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ABSTRACT Deep learning has been shown to be a valuable tool in astrophysics. In the field of exoplanetary
science, deep learning-based approaches are being used extensively to automate the characterization of
exoplanet atmospheres, reducing computational costs when compared to conventional methods. However,
many atmospheric reconstruction models lack interpretability. We introduce Ex(o)plain, a model-agnostic
framework to identify and describe the most meaningful traits that characterize exoplanet atmospheres. Our
approach categorizes exoplanets into subgroups based on combinations of various metadata, such as surface
gravity, planet radius, and star temperature. We analyze these subgroups to identify those for which the
deep learning model performs better or worse than average. This provides useful insights into what is being
effectively learned by these black box models and where they still struggle. We explore a practical case based
on the synthetic observations generated for the upcoming Ariel mission. Experimental results demonstrate
the effectiveness of adopting explanation techniques in revealing meaningful variations in reconstruction
quality between individual models and their aggregated ensemble. We additionally show that ensemble
approaches significantly outperform single learners. We leverage the same subgroup-based exploration
techniques to assess the situations that are most beneficial for the ensemble. Our work provides a more
nuanced understanding of deep learning results for exoplanet characterization, aiming to delineate feasible
accuracy limits and enable more informed evaluations of these techniques’ atmospheric reconstruction
capabilities.

INDEX TERMS Deep learning, divergence, exoplanet atmospheric parameters, explainable AI, subgroup
detection.

I. INTRODUCTION
Exoplanets orbiting other stars outside the solar system
have transformed our understanding of planetary science.
Characterizing atmospheric diversity across these worlds
contextualizes planetary evolution within and beyond our
solar system. Transmission spectroscopy is a technique that
consists of measuring atmospheric absorption at different
wavelengthswhen exoplanets transit in front of their star. This
approach can reveal properties such as chemical composition,
temperature, and the presence and characteristics of clouds by
analyzing the observed spectra [1].

While transmission spectroscopy studies have been con-
ducted for a few dozen exoplanets over the past two
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decades, collecting this observational data has been gradual.
Upcoming space missions aim to broadly expand both the
quantity and quality of transmission spectral measurements.
For example, the James Webb Space Telescope [2] is
expected to more than triple the volume of existing obser-
vations. Meanwhile, the Ariel space mission [3] has been
designed to conduct an even larger-scale atmospheric survey
characterizing over 1,000 exoplanet atmospheres through
transit spectroscopy. These upcoming astrophysics attempts
can be expected to achieve significant progress in the field
by delivering significantly more transmission spectra to the
scientific community for further analysis.

Atmospheric retrieval is the process of inferring exoplanet
atmospheric properties from observational data, and it is
challenging with low-resolution transmission spectra due to
the complex, degenerate parameter spaces where multiple
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combinations of temperature, chemical composition, and
cloud characteristics can produce similar spectral signatures.
This introduces degeneracies wherein multiple solutions
could plausibly fit the observed spectral features [4].
To disentangle these degenerate cases, atmospheric retrieval
involves determining a posterior probability distribution
rather than identifying a single, definitive solution. The
posterior distribution delineates the range of plausible
atmospheric compositions that align with the observational
data, considering measurement uncertainties. By outlin-
ing this spectrum of compatible solutions, the posterior
offers a more comprehensive characterization of a planet’s
atmosphere than isolated point estimates. While traditional
Bayesian techniques employing computationally demanding
algorithms currently achieve top performance [5], they do not
easily scale up to process the vast datasets expected from
upcoming missions [6]. Machine learning (ML) and deep
learning (DL) techniques have been employed to enhance
retrieval efficiency, but many existing approaches still lack
interpretability, that is, the ability to understand and explain
how the models make their predictions [7]. Specifically,
models may consistently underperform when characterizing
certain types of exoplanetary atmospheres. However, such
patterns tend not to emerge when reporting only average
performance.

With this in mind, we introduce Ex(o)plain, an inter-
pretable framework for probabilistic atmospheric character-
ization. We aim to provide human-understandable insights
into the patterns – or exoplanet categories – that diverge the
most in terms of performance, posing difficulties for machine
learning algorithms in building accurate predictive models.
By identifying where models fall short, our approach seeks
to help develop more robust and transparent solutions for
atmospheric retrieval.

In addition to transmission spectra, exoplanets are often
accompanied by supplementary planetary attribute data
relating to factors like mass, surface gravity, and proximity
to the host star. We refer to this contextual information as
planetary metadata. Combinations of such metadata values
characterize distinct data subgroups within the entire dataset.
Typically, models are evaluated either globally on the entire
evaluation set or within predefined, hand-picked subgroups.

We adopt efficient techniques to comprehensively compare
model performance across all possible subgroups containing
a minimum number of exoplanets without manually isolating
some subgroups as particularly relevant. Naively assessing
every possible combination of metadata criteria is impracti-
cal, given the combinatorial growth in possible subgroups.
Instead, we adapt bias analysis methods, which identify and
examine disparities in model performance across different
data cohorts, to focus on ‘‘frequent’’ subgroups accounting
for a significant andmeaningful portion of the dataset [8]. The
number of these statistically significant frequent subgroups
does not scale in the same way as the total subgroup count.
This allows the evaluation and comparison of models over
relevant metadata configurations.

While being capable of analyzing a single model perfor-
mance at the subgroup level, our approach also facilitates
a meaningful comparison of different model performances
across statistically significant frequent subgroups. This
provides deeper insights beyond conventional evaluation
methods reporting only average accuracy. Specifically,
it reveals gaps (i.e., variations) in performance across
metadata-defined cohorts that may not emerge at the global
scale. Identifying where and how models succeed or struggle
within distinct regions of the parameter space can guide the
development of more robust solutions. This can help both
determine the most promising models for specific subsets
of exoplanets and guide the process of characterizing and
addressing shortcomings in the existing models.

We propose an experimental section that uses synthetic
observations simulated for the upcoming Ariel space tele-
scope mission [9]. Through this data, we provide preliminary
results demonstrating our proposed Ex(o)plain framework’s
capacity to identify and characterize patterns contributing
to less accurate or degraded atmospheric reconstruction.
We argue that interpretable machine learning presents a
promising path toward unlocking scientific insights from the
immense volumes of data expected from new astronomy
efforts. By bringing transparency and explainability to
complex models employed to analyze huge future exoplanet
observations, our techniques aim to advance scientific
understanding and develop robust approaches optimized for
datasets of unprecedented scale.

The remainder of the paper is organized as follows:
Section II focuses on examining relevant prior work,
exploring studies on reconstructing exoplanet atmospheric
parameters, and providing explanations and introspection
into these modeling techniques. Section III reviews the
problem under analysis, along with an exploration of the
data and target task. Section IV introduces the proposed
methodology’s relevant aspects for identifying divergent
subgroups. Section V reports the main experimental results
obtained. Finally, Section VI draws conclusions and sum-
marizes possible future directions. We release our code
implementing these experiments in the project repository to
enable reproducibility.1

II. RELATED WORKS
This section introduces the previous works of most relevance
in the literature. In particular, it presents the main works
regarding the reconstruction of atmospheric parameters via
either traditional methods (e.g., Bayesian inference) or deep
learning techniques. Next, the most relevant works in terms of
the interpretability of exoplanetary deep learning techniques
are presented.

A. RECONSTRUCTING EXOPLANET ATMOSPHERIC
PARAMETERS
State-of-the-art atmospheric retrieval outcomes are cur-
rently achieved via traditional Bayesian inference employing

1https://github.com/koudounasalkis/Ex-o-plain
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computationally intensive sampling algorithms [5]. However,
when attempting to apply these resource-intensive methods
at the massive scale of upcoming exoplanet survey datasets,
such as those expected from Ariel, computational runtimes
become impractical barriers [6].

Machine learning and deep learning techniques have
increasingly been leveraged within exoplanetary research
to address this challenge of scaling probabilistic modeling
to big observational future resources. Applications have
ranged from pre-processing tasks like data detrending [10],
[11] debris removal [12], [13] and planet detection and
characterization [14], [15], [16]. The aim has been to
advance retrieval efficiency while maintaining characteriza-
tion performance on anticipated huge volumes of spectral
observations. Various ML and DL techniques, including
random forests, convolutional neural networks (CNNs),
and generative adversarial networks (GANs), have been
utilized to enhance the efficiency and reduce the compu-
tational demands of atmospheric retrieval. However, such
approaches frequently rely on approximations that can impact
the precision of posterior probability estimates. A recent
study [17] proposed a multimodal 1D-CNN architecture that
integrates spectral measurements with supplementary stellar
and planetary attribute data. The authors demonstrated that
this technique delivers satisfactory outcomes when assuming
normality in the posterior distribution while also revealing
computationally efficient performance.

B. INTERPRETABILITY OF DL EXOPLANETARY MODELS
Recent works have developed techniques for automatically
identifying data subgroups, i.e., subsets of the data char-
acterized by a set of metadata attribute values, exhibiting
problematic predictive behaviors in structured datasets [8],
[18], [19]. Our proposal draws inspiration from DivEx-
plorer [8], a method to detect diverging behaviors that
explores frequent subgroups accounting for a meaningful
portion of the dataset. DivExplorer enables the identification
of subgroups where models perform well or struggle. Other
heuristic-driven subgroup discovery approaches do not pro-
vide straightforward model performance comparisons [18],
[19]. Instead, DivExplorer supports subgroup-wise perfor-
mance comparisons over statistically significant data sub-
groups (i.e., subgroups with support above a given relevance
threshold). As demonstrated in prior works [20], [21], this
distinguishes DivExplorer as uniquely capable of enabling
the in-depth subgroup-level model analyses we introduce
here for exoplanetary retrieval applications. Our work builds
upon DivExplorer’s approach by introducing a framework for
systematically benchmarking models within the problematic
patterns that surface from exoplanet metadata-defined sub-
groups.

To the best of our knowledge, the only existing work that
interprets deep learning models for exoplanet atmospheric
retrievals is the research from [22]. Their analysis primarily
quantified how predictions of one parameter varied given

changes in other parameters. Like their technique, ourmethod
is agnostic to specific models. In contrast, we advance
interpretable model evaluation by assessing performance at
the subgroup level while considering all recurring subgroups
defined by combinedmetadata criteria. Moreover, we explore
the influence on predictions from both individual and
combined stellar/planetary attribute metadata, offering richer
insight compared to [22], which focused solely on condition-
ing parameter predictions. Therefore, we introduce a more
comprehensive framework for identifying and characterizing
attributional effects and performance disparities in exoplanet
atmospheric characterization models.

III. EXOPLANETS ATMOSPHERE RECONSTRUCTION
Exoplanets are mainly discovered using techniques like
measuring the radial velocity of a star or observing changes in
its brightness when a planet passes in front of it (transit) [23].
When an exoplanet transits, it causes a slight yet detectable
decrease in the star’s brightness as viewed from Earth.
This dip is affected by the planet’s atmosphere, which
absorbs specific wavelengths of light. Analyzing this dip at
different wavelengths (also known as transit spectrum) helps
astronomers learn about the atmosphere’s composition and
properties. However, challenges like observational noise and
limited wavelength coverage can make gathering accurate
information and interpreting the data harder.

Atmospheric retrieval aims to deduce parameters that
yield the optimal mathematical fit to an observed transit
spectrum, employing a forward radiative transfer model and
optimization techniques. This is often characterized as an
‘‘inverse problem’’ [24] and aims to determine the posterior
probability distribution of possible atmospheric parameter
solutions given the acquired data. Within a Bayesian statis-
tical framework, the posterior represents the probability of
diverse atmospheric composition models aligning with the
observed spectrum, providing a probabilistic description of
the atmosphere knowledge acquired after accounting for prior
information and new observational evidence.

A. DATA AND METRIC
Our experiments utilize spectral data from the Ariel Big Chal-
lenge Database [9]. For data generation, the authors used A
LFNOOR [25], a tool designed to enhance the forward model
and atmospheric retrieval capabilities of TauREx 3 [26]
for large populations of exoplanet atmospheres. This tool
automates telescope simulations and large-scale atmospheric
retrievals, allowing the authors to produce for the ESA-Ariel
mission 105,887 simulated forward observations and 26,109
standardized retrieval outputs. This dataset thus provides
simulated observations of the light absorption patterns of
exoplanet atmospheres across a range of wavelengths. The
patterns in which different gases absorb wavelengths of
light are unique, allowing the spectral data to function
effectively as a proxy for atmospheric composition. This
dataset, containing 2972 confirmed and 2928 candidate
exoplanets, thus a total of 5900 unique objects, aims to
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provide a realistic sample of what data obtained from the
upcoming Ariel mission will produce. The task is to predict
the combined probability distributions of six fundamental
atmospheric properties - temperature and the logarithmic
abundances of five gases (water, carbon dioxide, carbon
monoxide, methane, and ammonia gas) - based solely on the
observed spectrum for a given exoplanet. These predictions
take the form of posterior distributions.

A commonly adopted choice to evaluate the performance
of predicted atmospheric parameter distributions is the Two-
Sample Kolmogorov-Smirnov (K-S) statistical test [27], [28].
The K-S test determines whether two data samples originate
from the same underlying continuous probability distribution.
The test is conducted with the null hypothesis assuming
that the two samples originate from the same distribution.
The test returns a score in the [0,1] range, where lower
numbers signify greater similarity between the samples
being compared, and a score of zero represents identical
distributions. Specifically, we calculate the K-S statistic for
each exoplanet individually, then average these values across
a separate holdout test set to evaluate the overall performance
of our models on new observational data.

IV. METHODOLOGY
This section outlines the key concepts that form the basis
of our proposed framework, Ex(o)plain. We aim to design
a model-agnostic methodology for identifying and charac-
terizing the predominant trends and patterns that underlie
degraded predictive capability when reconstructing exoplanet
atmospheric properties. To begin, we introduce an existing
deep learning-based technique previously applied in the
literature to infer atmospheric parameters from observational
data (Subsection Section §IV-A). While deep learning is
only one possible approach, understanding this method
provides a concrete context for the problem we aim to
analyze. We then investigate how our framework practically
explores the model’s predictions to identify and characterize
patterns (in terms of recurring subgroups) of mispredictions
(Subsection Section §IV-B). By extracting these subgroups,
our framework facilitates systematically exploring where
and why reconstruction degrades. Instead of concentrating
on a specific model or technique, our framework examines
prediction errors at a broader level, allowing us to extract
extensive insights applicable across diverse models.

A. ATMOSPHERIC PARAMETERS ESTIMATION
We analyze the model architecture presented in [17] to
demonstrate our proposed explanation technique. As shown
in Figure 1, this 1-dimensional convolutional neural network
(1D-CNN) approach leverages both the exoplanet’s spectral
observations and any available auxiliary planetary metadata
to infer the target atmospheric parameters.

The target available is provided as samples from the
ground truth distribution. To predict such a distribution,
we assume it follows a multivariate Gaussian distribution
with full covariance. This simplifying assumption allows for

a simple parametrization of the distribution and enables the
modeling of interactions across dimensions. The spectral
data is processed through a series of convolutional layers,
allowing the model to learn informative features directly
from this input modality. Meanwhile, for the auxiliary data,
an inverse transformation is applied, and the polynomials
up to degree 2 are extracted. Starting from the original
8 features, their procedure allows to obtain a total of
152 transformed auxiliary features, which are then fed
straight into a feedforward network to encode this contextual
information separately. The outputs from these two streams
are then combined to produce the final atmospheric parameter
prediction. An L1 loss function is used to minimize the
difference between predicted and ground truth distributions,
ensuring better convergence properties compared to KL
divergence. More details can be found in [17].

We adopt an ensemble modeling scheme to help address
potential variance issues of the approach proposed in [17]
and boost prediction stability. Specifically, we train multiple
instances of the base architecture on randomly sampled
subsets of the training data. We average the mean and
covariance predictions across all learners at inference time.
While this method treats each model as equally weighted
regardless of confidence, we find that even modest ensemble
sizes of around 5-10 learners significantly outperform relying
on a single model alone based on the empirical results
obtained.

We expect the models characterizing the ensembles to
display varying behaviors for different subgroups of the data
(as defined in the next section): this is because each learner
of the ensemble has been trained on a different sample of the
original training set, and has been initialized differently.

B. SUBGROUPS IDENTIFICATION
In our framework, we characterize data subgroups using
itemsets, which are collections of attribute-value pairs that
describe aspects of the data.

For the models under consideration, we define the
divergence of a data subgroup as the difference between a
model’s performance, i.e., its K-S score, on that subgroup and
its overall performance on the entire dataset.

We typically observe different performance for different
subgroups of data for a variety of reasons. Typically, the
divergence in performance occurs because some subgroups
are better represented in the training data (i.e., they are more
commonly observed) than others.

Similarly, the subgroup gain refers to the difference in
performance between two models for a specific subgroup.

When analyzing the exoplanet spectral data from Ariel [9],
we leverage the accompanying planetary metadata, which
includes eight interpretable attributes of star and planet
properties: star distance, stellar mass, radius and temperature,
planet mass, orbital period, semi-major axis, and surface
gravity. Since this metadata is continuous, we discretize
each attribute into ten bins of equal frequency for our
initial analysis. This decision strikes a nice balance between
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FIGURE 1. High-level architecture of the methodolgoy proposed in [17]. Spectral data is processed through a CNN, whereas the auxiliary data is
preprocessed and concatenated to the CNN’s output. A fully-connected neural network produces a mean vector and a covariance matrix.

subgroup granularity and interpretability. This level of
discretization provides sufficient detail to capture meaningful
variations in the data while ensuring that the resulting
subgroups remain interpretable and manageable for analysis.
This balance can be adjusted if needed based on specific
case-by-case considerations. We can systematically identify
recurrent patterns corresponding to high divergence and
subgroup gain values between models by representing the
data as items of attribute-value pairs. This provides insight
into how specific regions of the attribute space influence the
performance of reconstructions.

1) ITEMS AND ITEMSETS
Let D represent our dataset, A its set of metadata attributes,
and I its set of items. Each item is defined as a = v, where
a is an attribute ∈ A and v indicates the corresponding value.
Since v represents a range of values, it can be written as an
interval [x, y). As such, an alternative representation for the
item is a ∈ [x, y). For instance, if we consider attributes like
planet surface gravity and planet distance, examples of items
could be {planet_surface_gravity ∈ [13.10, 18.38) ms−2}
and {star_radius ∈ [1.62, 6.30) R⊙}.
The subgroup associated with a specific item refers to the

portion of the data that meets the criteria defined by that item.
For each attribute, the subgroups delineated by items should
partition the dataset distinctly without overlapping and should
collectively include all potential values of the attribute. For
instance, considering the ‘‘star radius’’ attribute, the specified
ranges should be non-overlapping, and together they should
cover all feasible radii within a predefined range.

An item enables slicing or selecting a subset of data
based on a single attribute. Moreover, we can conduct
multi-attribute slicing by employing itemsets, which are
collections of zero or more items. Each item within an

itemset corresponds to a unique attribute. For example,
an itemset could be represented as follows: {planet_mass ∈

[0.01, 0.02) MJ , star_radius ∈ [1.62, 6.30) R⊙}.
The support of an itemset I is defined as the fraction of

the dataset that satisfies the criteria specified by I . In other
words, it is the ratio of the subgroup size meeting the criteria
of I to the total size of the dataset. For example, an itemset
with a support of 0.01 indicates that it is present in 1% of
the dataset. The empty itemset, which represents the entire
dataset, has a support of 1.

2) SUBGROUP DIVERGENCE AND GAIN
We first define a statistic measure f to quantify the
performance in a specific modeling task. As previously
mentioned, we will use the Kolmogorov-Smirnov (K-S)
statistic as our metric f to evaluate predictions of atmospheric
parameters.

We formally represent the performance of a given model
M on any data subgroup, which we refer to as an itemset I .
We denote f (I ,M ) to indicate the value of the performance
measure f when model M is applied only to the examples
contained within the subgroup I . We introduce the concept
of divergence to capture differences in how well a model
behaves with specific subsets of the data compared to its
overall performance. Specifically, the divergence related
to a subgroup I for model M represents the difference
between the performance on subgroup I alone f (I ,M ) and
the performance when evaluated over the entire dataset D as
a whole f (D,M ). In formulas:

divf (I ,M ) = f (I ,M ) − f (∅,M ) . (1)

By quantifying the divergence, we aim to systematically
identify any subgroups where a model’s predictive capabili-
ties degrade noticeably or improve significantly relative to its
average behavior. As described in [8] and [20], this technique
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TABLE 1. Summary of dataset characteristics, including planetary and stellar auxiliary information and the corresponding unites of measure (UoM),
number of retrieved subgroups with DIVEXPLORER (on the test set), and average time in seconds (across ten runs) of DIVEXPLORER subgroup exploration.

provides insights into how attribute combinations that define
specific data cohorts influence reconstruction quality.

We also establish the concept of subgroup gain when
transitioning from modelM1 to modelM2 for a specific sub-
group I . This gain refers to the improvement in performance
achieved on the itemset I when modelM1 is substituted with
modelM2:

gainf (I ,M1,M2) = f (I ,M2) − f (I ,M1) . (2)

To identify meaningful itemsets with significant diver-
gence or gain values in our data, we leverage the DivEx-
plorer [8] tool. DivExplorer efficiently extracts all itemsets
exceeding a predefined support threshold while calculating
the associated divergence values. The support threshold
parameter plays a crucial role in focusing our analysis.
By setting a minimum level of data representation for
itemsets, e.g., by ensuring they cover at least 1% of the
dataset, we effectively filter out anomalies and retain patterns
that are sufficiently significant to be considered operationally
meaningful. DivExplorer also offers a redundancy pruning of
the identified subgroups so that if subgroups S and S ∪ {j}
have very close divergence, only S may be returned, the item j
not having a significant effect. The following analysis utilizes
a support threshold of 0.01 and a redundancy threshold of
0.03 to ensure that the retrieved subgroups are not entirely
overlapped.

Table 1 provides an overview of relevant dataset char-
acteristics and results from applying DivExplorer to our
scenario. It includes details on the type of planetary and stellar
metadata available as auxiliary information, the number
of unique frequent subgroups identified by DivExplorer,
i.e., those subgroups exceeding the support threshold, and
the average runtime in seconds to perform the exhaustive
subgroup exploration process across ten experimental runs.

3) SHAPLEY VALUES FOR LOCAL AND GLOBAL
CONTRIBUTION
After having identified subgroups exhibiting significant
divergence or gain through DivExplorer, we also aim to
understand each attribute-value pair’s, or item’s, contribution
to those metrics. Building upon principles from [8], we intro-
duce the concept of an item’s contribution to the overall
metric value g(I ) of a subgroup I , where g represents either
divergence or gain.

To quantify these individual item contributions, we adopt
concepts from game theory by leveraging the Shapley values.
In a team I of players, the Shapley value of i ∈ I represents
the value added by i, and is measured as the average of
g(J [: i+])−J [: i−] over all permutations J of I , where J [: i+]
is the prefix of J up to and including i, and J [: i−] is the
prefix of J up to and excluding i. For a given subgroup I
exhibiting divergence/gain, each constituent item i is assigned
a Shapley contribution value sg(i, I ) that captures the notion
of how much i contributed to the divergence or gain of S.
Notably, the sum of all item Shapley values within I will
precisely equal the overall divergence or gain metric, i.e.,∑

i∈I sg(i, I ) = g(I ).
In addition, we examine an item i’s global Shapley

value, denoted Sg(i), which captures its average impact
when included in all compatible subgroups. This provides a
complementary view of how impactful an attribute-value pair,
i.e., an item i, tends to be across the entire dataset, on average.

Collectively, the contributions of Shapley-based item
analyses and global values enable a systematic exploration of
the factors influencing non-negligible variations or improve-
ments within subgroups.

V. EXPERIMENTAL RESULTS
We evaluate the effectiveness of our proposed Ex(o)plain
framework through several analyses. First, we demonstrate its
advantages in identifying granular and human-understandable
challenging subgroups compared to traditional clustering
techniques (§V-A). Second, we show its ability to uncover
and characterize factors contributing to erroneous predic-
tions for the ensemble model (§V-B) and one individual
weak learner (§V-C). Third, we conduct a comparative
subgroup-level assessment of the performance of different
models to identify their differing areas of success and
failure. We specifically compare at the subgroup level the
ensemble vs. an individual learner (§V-D) and two weak
learners (§V-E). Finally, we examine the overall influence
of metadata attributes on model performance using global
Shapley values (§V-F).

Experiments were run on a machine equipped with Intel®

CoreTM i9-10980XE CPU, 2 × Nvidia® RTX A6000 GPU,
128 GB of RAM running Ubuntu 22.04 LTS. We provide
detailed information about the model used for the evaluation
and the training procedure in the official project repository.
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FIGURE 2. K-S statistic computed as the number of estimators in an ensemble increases (lower is better).
The estimated parameters are obtained as the average across all learners. Error bars are obtained as the
95% confidence interval when running the experiment 10 times, with different initializations and train/test
splits.

TABLE 2. Top-3 highest negatively divergent subgroups on performance for the ensemble. The score column denotes the K-S statistical test, 1score the
divergence w.r.t. the performance on the whole set, while t indicates the Welch’s t-test score.

To begin, we demonstrate that employing an ensemble
of models yields a notable boost in predictive accuracy
w.r.t. individual classifiers, as quantified via K-S tests across
multiple trials. Figure 2 illustrates this aspect, showing the
balance between computational demands and predictive gains
as the number of models in the ensemble increases. We find
an ensemble size of approximately 5 achieves a reasonable
trade-off between the computational cost required and the
quality of the obtained performance. The KS improvement of
approximately 0.02 when using an ensemble is statistically
significant, as evidenced by the confidence intervals shown
in the plot (Figure 2). Further, ensembling allows for a
comparative study of individual models versus the ensemble,
providing a nuanced understanding of performance enhance-
ments and trade-offs at the subgroup level. With this in mind,
the subsequent experimental analyses thus focus on studying
a 5-model ensemble compared to a single baseline model
(§V-D) or two weak learners together (§V-E).

A. COMPARISON WITH CLUSTERING
To assess the effectiveness of our approach compared to
classical unsupervised clustering methods like K-Means,

we investigate more granular subgroup definitions and
compare the two approaches as such granularity changes.
We extract, for both techniques, a number of subgroups
ranging from 60 to 220. This range of values provides
a reasonable number of subgroups that can be manually
analyzed by a domain expert in a reasonable amount of
time. For K-Means, we directly vary the number of extracted
subgroupsK . For DivExplorer, we vary the minimum support
threshold so as to extract the desired number of subgroups.
We consider, for each set of extracted subgroups, the average
and the maximum divergence across all subgroups. This
information is indicative of the usefulness of the extracted
result since we aim to identify the most diverging subgroups.

Figure 3 highlights the differences between the two
approaches. DivExplorer identifies more divergent results
(both in terms of average, as well as maximum divergence)
when the number of extracted subgroups is low. K-Means,
instead, produces better representations (only in terms of
maximum divergence identified) when a large number of
subgroups is extracted. This is an interesting behavior that
is worth noting. However, it should be pointed out that
keeping the number of extracted subgroups low is generally
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FIGURE 3. Maximum divergence (continuous lines) and mean divergence
(dashed lines) for the subgroups extracted with D IVE XPLORER (blue lines)
and K-Means (red lines), as the number of extracted subgroups increases.
Larger values mean that more problematic groups are discovered.
A smaller number of subgroups is desired, since it can be more easily
examined by domain experts.

desired since it provides a more succinct overview of
the problem without overloading the domain expert with
excessive information.

As such, we find DivExplorer to be the generally better
alternative in terms of the usefulness of the extracted
subgroups. Additionally, we emphasize that DivExplorer sub-
groups are generally more interpretable than those extracted
with K-Means since they provide only information on spe-
cific slices of interest of the metadata under analysis instead
of providing a (generally hard-to-interpret) ‘‘centroid’’. Thus,
without sacrificing performance, we achieve granular and
human-understandable subgroups. Due to these reasons,
we obtain subgroups via DivExplorer in the following
analyses.

B. INDIVIDUAL MODEL ANALYSIS: ENSEMBLE
As an initial demonstration of our framework’s capabilities,
we consider the ensemble model and detect and characterize
all subgroups that either underperform or outperform relative
to the average behavior on the entire dataset. Note that the
number of samples considered in the explored subgroups is
sufficient in both the train and test sets, as confirmed by
Welch’s t-test. The same conclusion also holds regarding
the largest gains and drops in performance (Sections V-D
and V-E). The subgroups showing the most significant
changes in performance have been thoroughly analyzed, and
Welch’s t-test further supports that the sample sizes are
sufficient for both training and testing.

1) NEGATIVE DIVERGENCE
We start by investigating the origins of errors made by
the ensemble model. In Table 2, we present details on the
top 3 itemsets exhibiting the most statistically significant

negative divergence from the average performance, as mea-
sured with Welch’s t-test score.

Interestingly, we find that the planet’s surface gravity
highly impacts the results. It appears in all three most
negatively divergent subgroups, with values falling within the
ranges of either 13.10 to 18.38 ms−2 or 4.36 to 5.58 ms−2.

The largest drop in performance of 0.076 is observed when
considering planets with orbital periods from 34.76−731.94
days and surface gravities from 13.10 to 18.38 ms−2. This
subgroup analysis thus points to surface gravity, particularly
its intermediate values, as prominently related to degraded
prediction quality for specific planetary configurations.

When examining underperforming subgroups, it is also
important to understand the relative influence of each meta-
data attribute in contributing to or reducing the divergence.
As defined in Section IV, we quantify this significance
using Shapley values. Figure 4 plots the Shapley values
within the three most negatively divergent subgroups listed
in Table 2. The analysis reveals that within the first subgroup
(Figure 4(a)), a high planet orbital period influences the
performance more than the surface gravity. In the second
and third subgroups (Figures 4(b) and 4(c)), the planet’s
semi-major axis has a greater influence compared to surface
gravity. This Shapley value attribution provides deeper
context on the subgroups, indicating planet’s orbital period or
semi-major axis may play a more pivotal role than its surface
gravity alone in certain configurations.

2) POSITIVE DIVERGENCE
In addition to retrieving sources of degraded performance,
our framework also enables the identification of subgroups
where the model (i.e., the ensemble in our analysis) notably
outperforms its average predictions. Table 3 lists the three
subgroups exhibiting the most improved scores. As can be
seen, these subgroups contain attributes descriptive of both
the host star and planet. The largest boost in performance
quantified as |0.055| is seen in the subgroup defined by
stellar radius ranging from 1.21 to 1.35 Solar Radii R⊙ and
planetary semi-major axis spanning 0.04 to 0.05 AU . This
demonstrates our approach is effective in identifying not only
error-prone patterns but also cases where certain traits lead to
significantly enhanced prediction quality.

Interestingly, the item ‘‘planet semi major axis ∈

[0.04, 0.05) AU’’ defines one of the best-performing sub-
groups as well as one of the worst, as shown previously in
Table 2. Analyzing the Shapley values for each variable’s
contribution to subgroup divergence (Figure 5) reveals the
relative contribution of each item within these positively
divergent subgroups. In the most positively divergent sub-
group (Figure 5(a)), the host star radius has a greater impact
on performance than the planet’s semi-major axis. Similarly,
for the second-best subgroup (Fig. 5(b)), stellar properties are
more influential drivers of the enhanced prediction quality.
In contrast, planetary attributes outweigh stellar factors
for the third-best subgroup (Fig. 5(c)). Once again, this
Shapley analysis provides nuanced insight, showing how star
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FIGURE 4. ENSEMBLE. Item contribution to the final score for (a) the subgroup with
the highest negative divergence (the lower the score, the better), (b) the second, and
(c) the third.

TABLE 3. Top-3 highest positively divergent subgroups on performance for the ensemble.

and planet attributes differently shape model performance
depending on the precise configuration.

C. INDIVIDUAL MODEL ANALYSIS: WEAK LEARNER
Here, we replicate the analysis for debugging an individual
weak learner model, rather than an ensemble model. Since
our approach is entirely model agnostic, we can examine
the behavior of any model, requiring only its set of final
predictions. This analysis provides additional context on
how challenging subgroups for single models may be
mitigated through our proposed framework by systematically
evaluating their performance at the subgroup level.

1) NEGATIVE DIVERGENCE
We consider the origins of errors made by an individual weak
learner. Table 4 details the top 3 subgroups exhibiting the

worst statistically significant performance compared to the
average behavior.

Notably, we observe that the top two identified subgroups
are consistent with those previously observed in the ensemble
model, as indicated in Table 2. This suggests that the ensem-
ble model encounters challenges with the same subgroups
where an individual weak learner struggles, even though
the ensemble consistently outperforms the individual model.
Interestingly, the degree of divergence (represented by 1score
in the table) between the two models is not significantly
different; for the first subgroup, it’s 0.076 for the ensemble
(see Table 2) and 0.077 for the individual model. Similarly,
for the second subgroup, we obtained a 0.075 1score for the
ensemble and 0.076 for the individual model.

The most substantial decline in performance, a drop of
0.077, thus occurs when examining planets with orbital
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FIGURE 5. ENSEMBLE. Item contribution to the final score for (a) the subgroup with the
highest positive divergence (the lower the score, the better), (b) the second, and (c) the third.

TABLE 4. Top-3 highest negatively divergent subgroups on performance for a weak learner.

TABLE 5. Top-3 highest positively divergent subgroups on performance for a weak learner.

periods ranging from 34.76 to 731.94 days and surface
gravities from 13.10 to 18.38 ms−2.

As we have previously highlighted, when assessing under-
performing subgroups, it is also crucial to understand the
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FIGURE 6. WEAK LEANER. Item contribution to the final score for (a) the subgroup with the highest
negative divergence (the lower the score, the better), (b) the second, and (c) the third.

relative importance of each metadata attribute in contributing
to or reducing the performance divergence. We measure
this importance using Shapley values. Figure 6 depicts the
Shapley values within the three most negatively divergent
subgroups as listed in Table 4.
This analysis reveals that in the first subgroup (Figure 6(a)),

a high planet orbital period carries more explanatory weight
than surface gravity. In the second and third subgroups
(Figures 6(b) and 6(c)), the planet’s semi-major axis yields
a higher influence compared to surface gravity and mass,
respectively.

2) POSITIVE DIVERGENCE
As we have already anticipated, our framework does not just
identify sources of decreased performance and allows us to
detect subgroups where the model performs notably better
than its average predictions. This demonstrates Ex(o)plain’s
effectiveness in providing interpretable insights into where
the model excels at a granular data level.

Table 5 presents the top three configurations that exhibit
the most significant improvement scores for the weak learner
under analysis. These subgroups include attributes of both

the host star and the planet. However, in contrast to the
negatively divergent subgroups, the ones identified here are
very different from those found for the ensemble model,
as shown in Table 3. This implies that the subgroups where an
ensemble exhibits improved performance are not necessarily
the same as those where its individual weak learners perform
at their best.

The most substantial performance boost, quantified at
0.057, is found in the subgroup defined by a stellar distance
ranging from 244.97 to 348.43 pc and a planetary orbital
period spanning from 2.78 to 3.66 days.

By looking again at the Shapley values, in the top subgroup
(Figure 7(a)), the host star’s distance has a more significant
impact on performance than the planet’s orbital period.
Similarly, for the second-best subgroup (Figure 7(b)), stellar
properties play a more substantial role w.r.t. planetary ones in
driving the improved prediction quality.

D. MODELS COMPARISON ANALYSIS: ENSEMBLE VS.
WEAK LEARNER
Overall, the ensemble’s score of 0.336 improves upon the
single model’s 0.347, indicating better predictive quality.
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FIGURE 7. WEAK LEARNER. Item contribution to the final score for (a) the subgroup with the highest
positive divergence (the higher the score, the worse), (b) the second, and (c) the third.

TABLE 6. Performance gain when transitioning from individual to ensemble models on itemsets where performance increases the most (↑),
decreases (↓), or remains equal (=).

We recall that lower values for the K-S test indicate
better performance. This increase in score further suggests
that the ensemble indeed surpasses the individual learners’
performance.

To analyze subgroup dynamics, we calculate the gain as
the difference in performance between single and ensemble
models within each data cohort. Our analysis found perfor-
mance increased in 91.83% of the retrieved subgroups and

decreased in the 8.16% of them. This indicates that while the
overall K-S score of the ensemble approach is better than the
one of the single model, as shown in Figure 2, there are some
subgroups for which performance decreases. One possible
explanation for this behavior is that the characteristics of
such subgroups may not be well-captured by the ensemble,
leading to a lack of consensus among the models, which
can reduce the ensemble’s ability to generalize. Figure 8
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TABLE 7. Performance gain when changing one individual weak learner with another on itemsets where performance increases the most (↑),
decreases (↓), or remains equal (=).

FIGURE 8. Distribution of gain ensemble-individual. Cross-hatched green
denotes performance improvement when going from the individual
model to the ensemble (the lower the score, the better), while red
indicates performance decrease.

depicts this gain distribution when transitioning from the
individual weak learner to the ensemble model, with
green cross-hatching indicating improved subgroups and red
worsening.

Table 6 highlights the top subgroups where transitioning
to the ensemble most significantly increases (↑), negli-
gibly changes (=), or decreases (↓) performance. The
largest improvement (−0.041) involved planets with surface
gravities in [18.38, 244.88) ms−2 orbiting stars of radii
[1.62, 6.30) R⊙. This comparative analysis at the subgroup
level reinforces the ensemble’s ability to enhance predictions
across diverse planetary configurations.

As with prior analyses, these subgroups formed by com-
bining planetary and stellar features exhibit varying behavior
across different models. To gainmore insights and understand
which attributes contribute the most, we investigate Shapley
values, that quantify each feature’s influence on subgroup
gain when transitioning from one model (i.e., the weak
learner) to the other (i.e., the ensemble).

Figure 9 shows Shapley values within the largest positive
(Figure. 9(a)) and negative (Figure 9(b)) gain subgroups.
In the subgroup with the most improved performance, stellar
radius has a greater effect than planetary surface gravity
or semimajor axis. Interestingly, in the second subgroup,
where individual and ensemble performance us unchanged,

planetary mass clearly contributes more than the stellar radius
(Figure 9(b)).

E. MODEL COMPARISON ANALYSIS BETWEEN TWO
WEAK LEARNERS
We conduct here an additional comparative analysis between
two distinct individual weak learners rather than against the
ensemble model. We aim to highlight the advantages and
limitations observed when substituting one baseline model
for another. By exploring subgroup performance behavior
between weak learners without ensemble averaging, our
goal is to provide further context on how model selection
impacts predictions across diverse exoplanet configurations.
Such analyses offer complementary insight to the previous
experiments benchmarking individual models against ensem-
bles, reinforcing the effectiveness of our proposed framework
for conducting detailed, interpretable debugging of model
behavior at a granular level.

We compare a weak model with an overall score of
0.347 and another model with a K-S score of 0.352. While
we could have compared any two models, we chose models
with similar K-S scores for this comparison. Similar results
and insights can be observed with different models as well.
At the overall level, these two models are quite similar
in performance. We recall that in the K-S test, lower
values indicate better performance. Our analysis revealed
that transitioning from the first to the second model is
advantageous for 32.01% of the examined subgroups while
not for 67.98% of them.

Figure 10 illustrates this gain distribution when transi-
tioning from one individual weak learner to the other, with
green cross-hatching indicating improved subgroups and red
signifying a decline.

Table 7 highlights the top subgroups where the transition
from the first weak learner model to the second most
significantly increases (indicated by ↑), negligibly changes
(indicated by =), or decreases (indicated by ↓) performance.
The most notable improvement (a reduction of −0.027) is
observed in the subgroup comprising planets orbiting stars
with radii in the range of [1.21, 1.35) R⊙ and temperatures in
the range of [6234.80, 10170.00)K . Interestingly, the highest
decrease in performance (equal to 0.048) is found in the
subgroup including the same two metadata, but with different
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FIGURE 9. SUBGROUP GAIN. Item contribution to the gain when comparing the ensemble with individual
models. (a) the subgroup with the highest improvement when transitioning to the ensemble, (b) the subgroup
for which the models perform equally, and (c) the subgroup with the highest decrease.

FIGURE 10. Distribution of gain individual-individual. Cross-hatched
green denotes performance improvement when going from the first weak
learner model to the second (the lower the score, the better), while red
indicates performance decrease.

range values (stars with radii in the range of [1.62, 6.30) R⊙

and temperatures in the range of [4830.40, 5187.00) K ).

F. GLOBAL DIVERGENCE
We finally provide a global evaluation of each item’s impact
on two facets: the performance of the ensemble model,
and the performance gain achieved when transitioning from
individual to the ensemble model. This assessment uses
global Shapley value Sg(i), where positive values indicate
including an item i in subgroup I (when the item i ̸∈ I )
typically degrades predictive performance.

Figure 11 depicts the 15 items with the strongest per-
formance influence on the ensemble based on Sg. The
greatest gains are observed for narrow ranges of small planet
semi-major axis (i.e., ∈ [0.06, 0.07) AU ) and surface gravity
(i.e., [8.19, 9.51) ms−2). Conversely, higher range values for
these attributes relate to decreased K-S scores.

Additionally, Figure 12 displays the top 15 items most
substantially impacting gain when transitioning from the
weak individual model to the ensemble model based on
such global Shapley values. Differently from before, this
comparison shows that the greatest improvements and
degradations are linked to host star characteristics. The
peak increase is associated with high stellar temperatures
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FIGURE 11. Global Shapley values of the top-15 items for the ensemble. Cross-hatched green denotes
performance improvement, while red indicates performance decrease.

FIGURE 12. Global Shapley values (top-15 items) of the gain when transitioning from individual to ensemble.
Cross-hatched green denotes performance improvement, while red indicates performance decrease.

in the range of 5806.00 to 5926.50 K . Conversely, the
highest reductions involve stars with a relatively small mass
([0.89, 0.93)M⊙) and radii showing either [0.81, 0.87) R⊙ or
[0.72, 0.81) R⊙ ranges.

VI. CONCLUSION
In this work, we explored the adoption of interpretability
techniques to offer descriptions of the situations of degraded
performance that can occur when estimating atmospheric
parameters of exoplanets. We do so by identifying frequent
subgroups (as defined by auxiliary data regarding the
star/planet system) for which a significant variation in
performance can be observed.

Although the proposed results concern a synthetic dataset,
we argue that the same technique can and should be used to
provide better insights regarding the contexts that can pro-

duce degraded (or improved) reconstructions. This is helpful
both as a way of weighting the results obtained (as well as
their validity) and for identifying situations in the current
experimental design that could benefit from additional work.

We additionally show that ensembles of learners, as is well
known in the literature, produce overall better performance
when compared to single weak learners. We further provide
descriptions of the most relevant changes in subgroups’
performance that justify this change.

We plan on further expanding the process of identifying
degraded performance to produce more meaningful descrip-
tions that do not rely on the discretization of the available
auxiliary information. We are also interested in improving
the performance of the learners adopted by, for example,
leveraging loss functions that better reflect the nature of the
estimated parameters.
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