectra (10–351 m/z) for negative subjects (top, blue) and positive ones (bottom, 
red).
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To address the issue of the high class-imbalance, we utilized a simple oversampling technique of the minority 
class (i.e., the COVID-19-positive class) in training sets, obtaining the same number of positive and negative 
samples.

Results are presented in terms of famous classification performances: Balanced Accuracy, Precision, Recall, 
and F1-score.

These metrics are computed based on the number of samples correctly and incorrectly predicted by our 
models.

Precision is the ability of the classifier not to label as positive a sample that is negative, while recall is the 
ability of the classifier to find all the positive samples.

The balanced accuracy avoids inflated performance estimates on imbalanced datasets. It is the macro-average 
of recall scores, for each class (the mean of recall for negative and positive classes).

Figure 7. 2D t-SNE representation of the whole spectra for all the 47,084 samples generated.

 

Figure 6. The comparison of spectra before (top) and after the filtering and normalizing procedure (bottom) 
shows the removal of low-frequency noise. Negative patients are on the left (blue), and positive on the right 
(red).
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The F1-score is the harmonic mean of the precision and recall. The relative contribution of precision and 
recall to the F1-score are equal. All of these metrics lies in the range [0, 1], where a score equal to 1 (or 100%) 
means perfect classification performance.

In the experiments on the whole mass spectrum 10–351, with the 4 ranges together, we also computed 
two additional performance metrics: Specificity and the area under the receiver operating characteristic curve 
(ROC-AUC). While recall is a measure that evaluates a test’s ability to correctly identify unhealthy individuals, 
specificity carries the same concept but for healthy patients. Specificity is the recall of the negative class. When a 
test exhibits high specificity, a positive result becomes valuable in confirming the presence of the disease, as the 
test rarely produces positive outcomes in healthy individuals.

A receiver operating characteristic (ROC) curve is a visual representation that showcases the performance of 
a binary classifier system as the threshold for classification is adjusted. It plots the true positive rate (TPR) against 
the false positive rate (FPR) at different threshold values. TPR is also referred to as sensitivity, while FPR is the 
complement of specificity.

The ROC-AUC quantifies the overall performance of the classifier by calculating the area under the ROC 
curve.

Results
Initially, we trained the models on the different mass ranges separately, without applying any feature pre-
processing. Preliminary experiments indicated that mass range 2 (49–151 m/z) was the most effective for 
classification. The ensemble models achieved an F1-score of 71% and an accuracy of 84% (Table 2) using 10-
fold cross-validation. Subsequently, we applied filtering, normalization, and feature pre-processing and selection 
specifically to mass range 2. The results from the various trials following these enhancements are summarized 
in Table 3. The application of the Variance Threshold filter resulted in the retention of 611 m/z values for Mass 
Range 2 (Fig. 6) and 1734 features for the entire spectrum covering ranges 1–4 (Fig. 5). This filtering step 
effectively removes features with zero variance, which do not contribute to the classification task. Selected m/z 
in the range 10-351 can be seen in Fig. 8.

It is important to note that we did not perform any compound analysis as the model operates on the raw 
mass spectrum data. The classification models inherently learns to distinguish between COVID-19 positive 
and negative classes based on the m/z values, without needing specific compound identification. This approach 
ensures that the analysis remains fully transparent to the model, allowing it to directly utilize the spectral data 
for classification without the need for predefined compound labels.

Filtering, normalizing, and processing the spectra using dimensionality reduction techniques proved 
beneficial, significantly improving classification performance across all models. For instance, comparing the 
performance of the Ensemble model before and after pre-processing (Tables 2 and 3), we observed an increase in 
accuracy from 84 to 87% and an improvement in the F1-score from 70% to approximately 80% for Mass Range 
2. Using the Robust Scaler (RS) instead of the Standard Scaler (SS) further reduced the standard deviation in 
performance metrics, particularly beneficial for models like SVC, which are sensitive to outliers (Table 3). In 
contrast, including a Feature Selection step before applying PCA did not yield improvements in performance 
metrics. The accuracy metrics decreased when using the SURF* algorithm, possibly due to its inability to capture 
complex feature interactions. Consequently, we found that beyond the simple Variance Threshold filter and PCA, 
no additional feature manipulation was necessary. On the other hand, PCA consistently enhanced classification 
performance across all models without the need for prior feature selection. Skipping the feature selection step 
also helped avoid potential biases in variable selection. Moreover, incorporating multiple acquisitions per patient 
in the training set and averaging them during testing led to lower prediction errors and higher classification 
accuracy compared to using a single, robust spectrum (Table 3). This is exemplified by the SVC model: with a 
single acquisition per patient, the model achieved 76% accuracy and only 57% recall, indicating poor detection of 
positive patients. However, when using multiple acquisitions, the model’s accuracy increased to 89%, and recall 
improved to 91%. Overall, the SVC and Ensemble models demonstrated the highest recall, effectively identifying 
true positive patients. In principle, further improvements in prediction performance could be achieved through 
a fine-tuning of hyperparameters.

The pre-processing steps for the experiments conducted across the entire mass range (10–351, results in 
Table 4) included a data augmentation procedure, spectra normalization and filtering, the application of a robust 

Model Mass range Accuracy Precision Recall F1-Score

RF 1 0.78 0.65 0.56 0.60

RF 2 0.82 0.69 0.69 0.68

RF 3 0.82 0.72 0.57 0.63

RF 4 0.79 0.65 0.53 0.57

Ens 1 0.82 0.70 0.67 0.68

Ens 2 0.84 0.75 0.69 0.71

Ens 3 0.80 0.68 0.57 0.61

Ens 4 0.77 0.62 0.60 0.59

Table 2. Mean Results on test sets (10 splits) with different mass ranges. No features pre-processing.
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scaler, and PCA for feature extraction. These steps were identified as the most effective in achieving optimal 
accuracy based on the results of the Mass Range 2 experiments.

This configuration yielded the best performance metrics, as shown in Table 4. Using the ensemble method, 
we achieved 95% accuracy, 94% recall, 96% specificity, and an F1-score of 92%.

It is important to note that, although the number of patients under testing was 203, the data augmentation 
procedure led to a dataset consisting of approximately 47,000 samples.

The code used for spectra analysis, along with the experimental results, has been made available in a public 
GitHub repository. No data about the patients were released.

Figure 8. Outcome of feature selection using the Variance Threshold method applied post-filtering, whole 
mass range 10–351 m/z.

 

Alg. Filtering Feat. Sel. Acquisition Accuracy Precision Recall F1-Score

xGB No PCA Single 0.83 ± 0.04 0.74 ± 0.10 0.77 ± 0.08 0.75 ± 0.06

xGB Yes (SS) PCA Single 0.88 ± 0.07 0.79 ± 0.08 0.86 ± 0.13 0.82 ± 0.09

xGB Yes (SS) PCA Multiple 0.93 ± 0.05 0.85 ± 0.14 0.94 ± 0.07 0.88 ± 0.09

xGB Yes (SS) SURF*, PCA Multiple 0.86 ± 0.07 0.78 ± 0.14 0.83 ± 0.10 0.80 ± 0.10

xGB Yes (RS) PCA Multiple 0.90 ± 0.04 0.82 ± 0.10 0.89 ± 0.08 0.84 ± 0.05

KNN No PCA Single 0.89 ± 0.05 0.73 ± 0.09 0.92 ± 0.08 0.81 ± 0.07

KNN Yes (SS) PCA Single 0.87 ± 0.05 0.73 ± 0.07 0.89 ± 0.08 0.80 ± 0.07

KNN Yes (SS) PCA Multiple 0.91 ± 0.07 0.80 ± 0.14 0.93 ± 0.10 0.85 ± 0.11

KNN Yes (SS) SURF*, PCA Multiple 0.85 ± 0.07 0.70 ± 0.13 0.87 ± 0.10 0.77 ± 0.11

KNN Yes (RS) PCA Multiple 0.91 ± 0.05 0.78 ± 0.12 0.94 ± 0.08 0.84 ± 0.08

LR No PCA Single 0.86 ± 0.05 0.71 ± 0.12 0.88 ± 0.07 0.78 ± 0.08

LR Yes (SS) PCA Single 0.85 ± 0.06 0.71 ± 0.08 0.85 ± 0.10 0.77 ± 0.07

LR Yes (SS) PCA Multiple 0.88 ± 0.06 0.73 ± 0.14 0.92 ± 0.10 0.80 ± 0.10

LR Yes (SS) SURF*, PCA Multiple 0.88 ± 0.07 0.74 ± 0.13 0.89 ± 0.10 0.80 ± 0.10

LR Yes (RS) PCA Multiple 0.89 ± 0.05 0.76 ± 0.11 0.91 ± 0.08 0.82 ± 0.08

RF No PCA Single 0.87 ± 0.05 0.79 ± 0.10 0.84 ± 0.09 0.81 ± 0.07

RF Yes (SS) PCA Single 0.89 ± 0.04 0.82 ± 0.11 0.87 ± 0.08 0.84 ± 0.05

RF Yes (SS) PCA Multiple 0.91 ± 0.07 0.80 ± 0.14 0.92 ± 0.09 0.85 ± 0.10

RF Yes (SS) SURF*, PCA Multiple 0.85 ± 0.09 0.75 ± 0.16 0.82 ± 0.13 0.78 ± 0.12

RF Yes (RS) PCA Multiple 0.90 ± 0.03 0.81 ± 0.07 0.90 ± 0.07 0.84 ± 0.04

SVC No PCA Single 0.65 ± 0.07 0.82 ± 0.20 0.32 ± 0.13 0.45 ± 0.16

SVC Yes (SS) PCA Single 0.76 ± 0.10 0.82 ± 0.15 0.57 ± 0.17 0.66 ± 0.15

SVC Yes (SS) PCA Multiple 0.89 ± 0.05 0.76 ± 0.13 0.91 ± 0.13 0.81 ± 0.07

SVC Yes (SS) SURF*, PCA Multiple 0.86 ± 0.08 0.77 ± 0.17 0.83 ± 0.09 0.79 ± 0.12

SVC Yes (RS) PCA Multiple 0.93 ± 0.04 0.85 ± 0.09 0.94 ± 0.07 0.89 ± 0.06

Ens. No PCA Single 0.87 ± 0.03 0.77 ± 0.10 0.84 ± 0.06 0.80 ± 0.06

Ens. Yes (SS) PCA Single 0.90 ± 0.07 0.82 ± 0.11 0.89 ± 0.10 0.85 ± 0.09

Ens. Yes (SS) PCA Multiple 0.93 ± 0.07 0.83 ± 0.15 0.94 ± 0.09 0.87 ± 0.11

Ens. Yes (SS) SURF*, PCA Multiple 0.89 ± 0.07 0.79 ± 0.16 0.88 ± 0.08 0.82 ± 0.12

Ens. Yes (RS) PCA Multiple 0.92 ± 0.04 0.81 ± 0.09 0.94 ± 0.07 0.87 ± 0.06

Table 3. Mean Results on tes sets (10 splits) on mass range 2. Models with the highest predictive power are in 
bold.
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Second acquisition campaign
In 2024, we carried out a subsequent round of sample acquisition, acquiring 20 additional negative samples 
as an independent cohort. Due to challenges in sourcing COVID-19-positive samples, only negative samples 
were gathered. These new patients were then assessed using the previously developed models. We utilized the 
ensemble of models trained on the complete mass spectra 10–351, with the data-augmentation procedure. 
We applied the filtering procedure, resulting in 16 refined spectra. In previous experiments, this approach 
consistently exhibited better performance. The ensemble model achieved a 100% accuracy rate with the new 
patients, suggesting promising potential for the proposed methodology despite the presence of time drift. 
However, additional analyses on a larger patient cohort are necessary to assess the robustness of these findings.

Conclusion
In this study, we presented a comprehensive framework for the detection of COVID-19 using breath samples 
analyzed by a novel portable MS device based on nanotechnology. This device is capable of analyzing human 
breath within approximately two minutes, producing a mass spectrum in the range of 10–351 m/z, divided into 
4 sub-ranges. Experimental results demonstrated that these mass spectra can be effectively utilized to detect the 
presence of COVID-19 through ML classification models. A key contribution of our work is the development 
and implementation of a robust filtering procedure using the Savitzky-Golay filter, which significantly reduces 
noise in the spectral data. Results indicate that even with relatively simple ML models, we can achieve high 
classification performance. Specifically, for the mass range of 49–151m/z, which was identified as the most 
informative for COVID-19 prediction, we achieved an accuracy of approximately 93% and a recall of 94%. The 
application of robust scaling techniques, which leverage the median and interquartile range for normalization, 
coupled PCA for feature extraction, further improved our prediction capabilities. By merging all the spectral 
sub-ranges into a single dataset, we were able to attain even higher classification performance, achieving up 
to 95% accuracy, 94% recall, and a 98% ROC-AUC. These results underscore the potential of this portable MS 
machine to be deployed in COVID-19 testing hubs, offering a rapid, non-invasive, and reliable method for 
detecting the disease. The integration of ML with mass spectrometry opens up promising avenues for the early 
detection of various diseases, providing rapid test results while minimizing the risk of infection for healthcare 
providers.

While our study demonstrates the effectiveness of this approach for COVID-19 detection, there are several 
areas for future research that could further enhance its utility and application. First, expanding the dataset to 
include a larger and more diverse patient population would help in validating the robustness and generalizability 
of the proposed model. Second, exploring advanced ML techniques, such as deep learning models, could 
potentially improve classification performance even further, especially in more complex scenarios involving 
multiple diseases. Third, we aim to study the reconstruction of VOCs profiles from the mass spectra, to find 
correlation between specific VOC patterns and the presence of COVID-19. Moreover, investigating the 
application of this framework to other respiratory conditions or infectious diseases could broaden the scope of its 
applicability. Future research could also focus on real-time analysis and decision-making capabilities, integrating 
this technology into telemedicine platforms to facilitate remote diagnostics. Finally, further refinement of the 
MS device, including its portability and ease of use, could accelerate its adoption in clinical settings, contributing 
to more widespread and accessible disease detection.

Data availability
The research data from this study has been anonymized to protect participant privacy. This data can be made 
available to qualified researchers upon request, although informed consent for public release was not obtained. 
Developed code has been made available in a public GitHub repository.
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