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ABSTRACT

The SARS-CoV-2 coronavirus emerged in 2019 causing a COVID-19 pandemic that resulted in 7 million deaths out of 770
million reported cases over the next four years. The global health emergency called for unprecedented efforts to monitor
and reduce the rate of infection, pushing the study of new diagnostic methods. In this paper, we introduce a cheap, fast, and
non-invasive COVID-19 detection system, which exploits only exhaled breath. Specifically, provided an air sample, the mass
spectra in the 10–351 mass-to-charge range are measured using an original micro and nano-sampling device coupled with a
high-precision spectrometer; then, the raw spectra are processed by custom software algorithms; the clean and augmented
data are eventually classified using state-of-the-art machine-learning algorithms. An uncontrolled clinical trial was conducted
between 2021 and 2022 on 302 subjects who were concerned about being infected, either due to exhibiting symptoms or
having recently recovered from illness. Despite the simplicity of use, our system showed a performance comparable to the
traditional polymerase-chain-reaction and antigen testing in identifying cases of COVID-19 (that is, 95% accuracy, 94% recall,
96% specificity, and 92% F1-score). In light of these outcomes, we think that the proposed system holds the potential for
substantial contributions to routine screenings and expedited responses during future epidemics, as it yields results comparable
to state-of-the-art methods, providing them in a more rapid and less invasive manner.

Introduction
The COVID-19 pandemic, that began in late 2019, had an unprecedented global impact, with the World Health Organization
(WHO) reporting over 770 million infections and more than 7 million deaths worldwide. The rapid spread of the virus prompted
a global health emergency that lasted from January 2020 to May 2023, during which extraordinary efforts were made to monitor
and reduce the infection rate. These efforts included widespread social restrictions, mass testing, and the development of
vaccines and treatments to manage the crisis effectively1, 2.

Among the diagnostic tools utilized, real-time quantitative polymerase chain reaction (RT-qPCR) has been the gold standard
for detecting SARS-CoV-2, the virus responsible for COVID-19. This technique relies on identifying viral ribonucleic acid
(RNA) in nasopharyngeal or oropharyngeal swab samples, allowing for accurate and timely diagnosis3, 4. Despite its widespread
use, RT-qPCR has several limitations that can hinder the effectiveness of large-scale testing programs. The high sensitivity
of RT-qPCR requires meticulous experimental design and a deep understanding of normalization procedures to avoid false-
negative results, which can occur due to technical issues during sample collection, transportation, and processing, as well as
biological factors like genetic variations, sample types, viral load, and the timing of sample collection relative to viral exposure5.
Additionally, the necessity for authorized laboratories with at least Biosafety Level 2 (BSL-2) certification can place significant
strain on laboratory resources, potentially leading to delays in processing and reporting test results. These challenges are
compounded by the high costs associated with the equipment and reagents needed for RT-qPCR6.

In light of these challenges, there has been a growing interest in developing alternative diagnostic methods that are rapid,
cost-effective, non-invasive, and capable of detecting infections at an early stage7–11. One promising approach is the analysis of
exhaled breath, which contains respiratory droplets and a variety of small molecules produced through metabolic and catabolic
processes. Breath analysis has already been explored for the detection of several diseases, including lung diseases9, 10, breast
cancer, diabetes, and infectious conditions such as influenza. Expanding the application of breath analysis to detect COVID-19
presents several significant advantages over traditional methods12, 13.

In parallel, artificial intelligence (AI) has emerged as a particularly promising area of research for enhancing COVID-19



detection. AI has the potential to improve the accuracy and efficiency of diagnostics by analyzing complex patterns in various
data types, including medical imaging, genomic sequences, and physiological signals. Recent studies have demonstrated the
efficacy of AI models in analyzing chest X-rays, computed tomography (CT) scans, and even voice and cough sounds to
identify COVID-19 infections with high accuracy14, 15. Furthermore, AI-driven analysis of exhaled breath is gaining traction as
a non-invasive and rapid diagnostic method. Machine learning (ML) algorithms can detect volatile organic compounds (VOCs)
in breath samples that are indicative of SARS-CoV-2 infection. These AI-based methods could revolutionize COVID-19
diagnostics by enabling real-time, on-site testing that is both cost-effective and accessible9, 10, 16, 17. However, related work
mainly rely on analyze breath samples for specific VOC patterns.

This paper presents a novel approach to COVID-19 detection by integrating AI-based analysis with breath sampling
techniques. The primary objective of this work is to evaluate the effectiveness of AI in detecting SARS-CoV-2 from exhaled
breath, leveraging ML algorithms to detect the positivity to COVID-19 without the need for identify unique VOC signatures
associated with the virus, but relying only on breath fingerprint. Unlike traditional RT-qPCR, this method aims to provide
a rapid, non-invasive, and portable diagnostic solution that can be used in various settings, including high-traffic areas like
airports and public transportation hubs. The developed system achieved results comparable to other classical COVID-19
detection systems: 95% accuracy, 94% recall, 96% specificity, and an F1-score of 92%.

This approach not only addresses the need for faster and more comfortable testing methods but also offers a scalable
solution that could be deployed in resource-limited environments. This system can be extended to other infectious conditions
and diseases.

Code for spectra analysis and the outcomes of the experiments have been released in a public GitHub repository*.
The organization of the paper is as follows: the Method section describes the method and experimental setup, including breath

sample collection, pre-processing and AI model development. Section Experimental Evaluation presents the experimental
evaluation, focusing on patients sample collection and performance evaluation of the predictive models. Section Results
summarize the main results of the proposed approach in terms of final accuracy of the developed models. Finally, the
Conclusions concludes the paper by summarizing the key contributions, potential limitations, and future research directions.

Method
We propose a detection system that leverages mass spectrometry and AI to rapidly assess exhaled breath samples from patients
and identify the presence of COVID-19. Recent studies have shown that COVID-19 patients exhibit distinct VOC profiles in
their breath7, 18, 19.

VOCs are a significant group of chemicals that can easily evaporate at room temperature. They are present in various
products, including paints, cleaning agents, and building materials. The expelled breath from individuals contains several
VOCs in addition to nitrogen, oxygen, carbon dioxide, and water vapor. Recent studies have identified specific VOCs as
biomarkers for several respiratory diseases, including lung cancer, cystic fibrosis, asthma, chronic obstructive pulmonary disease
(COPD), and COVID-19. Furthermore, variations in VOC profiles can help distinguish between smokers and non-smokers.
Certain VOCs have also been associated with lung cancer. For example, elevated levels of specific VOCs in exhaled breath
have been correlated with lung cancer diagnosis, suggesting their potential utility in early detection20. In cystic fibrosis,
VOCs may indicate disease severity and exacerbations, providing a non-invasive monitoring tool20. However, analyzing VOC
necessitates the use of specialized techniques and hardware for detecting and selecting specific VOC7, 9, 10, 16, 21, 22. Electronic
nose technology and other analytical methods have demonstrated high sensitivity and specificity in detecting these compounds,
making VOC analysis a promising tool for rapid COVID-19 diagnosis7, 9, 10, 21.

The proposed approach completely eliminates the need for prior identification of specific VOCs, focusing instead on the
direct analysis of the breath fingerprint through its mass spectrum. This method is straightforward, easy to implement, and
aims to establish a correlation between a specific breath fingerprint and the presence of COVID-19 without explicitly defining
or detecting individual VOCs. Breath samples can be conveniently stored in specialized containers, simplifying collection
procedures that can be performed by non-specialized personnel in various locations.

Our system utilizes a proprietary nano-sampling device coupled with a high-precision mass spectrometer capable of
performing efficient mass spectrum analysis within the 10 m/z to 351 m/z range23; this analysis requires usually few seconds,
and never more than few minutes. The raw data are processed by in-house developed python tools: first they are aligned to the
baseline, then filtered to reduce measurement noise, and eventually a process of data augmentation enhances the robustness
and diversity. We employed standard ML classifiers from a state-of-the-art data analysis library24 to detect the presence of
COVID-19. Notably, this system operates without the need for reagents, and it generates no hazardous waste, making it both
efficient and environmentally friendly.

*https://github.com/BellaNico4/COVID-19-Detection-from-Exhaled-Breath
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Figure 1. Schematic of the Mass Spectra analyzer

Breath Samples Collection
For each patient under test, ambient air was sampled to verify environmental parameters and ensure the stability of the
instrument. Then, the subject’s breath is collected into a sampling tedlar bag with a defined volume of 3 L, by having the
subject blow through a straw directly into the bag. Each patient exhales into the bag until it is filled with approximately 3 L of
air. This large volume is necessary to establish the stable sampling pressure required by the adopted technology23, 25, 26, 26 and
also implicitly averages the different phases of the expiratory flow. Then, the filled bag is connected to the inlet valve of the
MS apparatus. The inlet valve can have two possible settings: the first setting allows for the sample mixture, at atmospheric
pressure, to flow from the bag to the ionization chamber, directly through an original Micro Electro-Mechanical System
(MEMS) interface27; the second setting connects the MEMS interface to a membrane pump, in order to clean the inlet line,
bringing it to vacuum conditions (≃ 1×10−3 mbar).A schematic of the sampling system is provided in fig. 1, and an illustrative
diagram of the sample collection process is shown in fig. 2.

Mass spectra are recorded via a Varian 1200L mass analyzer software, which allows the setting of some acquisition
parameters like mass range, acquisition time, and electron multiplier (EM) voltage. The latter parameter ultimately sets the
detector amplification factor. We recorded mass spectra in the following ranges:

• 10 m/z to 51 m/z, with an acquisition time of 10 s and EM voltage of 1000 V;

• 49 m/z to 151 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;

• 149 m/z to 251 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;

• 249 m/z to 351 m/z, with an acquisition time of 14 s and EM voltage of 1800 V;

To avoid signal saturation, the amplification in the first mass range was reduced due to the presence of the most abundant
breath components, namely CO2 (44 m/z) main peak, N2 (28 m/z) main peak and O2 (32 m/z) main peak. For each breath
sample, 10 to 20 acquisitions were taken at fixed time intervals, allowing for the collection of multiple data points from each
patient. This approach of acquiring multiple samples per patient enhances the robustness of the mass spectrum analysis by
averaging out potential variations and noise in individual measurements. Finally, the raw spectra are filtered and analyzed using
our proposed method. The successive analysis of these multiple acquisitions improves the reliability and accuracy of the breath
fingerprint profile, leading to more consistent and representative results. This methodology ensures that the breath fingerprint
are not anomalies but are reflective of the patient’s actual metabolic state, thereby increasing the diagnostic precision of the
breath analysis.
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Figure 2. Diagram of the sampling and processing procedure

The acquisition of each mass range for a subject under test takes less than two minutes (approximately one and a half
minutes), requiring about six minutes to acquire all 4 ranges and thus obtain the complete spectrum. Although the approach is
not real-time, it is still significantly faster than traditional methods.

By summing all the intensities for each m/z in each acquisition, we can obtain the Total Ion Current (TIC) curve plot.
Figure 3 shows the TIC behavior when the breath sample flows into the MS system: the initial increase is due to the abrupt
pressure change at the valve opening and, after a few tens of seconds, the TIC curve reaches a plateau region27, when the flux
stabilizes. These procedures allowed for storing a dataset composed of the acquisitions of the spectra for each patient.
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Figure 3. TIC of a recording from one sample. The recording is made up of about 10 acquisitions (green dots), each
corresponding to a mass spectrum. The spectra used for the analysis are selected on the plateau of TIC (red dotted region).

Pre-processing
Once the raw measures have been obtained, data are cleaned through a pre-processing procedure that reduces noise and machine
variation of the acquisitions.

For each acquisition, the recorded m/z positions may be shifted with a specific alignment when the machine records the
quantity of the ionized molecules due to measurement noise. A peak-alignment procedure is thus necessary. This procedure
enables reducing the noise of the machine and compacting information. The peak alignment procedure is based on moving the
peak to the nearest integer position, using them as anchors. The curves between two nearby peaks are stretched or compressed
to sustain their original shape, preventing information loss. Stretching and compression between peaks are done by linear
interpolation to fit the corresponding segments in the reference. A graphical plot after the peak alignment can be seen in fig. 4.

As previously mentioned, multiple acquisitions are taken for each patient to ensure the accuracy of the breath analysis.
To mitigate potential noise in the measurements and enhance the stability of breath fingerprint recognition, these multiple
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Figure 4. Aligned and non-aligned peaks of the mass spectrum of a single patient.

acquisitions are agglomerated into a single robust mass spectrum. This is achieved by focusing on the plateau zone of the TIC
curve, thus the region where the signal stabilizes, indicating that the breath sample flux has reached a steady state.

The plateau zone is composed of the most stable acquisitions, which are indicative of a consistent breath sample. To
accurately combine these acquisitions, the first step is to identify the plateau in the TIC curve. A plateau-searching procedure is
implemented, which involves detecting acquisitions that show minimal variation from one another. This is done by computing
the gradient of the signal; acquisitions within the plateau zone are those where the gradient is minimal, indicating a stable
signal.

Once the plateau zone is identified, the acquisitions within this region are averaged to produce a single, robust mass-spectra
measurement. This averaging process reduces the influence of any outlier data points or transient fluctuations, resulting in a
more reliable representation of the patient’s breath fingerprint. This method enhances the overall robustness and accuracy of the
mass spectrometry analysis, ensuring that the VOC profile obtained is both stable and reflective of the true metabolic state of
the patient.

The plateau searching procedure was implemented as follows:

• For each acquisition, we computed the gradient of the signals.

• The plateau is defined as a zone that is nearly flat, ideally where the gradient is zero or where the gradient does not vary
significantly from zero. To identify this flat zone, we compute a tolerance guard-band, denoted as ε , which allows us to
classify a region as "flat" if the absolute value of the gradient remains below ε . The value of ε is determined based on the
q-th quantile of the gradient distribution, where q is a parameter within the range [0,1]. This parameter q controls the
stringency of the requirement for a constant slope in the plateau region; a lower q value indicates a stricter requirement,
leading to a narrower definition of the plateau, while a higher q value allows for more variation in the gradient, resulting
in a broader plateau definition.

• As shown in fig. 3, the TIC curve may present more than one plateau: the first one is in the region in which the breath
sample has not flown yet into the MS machine. This can be composed of 1 to 3 acquisitions. Thus, to avoid potential
errors, we considered the plateau of maximum length, that is, in the region where the ion flow stabilizes.

• Once the plateau of maximum length is found (which varies from 3 to 5 acquisitions for each patient), we computed
the standard deviations of acquisitions in this region by deploying a rolling window of size 4. We then chose the 4
acquisitions that minimized the standard deviation, and we computed the mean among these, obtaining a single spectrum
for each patient.

Computing the average of the 4 acquisitions with minimum standard deviation permits the extraction of a single robust
spectrum for each patient.

An alternative approach to artificially increase the dataset is to not average the selected 4 acquisitions but instead insert all
of them into the dataset. This approach allows for an increase in both the number of training samples (by a factor of 4) and the
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variability in the data, which can lead to more accurate models. During the testing phase, instead, we average the acquisitions
to obtain a single spectrum for each tested patient.

Some samples may present high noise in the mass spectrum, which can adversely affect the analysis. To address this issue,
we identified outlier samples as those with a z-score greater than 8 for at least one feature. Additionally, for some patients, it
was not possible to identify a plateau in the TIC curve, leading to their exclusion from the dataset.

To overcome noise in the measurements and possible variations in the machine’s settings, a signal filtering and smoothing
procedure was applied to the remaining patient samples. The steps involved in this procedure are as follows:

1. Normalization: Each spectrum was normalized by dividing by the TIC value to obtain relative information about the
breath composition. This step scaled each intensity by the sum of all intensities, bringing the features within the range
(0,1).

2. Initial High-Pass Filtering: A high-pass filter was applied, treating as zero any intensity below 0.0001, which was
considered noise. This helped in filtering out low-intensity signals that might contribute to noise.

3. Savitzky–Golay Smoothing and Differentiation: The Savitzky–Golay Smoothing and Differentiation Filter28, 29 was
used to reduce high-frequency noise and align the signals to the baseline. This filter is effective in spectral analysis as it
smooths the data while preserving important spectral features.

4. Secondary High-Pass Filtering: After smoothing, the high-pass filter was reapplied, treating as zero any intensity below
0.001. This step removed any artifacts that may have been introduced during the smoothing process.

The filtering and pre-processing procedures were applied separately to each mass range. Once these steps were completed,
the spectra obtained from the 4 mass ranges could be combined to produce a single, comprehensive spectrum spanning the
range of 10-351.

If different acquisitions were previously considered for each mass range, merging them involved computing all possible
combinations of acquisitions across the mass ranges. This approach effectively augmented the dataset by creating new
combinations of the different acquisition spectra for each patient. This procedure can be likened to generating artificial patients,
where each new patient varies based on one of the 4 segments of the spectrum. An example of the resulting augmented dataset
is shown in table 1.

Finally, the entire spectrum was normalized again by dividing it by the total sum of the intensities, ensuring that only
relative information was retained.

Acquisitions
Patient-ID Mass-Range 1 Mass-Range 2 Mass-Range 3 Mass-Range 4
1-AAAA 1 1 1 1
1-AAAB 1 1 1 2
1-AAAC 1 1 1 3

. . .
1-ABCD 1 2 3 4

. . .
1-DDDD 4 4 4 4
2-AAAA 1 1 1 1

. . .

Table 1. An example of the dataset augmentation procedure. Each row is a pseudo-patient, generated by a particular
combination of the different mass-range acquisitions of each actual patient.

Machine-Learning Models
The mass spectrum analysis was conducted using a comprehensive pipeline comprising several key steps: data normalization,
feature selection, dimensionality reduction, and classification. Each stage in this pipeline contributes to the development of a
complete ML model. The results of these models are presented in the following sections.

Initially, a Variance Threshold filter was applied to the dataset. This filter removes features with zero variance, thereby
eliminating m/z values for which no intensities were measured post-filtering.

Subsequently, each feature was individually normalized using one of two methods: the Standard Scaler (SS) or the Robust
Scaler (RS). The Standard Scaler normalizes features by subtracting the mean and scaling according to the variance. In
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contrast, the Robust Scaler subtracts the median and scales based on the interquartile range (the range between the first and
third quartiles), which mitigates the impact of outliers.

Further feature reduction was performed to retain only the most informative features. Some of the experiments involved the
use of a supervised feature selection method, SURF*, a Relief-based algorithm30, to select 100 m/z features. To further reduce
dimensionality, Principal Component Analysis (PCA)31, 32 was applied to linearly combine the selected features, utilizing 20
principal components.

Finally, a range of ML classification models was trained to distinguish between COVID-19 positive and negative patients.
Various ML techniques have been explored in the context of COVID-19 detection9, 10, 15, 33, 34. We utilized a combination
of state-of-the-art models from24, including K-Nearest Neighbors (KNN), Random Forest (RF), Logistic Regression (LR),
Gradient Boosting (xGB), and Support Vector Machine (SVM) with an RBF kernel. Additionally, we implemented an ensemble
model that integrates all the aforementioned classifiers using a soft-voting approach (Ens).

In soft voting, predictions from an ensemble of classifiers are amalgamated by considering the probabilities assigned to each
class by individual classifiers. The final prediction is determined by selecting the class with the highest cumulative probability
across all classifiers involved in the ensemble.

Experimental Evaluation
Samples Collection
Breath samples were collected from patients and medical personnel at Varese Hospital (Ospedale di Circolo — Fondazione
Macchi, ASST Sette Laghi) during an uncontrolled clinical trial conducted as part of a descriptive study. In our sampling
setup, humidity and temperature were not directly monitored during sample acquisition. The MS analyzer was stationed in the
COVID-19 ward of the hospital, where temperature and humidity were controlled, but specific data on these conditions were
not recorded. To minimize variability from uncontrolled factors, all trials and sample collections were conducted in the same
room under consistent environmental conditions. No formal sample size evaluation was performed. The volunteers primarily
consisted of individuals who suspected they had COVID-19, including those with no symptoms or only mild symptoms.

The acquisition lasted one year, from March 2021 to March 2022, for a total of 302 tested subjects, divided into 91 positive
and 211 negative records. The ages of the patients in the study varied from 16 to 88 years. The statistical summary of the ages
is as follows:

• Mean age: 55 years

• Standard deviation: 18 years

• Minimum age: 16 years

• 25th percentile: 42 years

• Median age: 57 years

Some patients have been tested more than once to calibrate the system. The mass spectra have been collected with a Varian
1200 L mass analyzer, combined with the MEMS interface. As ground truth to confirm SARS-CoV-2 infection, a RT-qPCR
nasopharyngeal swab testing has been performed on all subjects. Medical records with detailed information on past health
status were available for 176 patients. Among these patients, several had breath-related comorbidities:

• 5 patients had Obstructive Sleep Apnea Syndrome (OSAS).

• 4 patients had Bronchial Asthma.

• 3 patients had Sarcoidosis.

• 2 patients had Pulmonary Fibrosis.

• 13 patients were diagnosed with Chronic Obstructive Pulmonary Disease (COPD).

Additionally, 48 patients had received at least one dose of the COVID-19 vaccine. Respiratory failure was noted in 85 patients,
of whom 76 were COVID-19 positive, while the remaining 9 tested negative for the virus. Patients did not undergo physical
exercise before the test.35, 36. The raw dataset presents breath samples for a total of 1,208 acquisitions among the 302 patients.
After the outliers’ removal procedures and plateau identification, only 287 patients for mass-range 2 and 203 for the whole
spectrum 10-351 were retained. These problems were caused by the highly prototypical nature of the equipment; it is worth
noticing that, in a real application, it would have been possible to repeat the measurement.
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Figure 5. Examples of whole spectra (10 m/z to 351 m/z) for negative subjects (top, blue) and positive ones (bottom, red)
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Figure 6. The comparison of spectra before (top) and after the filtering and normalizing procedure (bottom) shows the
removal of low-frequency noise. Negative patients are on the left (blue), and positive on the right (red).

Figure 7. 2D t-SNE representation of the whole spectra for all the 47,084 samples generated.
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Figure 8. Outcome of feature selection using the Variance Threshold method applied post-filtering, whole mass range 10-351
m/z.

A graphical view of the spectra resulting from the proposed preprocessing filtering procedure described earlier can be found
in fig. 6 for mass-range 2 and in fig. 5 for the entire range under analysis.

The data-augmentation procedure, by considering all the different combinations of the acquisitions, leads to the generation
of 47,084 samples. A graphical 2D representation of the points obtained with t-SNE dimensionality reduction37 is presented in
figure 7. There, a sharp boundary between positive and negative samples can be seen.

Performance Evaluation
Patients have been split into training and test data: the training data are used to create the ML models, while the testing data are
used only for evaluation purposes. We evaluated the experiments on 10 different training-test splits, averaging the results to
obtain an unbiased estimation of the generalization performances of our models. We used a 10-fold stratified cross validation:
the acquisitions of each patient are not mixed among training and test sets, to avoid potential information leakages. Thus, each
evaluation metric is the mean over 10 run.

To address the issue of the high class-imbalance, we utilized a simple oversampling technique of the minority class (i.e., the
COVID-19-positive class) in training sets, obtaining the same number of positive and negative samples.

Results are presented in terms of famous classification performances: Balanced Accuracy, Precision, Recall, and F1-score.
These metrics are computed based on the number of samples correctly and incorrectly predicted by our models.
Precision is the ability of the classifier not to label as positive a sample that is negative, while recall is the ability of the

classifier to find all the positive samples.
The balanced accuracy avoids inflated performance estimates on imbalanced datasets. It is the macro-average of recall

scores, for each class (the mean of recall for negative and positive classes).
The F1-score is the harmonic mean of the precision and recall. The relative contribution of precision and recall to the

F1-score are equal. All of these metrics lies in the range [0,1], where a score equal to 1 (or 100%) means perfect classification
performance.

In the experiments on the whole mass spectrum 10-351, with the 4 ranges together, we also computed two additional
performance metrics: Specificity and the area under the receiver operating characteristic curve (ROC-AUC). While recall is a
measure that evaluates a test’s ability to correctly identify unhealthy individuals, specificity carries the same concept but for
healthy patients. Specificity is the recall of the negative class. When a test exhibits high specificity, a positive result becomes
valuable in confirming the presence of the disease, as the test rarely produces positive outcomes in healthy individuals.

A receiver operating characteristic (ROC) curve is a visual representation that showcases the performance of a binary
classifier system as the threshold for classification is adjusted. It plots the true positive rate (TPR) against the false positive rate
(FPR) at different threshold values. TPR is also referred to as sensitivity, while FPR is the complement of specificity.

The ROC-AUC quantifies the overall performance of the classifier by calculating the area under the ROC curve.

Results
Initially, we trained the models on the different mass ranges separately, without applying any feature pre-processing. Preliminary
experiments indicated that mass range 2 (49-151 m/z) was the most effective for classification. The ensemble models achieved
an F1-score of 71% and an accuracy of 84% (table 2) using 10-fold cross-validation. Subsequently, we applied filtering,
normalization, and feature pre-processing and selection specifically to mass range 2. The results from the various trials
following these enhancements are summarized in table 3.

The application of the Variance Threshold filter resulted in the retention of 611 m/z values for Mass Range 2 (fig. 6) and
1734 features for the entire spectrum covering ranges 1-4 (fig. 5). This filtering step effectively removes features with zero
variance, which do not contribute to the classification task. Selected m/z in the range 10-351 can be seen in fig. 8.
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It is important to note that we did not perform any compound analysis as the model operates on the raw mass spectrum data.
The classification models inherently learns to distinguish between COVID-19 positive and negative classes based on the m/z
values, without needing specific compound identification. This approach ensures that the analysis remains fully transparent to
the model, allowing it to directly utilize the spectral data for classification without the need for predefined compound labels.

Filtering, normalizing, and processing the spectra using dimensionality reduction techniques proved beneficial, significantly
improving classification performance across all models. For instance, comparing the performance of the Ensemble model
before and after pre-processing (tables 2 and 3), we observed an increase in accuracy from 84% to 87% and an improvement in
the F1-score from 70% to approximately 80% for Mass Range 2. Using the Robust Scaler (RS) instead of the Standard Scaler
(SS) further reduced the standard deviation in performance metrics, particularly beneficial for models like SVC, which are
sensitive to outliers (table 3). In contrast, including a Feature Selection step before applying PCA did not yield improvements
in performance metrics. The accuracy metrics decreased when using the SURF* algorithm, possibly due to its inability to
capture complex feature interactions. Consequently, we found that beyond the simple Variance Threshold filter and PCA, no
additional feature manipulation was necessary. On the other hand, PCA consistently enhanced classification performance
across all models without the need for prior feature selection. Skipping the feature selection step also helped avoid potential
biases in variable selection. Moreover, incorporating multiple acquisitions per patient in the training set and averaging them
during testing led to lower prediction errors and higher classification accuracy compared to using a single, robust spectrum
(table 3). This is exemplified by the SVC model: with a single acquisition per patient, the model achieved 76% accuracy
and only 57% recall, indicating poor detection of positive patients. However, when using multiple acquisitions, the model’s
accuracy increased to 89%, and recall improved to 91%. Overall, the SVC and Ensemble models demonstrated the highest
recall, effectively identifying true positive patients. In principle, further improvements in prediction performance could be
achieved through a fine-tuning of hyperparameters.

The pre-processing steps for the experiments conducted across the entire mass range (10-351, results in table 4) included
a data augmentation procedure, spectra normalization and filtering, the application of a robust scaler, and PCA for feature
extraction. These steps were identified as the most effective in achieving optimal accuracy based on the results of the Mass
Range 2 experiments.

This configuration yielded the best performance metrics, as shown in table 4. Using the ensemble method, we achieved
95% accuracy, 94% recall, 96% specificity, and an F1-score of 92%.

It is important to note that, although the number of patients under testing was 203, the data augmentation procedure led to a
dataset consisting of approximately 47,000 samples.

The code used for spectra analysis, along with the experimental results, has been made available in a public GitHub
repository. No data about the patients were released.

Table 2. Mean Results on test sets (10 splits) with different mass ranges. No features pre-processing

Model Mass Range Accuracy Precision Recall F1-Score

RF 1 0.78 0.65 0.56 0.60
RF 2 0.82 0.69 0.69 0.68
RF 3 0.82 0.72 0.57 0.63
RF 4 0.79 0.65 0.53 0.57
Ens 1 0.82 0.70 0.67 0.68
Ens 2 0.84 0.75 0.69 0.71
Ens 3 0.80 0.68 0.57 0.61
Ens 4 0.77 0.62 0.60 0.59

Second acquisition campaign
In 2024, we carried out a subsequent round of sample acquisition, acquiring 20 additional negative samples as an independent
cohort. Due to challenges in sourcing COVID-19-positive samples, only negative samples were gathered. These new patients
were then assessed using the previously developed models. We utilized the ensemble of models trained on the complete mass
spectra 10-351, with the data-augmentation procedure. We applied the filtering procedure, resulting in 16 refined spectra. In
previous experiments, this approach consistently exhibited better performance. The ensemble model achieved a 100% accuracy
rate with the new patients, suggesting promising potential for the proposed methodology despite the presence of time drift.
However, additional analyses on a larger patient cohort are necessary to assess the robustness of these findings.
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Table 3. Mean Results on tes sets (10 splits) on mass range 2

Alg. Filtering Feat. Sel. Acquisition Accuracy Precision Recall F1-Score
xGB No PCA Single 0.83 ± 0.04 0.74 ± 0.10 0.77 ± 0.08 0.75 ± 0.06
xGB Yes (SS) PCA Single 0.88 ± 0.07 0.79 ± 0.08 0.86 ± 0.13 0.82 ± 0.09
xGB Yes (SS) PCA Multiple 0.93 ± 0.05 0.85 ± 0.14 0.94 ± 0.07 0.88 ± 0.09
xGB Yes (SS) SURF*, PCA Multiple 0.86 ± 0.07 0.78 ± 0.14 0.83 ± 0.10 0.80 ± 0.10
xGB Yes (RS) PCA Multiple 0.90 ± 0.04 0.82 ± 0.10 0.89 ± 0.08 0.84 ± 0.05
KNN No PCA Single 0.89 ± 0.05 0.73 ± 0.09 0.92 ± 0.08 0.81 ± 0.07
KNN Yes (SS) PCA Single 0.87 ± 0.05 0.73 ± 0.07 0.89 ± 0.08 0.80 ± 0.07
KNN Yes (SS) PCA Multiple 0.91 ± 0.07 0.80 ± 0.14 0.93 ± 0.10 0.85 ± 0.11
KNN Yes (SS) SURF*, PCA Multiple 0.85 ± 0.07 0.70 ± 0.13 0.87 ± 0.10 0.77 ± 0.11
KNN Yes (RS) PCA Multiple 0.91 ± 0.05 0.78 ± 0.12 0.94 ± 0.08 0.84 ± 0.08
LR No PCA Single 0.86 ± 0.05 0.71 ± 0.12 0.88 ± 0.07 0.78 ± 0.08
LR Yes (SS) PCA Single 0.85 ± 0.06 0.71 ± 0.08 0.85 ± 0.10 0.77 ± 0.07
LR Yes (SS) PCA Multiple 0.88 ± 0.06 0.73 ± 0.14 0.92 ± 0.10 0.80 ± 0.10
LR Yes (SS) SURF*, PCA Multiple 0.88 ± 0.07 0.74 ± 0.13 0.89 ± 0.10 0.80 ± 0.10
LR Yes (RS) PCA Multiple 0.89 ± 0.05 0.76 ± 0.11 0.91 ± 0.08 0.82 ± 0.08
RF No PCA Single 0.87 ± 0.05 0.79 ± 0.10 0.84 ± 0.09 0.81 ± 0.07
RF Yes (SS) PCA Single 0.89 ± 0.04 0.82 ± 0.11 0.87 ± 0.08 0.84 ± 0.05
RF Yes (SS) PCA Multiple 0.91 ± 0.07 0.80 ± 0.14 0.92 ± 0.09 0.85 ± 0.10
RF Yes (SS) SURF*, PCA Multiple 0.85 ± 0.09 0.75 ± 0.16 0.82 ± 0.13 0.78 ± 0.12
RF Yes (RS) PCA Multiple 0.90 ± 0.03 0.81 ± 0.07 0.90 ± 0.07 0.84 ± 0.04
SVC No PCA Single 0.65 ± 0.07 0.82 ± 0.20 0.32 ± 0.13 0.45 ± 0.16
SVC Yes (SS) PCA Single 0.76 ± 0.10 0.82 ± 0.15 0.57 ± 0.17 0.66 ± 0.15
SVC Yes (SS) PCA Multiple 0.89 ± 0.05 0.76 ± 0.13 0.91 ± 0.13 0.81 ± 0.07
SVC Yes (SS) SURF*, PCA Multiple 0.86 ± 0.08 0.77 ± 0.17 0.83 ± 0.09 0.79 ± 0.12
SVC Yes (RS) PCA Multiple 0.93 ± 0.04 0.85 ± 0.09 0.94 ± 0.07 0.89 ± 0.06
Ens. No PCA Single 0.87 ± 0.03 0.77 ± 0.10 0.84 ± 0.06 0.80 ± 0.06
Ens. Yes (SS) PCA Single 0.90 ± 0.07 0.82 ± 0.11 0.89 ± 0.10 0.85 ± 0.09
Ens. Yes (SS) PCA Multiple 0.93 ± 0.07 0.83 ± 0.15 0.94 ± 0.09 0.87 ± 0.11
Ens. Yes (SS) SURF*, PCA Multiple 0.89 ± 0.07 0.79 ± 0.16 0.88 ± 0.08 0.82 ± 0.12
Ens. Yes (RS) PCA Multiple 0.92 ± 0.04 0.81 ± 0.09 0.94 ± 0.07 0.87 ± 0.06

Conclusion

In this study, we presented a comprehensive framework for the detection of COVID-19 using breath samples analyzed by a
novel portable MS device based on nanotechnology. This device is capable of analyzing human breath within approximately two
minutes, producing a mass spectrum in the range of 10-351 m/z, divided into 4 sub-ranges. Experimental results demonstrated
that these mass spectra can be effectively utilized to detect the presence of COVID-19 through ML classification models. A
key contribution of our work is the development and implementation of a robust filtering procedure using the Savitzky-Golay
filter, which significantly reduces noise in the spectral data. Results indicate that even with relatively simple ML models, we
can achieve high classification performance. Specifically, for the mass range of 49 m/z to 151 m/z, which was identified as
the most informative for COVID-19 prediction, we achieved an accuracy of approximately 93% and a recall of 94%. The
application of robust scaling techniques, which leverage the median and interquartile range for normalization, coupled PCA for
feature extraction, further improved our prediction capabilities. By merging all the spectral sub-ranges into a single dataset, we
were able to attain even higher classification performance, achieving up to 95% accuracy, 94% recall, and a 98% ROC-AUC.
These results underscore the potential of this portable MS machine to be deployed in COVID-19 testing hubs, offering a rapid,
non-invasive, and reliable method for detecting the disease. The integration of ML with mass spectrometry opens up promising
avenues for the early detection of various diseases, providing rapid test results while minimizing the risk of infection for
healthcare providers.
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Table 4. Mean Results on the test sets (10 splits) for the whole mass range 10-351. Filtering the spectra and pre-processing the
features (Robust Scaler and PCA) were applied

Alg. Accuracy Precision Recall F1-Score Specificity ROC-AUC

KNN 0.93 ± 0.06 0.87 ± 0.09 0.92 ± 0.09 0.89 ± 0.08 0.94 ± 0.04 0.95 ± 0.04
RF 0.91 ± 0.06 0.88 ± 0.10 0.87 ± 0.12 0.87 ± 0.07 0.95 ± 0.04 0.98 ± 0.03
LR 0.94 ± 0.04 0.84 ± 0.12 0.96 ± 0.07 0.89 ± 0.07 0.93 ± 0.05 0.97 ± 0.04
xGB 0.94 ± 0.03 0.88 ± 0.08 0.93 ± 0.07 0.90 ± 0.03 0.95 ± 0.03 0.98 ± 0.03
SVC 0.93 ± 0.06 0.89 ± 0.09 0.90 ± 0.12 0.88 ± 0.06 0.95 ± 0.04 0.98 ± 0.02
Ens. 0.95 ± 0.04 0.90 ± 0.08 0.94 ± 0.07 0.92 ± 0.05 0.96 ± 0.03 0.98 ± 0.03

While our study demonstrates the effectiveness of this approach for COVID-19 detection, there are several areas for
future research that could further enhance its utility and application. First, expanding the dataset to include a larger and
more diverse patient population would help in validating the robustness and generalizability of the proposed model. Second,
exploring advanced ML techniques, such as deep learning models, could potentially improve classification performance even
further, especially in more complex scenarios involving multiple diseases. Third, we aim to study the reconstruction of VOCs
profiles from the mass spectra, to find correlation between specific VOC patterns and the presence of COVID-19. Moreover,
investigating the application of this framework to other respiratory conditions or infectious diseases could broaden the scope
of its applicability. Future research could also focus on real-time analysis and decision-making capabilities, integrating this
technology into telemedicine platforms to facilitate remote diagnostics. Finally, further refinement of the MS device, including
its portability and ease of use, could accelerate its adoption in clinical settings, contributing to more widespread and accessible
disease detection.
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