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A B S T R A C T

This work focuses on the layerwise finite element modelling and active aeroelastic flutter control of smart
variable stiffness laminated composite panels with surface bonded piezoelectric layers/patches under su-
personic airflow. The proposed aero-electro-elastic models make use of the First- and Third-order Shear
Deformation Theories, along with a linear through-thickness distribution of the electric potential, whereas
the effect of the supersonic airflow is described by the First-order Piston Theory. Numerical applications of
simply supported smart composite panels with either curvilinear or unidirectional fibres are provided for the
accuracy assessment of the proposed models predictive capabilities, considering various side-to-thickness ratios
and control conditions. The effect of proportional control on the aeroelastic flutter response is discussed for
both airflow along the 𝑥-axis and yawed airflow, in addition to three different placement configurations of the
piezoelectric patches.
1. Introduction

Smart materials with adaptive multifunctional capabilities are
emerging as a promising structural design technology for advanced
engineering systems. Among different types of smart materials, such
as magnetostrictive materials and shape memory alloys, piezoelectric
materials are a well-known suitable choice for active vibration control,
noise attenuation, and structural health monitoring, as the direct and
converse piezoelectric effects provide sensing and actuation capabilities
to the structure [1,2]. In the context of active vibration control,
aeroelastic vibrations and aeroelastic instabilities (e.g. subsonic wing
flutter and supersonic panel flutter) are indeed a particular case of
interest where the active control technology and smart structures have
found success in pushing forward the aeroelastic performance [3–6]
and reducing the damage of aero-structural components [7]. However,
the proper modelling of smart composite laminates with piezoelectric
sensor and actuator layers relies mostly on the accurate prediction of
the through-thickness inhomogeneity of material properties, includ-
ing the coupled electromechanical response behaviour [8,9]. Hence,
this work provides an assessment of finite element (FE) models with
Layerwise (LW) descriptions of the displacements – including both
linear and high-order kinematics through the discrete layers thickness –
aimed for active aeroelastic flutter control analysis of supersonic smart
composite panels with surface bonded piezoelectric layers/patches.
In addition, to further explore the aeroelastic response of advanced
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smart composite panels and the role of refined structural models
in the intended analyses, it is considered either conventional con-
stant stiffness composite (CSC) laminates with unidirectional fibres or
variable stiffness composite (VSC) laminates with curvilinear fibres.
Compared to unidirectional fibres counterparts, VSC laminates offer a
broader design space of fibres orientations, making them known for
their extraordinary tailor-ability in various applications, allowing for
buckling enhancement [10], improved vibration response [11], failure
resistance optimization [12] and aeroelastic stability augmentation of
both wings [13] and supersonic panels [14].

As regards to modelling piezoelectric (constant stiffness) composite
panels for active vibration control, Moita el al. [15] applied FE models
with Equivalent Single Layer (ESL) descriptions, making use of the
Classical Laminated Plate Theory (CLPT) and Reddy’s Third-order Shear
Deformation Theory (TSDT). In addition, considering active–passive vi-
bration control of smart viscoelastic sandwich panels, Moita et al. [16]
adopted a LW model using Reddy’s TSDT for the viscoelastic core and
the CLPT for the purely elastic and piezoelectric layers. To include
the effect of transverse shear deformations beyond the soft viscoelastic
core, Araújo et al. [17] considered the First-order Shear Deformation
Theory (FSDT) for both elastic composite layers and piezoelectric face
layers. Moreira et al. [18] provided an assessment of LW FSDT models
with linear and quadratic through-thickness distributions of the electric
vailable online 18 June 2024
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potential, implemented as user-elements in Abaqus, for static and free
vibration analysis of piezoelectric composite plates, including a detailed
comparison with three-dimensional (3D) exact solutions by Moleiro
et al. [19]. Further refined electro-elastic FE models have been ex-
plored making use of the Carrera Unified Formulation (CUF), allowing
the accuracy assessment of various kinematic models in a systematic
fashion, for the coupled electromechanical static and free vibration
analysis of piezoelectric composite plates and shells [20,21]. More-
over, LW mixed least-squares models for static analysis of piezoelectric
composite plates are investigated by Moleiro et al. [22], which have
been shown to be insensitive to shear locking. Concerning static, free
vibration and buckling analysis of purely elastic VSC laminates, there
are also some noteworthy works regarding the accuracy assessment
of refined LW models [23–29] (most of them derived resorting to
CUF). It is worth highlighting that in the design of curvilinear fibre
composites, it is crucial to conduct sensitivity analysis of buckling and
failure responses to manufacturing defects and fibre misalignments,
as discussed by Sánchez-Majano et al. [30] as well as by Pagani and
Sánchez-Majano [31,32] resorting to CUF framework. Furthermore,
Carrera and Zappino [33] and Zappino et al. [34] applied refined
kinematic models within CUF framework for panel flutter analysis of
supersonic pinched shells, which are used as thermal insulation panels
in launcher structures, though not including any variable stiffness
configuration. In the context of flutter analysis of supersonic composite
panels with curvilinear fibres, Akhavan and Ribeiro [35] presented a
𝑝-version element involving the Vlasov–Reddy TSDT. More recently,
Moreira et al. [29] provided a comprehensive assessment of various
ESL and LW bi-dimensional type FE models, aimed for the combined
flutter and buckling stability analysis of supersonic variable stiffness
laminated composites, exploring variable order shear deformation the-
ories (i.e. Taylor 𝑧-expansions devoid of thickness stretching) and full
agrange 𝑧-expansions with thickness stretching effects up to the third-
rder, which is further extended by Moreira et al. [36] for the case of
oft core viscoelastic sandwich panels with curvilinear fibre composite
kins.

Nonetheless, for aeroelastic flutter analysis and active control of su-
ersonic piezoelectric composite plates, the adopted structural models
n the literature tend to be more simple (typically based on ESL descrip-
ions). In addition, the Rayleigh–Ritz method is commonly assumed,
n alternative to the FE method, to achieve computationally manage-
ble dynamic systems with reduced dimensions. As a matter of fact,
he CLPT stands as the most frequently used axiomatic displacement
heory in Rayleigh–Ritz formulations for active panel flutter control
nalysis [4,5,37–41]. As a result, transverse shear deformations and
hrough-thickness distributions of displacements with zig-zag profile
annot be captured. Even so, some works regarding FE models are also
vailable, considering plate elements with ESL displacement descrip-
ions based on the CLPT [3,42], as well as plate and shell elements
ith (ESL) FSDT [7,43]. It is worth mentioning that with the exception
f the works by Guimarães et al. [40] and Moreira et al. [41], none
f the aforementioned papers focuses on the combined application
f curvilinear fibre composite laminates and piezoelectric sensors and
ctuators for aeroelastic control.

In light of the limited number of available literature on the appli-
ation of LW structural descriptions and high-order kinematic theories
or active aeroelastic control analysis, as well as on the combination
f curvilinear fibre composites and piezoelectric sensors/actuators, this
ork provides an assessment variable-order LW shear deformation
odels for flutter analysis and active aeroelastic control of supersonic

mart variable stiffness laminated composite panels. More precisely,
he proposed bi-dimensional (2D) type FE models make use of LW
isplacement descriptions involving three discrete layers, each mod-
lled with either FSDT or TSDT. The aerodynamic loading generated
y the supersonic airflow is described by the well-established First-
rder Piston Theory, as considered in most of the previously mentioned
2

iterature regarding supersonic panel flutter. Along with that, the close
loop control law is based on feedback proportional gain between the
electric potentials of the piezoelectric sensors and actuators, providing
active stiffness to the supersonic panel. To the best of the authors’
knowledge, this is the first work concerning the evaluation of refined
structural models aimed for active aeroelastic flutter control analysis
of smart composite panels, exploring piezoelectric composite laminates
with either unidirectional or curvilinear fibres, thus making progress
on the proper modelling and analysis of advanced smart compos-
ites for aerospace applications. Numerical applications are focused on
simply supported smart composite panels with either unidirectional
or curvilinear fibres, considering various side-to-thickness ratios and
control conditions. Whenever thin plates are considered, Rayleigh–Ritz
CLPT solutions are also provided in line with Moreira et al. [41].
Therefore, this research allows the accuracy assessment of not only the
LW models predictive capabilities but also the simpler and widely used
Rayleigh–Ritz formulation with CLPT in active flutter control analysis.
Moreover, the aeroelastic flutter response of smart composite panels is
investigated, discussing the effect of the proportional control law for
both airflow along the 𝑥-axis and yawed airflow, as well as for three
distinct placement configurations of the piezoelectric patches.

2. Layerwise models

The proposed LW electro-elastic models are developed considering
a multilayered composite core with surface bonded piezoelectric layers
or patches, taken as a set of three discrete layers – top (t), core (c) and
bottom (b), as illustrated in Fig. 1 – under supersonic airflow on the
upper surface with in-plane direction 𝛬 and connected to a proportional
controller. More specifically, each composite layer can be made of
variable stiffness composite with curvilinear fibres having a continu-
ous fibre angle distribution in-plane 𝜃(𝑥, 𝑦), whereas the piezoelectric
face layers are considered to be polarized in the thickness direction
(i.e. extension mode).

As previously mentioned, the multilayered structural models make
use of the FSDT and TSDT at the discrete layer level. Since the number
of discrete layers is fixed, the multilayered composite core is then mod-
elled using an ESL description. Hence, the total number of unknown
variables is not influenced by the number of actual material/physical
layers within the core.

In accordance with linear electroelasticity, the coupled constitutive
equations of an orthotropic (transversely poled) piezoelectric layer
under plane stress assumptions (𝜎𝑧𝑧 = 0) are written in the global
reference system (𝑥, 𝑦, 𝑧) as shown:
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where 𝜎𝑖𝑗 represents the stresses, 𝜀𝑖𝑖 the infinitesimal normal strains,
𝛾𝑖𝑗 = 2𝜀𝑖𝑗 the engineering shear strains, 𝐷𝑖 the electric displace-
ment and 𝐸𝑖 the electric field. The implied material coefficients are
the reduced elastic coefficients 𝑄̄𝑖𝑗 , reduced piezoelectric coefficients
̄𝑖𝑗 and reduced dielectric coefficients 𝜖𝑖𝑗 [9,44]. For purely elastic
materials, such as the fibre reinforced composites considered in this
work, the electro-elastic constitutive equations are decoupled since the

piezoelectric coefficients are null.
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Fig. 1. Illustrative representation of a smart panel with (variable stiffness) laminated composite core along with surface bonded piezoelectric layers, taken as three discrete layers,
under supersonic airflow and connected to a proportional controller 𝐺𝑝: geometry and adopted structural theories.
In compact notation, the reduced plane stress electro-elastic con-
stitutive equations of the 𝑝-physical layer within the 𝑘-sublaminate
(discrete layer) are written in the global reference system (𝑥, 𝑦, 𝑧) as
follows:

𝝈𝑘𝑝 = 𝑸̄𝑘𝑝𝜺𝑘𝑝 − 𝒆̄𝑘𝑝𝑬𝑘𝑝 (2a)

𝑫𝑘𝑝 = 𝒆̄𝑘𝑝𝑇 𝜺𝑘𝑝 + 𝝐̄𝑘𝑝𝑬𝑘𝑝 (2b)

Under the assumption of infinitesimal strains and negligible mag-
netic effects, the strain–displacements equations and field-potential
equations are given by:

𝜀𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

(3a)

𝐸𝑖 = −
𝜕𝜙
𝜕𝑥𝑖

(3b)

where (𝑢1, 𝑢2, 𝑢3) ≡ (𝑢, 𝑣,𝑤) are the displacement components in the
𝑥-, 𝑦- and 𝑧-axis, respectively, such that the displacement vector is
𝒖 = {𝑢 𝑣 𝑤}𝑇 , whereas 𝜙 is the electric potential.

The reduced elastic coefficients are obtained by
𝑸̄𝑘𝑝 = 𝑹𝑇 (𝜃𝑘𝑝)𝑸𝑘𝑝𝑹(𝜃𝑘𝑝) due to the necessary in-plane rotation between
the layer material reference system and the global one [9], where the
components of the reduced elastic coefficients in the material reference
system 𝑸𝑘𝑝 as well as the rotation matrix 𝑹(𝜃𝑘𝑝) are given explicitly
in [9]. It is worth noting that in curvilinear fibre composite layers, the
elastic coefficients in the global reference system are given as in-plane
continuous functions, i.e. 𝑸̄𝑘𝑝 = 𝑸̄𝑘𝑝(𝑥, 𝑦), in line with the fibre angle
distribution 𝜃𝑘𝑝(𝑥, 𝑦). In this work, it is considered that each composite
layer assumes a linear fibre angle distribution along the 𝑥-axis [27,41],
as shown:

𝜃𝑘𝑝(𝑥) = 𝑇 𝑘𝑝
0 +

2(𝑇 𝑘𝑝
1 − 𝑇 𝑘𝑝

0 )
𝑎

|

|

|

|

𝑥 − 𝑎
2
|

|

|

|

, 0 ≤ 𝑥 ≤ 𝑎 (4)

where 𝑇 𝑘𝑝
0 = 𝜃𝑘𝑝(𝑎∕2) and 𝑇 𝑘𝑝

1 = 𝜃𝑘𝑝(0) = 𝜃𝑘𝑝(𝑎), as illustrated in Fig. 2.

The LW displacement field is derived making use of the FSDT and
TSDT. More precisely, the FSDT and TSDT assume linear and cubic
through-thickness distributions of in-plane displacements, taking the
form of a Taylor 𝑧-expansion around the discrete layer mid-plane,
along with a constant distribution of the transverse displacement.
To be clear, thickness stretching effects are neglected since its con-
tribution to the supersonic flutter response of thin composite plates
(which are the ones of primary interest for aerospace applications) is
quite reduced [29], even when considering soft core sandwich panels
with high through-thickness inhomogeneity of material properties [36].
Moreover, although it is implied in the well-known Koiter recommenda-
tions [45] that a refinement of the transverse shear deformations would
call for a simultaneous enrichment of the transverse normal behaviour
regarding thickness stretching, it is worth noting that the models based
on shear deformation theories devoid of thickness stretching typically
3

Fig. 2. Variable stiffness composite layer with linear fibre angle distribution along the
𝑥-axis.

have fewer independent variables compared to (quasi-3D) models that
include transverse normal deformations.

Imposing the interlaminar continuity of displacements at the in-
terfaces between adjacent layers, the most general case of the dis-
placement field involving the LW TSDT can be derived as shown:

𝑢𝑐 (𝑥, 𝑦, 𝑧) =𝑢𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑥(𝑥, 𝑦) + 𝑧2𝜘𝑐
𝑥(𝑥, 𝑦) + 𝑧3𝜆𝑐𝑥(𝑥, 𝑦) (5a)

𝑣𝑐 (𝑥, 𝑦, 𝑧) =𝑣𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑦(𝑥, 𝑦) + 𝑧2𝜘𝑐
𝑦 (𝑥, 𝑦) + 𝑧3𝜆𝑐𝑦(𝑥, 𝑦) (5b)

𝑢𝑡(𝑥, 𝑦, 𝑧) =𝛼1𝑢𝑐0(𝑥, 𝑦) + 𝛼2𝜃
𝑐
𝑥(𝑥, 𝑦) + 𝛼3𝜘𝑐

𝑥(𝑥, 𝑦) + 𝛼4𝜆
𝑐
𝑥(𝑥, 𝑦)+

(

𝛼5 + (𝑧 − 𝑧𝑡0)
)

𝜃𝑡𝑥(𝑥, 𝑦) +
(

𝛼6 + (𝑧 − 𝑧𝑡0)
2)𝜘𝑡

𝑥(𝑥, 𝑦)+
(

𝛼7 + (𝑧 − 𝑧𝑡0)
3) 𝜆𝑡𝑥(𝑥, 𝑦) (5c)

𝑣𝑡(𝑥, 𝑦, 𝑧) =𝛼1𝑣𝑐0(𝑥, 𝑦) + 𝛼2𝜃
𝑐
𝑦(𝑥, 𝑦) + 𝛼3𝜘𝑐

𝑦 (𝑥, 𝑦) + 𝛼4𝜆
𝑐
𝑦(𝑥, 𝑦)+

(

𝛼5 + (𝑧 − 𝑧𝑡0)
)

𝜃𝑡𝑦(𝑥, 𝑦) +
(

𝛼6 + (𝑧 − 𝑧𝑡0)
2)𝜘𝑡

𝑦(𝑥, 𝑦)+
(

𝛼7 + (𝑧 − 𝑧𝑡0)
3) 𝜆𝑡𝑦(𝑥, 𝑦) (5d)

𝑢𝑏(𝑥, 𝑦, 𝑧) =𝛽1𝑢𝑐0(𝑥, 𝑦) + 𝛽2𝜃
𝑐
𝑥(𝑥, 𝑦) + 𝛽3𝜘𝑐

𝑥(𝑥, 𝑦) + 𝛽4𝜆
𝑐
𝑥(𝑥, 𝑦)+

(

𝛽5 + (𝑧 − 𝑧𝑏0)
)

𝜃𝑏𝑥(𝑥, 𝑦) +
(

𝛽6 + (𝑧 − 𝑧𝑏0)
2)𝜘𝑏

𝑥(𝑥, 𝑦)+
(

𝛽7 + (𝑧 − 𝑧𝑏0)
3) 𝜆𝑏𝑥(𝑥, 𝑦) (5e)

𝑣𝑏(𝑥, 𝑦, 𝑧) =𝛽1𝑣𝑐0(𝑥, 𝑦) + 𝛽2𝜃
𝑐
𝑦(𝑥, 𝑦) + 𝛽3𝜘𝑐

𝑦 (𝑥, 𝑦) + 𝛽4𝜆
𝑐
𝑦(𝑥, 𝑦)+

(

𝛽5 + (𝑧 − 𝑧𝑏0)
)

𝜃𝑏𝑦(𝑥, 𝑦) +
(

𝛽6 + (𝑧 − 𝑧𝑏0)
2)𝜘𝑏

𝑦 (𝑥, 𝑦)+
(

𝛽7 + (𝑧 − 𝑧𝑏0)
3) 𝜆𝑏𝑦(𝑥, 𝑦) (5f)

𝑤𝑐 (𝑥, 𝑦, 𝑧) =𝑤𝑡(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (5g)

where 𝑢𝑘, 𝑣𝑘 and 𝑤𝑘 are the displacements of the 𝑘-discrete layer, with
𝑘 = {𝑡, 𝑐, 𝑏}. In addition, the subscript 0 in the displacements identifies
the mid-plane location, 𝜃𝑘𝑥 and 𝜃𝑘𝑦 stands the rotations of the normals

𝑘 𝑘 𝑘
to the mid-plane about the 𝑦- and 𝑥-axes, respectively, 𝜘𝑥 , 𝜘𝑦 , 𝜆𝑥 and
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𝜆𝑘𝑦 are the higher-order generalized displacements of each 𝑘-discrete
layer. The mid-plane transverse coordinates are 𝑧𝑡0 = (ℎ𝑡 + ℎ𝑐 )∕2 and
𝑧𝑏0 = −(ℎ𝑏 + ℎ𝑐 )∕2. Moreover, the variables 𝛼𝑛 and 𝛽𝑛 are derived from
the interlaminar continuity conditions as follows:

𝛼1 = 1, 𝛼2 = ℎ𝑐∕2, 𝛼3 = 𝛼22 , 𝛼4 = 𝛼32 , 𝛼5 = ℎ𝑡∕2, 𝛼6 = −𝛼25 , 𝛼7 = 𝛼35 (6a)
𝛽1 = 1, 𝛽2 = −ℎ𝑐∕2, 𝛽3 = 𝛽22 , 𝛽4 = −𝛽32 , 𝛽5 = −ℎ𝑏∕2, 𝛽6 = −𝛽25 , 𝛽7 = 𝛽35

(6b)

Since the FSDT can be derived as a particular case of the TSDT, the
LW TSDT displacement field presented in Eq. (5) includes implicitly
other simpler kinematic descriptions, which can be recovered when
neglecting some specific terms. On one hand, the LW model making
use of the FSDT for the top and bottom discrete layers and the TSDT
for the core (denoted as LW F/T/F) is obtained by neglecting the
high-order terms associated to 𝑘 = 𝑡 and 𝑏 in Eqs. (5c) to (5f). On
the other hand, the piecewise FSDT model is recovered by neglecting
all high-order generalized displacements. Specifically, the twenty one
degrees of freedom (DOFs) associated to the LW TSDT model are 𝒅 =
{𝑢𝑐0 𝑣𝑐0 𝑤𝑐

0 𝜃𝑐𝑥 𝜃𝑐𝑦 𝜘𝑐
𝑥 𝜘𝑐

𝑦 𝜆𝑐𝑥 𝜆𝑐𝑦 𝜃𝑡𝑥 𝜃𝑡𝑦 𝜘𝑡
𝑥 𝜘𝑡

𝑦 𝜆𝑡𝑥 𝜆𝑡𝑦 𝜃𝑏𝑥 𝜃𝑏𝑦 𝜘𝑏
𝑥 𝜘𝑏

𝑦 𝜆𝑏𝑥 𝜆𝑏𝑦}
𝑇 ,

whereas for the LW F/T/F model, only thirteen DOFs remain since the
high-order terms of the top and bottom layers are neglected. For the
LW FSDT model, no high-order generalized displacement is included
and therefore only nine DOFs remain.

In view of the constant through-thickness distribution of shear
strains predicted by the FSDT, a shear correction factor 𝐾𝑠 is commonly
applied for the evaluation of transverse shear stresses in first-order
models [9]. This is avoided altogether by the more refined TSDT. In
the present work, no shear corrections factor is introduced in the LW
FSDT and LW F/T/F models, i.e. 𝐾𝑠 = 1, as followed by Moreira
et al. [18,27,29].

Assuming that the electric potential has a linear through-thickness
distribution [18,41] such that it is applied to piezoelectric layers resort-
ing to surface electrodes, the in-plane electric field components are null
(𝐸𝑥 = 𝐸𝑦 = 0) and the constant transverse electric field can be written
as shown:

𝐸𝑘
𝑧 = −

𝛥𝜙𝑘

ℎ𝑘
(7)

where 𝛥𝜙𝑘 represents the electric potential difference between the
upper and lower surfaces of the piezoelectric layer (noting that 𝛥𝜙𝑘 = 0
or purely elastic layers).

. FE formulation

The Principle of Hamilton is applied to derive the dynamic electro-
lastic equilibrium equations of the piezoelectric composite panel under
upersonic airflow on its upper surface (𝑧 = ℎ∕2), assuming that the
esulting aerodynamic pressure 𝛥𝑝 is described by the First-order Piston
heory. Hence, considering the piezoelectric composite panel taken as
discrete layers with in-plane surface  and thickness domain ℎ𝑘, the

variational formulation comes out as shown:
∑

𝑘
∫ ∫ℎ𝑘

𝛿𝜺𝑘𝑇 𝝈𝑘 − 𝛿𝑬𝑘𝑇 𝑫𝑘 + 𝜌𝑘𝛿𝒖𝑘𝑇 𝒖̈𝑘 𝑑𝑧𝑑

= ∫
𝛿𝒖𝑡𝑇 | ℎ

2
𝒆𝑧𝛥𝑝 𝑑 + ∫𝑓

𝛿𝒖𝑘𝑇 |𝑧𝑓 𝒇 𝑑 (8)

where 𝛿 stands for the variational operator, the double-dot denotes the
second time derivative, 𝜌𝑘 is the 𝑘-layer density and 𝒆𝑧 = {0 0 1}𝑇 .
In addition to the aerodynamic loading, an external mechanical load
𝒇 = {𝑞𝑥 𝑞𝑦 𝑞𝑧}𝑇 is also considered to be applied on the surface 𝑓
located at the transverse coordinate 𝑧𝑓 .

The aerodynamic loading is described using the well-known First-
order Piston Theory, which is a simple and widely used aerodynamic
model in the context of supersonic panel flutter, providing accurate
results in the high supersonic range [33,46,47]. In agreement with
the First-order Piston Theory, the transverse loading resulting from the
4

pressure difference generated by the supersonic airflow with yaw angle
𝛬 is given by:

𝛥𝑝 = −𝜆
(

𝜕𝑤
𝜕𝑥

cos𝛬 + 𝜕𝑤
𝜕𝑦

sin𝛬
)

− 𝑔𝑎
𝜕𝑤
𝜕𝑡

(9)

such that the dynamic pressure parameter 𝜆 and aerodynamic damping
𝑔𝑎 are written as:

𝜆 =
𝜌∞𝑈2

∞
𝛽

(10a)

𝑔𝑎 =
𝜆
𝑈∞

(𝑀2
∞ − 2)

(𝑀2
∞ − 1)

(10b)

here 𝜌∞, 𝑈∞ and 𝑀∞ denote the density, speed and Mach number
f the free airflow and 𝛽 =

√

𝑀2
∞ − 1. For 𝑀∞ ≫ 1, it is com-

monly assumed that 𝜇[(𝑀2
∞ − 2)∕(𝑀2

∞ − 1)]2∕𝛽 ≈ 𝜇∕𝑀∞ [5,48], where
𝜇 = 𝜌∞𝑎∕(𝜌ℎ) denotes the mass ratio, and therefore the aerodynamic
damping can be approximated by:

𝑔𝑎 =
√

𝜌ℎ
𝑎

√

𝜆
𝜇

𝑀∞
(11)

In engineering practice, the ratio 𝜇∕𝑀∞ typically ranges between
0.01 and 0.1 for aerospace structures [46–48]. Actually, the aerody-
namic damping has a stabilizing effect in the occurrence of flutter and
leads to slightly higher flutter bounds, as carefully demonstrated in the
numerical applications. Hence, more conservative flutter analyses can
be ensured, from a design standpoint, by imposing 𝑔𝑎 = 0 in Eq. (9), as
also followed in [14,41], which corresponds to assuming 𝜇∕𝑀∞ = 0 in
Eq. (11).

As regards to the FE approximation, it is presented making use of
a general notation in matrix form, where the dimensions and compo-
nents of the matrices are dependent on the adopted kinematic theory.
Hence, for an arbitrary 𝑘-discrete layer, the 1D 𝑧-expansions and 2D FE
approximations of 𝒖𝑘 and 𝜺𝑘 are defined as follows:

𝒖𝑘 = 𝒁𝑘𝑵𝑘𝒅 (12a)

𝜺𝑘 = 𝑺𝑘𝑩𝑘𝒅 (12b)

where 𝒁𝑘 and 𝑺𝑘 contain the 𝑧-expansion functions and their deriva-
tives through the discrete layer thickness, while 𝑵𝑘 and 𝑩𝑘 define
the necessary FE approximations in-plane using 2D shape functions.
The adopted 2D shape functions are quadratic Lagrange functions,
corresponding to the standard nine-node quadrilateral element [9]
(Q9), such that the element DOFs are structured as 𝒅 = {𝒅𝑇

1 ... 𝒅𝑇
9 }

𝑇 ,
where 𝒅𝑖 stands for the nodal DOFs. The C0-interpolation in-plane,
required by the adopted structural FE models, is then fulfilled by the
2D Lagrange polynomials, thus ensuring the interelement continuity of
primary variables (as in a conforming element).

When considering multiple piezoelectric patches, the electric po-
tential vector for 𝑘 = {𝑡, 𝑏} is written as 𝝋𝑘 =

{

𝛥𝜙𝑘1 ... 𝛥𝜙𝑘𝑁𝑃𝑃 }𝑇 ,
where 𝑁𝑃𝑃 stands for the number of piezoelectric patches in each side
of the panel. Since the piezoelectric layers are covered with surface
electrodes, which means equipotential conditions in-plane, the total
number of electrical DOFs is 2×𝑁𝑃𝑃 . In line with Eq. (7), the electric
field vector is defined as shown:

𝑬𝑘 = −𝑺𝑘
𝜙𝑩

𝑘
𝜙𝝋

𝑘 (13)

such that the matrices 𝑺𝑘
𝜙 and 𝑩𝑘

𝜙 are given by:

𝑺𝑘
𝜙 =

[(

𝒆𝑧
)

1 ...
(

𝒆𝑧
)

𝑁𝑃𝑃
]

(14a)

𝑩𝑘
𝜙 =

(

1∕ℎ𝑘
)

 (14b)

where  represents the identity tensor with dimension 𝑁𝑃𝑃 × 𝑁𝑃𝑃 .
Note that for each side of the panel, the patches have the same thickness
– either ℎ𝑡 or ℎ𝑏, depending on the side of the panel – and are
assumed to be equally distributed in the upper and lower surfaces of
the composite core.
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Introducing the approximations given in Eqs. (12) and (13), the
constitutive relations in Eqs. (2) as well as the aerodynamic pres-
sure distribution in Eq. (9), all together, into Eq. (8), gives rise to
the element equilibrium equations. The aero-electro-elastic equilibrium
equations of the element can then be written separating the electrical
DOFs of the top and bottom layers as follows:

𝑴𝑢𝑢𝒅̈ + 𝑔𝑎𝑪𝛥𝑝𝒅̇ + (𝑲𝑢𝑢 + 𝜆𝑲𝛥𝑝)𝒅 +𝑲 𝑡
𝑢𝜙𝝋

𝑡 +𝑲𝑏
𝑢𝜙𝝋

𝑏 = 𝑭 𝑢 (15a)
𝑡𝑇
𝑢𝜙𝒅 +𝑲 𝑡

𝜙𝜙𝝋
𝑡 = 𝟎 (15b)

𝑏𝑇
𝑢𝜙𝒅 +𝑲𝑏

𝜙𝜙𝝋
𝑏 = 𝟎 (15c)

here 𝑴𝑢𝑢, 𝑔𝑎𝑪𝛥𝑝, 𝑲𝑢𝑢, 𝜆𝑲𝛥𝑝, 𝑲𝑘
𝑢𝜙 and 𝑲𝑘

𝜙𝜙 are the mass, aerodynamic
amping, purely elastic stiffness, aerodynamic stiffness, electromechan-
cal coupling stiffness and dielectric stiffness matrices of the element,
espectively, while 𝑭 𝑢 is the element mechanical load vector.

As derived from the variational formulation and taking into account
hat, in the most general case, each 𝑘-discrete layer can represent a
ublaminate with 𝑁𝑘

𝑝 physical layers, the implied element matrices
ome out as shown:

𝑢𝑢 =
∑

𝑘=𝑡,𝑐,𝑏

𝑁𝑘
𝑝

∑

𝑝=1
∫𝛺

𝑵𝑘𝑇
(

∫ℎ𝑘𝑝
𝜌𝑘𝑝𝒁𝑘𝑇 𝒁𝑘𝑑𝑧

)

𝑵𝑘𝑑𝛺 (16a)

𝑢𝑢 =
∑

𝑘=𝑡,𝑐,𝑏

𝑁𝑘
𝑝

∑

𝑝=1
∫𝛺

𝑩𝑘𝑇
(

∫ℎ𝑘𝑝
𝑺𝑘𝑇 𝑸̄𝑘𝑝𝑺𝑘𝑑𝑧

)

𝑩𝑘𝑑𝛺 (16b)

𝑘
𝑢𝜙 =

𝑁𝑘
𝑝

∑

𝑝=1
∫𝛺

𝑩𝑘𝑇
(

∫ℎ𝑘𝑝
𝑺𝑘𝑇 𝒆̄𝑘𝑝𝑺𝑘

𝜙𝑑𝑧
)

𝑩𝑘
𝜙𝑑𝛺 (16c)

𝑘
𝜙𝜙 =

𝑁𝑘
𝑝

∑

𝑝=1
∫𝛺

𝑩𝑘𝑇
𝜙

(

∫ℎ𝑘𝑝
𝑺𝑘𝑇
𝜙 𝝐̄𝑘𝑝𝑺𝑘

𝜙𝑑𝑧
)

𝑩𝑘
𝜙𝑑𝛺 (16d)

𝛥𝑝 = ∫𝛺
𝑵 𝑡𝑇 𝒁 𝑡𝑇

| ℎ
2
𝒆𝑧𝒆𝑇𝑧 𝒁

𝑡
| ℎ
2
𝑵 𝑡𝑑𝛺 (16e)

𝛥𝑝 = ∫𝛺
𝑵 𝑡𝑇 𝒁 𝑡𝑇

| ℎ
2
𝒆𝑧𝒆𝑇𝑧 𝒁

𝑡
| ℎ
2

(

𝜕𝑵 𝑡

𝜕𝑥
cos𝛬 + 𝜕𝑵 𝑡

𝜕𝑦
sin𝛬

)

𝑑𝛺 (16f)

𝑭 𝑢 =
∑

𝑘=𝑡,𝑐,𝑏
∫𝛺

𝑵𝑘𝑇 𝒁𝑘𝑇
|𝑧𝑓

𝒇𝑘𝑑𝛺 (16g)

It is worth remarking that the 1D integrals in each thickness domain
𝑘𝑝 are evaluated using exact integration, whereas the integration in
he in-plane FE domain 𝛺 is performed numerically, making use of
auss quadrature, considering reduced integration for the shear terms
f the stiffness purely elastic matrix (Eq. (16b)) to avoid shear locking
ffects [9]. Additionally, when considering variable stiffness composite
ayers with curvilinear fibres, the fibre angle is evaluated at the location
f each integration point to ensure the most accurate prediction of the
lastic coefficients.

. Aeroelastic equilibrium equations with active control

As illustrated in Fig. 1, the top piezoelectric layer is taken as the
ctuator layer (𝑎), whereas the bottom layer is the sensor layer (𝑠). In
iew of the adopted nomenclature in Eq. (15), it is thus equivalent to
onsider 𝑎 ≡ 𝑡 and 𝑠 ≡ 𝑏. Therefore, after the standard FE assemblage
nd imposition of boundary conditions, one obtains the global system
f equilibrium equations as shown:

⎡

⎢

⎢

⎢

⎣

𝑴𝑢𝑢 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜟̈

𝝋̈𝑠

𝝋̈𝑎

⎫

⎪

⎬

⎪

⎭

+

⎡

⎢

⎢

⎢

⎣

𝑔𝑎𝑪𝛥𝑝 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜟̇

𝝋̇𝑠

𝝋̇𝑎

⎫

⎪

⎬

⎪

⎭

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑲𝑢𝑢 + 𝜆𝑲𝛥𝑝 𝑲𝑠
𝑢𝜙 𝑲𝑎

𝑢𝜙

𝑲𝑠𝑇
𝑢𝜙 𝑲𝑠

𝜙𝜙 𝟎

𝑲𝑎𝑇
𝑢𝜙 𝟎 𝑲𝑎

𝜙𝜙

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜟

𝝋𝑠

𝝋𝑎

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑭 𝑢

𝟎
𝟎

⎫

⎪

⎬

⎪

⎭

(17)
5

here 𝜟, 𝜟̇ and 𝜟̈ are the mechanical DOFs and corresponding time
erivatives.

From the equation associated to the electrical DOFs of the sensors,
he generated electric potential is obtained by:
𝑠 = −𝑲𝑠−1

𝜙𝜙 𝑲
𝑠𝑇
𝑢𝜙𝜟 (18)

Assuming now that the piezoelectric layers are connected to a
proportional controller, with feedback control gain 𝐺𝑝, the electric
potential of the actuators is governed by the following control law:

𝝋𝑎 = 𝐺𝑝𝝋𝑠 = −𝐺𝑝𝑲𝑠−1
𝜙𝜙 𝑲

𝑠𝑇
𝑢𝜙𝜟 (19)

Introducing Eqs. (18) and (19) into the equation associated with the
mechanical DOFs in Eq. (17), the final aeroelastic equilibrium is written
as follows:

𝑴𝑢𝑢𝜟̈ + 𝑔𝑎𝑪𝛥𝑝𝜟̇ + (𝑲∗ + 𝜆𝑲𝛥𝑝)𝜟 = 𝑭 𝑢(𝑡) (20)

where the condensed stiffness matrix 𝑲∗ comes out as shown:

𝑲∗ = 𝑲𝑢𝑢 − (𝐺𝑝𝑲𝑎
𝑢𝜙 +𝑲𝑠

𝑢𝜙)𝑲
𝑠−1
𝜙𝜙 𝑲

𝑠𝑇
𝑢𝜙 (21)

In the absence of applied mechanical loads and assuming harmonic
solutions in the form of 𝜟 = 𝜟̂𝑒𝑠𝑛𝑡, the characteristic equation of the
global (quadractic) eigenvalue problem can be written as follows:
|

|

|

𝑠2𝑛𝑴𝑢𝑢 + 𝑠𝑛𝑔𝑎𝑪𝛥𝑝 +𝑲∗ + 𝜆𝑲𝛥𝑝
|

|

|

= 0 (22)

where the complex eigenvalue of the 𝑛-mode is represented by 𝑠2𝑛 =
−𝜔2

𝑛(1 + 𝑖𝑔𝑛), with 𝑖 =
√

−1. Hence, for a given flow condition defined
through the dynamic pressure parameter 𝜆, which also defines the
aerodynamic damping parameter 𝑔𝑎 through Eq. (11), the solution of
the eigenvalue problem yields the natural frequencies (𝜔𝑛) and modal
loss factors (𝑔𝑛). The particular case of free vibration in vacuum is
obtained by setting 𝜆 = 0 and 𝑔𝑎 = 0 in Eq. (22). In addition, for Short
Circuit (SC) conditions of the surface electrodes (𝝋𝑠 = 𝝋𝑎 = 0), one
has 𝑲∗ = 𝑲𝑢𝑢. In this work, the SC conditions will be representative of
an uncontrolled system, whereas for any non zero control gain 𝐺𝑝, the
active control system is considered to be operational.

In aeroelastic flutter analysis, the aim is to determine the lowest
dynamic pressure parameter, known as critical flutter pressure param-
eter 𝜆𝐹 , for which the system becomes dynamically unstable, i.e. with
at least one negative modal loss factor (𝑔𝑛 < 0). In the absence of
aerodynamic and structural damping, the flutter bound is also char-
acterized by the appearance of modes with complex conjugated pairs
of eigenvalues, which leads to the coalescence of natural frequencies of
the modes involved in flutter. Moreover, when neglecting the aerody-
namic damping in Eq. (22), the characteristic equation of the (linear)
eigenvalue problem takes the standard form, as shown:
|

|

|

𝑠2𝑛𝑴𝑢𝑢 +𝑲∗ + 𝜆𝑲𝛥𝑝
|

|

|

= 0 (23)

For any initial perturbation (e.g. an applied transverse load or
displacement), the aeroelastic response can also be obtained in the time
domain, making use of the well-known Newmark method, for instance,
to solve Eq. (20). In fact, the Newmark method will be applied later
on to obtain the time response of supersonic smart panels which are
initially subjected to an applied (single-peak) bi-sinusoidal transverse
load in the form of 𝑞𝑧(𝑥, 𝑦) = 𝑞0 sin(𝜋𝑥∕𝑎) sin(𝜋𝑦∕𝑏).

5. Numerical applications

The proposed LW models predictive capabilities are now assessed
and compared through selected numerical applications, which are di-
vided into three parts. Section 5.1 is focused on the convergence
analysis of both free vibration and supersonic flutter solutions, and
includes a preliminary evaluation of the impact of the proportional
control gain and aerodynamic damping on the aeroelastic response.
Section 5.2. is dedicated to the aeroelastic flutter analysis of simply

supported smart panels with laminated composite core, using either
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Fig. 3. Different placement configurations of the piezoelectric patches in the smart composite panels (𝑧 = ±ℎ∕2 and 10 × 10 Q9).
nidirectional or curvilinear fibres, and surface bonded piezoelectric
ayers. In addition to thin panels, which are of primary interest for
ost aerospace applications, moderately thick panels are also inves-

igated to trigger more complicated effects that may occur, relying
ostly on high-order kinematic refinements to be properly captured.
he aeroelastic response behaviour of supersonic smart panels with
ctive proportional control is demonstrated and discussed, regarding
he influence of some design parameters, such as the control gain and
he airflow direction. Section 5.3. is concerned with the comparison
f three distinct placement configurations of piezoelectric sensors and
ctuators on the aeroelastic flutter stability of thin panels.

For numerical applications purposes, the intended multilayered pan-
ls are square plates with fixed in-plane dimensions 𝑎 = 𝑏 = 1 m
nd a total thickness ℎ varied to consider different side-to-thickness
atios, namely, 𝑎∕ℎ = 250, 100, 50 and 25, i.e. from thin to moderately
hick plates, respectively. The assumed core thickness ratio is ℎ𝑐∕ℎ =
0.9, leaving each piezoelectric layer with 0.05ℎ of thickness. In fact,
the laminated core consists of three equal thickness composite layers,
according to the following stacking sequences:

• Smart CSC cross-ply laminate: (PZT-4/0/90/0/PZT-4);
• Smart VSC1 laminate: (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4);
• Smart VSC2 laminate: (PZT-4/⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩/PZT-4).

where ⟨𝑇 𝑘𝑝
0 , 𝑇 𝑘𝑝

1 ⟩ stands for the pair of control angles defined in the
linear fibre angle variation given in Eq. (4). The stacking sequences of
the composite core are based on previous works by the authors [27,41],
thus extending the available benchmark solutions concerning static,
free vibration and flutter behaviour to the case of active aeroelastic
control.

The material properties of the piezoelectric layers, as a transversely
sotropic and thickness poled PZT-4, are 𝐸1 = 𝐸2 = 81.3 GPa, 𝐸3 =
4.5 GPa, 𝐺12 = 30.6 GPa, 𝐺13 = 𝐺23 = 25.6 GPa, 𝜈12 = 0.329,
13 = 𝜈23 = 0.432, 𝑒31 = 𝑒32 = −5.20 C/m2, 𝑒33 = 15.08 C/m2, 𝑒15 =
24 = 12.72 C/m2, 𝜖11 = 𝜖22 = 1475𝜖0, 𝜖33 = 1300𝜖0 (𝜖0 = 8.85 × 10−12

/m) and 𝜌 = 7500 kg/m3, whereas the material properties of the core
ayers, as an (orthotropic) graphite-epoxy fibre reinforced composite,
re 𝐸1 = 25𝐸0, 𝐸2 = 𝐸3 = 𝐸0, 𝐺12 = 𝐺13 = 0.5𝐸0, 𝐺23 = 0.2𝐸0,
12 = 𝜈13 = 𝜈23 = 0.25 and 𝜌 = 1600 kg/m3, where 𝐸0 = 7 GPa.

Regarding the placement configurations of the piezoelectric sensors
nd actuators, three distinct cases are examined, which are denoted as
ase A, B and C, in agreement with Fig. 3. Specifically, in Case A, a fully
overed panel is investigated, whereas in Cases B and C it is considered
ix strips of patches (three strips on each side of the panel), with each
atch strip of in-plane dimensions 0.8𝑎×0.2𝑏 and 0.2𝑎×0.8𝑏, respectively.
s illustrated in Fig. 3, in Case B, the patch strips are aligned along the
-axis, while in Case C, the patch strips are aligned along the 𝑦-axis.

For most numerical applications, the airflow is considered along the
-axis (i.e., yaw angle 𝛬 = 0◦). However, for comparison purposes, the
nvestigation of yawed airflow with 𝛬 = 45◦ is also carried out in the
ase of thin plates fully covered by piezoelectric layers (Case A), with
∕ℎ = 250. The flutter dynamic pressure parameters 𝜆𝐹 are given in the
ollowing nondimensionalized form:

̃𝐹 =
𝜆𝐹 𝑎3

ℎ3𝐺𝑐
12

(24)

where 𝐺𝑐
6

12 stands for the shear modulus 𝐺12 of the composite material.
To be clear, the simply supported boundary conditions imposed, at
the layer level, are as follows:

𝑢𝑘 = 𝑤𝑘 = 0 at 𝑦 = 0, 𝑏 (25a)

𝑣𝑘 = 𝑤𝑘 = 0 at 𝑥 = 0, 𝑎 (25b)

Additionally, the intended assessment of LW models in aeroelastic
flutter analysis of thin smart composite panels fully covered by piezo-
electric layers (Case A, Fig. 3) is performed by a comparison with
Rayleigh–Ritz solutions, as developed by Moreira et al. [41]. In more
detail, the Rayleigh–Ritz formulation adopted in [41] is based on an
ESL structural model involving the CLPT and, therefore, transverse
shear deformations are neglected (as opposed to the proposed LW FE
models which include discrete layer shear deformation effects). The
Rayleigh–Ritz CLPT solutions (denoted by RR CLPT) are provided in the
interest of the present work, thus made available for the first-time. It is
worth remarking that for the smart cross-ply composite laminate, the
Rayleigh–Ritz approximation is defined resorting to trigonometric ex-
pansion functions, whereas for the smart VSC laminates, it is considered
Legendre polynomials as expansion functions. In fact, the application
of trigonometric expansions for the analysis of highly anisotropic lami-
nates involving bending–twisting coupling, such as any composite with
curvilinear fibres, leads to an overestimation of the bending stiffness, as
shown in [29,41]. On the other hand, Legendre polynomials have been
proven accurate for the modelling of composite laminates with curvi-
linear fibres [40,49]. Since only bending deformations are retained in
the formulation adopted in Moreira et al. [41], along with sinusoidal
expansion functions, further insights are given in Appendix with respect
to the RR CLPT model including membrane deformations as well as
in-plane expansions making use of Legendre polynomials.

5.1. Convergence analysis

In Table 1, the convergence analysis results of the LW FSDT model
are provided, considering both free vibration in vacuum and flutter
analysis of the smart VSC1 laminate with 𝑎∕ℎ = 250 under airflow
aligned with the 𝑥-axis, i.e. 𝛬 = 0◦. In particular, the first eight natural
frequencies are considered in free vibration analysis, whereas in flutter
analysis it is presented the nondimensionalized flutter dynamic pres-
sure parameter 𝜆̃𝐹 and the corresponding flutter frequency 𝑓𝐹 (which
is defined as the value for which the natural frequencies of the modes
involved in flutter coalesce at the flutter bound). The FE solutions are
provided alongside RR CLPT solutions, considering either only bending
deformations or both membrane and bending deformations. The RR
CLPT solutions are obtained with ten terms in each in-plane direction,
making use of Legendre polynomials as expansion functions (thus
ensuring converged solutions). Moreover, the aerodynamic damping is
neglected in the flutter solutions presented in Table 1.

Comparing the numerical results presented in Table 1, it is con-
cluded that the first eight natural frequencies and the flutter parameters
start to converge for meshes with more than 10 × 10 Q9 elements,
regardless of the applied control gain. The present RR CLPT solutions
with both bending and membrane deformations involve a total of 300
mechanical DOFs, whereas the LW FSDT, LW F/T/F and LW TSDT
models with 10 × 10 Q9 elements lead to 3969, 5733 and 9261 me-
chanical DOFs, respectively. Hence, the computation of the eigenvalues
is three to five times faster when considering the RR model, especially
as compared to the most refined model (LW TSDT). Nonetheless, each
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Table 1
Convergence analysis results of the LW FSDT model: first eight natural frequencies 𝑓𝑛 (Hz), nondimensionalized flutter pressure parameter
𝜆̃𝐹 and flutter frequency 𝑓𝐹 (Hz) of the (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4) smart VSC1 laminated panel (𝑎∕ℎ = 250, 𝛬 = 0◦) under short
circuit (SC) conditions or active proportional control 𝐺𝑝.

Mesh 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝜆̃𝐹 𝑓𝐹
SC 6 × 6 21.24 42.14 59.51 75.60 82.85 114.30 124.26 130.52 996.2 45.42

8 × 8 21.23 42.08 59.39 75.24 82.52 113.59 123.26 128.15 996.7 45.47
10 × 10 21.22 42.06 59.35 75.14 82.42 113.38 122.96 127.45 996.8 45.48
12 × 12 21.22 42.05 59.33 75.10 82.38 113.30 122.85 127.20 996.8 45.48
RR CLPTa 21.23 42.08 59.40 75.18 82.50 113.52 123.10 127.26 998.4 45.50
RR CLPT 21.23 42.08 59.40 75.18 82.50 113.52 123.10 127.26 998.4 45.50

𝐺𝑝 = 5 6 × 6 20.44 42.14 59.51 75.17 82.73 114.30 123.79 130.52 1052.2 46.39
8 × 8 20.43 42.08 59.39 74.81 82.41 113.59 122.81 128.15 1053.5 46.46
10 × 10 20.42 42.06 59.35 74.71 82.31 113.38 122.52 127.45 1053.8 46.48
12 × 12 20.41 42.05 59.33 74.67 82.26 113.30 122.41 127.20 1053.9 46.49
RR CLPTa 20.33 42.08 59.40 74.70 82.38 113.52 122.61 127.26 1062.4 46.63
RR CLPT 20.42 42.08 59.40 74.75 82.39 113.52 122.66 127.26 1055.6 46.50

𝐺𝑝 = 20 6 × 6 17.29 42.14 59.51 73.60 82.39 114.30 122.32 130.52 1350.0 53.13
8 × 8 17.27 42.08 59.39 73.25 82.10 113.59 121.38 128.15 1359.7 53.51
10 × 10 17.25 42.06 59.35 73.15 82.00 113.38 121.10 127.45 1362.5 53.61
12 × 12 17.24 42.05 59.33 73.12 81.96 113.30 120.99 127.20 1363.5 53.65
RR CLPTa 14.83 42.08 59.40 72.21 81.95 113.52 120.44 127.26 1410.0 67.16
RR CLPT 17.24 42.08 59.40 73.19 82.09 113.52 121.23 127.26 1365.8 53.67

a Only bending deformations retained.
eigenvalue solution is obtained within a maximum of just a couple of
seconds using the Matlab environment on a computer with an Apple
M2 Pro chip, 32 GB of memory, and macOS 13.2.1 (22D68). In fact,
the main advantage of the RR CLPT model lies in its low computational
cost, making it particularly useful for preliminary analysis and design.
Moreover, the use of 10 × 10 Q9 elements does not increase signifi-
antly the computational time as compared to the more coarse meshes
ith 8 × 8 or 6 × 6 Q9 elements (between 15% to 30%, depending
n the LW model). As a result, the mesh with 10 × 10 Q9 elements
s applied for the following flutter analyses, ensuring the necessary
umerical accuracy, while maintaining fast and computationally effi-
ient flutter predictions. Even though not shown, for brevity, it is worth
entioning that: (i) a similar convergence behaviour is obtained when

onsidering the remaining kinematic models; and (ii) the convergence
f the mode shapes is also ensured, as necessary, considering either
ree vibrations in vacuum or under the effect of supersonic airflow. By
dopting the same FE mesh for all LW models, the accuracy assessment
s focused on the refinements introduced in the 𝑧-expansions of the
n-plane displacements, as intended by this work.

It is also relevant to mention that both RR CLPT (including mem-
rane deformations) and LW FSDT (FE) solutions estimate the occur-
ence of flutter due to the first two modes for either SC conditions or
ctive control conditions. Comparing the RR CLPT and FE solutions,
t is observed that the free vibration and flutter results are in good
greement for SC conditions and active control with 𝐺𝑝 = 5. However,
or the higher gain, 𝐺𝑝 = 20, the RR CLPT model devoid of membrane
eformations underpredicts the fundamental frequency by 16% and
verpredicts the flutter pressure parameter and flutter frequency by 4%
nd 25%, respectively (since it is estimated that in the absence of mem-
rane deformations, flutter occurs due to high-order modes, namely the
hird and fourth modes). Nonetheless, the RR CLPT solutions with both
embrane and bending deformations are in line with the FE solutions,

egardless of the applied control gain (maximum discrepancy of 0.2%
egarding the flutter pressure parameter, which occurs for 𝐺𝑝 = 20).

In more detail, when considering SC conditions, the inclusion of the
membrane deformations in the RR CLPT model does not affect the free
vibration and flutter solutions. In contrast, as the control gain increases,
the membrane deformations and membrane stress resultants induced
by the applied electric potential play a more pronounced role in the
mechanical response behaviour. Even though the comparison of RR
CLPT and FE solutions is further discussed in the following subsection,
it is relevant to emphasize, at this point, that the membrane deforma-
tions are indeed mandatory to ensure accurate free vibration and flutter
7

Table 2
Nondimensionalized flutter dynamic pressure parameters 𝜆̃𝐹 and flutter frequencies
𝑓𝐹 (Hz) of the (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4) smart VSC1 laminated panel
(𝑎∕ℎ = 250, 𝛬 = 0◦), including aerodynamic damping (results obtained using the LW
FSDT model and 10 × 10 Q9 elements).

𝜇∕𝑀∞ = 0 𝜇∕𝑀∞ = 0.01 𝜇∕𝑀∞ = 0.1

𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹
SC 996.8 45.48 1003.5 45.64 1061.7 47.04
𝐺𝑝 = −5 921.0 44.29 927.3 44.43 983.0 45.71
𝐺𝑝 = −20 764.0 42.33 769.6 42.44 820.6 43.49
𝐺𝑝 = 5 1053.8 46.48 1060.9 46.65 1120.7 48.14
𝐺𝑝 = 20 1362.5 53.61 1369.8 53.80 1428.2 55.08

solutions in smart laminates with active proportional control for any
value of control gain. Therefore, in ensuing assessments making use of
the RR CLPT based model, both membrane and bending deformations
are taken into account.

Before moving on into the models comparison, per se, the inclusion
of the aerodynamic damping is investigated in Table 2, assuming
airflow along the 𝑥-axis. In agreement with Eq. (11), the aerodynamic
damping parameter is estimated for two values of the ratio 𝜇∕𝑀∞,
namely 0.01 and 0.1. The solutions without aerodynamic damping
(denoted by 𝜇∕𝑀∞ = 0) are also included in Table 2 for comparison
purposes. Furthermore, to examine the effect of the proportional con-
trol gain sign, the numerical results include the case of SC conditions
(uncontrolled configuration) as well as the cases of 𝐺𝑝 = ±5 and
𝐺𝑝 = ±20 (controlled configurations).

Table 2 reveals that the aerodynamic damping has a stabilizing
effect on the occurrence of flutter, as shown in [35]. In fact, the pre-
dicted flutter bounds with aerodynamic damping are slightly postponed
as compared to the case without damping. On average, the flutter
pressure parameter is increased by 0.7% and 6.3% for 𝜇∕𝑀∞ = 0.01
and 0.1, respectively. However, since the impact of the aerodynamic
damping on the flutter bounds is not highly significant, particularly
for lower ratios of 𝜇∕𝑀∞, it will be disregarded in the subsequent
flutter analyses concerning the assessment of the models predictive
capabilities. Actually, the aerodynamic damping will only be taken into
account again in the dynamic aeroelastic analysis in the time domain.
As regards to active flutter control, some preliminary conclusions can
be drawn from Table 2. Referring to the SC conditions as standpoint,
the use of positive control gains increases the flutter bound, which in

turn enhances the supersonic flutter resistance of the panel. Conversely,
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Table 3
Nondimensionalized flutter dynamic pressure parameters 𝜆̃𝐹
of a smart composite panel with unidirectional fibres of 0◦:
comparison with available literature solutions.

Model SC 𝐺𝑝 = 27.9822

Song et al. [5] 542.0 789.0
RR CLPT 542.0 789.0
LW FSDT 542.0 789.0
LW F/T/F 541.2 788.6
LW TSDT 541.2 788.6

the negative control gains have the opposite effect. Therefore, only
positive proportional control gains are explored for improving the
aeroelastic flutter stability.

To ensure the validation of the FE and RR models with available
literature solutions, Table 3 presents the active flutter control results of
a (simply supported) smart composite panel with unidirectional fibres
of 0◦ and piezoelectric face layers, in line with Song et al. [5]. The
original test case consists of a square plate with in-plane dimensions
𝑎 = 𝑏 = 0.1 m and total thickness ℎ = 0.0012 m (each piezoelectric
layer with 0.0001 m of thickness), under supersonic airflow along the
𝑥-axis. Moreover, Song et al. [5] also make use of a Rayleigh–Ritz
CLPT model with trigonometric expansion functions (including both
membrane and bending deformations). In accordance with [5], the
aerodynamic damping is included, assuming 𝜇∕𝑀∞ = 0.1, and the
ondimensionalized flutter pressure parameter is given by 𝜆̃ = 𝜆𝑎3∕𝐷1,
ith 𝐷1 = 𝐸𝑐

1ℎ
3
𝑐∕(12(1 − 𝜈𝑐12𝜈

𝑐
21)). The solutions are reported for both

SC conditions and active control conditions with proportional gain
𝐺𝑝 = 27.9822 (which leads to the maximum flutter resistance according
to the optimization study presented in [5]). As perceived from Table 3,
the present FE and RR solutions are in excellent agreement with the
benchmark results reported by Song et al. [5], thus validating the
developed models.

Nevertheless, it is worth mentioning that comprehensive assess-
ments of the proposed LW models for the analysis of purely elastic
composite laminates and soft core sandwich panels are provided in
previous works by the authors [29,36], including a comparison with
available literature solutions regarding both refined FE models and 3D
exact solutions.

5.2. Active flutter control of VSC panels with piezoelectric layers

The detailed assessment of the LW models predictive capabilities
in active aeroelastic flutter control analysis of smart curvilinear fibre
composite panels fully covered by piezoelectric layer is presented in
Tables 4–6, considering airflow along the 𝑥-axis (𝛬 = 0◦) and various
ide-to-thickness ratios. As intended, when dealing with thin panels,
he results obtained using the proposed LW models are compared
ith RR CLPT solutions. In particular, for the smart CSC laminate
ith unidirectional fibres of 0◦ or 90◦ (i.e. without bending–twisting

coupling), the RR CLPT solutions are derived resorting to trigonometric
series expansions. For the remaining laminates, which are inherently
characterized by a pronounced bending–twisting coupling behaviour,
due to the variable fibre angle distributions, it is considered Legendre
polynomials as expansions functions. Despite of the adopted expansion
type, ten terms are considered in each in-plane direction to ensure
converged solutions.

In Tables 4–6 it is considered either SC conditions or active control
conditions with 𝐺𝑝 = 5, 15 and 𝐺∗

𝑝 , where 𝐺∗
𝑝 stands for the control

gain that leads to the maximum flutter resistance of each composite
laminate when considering panels with 𝑎∕ℎ = 250. According to Fig. 4,
the maximum flutter pressure parameter of the panels with 𝑎∕ℎ = 250
under supersonic airflow with 𝛬 = 0◦ is achieved when considering: (i)
𝐺𝑝 = 31 for the smart cross-ply laminate; (ii) 𝐺𝑝 = 25 for the smart VSC1
laminate; and (iii) 𝐺𝑝 = 17 for the smart VSC2 laminate. The previously
8

mentioned control gains lead to relative increases of 28%, 52% and
101%, respectively, with respect to the flutter pressure parameter of the
corresponding uncontrolled system. Note that for 𝛬 = 0◦, the evolution
of the flutter pressure parameter with the proportional control gain of
the smart cross-ply laminate has a plateau between 𝐺𝑝 = 31 and 42.
It is interesting to highlight that in between this values, the flutter
pressure parameter and the flutter frequency remain constant. For
𝐺𝑝 > 42, flutter starts to emerge at lower dynamic pressure parameters,
but at the same frequency. In contrast, the flutter pressure parameter
curves associated with the curvilinear fibre composites do not show any
constant plateau.

Fig. 4 includes not only the case of airflow along the 𝑥-axis (𝛬 = 0◦),
but also the case of yawed airflow with 𝛬 = 45◦ to further characterize
the aeroelastic response behaviour of the laminates and the impact of
the active proportional control. For yaw angle 𝛬 = 45◦, the maximum
flutter resistance of the panels with 𝑎∕ℎ = 250 is obtained with the
following control gains: (i) 𝐺𝑝 = 15 for the smart cross-ply laminate
(𝜆̃𝐹 = 1046.3); (ii) 𝐺𝑝 = 9 for the smart VSC1 laminate (𝜆̃𝐹 = 1482.0);
nd (iii) 𝐺𝑝 = 13 for the smart VSC2 laminate (𝜆̃𝐹 = 1255.1). The
forementioned flutter pressure parameters are obtained using the LW
SDT model and correspond to relative increases of 88%, 66% and
1%, respectively, with respect to the uncontrolled system. Regarding
he flutter frequency, it is worth mentioning that for SC conditions,
lutter occurs due to the first two modes (for all stacking sequences
onsidered) and as the control gain increases, flutter starts to emerge
ue to the third and fourth modes. Nonetheless, the smart cross-ply
aminate also shows flutter due to the second and third modes when
he maximum flutter resistance is achieved. In particular, there is

discrepancy between the LW FSDT model and the high-order LW
odels in this region where flutter occurs due to the second and third
odes. The LW FSDT model predicts that this region appears for control

ains ranging between 𝐺𝑝 = 14 and 17, while the LW F/T/F and LW
SDT models estimate that it is only starts for 𝐺𝑝 = 15 (see the bottom
ight plot of Fig. 4).

In Fig. 4, the evolution of the flutter pressure parameter with the
roportional gain is explained by the modes involved in the occurrence
f flutter. As shown in Figs. 6 and 7, the coalescence of natural fre-
uencies is significantly influenced by the applied control gain, which
s either delayed or anticipated, leading to different flutter bounds.
n fact, for values of control gain around the value that leads to the
aximum flutter resistance, there is a change in the modes that lead to

lutter (usually from the first two modes to high-order modes), as also
erceived by the jump in the flutter frequency.

Since the flutter resistance of a multilayered composite panel is
ighly dependent on the alignment of the outer layers fibres with the
irflow direction, the selected curvilinear fibre composite laminates
utperform the cross-ply configuration for yawed airflow. Likewise, the
mart cross-ply composite laminate has the higher flutter resistance for
irflow along the 𝑥-axis.

Regarding the flutter pressure parameters of the smart cross-ply
aminate, a careful examination of the results given in Table 4 reveals
hat the maximum discrepancy of the RR CLPT solutions with respect
o the LW TSDT model is 0.3% and 1.7% for 𝑎∕ℎ = 250 and 100,

respectively. Likewise, the corresponding discrepancies for the smart
VSC1 laminate are 0.7% and 6.3% (Table 5), whereas for the smart
VSC2 laminate, are 30% and 2.3% (Table 6) for 𝑎∕ℎ = 250 and 100,
respectively.

Actually, the highest discrepancy between the RR CLPT solutions
and the FE solutions occurs for the smart VSC2 laminate, when con-
sidering 𝑎∕ℎ = 250 and SC conditions (where flutter arises among the
seventh and eighth modes). In this particular case, the RR CLPT model
may need more expansion functions in-plane to accurately predict the
coalescence of the seventh and eighth natural frequencies. Nonetheless,
transverse shear deformation effects are more relevant in high-order
modes and, therefore, an accurate estimation of the flutter bound
involving the seventh and eighth modes may require the inclusion

of transverse shear (which is neglected in the CLPT). As a matter of
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Table 4
Nondimensionalized flutter dynamic pressure parameters 𝜆̃𝐹 and flutter frequencies 𝑓𝐹 (Hz) of the (PZT-4/0/90/0/PZT-4) smart CSC
laminated panel under supersonic airflow along the 𝑥-axis (𝛬 = 0◦).

Model 𝑎∕ℎ = 250 𝑎∕ℎ = 100 𝑎∕ℎ = 50 𝑎∕ℎ = 25

𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹
SC RR CLPT 1330.9 52.68 1330.5 131.65 – – – –

LW FSDT 1328.1 52.63 1314.5 131.10 1269.0 258.99 1122.3 497.19
LW F/T/F 1327.2 52.62 1309.0 130.93 1249.3 257.72 1067.4 489.72
LW TSDT 1327.2 52.62 1309.0 130.93 1249.3 257.72 1067.4 489.72

𝐺𝑝 = 5 RR CLPT 1367.2 52.92 1366.8 132.25 – – – –
LW FSDT 1364.8 52.88 1351.6 131.76 1307.4 260.59 1166.1 503.07
LW F/T/F 1363.8 52.87 1346.4 131.61 1289.3 259.57 1118.7 498.02
LW TSDT 1363.8 52.87 1346.4 131.61 1289.3 259.57 1118.7 498.02

𝐺𝑝 = 15 RR CLPT 1467.7 53.78 1467.3 134.41 – – – –
LW FSDT 1470.3 53.80 1458.7 134.20 1420.3 266.57 1306.8 525.89
LW F/T/F 1468.7 53.78 1453.0 134.10 1405.2 266.22 1290.3 531.51
LW TSDT 1468.7 53.78 1453.0 134.10 1405.1 266.22 1290.1 531.47

𝐺𝑝 = 31 RR CLPT 1707.8 67.50b 1707.1 168.69b – – – –
LW FSDT 1703.7 67.45b 1684.6 167.98b 1620.7 331.62b 1418.2 635.01a

LW F/T/F 1702.8 67.45b 1679.3 167.88b 1602.0 330.95b 1276.4 958.08c

LW TSDT 1702.8 67.45b 1679.3 167.88b 1602.0 330.95b 1276.8 958.09c

a Flutter due to the second and third modes.
b Flutter due to the third and fourth modes.
c Flutter due to the eighth and ninth modes; otherwise due to the first two modes.
Table 5
Nondimensionalized flutter dynamic pressure parameters 𝜆̃𝐹 and flutter frequencies 𝑓𝐹 (Hz) of the (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-
4) smart VSC1 laminated panel under supersonic airflow along the 𝑥-axis (𝛬 = 0◦).

Model 𝑎∕ℎ = 250 𝑎∕ℎ = 100 𝑎∕ℎ = 50 𝑎∕ℎ = 25

𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹
SC RR CLPT 998.4 45.50 998.0 113.71 – – – –

LW FSDT 996.8 45.48 987.7 113.39 956.8 224.68 853.3 433.90
LW F/T/F 996.2 45.47 984.6 113.31 946.7 224.15 825.8 430.45
LW TSDT 996.4 45.47 984.8 113.32 946.9 224.17 825.9 430.46

𝐺𝑝 = 5 RR CLPT 1055.6 46.50 1055.2 116.22 – – – –
LW FSDT 1053.8 46.48 1044.4 115.91 1012.4 229.80 905.5 444.80
LW F/T/F 1053.0 46.47 1041.0 115.81 1002.0 229.27 878.6 441.61
LW TSDT 1053.3 46.47 1041.2 115.82 1002.2 229.28 878.8 441.65

𝐺𝑝 = 15 RR CLPT 1236.8 50.32 1236.2 125.74 – – – _
LW FSDT 1234.3 50.29 1224.7 125.52 1192.3 249.67 1087.8 490.58
LW F/T/F 1232.2 50.24 1218.5 125.27 1178.2 248.76 1064.8 489.24
LW TSDT 1232.6 50.25 1218.9 125.29 1178.6 248.81 1065.2 489.36

𝐺𝑝 = 25 RR CLPT 1527.0 57.17 1525.9 142.86 – – – _
LW FSDT 1522.7 57.10 1472.4 288.16b 1255.1 553.41b 1203.3 624.33a

LW F/T/F 1516.3 57.01 1434.2 287.17b 1087.7 546.47b 1170.8 621.76a

LW TSDT 1516.9 57.02 1434.6 287.15b 1088.3 546.42b 1170.3 621.75a

a Flutter due to the third and fourth modes.
b Flutter due to the sixth and seventh modes; otherwise due to the first two modes.
m

act, the highest discrepancy between the LW FSDT model and the
igh-order LW models in the analysis of thin panels occurs indeed for
he smart VSC2 laminate panel with 𝑎∕ℎ = 250 and SC conditions.

Specifically, the LW FSDT model overpredicts the flutter dynamic pres-
sure parameter in 5% as compared to the LW F/T/F and LW TSDT
models, which clearly highlights the necessary inclusion of transverse
shear deformations and its accurate modelling in the (variable stiffness)
composite core to obtain highly accurate flutter predictions, even when
dealing with thin panels.

For the smart VSC1 and VSC2 laminated panels with 𝑎∕ℎ = 100,
considering 𝐺𝑝 = 25 and 𝐺𝑝 = 17, respectively, the discrepancies are
due to the different modes that lead to the occurrence of flutter. In fact,
the RR CLPT model predicts flutter due to the first two modes, but the
LW FE models estimate that flutter arises due to high-order modes.

The overall discrepancies between the RR CLPT solutions and the FE
solutions are mostly explained by the absence of transverse shear de-
formations in the CLPT, which leads to an overestimation of the panels
stiffness. Additionally, the proposed FE models make use of LW descrip-
tions, including not only discrete layer transverse membrane/bending
9

i

deformation effects, but also discrete layer transverse shear deforma-
tion effects (thus allowing zig-zag through-thickness distributions of
in-plane displacements to be captured, in line with 3D exact static
solutions of piezoelectric composite plates in actuation mode [18,19]).
On the other hand, the RR CLPT model, which is based on an ESL
description, is not capable of predicting displacements with zig-zag
through-thickness distributions. Nonetheless, from a purely practical
point of view, the majority of the results is in agreement with the FE
solutions. Hence, the RR CLPT model may be considered suitable for
preliminary analysis and design of smart composite panels. Nonethe-
less, it should be emphasized once more that: (i) both membrane and
bending deformations must be included in the formulation; and (ii) in
laminates with bending–twisting coupling, such as any VSC laminate,
the Legendre polynomials are preferable to the trigonometric functions
for the Rayleigh–Ritz approximations.

Comparing the results given in Tables 4–6, it is perceived that
in the case of thin panels with 𝑎∕ℎ = 250 or 100, the three LW

odels are in very good agreement for most control conditions. Ergo,
t is concluded that the LW FSDT model ensures the best compromise
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Table 6
Nondimensionalized flutter dynamic pressure parameters 𝜆̃𝐹 and flutter frequencies 𝑓𝐹 (Hz) of the (PZT-4/⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩/PZT-4)
smart VSC2 laminated panel under supersonic airflow along the 𝑥-axis (𝛬 = 0◦).

Model 𝑎∕ℎ = 250 𝑎∕ℎ = 100 𝑎∕ℎ = 50 𝑎∕ℎ = 25

𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹 𝜆̃𝐹 𝑓𝐹
SC RR CLPT 1003.6 128.96b 1097.8 111.90 – – – –

LW FSDT 812.3 128.88b 1088.3 111.81 1060.0 222.85 964.7 439.83
LW F/T/F 774.2 128.81b 1085.9 111.81 1051.1 222.76 936.8 438.29
LW TSDT 774.4 128.81b 1085.8 111.80 1051.1 222.76 936.7 438.27

𝐺𝑝 = 5 RR CLPT 1178.9 46.48 1178.3 116.15 – – – –
LW FSDT 1177.0 46.47 1169.4 116.16 1143.7 232.29 1061.0 465.67
LW F/T/F 1176.5 46.47 1166.9 116.17 1135.3 232.35 1038.1 466.28
LW TSDT 1176.4 46.47 1166.8 116.16 1135.2 232.34 1038.0 466.25

𝐺𝑝 = 15 RR CLPT 1503.0 56.24 1501.8 140.45 – – – –
LW FSDT 1500.7 56.24 1504.3 143.03 1485.3 283.24 1131.6 616.60a

LW F/T/F 1496.9 56.08 1497.7 142.39 1477.7 283.22 1086.8 612.24a

LW TSDT 1496.6 56.06 1497.4 142.34 1477.6 283.23 1087.2 612.25a

𝐺𝑝 = 17 RR CLPT 1558.7 57.10 1558.0 142.71 – – – –
LW FSDT 1556.1 57.07 1518.5 161.45a 1391.0 322.45a 1054.8 613.47a

LW F/T/F 1554.0 57.08 1522.2 161.21a 1381.5 322.10a 1024.2 608.91a

LW TSDT 1553.9 57.08 1522.7 161.20a 1382.0 322.09a 1024.6 608.93a

a Flutter due to the third and fourth modes.
b Flutter due to the seventh and eighth modes; otherwise due to the first two modes.
Fig. 4. Evolution of the nondimensionalized flutter pressure parameter 𝜆̃𝐹 and flutter frequency 𝑓𝐹 with the proportional control gain 𝐺𝑝 of smart composite panels fully covered
by piezoelectric layers, with 𝑎∕ℎ = 250: LW FSDT (dotted lines), LW F/T/F (dashed lines) and LW TSDT (solid lines) models.
between numerical accuracy and computational efficiency for active
aeroelastic flutter control analysis of thin panels. However, the piece-
wise first-order model shows some discrepancies when flutter occurs
due to high-order modes, such as in the smart VSC1 laminate with
𝑎∕ℎ = 100 and 𝐺𝑝 = 25, and smart VSC2 laminate with 𝑎∕ℎ = 250
and SC conditions. In addition, it can lead to slight deviations in the
evolution of the flutter pressure parameter and flutter frequency with
the proportional control gain, as shown in Fig. 4.

As regards to the comparison of the proposed LW models in the
analysis of moderately thick composite panels, the results provided
in Tables 4–6 show that the kinematic refinements introduced in the
high-order LW models are indeed useful to achieve accurate flutter
solutions. This conclusion is in accordance with the fact that the effect
10

of transverse shear deformations is more significant in the mechanical
response of moderately thick panels, as compared to thin counterparts.
Accordingly, it is observed that as the side-to-thickness ratio decreases,
the discrepancies of the LW FSDT model with respect to the high-order
LW models increase. The consistent agreement between the LW F/T/F
and LW TSDT models, regardless of the panels side-to-thickness ratio
and applied proportional control gain, may be explained by the thin
piezoelectric layers considered in the test cases. Since each piezoelectric
layer has just 5% of the panel total thickness, the transverse shear
deformation effects in the active skins are relatively low, thus being
well estimated by the FSDT with unitary shear correction factor as
compared to the TSDT (even when considering moderately thick panels
with 𝑎∕ℎ = 25). Therefore, it is concluded that the high-order kinematic
refinements considered for the piezoelectric face layers in the LW TSDT

model render insignificant effects in active aeroelastic flutter control
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Fig. 5. Flutter in-plane mode shapes 𝑤(𝑥, 𝑦, 0) of smart composite panels (𝑎∕ℎ = 250, 𝛬 = 0◦) predicted by the LW F/T/F model: (PZT-4/0/90/0/PZT-4) in the first line,
(PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4) in the second line and (PZT-4/⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩/PZT-4) in the third line.
analysis of supersonic smart composite panels with thin piezoelectric
sensors and actuators. Actually, for real aerospace applications, the
piezoelectric elements should be made as thin as possible to reduce the
mass added to the base composite panel.

In Tables 4–6, the smart cross-ply composite laminate with 𝑎∕ℎ = 25
and 𝐺𝑝 = 31 is the only test case where the LW models differ regarding
the modes that lead to the occurrence of flutter. Specifically, the LW
FSDT model predicts flutter due to the second and third modes, whereas
both LW F/T/F and LW TSDT models estimate the occurrence of flutter
due to the eighth and ninth modes. When examining the flutter pressure
parameters, it is verified that the discrepancy of the LW FSDT model
as compared to the high-order LW models (11%) is higher than for
the case where flutter arises in the first two modes (e.g. 5% in SC
conditions). Hence, it is pointed out that the kinematic refinements
introduced in the high-order LW models, aimed for a better description
of the through-thickness distribution of transverse shear deformations
and stress, are indeed necessary to obtain highly accurate aeroelastic
flutter predictions involving high-order modes, such as the seventh,
eight and ninth modes. This result holds not only for moderately thick
panels, but also for thin panels, as demonstrated in the case of the smart
VSC2 laminate with 𝑎∕ℎ = 250 and SC conditions (Table 6). However,
for moderately thick plates, even when considering flutter among the
first four modes, the use of high-order theory, at least for the composite
core, appears rather necessary to ensure accurate active aeroelastic
flutter control analyses. Note that for panels with 𝑎∕ℎ = 25, showing
flutter among the first four modes, the flutter pressure parameters
predicted by the LW FSDT model are 3% to 5% higher than the ones
obtained making use of the high-order LW models.

A suggestion to improve the accuracy of the LW FSDT model, espe-
cially in the analysis of moderately thick plates, would be to consider a
non-unitary shear correction factor for the composite layers. Neverthe-
less, selecting the appropriate shear correction factor is a challenging
task as it depends on a plethora of variables, including the geometry,
11
fibre orientations, material properties, as well as boundary and loading
conditions. The interested reader can find a comparison of different
shear correction factors in a previous work by the authors [29], consid-
ering supersonic flutter analysis of purely elastic composite plates with
curvilinear fibres.

To provide a further insight in the aeroelastic response behaviour of
the various laminates, Fig. 5 presents the flutter in-plane mode shapes
of thin panels under supersonic airflow along the 𝑥-axis for 𝜆 = 𝜆𝐹 .
It can be firstly noticed that the mode shapes of the smart cross-
ply composite laminate are symmetric/antisymmetric with respect to
𝑦∕𝑏 = 0.5, as opposed to the cases of variable stiffness composite
laminates with curvilinear fibres, where no type of symmetry is noticed.
Additionally, the electrical boundary conditions of the piezoelectric
layers (i.e. either SC conditions or active control conditions) and the
stacking sequence of the composite core impact significantly the flutter
mode shapes. Considering the smart VSC2 laminate panel, for instance,
the flutter mode shape for SC conditions is indeed the one that shows
the most complicated distribution of the transverse displacement. This
occurs because flutter arises due to the seventh and eight modes. In
fact, for 𝐺𝑝 = 5 and 17, flutter emerges as the first two modes coalesce,
leading to flutter mode shapes which are more similar to the remaining
ones.

Additionally, Fig. 6 illustrates how the control gain can affect the
evolution of the first ten natural frequencies with the nondimension-
alized dynamic pressure parameter, taking as an example the smart
VSC1 laminate panel with 𝑎∕ℎ = 250 under airflow along the 𝑥-axis.
In this example, the coalescence of the first two natural frequencies
is successively postponed as the control gain increases, whereas the
coalescence of the third and fourth modes as well as the sixth and
seventh modes moves backwards. For 𝐺𝑝 = 25, the maximum flutter
resistance is achieved and flutter occurs due to the coalescence of the
first two modes (even though the third and fourth modes as well as the
sixth and seventh modes coalesce almost immediately after). By further



Composite Structures 343 (2024) 118287J.A. Moreira et al.
Fig. 6. Variation of the first ten natural frequencies 𝑓𝑛 with the nondimensionalized pressure parameter 𝜆̃ of the (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4) smart VSC1 laminated
panel (𝑎∕ℎ = 250, 𝛬 = 0◦): LW FSDT (dotted lines), LW F/T/F (dashed lines) and LW TSDT (solid lines) models.
increasing the control gain to 𝐺𝑝 = 30, the flutter resistance is reduced
as the coalescence of the sixth and seventh frequencies is the first to
occur. In addition, the fifth, eighth, ninth and tenth natural frequencies
remain mostly constant throughout the different diagrams.

In Fig. 7, the evolution of the modal damping factors with the nondi-
mensionalized dynamic pressure parameter is also included alongside
the natural frequencies, taking now the smart VSC2 laminate as an
example. The diagrams are provided for SC conditions and active
control conditions with 𝐺𝑝 = 17 (which provides the maximum flutter
resistance in this test case). As perceived from this figure, the coales-
cence of natural frequencies occurs when the associated modal damping
factors arise as symmetric values (i.e. the eigenvalues are complex
conjugated pairs). Note that the aerodynamic damping is neglected in
these results and, therefore, the modal damping factors are null prior
to flutter.

In line with the trends provided in Fig. 7, flutter occurs due to the
seventh and eight modes in the case of SC conditions, as indicated in
Table 6. The discrepancies between the LW models, namely the first-
order model and the high-order models, regarding the behaviour of
these modes are clearly visible in the zoomed portion of the diagram.
Moreover, it is also shown that despite the appearance of flutter due
to high-order modes, this instability is limited to a quite reduced
range of modal damping factors and it vanishes with the increase of
the flutter pressure parameter. Nonetheless, as soon as the high-order
modes decouple, the first two modes coalesce, giving rise to flutter
(once again). On the other hand, for 𝐺𝑝 = 17, the seventh and eight
natural frequencies have very close values for low dynamic pressure
parameters, but they get further apart as this parameter increases. In
fact, the zoomed portion of the damping diagram for 𝐺𝑝 = 17 shows
that flutter occurs due to the first two modes, though it is immediately
followed by the unstable coupling of the third and fourth modes. In this
case, some discrepancies between the LW FSDT and the high-order LW
models can also be identified, regarding the damping factors of either
the first two modes or the third and fourth modes. Specifically, the LW
FSDT model predicts a later coupling of the first two damping factors
12

and underestimates the coupling of the third and fourth modes. Hence,
the need for refined models capable of accurately predicting both in-
plane and transverse shear stress responses is further emphasized, even
when dealing with thin smart panels.

In short, the main advantage of the proposed LW models is the
inclusion of discrete layer effects, namely in the piezoelectric layers,
thus allowing for the prediction of in-plane displacements with zig-
zag through-thickness distributions, as shown by 3D electro-elastic
solutions of simply supported plates [18,19]. Moreover, the present
LW descriptions ensure the proper modelling of the different material
properties across the thickness of the smart panels, while considering
variable-order shear deformation theories to better predict the actual
aero-electro-elastic response, including displacements, in-plane normal
stresses and transverse shear stresses. In contrast, pure ESL descriptions
of smart composite panels with piezoelectric layers cannot capture
in-plane displacements with zig-zag through-thickness distributions,
which are especially relevant for the accurate evaluation of the stresses,
and may even lead to significant discrepancies when considering high
inhomogeneity of material properties between the layers of the lam-
inated composite core and the piezoelectric elements. Furthermore,
compared to classical and first-order plate theories, high-order the-
ories provide a more accurate prediction of the through-thickness
distributions of the transverse shear stresses [9,24,27]. This feature
is particularly important when dealing with moderately thick panels
(Tables 4 to 6) or flutter caused by high-order modes (Fig. 7). However,
the highly accurate LW models with high-order theories require an
increased computational cost as compared to ESL descriptions with
CLPT and first-order LW models (which are more suitable for prelimi-
nary analysis and design purposes). Actually, the absence of transverse
shear deformations is one of the main limitations of the simple and
computationally efficient CLPT, leading to an overestimation of the
overall stiffness of the panels. Due to the scope of the present work
at this stage, it is not included any comparison of structural models
regarding stress analysis, but it is highlighted as rather necessary for
future works, especially when addressing the non-linear post-flutter
regime and failure analysis.

To conclude the detailed analysis of panels fully covered by piezo-

electric layers, the aeroelastic response analysis in the time domain is
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Fig. 7. Variation of the first ten natural frequencies 𝑓𝑛 and damping factors 𝑔𝑛(%) with the nondimensionalized pressure parameter 𝜆̃ of the (PZT-4/⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩/PZT-4)
mart VSC2 laminated panel (𝑎∕ℎ = 250, 𝛬 = 0◦): LW FSDT (dotted lines), LW F/T/F (dashed lines) and LW TSDT (solid lines) models.
Fig. 8. Time response of the nondimensionalized transverse displacement 𝑤̃0(0.75𝑎, 0.35𝑏) of the (PZT-4/⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩/PZT-4) smart VSC1 laminated panel (𝑎∕ℎ = 250,
= 0◦), considering various proportional control gains 𝐺𝑝: LW FSDT (dotted lines), LW F/T/F (dashed lines) and LW TSDT (solid lines) models.
resented in Fig. 8, considering the smart VSC1 laminate with 𝑎∕ℎ =
50. The panel is initially subjected to an applied bi-sinusoidal load,
ith a unit peak value, having the surface electrodes in SC conditions.
hen, it is released from rest into a medium with supersonic flow along
he 𝑥-axis and the active control system is engaged. The monitored
ransverse displacement is evaluated at the absolute maximum in-plane
ocation and it is provided in the following nondimensionalized form
̃ = 100𝐸0ℎ3𝑤∕(𝑞0𝑎4), with 𝐸0 = 7 GPa. The aerodynamic damping
s included, being estimated in accordance with Eq. (11), assuming
∕𝑀∞ = 0.1.

The time response analysis of the transverse displacement is carried
ut for two values of 𝜆̃, namely 𝜆̃ = 900 and 𝜆̃ = 1070, i.e. prior and after
he flutter bound of the panel with SC conditions (the flutter pressure
arameters predicted by the LW FSDT model, including aerodynamic
amping, can be found in Table 2). The adopted time step in the
ewmark method is 𝛥𝑡 = 0.001 s. In the right-hand side of Fig. 8,

he aeroelastically unstable response of the uncontrolled system, which
hows divergent oscillations, clearly contrasts with the stable response
f the controlled systems with active proportional control. Thus further
ighlighting the capability of the active control technology to improve
he aeroelastic stability of supersonic composite panels. It can also be
13
perceived that as the control gain increases, the maximum amplitude of
the oscillations is decreased and the initial perturbation is attenuated
more quickly. This behaviour is of particular interest to reduce stress
levels and minimize fatigue damage. Comparing the LW models, it is
concluded that the first-order model predicts slightly lower deflections,
which are especially noticeable in the divergent system (i.e. for 𝜆̃ =
1070 and SC conditions). Nonetheless, from a practical standpoint, the
models are considered to be in good agreement among each other.

Since the focus of the present work, at this stage, is merely on
the assessment of the proportional control strategy/gain for aeroelastic
control, the time response of the applied electric potential on the
actuator layer is not included for brevity. Nonetheless, for future works,
it is important to note that monitoring the electric potentials of the
sensor and actuator layers should be included for a more compre-
hensive aero-electro-elastic analysis of the smart panels. Moreover, as
regards the post-flutter regime shown for SC conditions on the right-
hand side of Fig. 8, it is important to note that the linear framework
used in this study does not account for the non-linear behaviour of
the post-flutter regime. In fact, it is expected that due to the presence

of non-linearities in the aeroelastic system, the post-flutter regime is
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Fig. 9. Evolution of the nondimensionalized flutter pressure parameter 𝜆̃𝐹 and flutter frequency 𝑓𝐹 with the proportional control gain 𝐺𝑝 of smart composite panels, considering
Cases A, B and C (𝑎∕ℎ = 250, 𝛬 = 0◦): LW FSDT (dotted lines), LW F/T/F (dashed lines) and LW TSDT (solid lines) models.
ot actually divergent, but instead ends up as a Limit Cycle Oscillation
LCO) characterized by large vibrations of constant amplitude [46–48].

As far as the aeroelasticity of supersonic panels is concerned, it is
orth mentioning that in addition to flutter instability (involving unsta-
le dynamic motion), the study of static aeroelastic instability, known
s divergence, is also an important aspect to consider. In fact, the
ivergence of supersonic panels (i.e. the occurrence of a mode with zero
atural frequency) was verified by Moreira et al. [41] when considering
mart panels with high values of proportional control gain under low
ynamic pressures. However, in the present test cases, divergence
nstability was never observed for the assumed range of proportional
ains, leading to the conclusion that the divergence bound, if it exists,
s higher than the flutter bound.

.3. Active flutter control of VSC panels with multiple piezoelectric patches

Mass is a crucial aspect in aerospace design as it directly affects the
tructural components from an engineering point of view. As a matter
f fact, piezoelectric materials with high actuation levels, such as the
iezoceramic PZT-4 considered in this work, tend to have a quite high
pecific mass (density) as compared to most of the metal and fibre
einforced composites considered for aerospace structures. Therefore, it
s essential to optimize the design and placement configurations of the
iezoelectric sensors and actuators to ensure feasible active aeroelastic
ontrol applications. Considering thin laminates with 𝑎∕ℎ = 250, Fig. 9

presents the evolution of the flutter dynamic pressure parameter and
flutter frequency of two configurations with a total of six strips of
piezoelectric patches, represented in Fig. 3 as Cases B and C, alongside
with the previous solutions for a fully covered panel (Case A). For
brevity, it is assumed airflow along the 𝑥-axis (𝛬 = 0◦) and the smart
VSC2 is not included in this final analysis. It is worth noting that the
mass saving in terms of piezoelectric material of both Case B and Case
C as compared to Case A is 52%.

From the structural modelling point of view, the three LW models
are in good agreement for the vast majority of control gains con-
sidered in the assessment (as expected since it is considered thin
14

panels). Nonetheless, as previously noticed for fully covered panels,
some discrepancies occur between the first-order model and the high-
order models when dealing with specific values of control gain. To be
precise, for the smart cross-ply laminate, considering both Cases B and
C, these discrepancies are noticed in the nondimensionalized flutter
pressure parameter when the flutter resistance is in the decreasing zone
(i.e. for high values of control gain). On the other hand, for the smart
composite laminate with curvilinear fibres, the discrepancies can only
be perceived in the flutter frequencies of Case B, for 𝐺𝑝 = 16. In fact,
for this last case, the LW FSDT model predicts that flutter occurs due
to the third and fourth modes, whereas the high-order models (LW
TSDT and LW F/T/F) estimate that flutter arises as the first two natural
frequencies coalesce.

Comparing the configurations with six strips of piezoelectric patches,
the case with the patch strips aligned with the airflow direction (Case B)
has an overall higher flutter stability than the case with the patch strips
perpendicular to the airflow direction (Case C). This may be explained
by the fact that the flutter response for 𝛬 = 0◦ is highly dependent on
the axial material resistance along the 𝑥-axis. Since the added stiffness
of Case B, whether purely elastic or induced from active proportional
control, is primarily distributed along the 𝑥-axis, it has an advantageous
impact for improving the flutter resistance. Hence, it is concluded that
the control authority in Case B is higher than in Case C.

Overall, for the cases with six patch strips, the maximum flutter
resistance occurs for a lower proportional control gain than in the case
of the fully covered panel. Considering the Case B and taking the SC
conditions as reference: (i) the flutter bound of the smart cross-ply
laminate is increased by 25% for 𝐺𝑝 = 15 (flutter due to the third and
fourth modes instead of the first two as in SC conditions); and (ii) the
flutter bound of the smart VSC1 laminate is remarkably improved by
50% for 𝐺𝑝 = 16 (flutter due to the first two modes, as in SC conditions).
Likewise, in the Case C: (i) the flutter bound of the smart cross-ply
laminate is increased by 15% for 𝐺𝑝 = 10 (flutter due to the third and
fourth mode, as in SC conditions); and (ii) the flutter bound of the smart
VSC1 laminate is greatly improved by 59% for 𝐺𝑝 = 10 (flutter due to
the third and fourth modes instead of the first two as in SC conditions).
Thus, it is also concluded that when considering the control gain that

renders the maximum flutter resistance, the modes that lead to the
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Table 7
Nondimensionalized flutter pressure parameter 𝜆̃𝐹 and flutter frequency 𝑓𝐹 of smart
composite panels with six piezoelectric patch strips (results obtained using the LW
F/T/F model).

Case B Case C

𝜆̃𝐹 𝑓𝐹 𝛿𝜆̃𝐹 (%) 𝜆̃𝐹 𝑓𝐹 𝛿𝜆̃𝐹 (%)

CSC SC 1306.5 51.89 −2 1191.8 52.52 −10
𝐺𝑝 = 10 1502.6 53.50 6 1372.2 62.90 −3
𝐺𝑝 = 15 1627.7 65.58 11 1372.2 62.90 −7

VSC1 SC 927.5 43.71 −7 771.1 41.15 −23
𝐺𝑝 = 10 1210.1 49.90 7 1229.9 61.96 8
𝐺𝑝 = 16 1394.9 53.78 10 961.6 63.98 −24

𝛿𝜆̃𝐹 (%) = (𝜆̃𝐹 − 𝜆̃Case A
𝐹 ) × 100∕𝜆̃Case A

𝐹

ccurrence of flutter may not change with respect to the case of SC
onditions. Nevertheless, the flutter frequency diagrams represented in
ig. 9 show that around the control gain that leads to the maximum
lutter pressure parameter, there is a tendency to occur a jump in the
requency value, which is commonly associated with a change in the
odes involved in the occurrence of flutter.

Table 7 provides some detailed results taking into account the LW
/T/F model. Both SC conditions and active control conditions with
elected control gains are considered. The control gains are actually
hosen such that the maximum flutter pressure parameter of both
onfigurations with six patch strips are presented for each laminate.
he relative difference in flutter dynamic pressure parameter of Cases
and C with respect to Case A is also included for comparison purposes.

When considering the configuration of Case B, the flutter resistance
or SC conditions is slightly reduced as compared to Case A. However,
or some control gains above 𝐺𝑝 = 5 (see Fig. 9), the flutter pressure

parameters of Case B are higher than those of Case A (even though
it is considered 52% less mass and surface coverage of piezoelectric
material). As regards to Case C, there is no superior flutter resistance for
the smart cross-ply laminate. For the smart VSC1 laminate, the response
of Case C only surpasses the one of Case A for control gains around
𝐺𝑝 = 10.

Overall, the aforementioned results highlight the aeroelastic de-
sign optimization of smart composite panels with piezoelectric patches
as paramount to achieve improved dynamic and aeroelastic charac-
teristics, while maintaining an optimal and feasible structural mass.
Furthermore, the use of variable stiffness composites with curvilinear
fibre paths offers, from a design standpoint, an extended tailor-ability
as regards to the stiffness distribution, which is highly suitable to be
explored in various aeroelastic applications.

6. Conclusions

In this work, variable-order LW shear deformation models are devel-
oped for the coupled aero-electro-elastic active flutter control analysis
of supersonic smart variable stiffness laminated composite panels with
curvilinear fibre paths and surface bonded piezoelectric sensor and
actuators layers/patches. It is assumed a LW variable description in-
volving three discrete layers, making use of the FSDT and TSDT,
which have not yet been explored to such extent in the literature, thus
pushing forward on the study and application of the proper structural
modelling for active aeroelastic control analysis of smart curvilinear
fibre composite panels. Furthermore, the First-order Piston Theory
is adopted to describe the aerodynamic loading resulting from the
supersonic airflow, whereas the close loop control law is established
resorting to proportional gain. Numerical applications are provided for
the accuracy assessment of the proposed models predictive capabilities,
including a comparison with Rayleigh–Ritz solutions. Particularly, it is
considered simply supported piezoelectric composite panels with either
unidirectional or curvilinear fibres, as well as various side-to-thickness
15

ratios and control conditions. Moreover, the proportional control effect t
on the aeroelastic flutter response is discussed taking into account
both airflow along the 𝑥-axis and yawed airflow, in addition to three
different placement configurations of the piezoelectric patches.

As far as the active aeroelastic control of thin panels is considered,
it is concluded that the LW FSDT model ensures the best trade-off be-
tween numerical accuracy and computational efficiency. Nonetheless, it
is important to note that when dealing with panels that experience flut-
ter due to high-order modes, discrepancies may arise, as demonstrated
in variable stiffness configurations under certain control conditions.
Furthermore, for the analysis of moderately thick panels, high-order
LW models emerge as rather necessary to properly capture the signifi-
cant impact of transverse shear deformations on the aeroelastic flutter
response, especially in the composite core layers. In fact, applying
kinematic refinements in the in-plane displacements through-thickness
distributions of the composite core alone (as in the LW model with
TSDT for the core and FSDT for the piezoelectric face layers) renders
highly accurate solutions as compared to the fully refined model (LW
TSDT), for both thin and moderately thick panels.

In terms of aeroelastic flutter response behaviour, the active flut-
ter control technology involving proportional control can be used to
effectively postpone the flutter bound of composite panels under both
airflow along the 𝑥-axis and yawed airflow. Additionally, the propor-
tional control gain can alter the modes that lead to flutter and the
resulting flutter mode shape. All in all, the combined application of
carefully tailored curvilinear fibre paths and optimized piezoelectric
sensors and actuators presents a powerful approach for aeroelastic con-
trol of advanced and multifunctional supersonic smart panels, offering
a wide range of feasible design variables that can be used to solve
complex multiobjective design optimization problems. Ultimately, this
work provides valuable insights into the advanced modelling and anal-
ysis of smart variable stiffness laminated composite panels, which
may allow further ensuing research, namely on the aeroelastic design
optimization of smart aerospace structures, as well as on the active
aeroelastic control of non-linear post-flutter vibrations and fatigue
damage/failure prevention. The inclusion of more complex geometries,
such as curved panels and shells, and varying boundary conditions are
also emphasized as rather important for future research.
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Appendix

This appendix complements the RR CLPT based formulation as
proposed originally by Moreira et al. [41] to: (i) employ Legendre
polynomial as in-plane expansion functions; and (ii) include membrane
deformations. The series expansion of the mid-plane displacements 𝑢0,
𝑣0 and 𝑤0 making use of Legendre polynomials is defined in terms of
natural coordinates 𝜉 = 2𝑥∕𝑎 and 𝜂 = 2𝑦∕𝑏 as shown:

𝑢0(𝜉, 𝜂, 𝑡) = 𝑔2(𝜂)
𝑀
∑

𝑚=0

𝑁
∑

𝑛=0
𝐿𝑚(𝜉)𝐿𝑛(𝜂)𝑞𝑢𝑚𝑛(𝑡) = 𝜳 𝑇

𝑢 𝒒𝑢 (A.1a)

𝑣0(𝜉, 𝜂, 𝑡) = 𝑔1(𝜉)
𝑀
∑

𝑚=0

𝑁
∑

𝑛=0
𝐿𝑚(𝜉)𝐿𝑛(𝜂)𝑞𝑣𝑚𝑛(𝑡) = 𝜳 𝑇

𝑣 𝒒𝑣 (A.1b)

𝑤0(𝜉, 𝜂, 𝑡) = 𝑔1(𝜉)𝑔2(𝜂)
𝑀
∑

𝑚=0

𝑁
∑

𝑛=0
𝐿𝑚(𝜉)𝐿𝑛(𝜂)𝑞𝑤𝑚𝑛(𝑡) = 𝜳 𝑇

𝑤𝒒𝑤 (A.1c)

where 𝐿𝑚(𝜉) and 𝐿𝑛(𝜂) are Legendre polynomials and 𝑔1(𝜉) = (𝜉2 − 𝜉)
and 𝑔2(𝜂) = (𝜂2−𝜂) in order to satisfy the essential boundary conditions
(simply supported). The case of trigonometric expansions, which are
considered exclusively for composite layers with unidirectional fibres
of 0◦ or 90◦, can be found in Reddy [9]. Moreover, to be consistent
with the present FE formulation, the transverse electric field in the RR
formulation is written in line with Eq. (7), as opposed to the definition
without the minus sign, as originally considered in [41].

The final system of modal aeroelastic equilibrium equations taking
into account the active proportional control is derived in a similar
fashion to Sections 3 and 4. In the end, the corresponding modal
matrices of the RR CLPT model are given by:

𝑴𝑢𝑢 =

⎡

⎢

⎢

⎢

⎣

𝑴11 𝟎 𝟎
𝟎 𝑴22 𝟎
𝟎 𝟎 𝑴33

⎤

⎥

⎥

⎥

⎦

(A.2a)

𝑲𝑢𝑢 =

⎡

⎢

⎢

⎢

⎣

𝑲11 𝑲12 𝟎
𝑲𝑇

12 𝑲22 𝟎
𝟎 𝟎 𝑲33

⎤

⎥

⎥

⎥

⎦

(A.2b)

𝑲𝑘
𝑢𝜙 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑲𝑘
𝑢𝜙1

𝑲𝑘
𝑢𝜙2

𝑲𝑘
𝑢𝜙3

⎤

⎥

⎥

⎥

⎥

⎦

(A.2c)

𝑲𝑘
𝜙𝜙 = −

𝜖𝑘𝑧𝑧
ℎ𝑘

𝑘 (A.2d)

such that the modal sub-matrices are obtained as shown:

𝑴11 =
∑

𝑘=𝑐,𝑠,𝑎
𝜌𝑘ℎ𝑘 ∫𝑘

𝜳 𝑢𝜳 𝑇
𝑢 𝑑𝑆 (A.3a)

𝑴22 =
∑

𝑘=𝑐,𝑠,𝑎
𝜌𝑘ℎ𝑘 ∫𝑘

𝜳 𝑣𝜳 𝑇
𝑣 𝑑𝑆 (A.3b)

𝑲11 =
∑

𝑘=𝑐,𝑠,𝑎
ℎ𝑘 ∫𝑘

𝑄̄𝑘
11
𝜕𝜳 𝑢
𝜕𝑥

𝜕𝜳 𝑇
𝑢

𝜕𝑥
+ 𝑄̄𝑘

16

(

𝜕𝜳 𝑢
𝜕𝑥

𝜕𝜳 𝑇
𝑢

𝜕𝑦
+

𝜕𝜳 𝑢
𝜕𝑦

𝜕𝜳 𝑇
𝑢

𝜕𝑥

)

+ 𝑄̄𝑘 𝜕𝜳 𝑢 𝜕𝜳
𝑇
𝑢 𝑑𝑆 (A.3c)
16

66 𝜕𝑦 𝜕𝑦
𝑲12 =
∑

𝑘=𝑐,𝑠,𝑎
ℎ𝑘 ∫𝑘

𝑄̄𝑘
12
𝜕𝜳 𝑢
𝜕𝑥

𝜕𝜳 𝑇
𝑣

𝜕𝑦
+ 𝑄̄𝑘

16
𝜕𝜳 𝑢
𝜕𝑥

𝜕𝜳 𝑇
𝑣

𝜕𝑥
+ 𝑄̄𝑘

26
𝜕𝜳 𝑢
𝜕𝑦

𝜕𝜳 𝑇
𝑣

𝜕𝑦

+ 𝑄̄𝑘
66
𝜕𝜳 𝑢
𝜕𝑦

𝜕𝜳 𝑇
𝑣

𝜕𝑥
𝑑𝑆 (A.3d)

22 =
∑

𝑘=𝑐,𝑠,𝑎
ℎ𝑘 ∫𝑘

𝑄̄𝑘
22
𝜕𝜳 𝑣
𝜕𝑦

𝜕𝜳 𝑇
𝑣

𝜕𝑦
+ 𝑄̄𝑘

26

(

𝜕𝜳 𝑣
𝜕𝑥

𝜕𝜳 𝑇
𝑣

𝜕𝑦
+

𝜕𝜳 𝑣
𝜕𝑦

𝜕𝜳 𝑇
𝑣

𝜕𝑥

)

+ 𝑄̄𝑘
66
𝜕𝜳 𝑣
𝜕𝑥

𝜕𝜳 𝑇
𝑣

𝜕𝑥
𝑑𝑆 (A.3e)

𝑲𝑘
𝑢𝜙1

= 𝑒𝑘31 ∫𝑘

𝜕𝜳 𝑢
𝜕𝑥

𝑑𝑆 (A.4a)

𝑲𝑘
𝑢𝜙2

= 𝑒𝑘32 ∫𝑘

𝜕𝜳 𝑣
𝜕𝑦

𝑑𝑆 (A.4b)

𝑲𝑘
𝑢𝜙3

= −𝑧̄𝑘 ∫𝑘
𝑒𝑘31

𝜕2𝜳𝑤

𝜕𝑥2
+ 𝑒𝑘32

𝜕2𝜳𝑤

𝜕𝑦2
𝑑𝑆 (A.4c)

where 𝑘 and 𝑧̄𝑘 stand for the surface and mid-plane transverse coordi-
ate of the 𝑘-layer (note that for the piezoelectric coupling matrices, it
s assumed transversely isotropic piezoelectric materials, as considered
n the present work). The remaining modal matrices, namely 𝑴33, 𝑲33
nd 𝑲𝛥𝑝, are given explicitly in [41]. The surface integrals are obtained
nalytically resorting to symbolic computation.
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