
27 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

3D Semantic Novelty Detection via Large-Scale Pre-Trained Models / Rabino, Paolo; Alliegro, Antonio; Tommasi,
Tatiana. - In: IEEE ACCESS. - ISSN 2169-3536. - (2024), pp. 1-1. [10.1109/ACCESS.2024.3464334]

Original

3D Semantic Novelty Detection via Large-Scale Pre-Trained Models

Publisher:

Published
DOI:10.1109/ACCESS.2024.3464334

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992786 since: 2024-09-25T17:27:08Z

IEEE



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.1120000

3D Semantic Novelty Detection
via Large-Scale Pre-Trained Models
PAOLO RABINO1, 2, (Student Member, IEEE), ANTONIO ALLIEGRO1, (Student Member, IEEE),
TATIANA TOMMASI1, (Member, IEEE)
1Polytechnic of Turin, Italy
2Italian Institute of Technology, Italy

Corresponding author: Paolo Rabino (e-mail: name.surname@polito.it).

A.A. acknowledges the EU project ELSA - European Lighthouse on Secure and Safe AI. T.T. acknowledges FAIR - Future Artificial
Intelligence Research and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E
RESILIENZA (PNRR) - MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 - D.D. 1555 11/10/2022, PE00000013). All the authors
acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support
through the IscrB_MAD-2D3D project.

ABSTRACT Shifting deep learning models from lab environments to real-world settings entails preparing
them to handle unforeseen conditions, including the chance of encountering novel objects from classes that
were not included in their training data. Such occurrences can pose serious threats in various applications. The
task of Semantic Novelty detection has attracted significant attention in the last years mainly on 2D images,
overlooking the complex 3D nature of the real-world. In this study, we address this gap by examining the
geometric structures of objects within 3D point clouds to detect semantic novelty effectively.
We advance the field by introducing 3D-SeND, a method that harnesses a large-scale pre-trained model
to extract patch-based object representations directly from its intermediate feature representation. These
patches are used to characterize each known class precisely. At inference, a normalcy score is obtained by
assessing whether a test sample can be reconstructed predominantly from patches of a single known class or
from multiple classes. We evaluate 3D-SeND on real-world point cloud samples when the reference known
data are synthetic and demonstrate that it excels in both standard and few-shot scenarios. Thanks to its patch-
based object representation, it is possible to visualize 3D-SeND’s predictions with a valuable explanation
of the decision process. Moreover, the inherent training-free nature of 3D-SeND allows for its immediate
application to a wide array of real-world tasks, offering a compelling advantage over approaches that require
a task-specific learning phase. Our code is available at https://paolotron.github.io/3DSend.github.io.

INDEX TERMS 3D Point Clouds, Semantic Novelty Detection, Out-Of-Distribution Detection, Training-
free

I. INTRODUCTION
Semantic Novelty Detection (SeND) consists of identifying
instances of object categories not previously observed in a
reference dataset. This task involves analyzing the semantic
image content to determine whether it contains unfamiliar
information. Despite the widely acknowledged success of
deep learning models, SeND offers them several challenges
when shifting from the constrained laboratory setting to the
open world. In this scenario, recognizing novelty is crucial in
ensuring the model’s reliability and safety.

Traditional Out-of-Distribution (OOD) detection ap-
proaches focus on mitigating classification over-confidence
but they often overlook the distinction between domain and
semantic novelty which leads to rejecting instances of known

classes appearing with a different visual style [1]–[4]. More-
over, these approaches are not suitable for many practical
applications where the learning agent has access to limited
computational resources that constrain the training phase, and
the reference dataset that exemplifies normalcy is composed
of only a few object exemplars.

A recent trend consists of leveraging large-scale pre-
trained models and fine-tuning them on the reference set.
However, this process may be suboptimal as fine-tuning can
lead to catastrophic forgetting, reducing the generalization
ability of the original model rather than supporting novelty
recognition [5], [6]. Alternative solutions adopt a zero-shot
approach by exploiting vision-language foundation models
[7], [8]. This strategy has the advantage of avoiding any
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further learning process as the test samples are compared
directly to textual class names used as prototypes in the shared
embedding space. More recently, prompt engineering has
been proposed to add refined linguistic descriptions of the
known classes, which however either require manual tuning
or re-introduces a training phase [9]–[11].

Overall, research in the field of novelty detection has at-
tracted a lot of attention in the last years mainly for 2D
data types [12], [13]. Only recently the introduction of the
3DOS benchmark [14] for 3D Open-Set recognition and the
described challenges of adapting 2D OOD detection methods
to 3D data started to call for new 3D solutions. At the same
time, the emergence of vast multi-modal datasets featuring
3D modality, such as Objaverse [15], is transforming the
3D research landscape, showcasing how large deep learning
models can support reasoning on 3D data [16], [17]. This shift
paves the way to explore foundation-model-based training-
free strategies for OOD detection on 3D data. Indeed, strate-
gies that do not require learning on tailored task-specific data
collections sound well suited for 3D data as the costs of data
collection and model training increase with data dimension-
ality.

In this work, we present a comprehensive examination
of large-scale pre-trained models, discussing how their
latent representation can be efficiently and effectively ex-
ploited for 3D semantic novelty detection. We focus on a
challenging SeND setting that mimics a typical industrial sce-
nario where the reference set consists of a few curated 3D syn-
thetic data, while the test samples are derived from real-world
scans captured by on-site 3D sensors. These scans exhibit
a different visual domain compared to the curated synthetic
data and encompass samples from both known categories
present in the support set and novel unknown ones. To tackle
the task we introduce 3D-SeND, an innovative method
that utilizes large-scale pre-trained 3D feature encoders
for extracting patch-based representations of 3D objects.
These representations capture both local and global attributes
of objects and we use their co-occurrence to devise a tailored
novelty score. We perform an extensive analysis assessing the
role of different pre-training networks and objectives, further
considering score variants, and show experimentally that 3D-
SeND excels in the separation of known and unknown test
samples without requiring a tailored fine-tuning phase on the
reference set. Remarkably, 3D-SeND surpasses competing
methods, demonstrating exceptional performance even in sce-
narios where the reference data is scarce. Furthermore, its de-
sign based on discovered semantically relevant (i.e., a leg of a
table) and geometrically significant (i.e., a cylinder) patches,
provides visualizations that make it inherently explainable.

We believe that our new solution to leverage the knowledge
captured by 3D foundation models will serve as a stepping
stone to enhance the dependability of artificial intelligence
approaches for open-world applications.

II. RELATED WORKS
Out-of-distribution detection is an umbrella term for many
subcategories of methods designed to identify novelty at in-
ference time. Part of the differences among these categories
originate from the source of novelty (i.e. due to covariate
or semantic shift) while others relate to the exact experi-
mental setting. The basic OOD detection framework consists
of a simple binary task that separates samples belonging to
a known reference distribution from samples drawn from
a different unknown one. The instances of the first group
are often identified as In-Distibution (ID) samples and they
may be structured in multiple classes. Discriminating among
these classes while rejecting novelty is indicated as Open Set
Recognition. Finally, the focus of Anomaly Detection is on
locating abnormal parts within a scene or an object instance.
In industrial applications, thismeans training amodel for each
object class to spot possible components (e.g. defective parts)
that deviate from the reference normalcy.
In this work we are interested in Semantic Novelty de-

tection, thus we overview those methods in the OOD de-
tection literature that can be used with the binary objective
of recognizing whether a new sample belongs to one of the
known classes or not, neglecting domain or style variations. A
simple strategy consists of relying on the Maximum Softmax
Prediction (MSP) of a classifier trained on the ID reference
data [1]. Other approaches have followed the same post-hoc
paradigm exploiting a classifier output by introducing tem-
perature scaling to reduce overconfidence [2], energy scores
that estimate the probability density of the input [3], leverag-
ing the norm of the network gradients [12], or rectifying the
network activations [13]. The outlier exposuremethods [18]–
[21] assume the availability of either real or synthetically
generated OOD examples during training but present limited
generalization abilities. Density and reconstruction methods
explicitly model the distribution of known data. This can
involve learning a generative model for input reconstruction
[22] or exploiting a likelihood regret strategy [23]. Distance-
based methods exploit a learned feature embedding and eval-
uate sample distances by using the L2 norm [24], layer-wise
Mahalanobis [25] or similarity metrics based on Gram [26]
matrices.
In real-world applications, efficiency and robustness are

pivotal, and three-dimensional reasoning is essential for
agents interacting with their environment. Therefore, meth-
ods that can elaborate on 3D data for detecting novelty, re-
quiringminimal learning effort, and exhibiting broad transfer-
ability and generalization across tasks should be prioritized.
A few recent works have started to propose training-free
OOD detection strategies in the 2D literature by exploiting
the representation learned by large-scale pre-trained models
[7], [27]. This logic has been also applied for 2D anomaly
detection with promising results [28]–[30]. Despite these
progresses in 2D, the research on OOD detection and SeND
on 3D data is still in its infancy and deserves much more
attention [31]–[35]. Indeed, as shown by the thorough OOD
detection benchmark pursued in [14], 2D methods extended
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FIGURE 1. Schematic visualization of the three main components of 3D-SeND and the associated research questions. Left: we start from a model
pre-trained on a large-scale dataset capable of extracting semantically and geometrically relevant patch embeddings from point clouds. Middle: the
embeddings extracted from the support set are collected into a memory bank encoding known classes. Right: at test time we extract patch embeddings
from any new sample and compare them with the memory bank. If the nearest neighbors of the test patches in the memory bank are far away and the
associated class labels show high entropy the score will suggest novelty (OOD), while a sample composed of patches with low distances and low entropy
will be recognized as belonging to a known class (ID).

to 3D data are only mildly effective. A 3D approach based on
part composition learning with outlier exposure for Open Set
Recognition recently appeared in [36]. Although reasoning
on object parts sounds promising, it falls short in addressing
cross-domain scenarios and still necessitates ad-hoc training
on task-specific ID reference data.

With our work, we explain how relevant 3D object patches
and their relations can be extracted from the latent represen-
tation of large-scale pre-trained models and can be effectively
used for SeND without requiring any further training.

III. METHOD
In SeND we are provided with annotated samples S =
{xsi , ysi}Ni=1 where ysi ∈ Ys = {1, . . . ,C} indicate the label
set, and we are asked to evaluate whether a test sample xt

belongs to an observed object class in Ys or not. We name
the reference annotated dataset S as support set and Ys as
known classes. The unlabeled data T = {xtj}Jj=1 define the
test set with ytj ∈ Yt = {1, . . . ,C ,C + 1, . . . ,K} where all
the classes in Yt\s are indicated as unknown.
Our method, named 3D-SeND, comprises three key com-

ponents, as illustrated in Figure 1. The first is the pre-
training. Unlike standard approaches that train a model on
the support set S, we leverage the expressive feature repre-
sentation from a large-scale pre-trained model, eliminating
the need for task-specific training. The choice of dataset,
learning objective, and network architecture for pre-training
may have varying effects on the downstream SeND task.
The second component is the procedure for patch feature
extraction which is used for both the support set and the
test samples. This involves using the large-scale pre-trained
feature encoder and selecting a specific layer within the net-
work hierarchy to extract embeddings that represent portions
of the input point cloud. In particular, the patch embeddings
collected from the support set are organized in a memory
bank that embodies the concept of known classes for the
task at hand. Finally, the third component is the scoring
function. For each of the patch features extracted from a test
sample, we evaluate the distance to its nearest neighbor in the

memory bank and its label. These two pieces of information
are combined into a score that reflects the level of confidence
in assigning the test sample to one of the known classes.
In the following subsections, we describe each of these

components in more detail.

A. LARGE-SCALE PRE-TRAINING
3D-SeND leverages models that have encoded comprehen-
sive knowledge about the structure of object point clouds
within their latent representation. We consider two families
of models, that are respectively trained on single-modal and
multi-modal data. The first includes two point cloud encod-
ing backbones trained for object classification with standard
cross-entropy loss function on the Objaverse-LVIS dataset
[37] containing 47K samples from 1156 semantic categories.
Specifically, the architectures are PointNet++ [38] (1.50M
backbone parameter) and EPN [39] (8.10M), with the lat-
ter chosen for its peculiar ability to learn SE(3)-equivariant
features. The second family includes OpenShape [16] and
Uni3D [17] which mainly differ from each other for the
number of backbone parameters, respectively 32.33M and
88.96M. They are both pre-trained with a contrastive objec-
tive across three distinct input modalities (point cloud, image,
and text) on an ensemble of four datasets (Objaverse [15],
ShapeNet [40], ABO [41], 3D-Future [42]), resulting in 876K
training shapes from 21K semantic categories.

B. PATCH FEATURE EXTRACTOR AND MEMORY BANK
Point-based backbone architectures employ a hierarchical
approach to encode point clouds. They begin by capturing
local features that represent detailed geometric structures
from small neighborhood areas within the point cloud. These
local features are then progressively aggregated into larger
units, forming more semantic, higher-level features. As the
network delves deeper, the receptive field of its layers broad-
ens, enabling the deeper layers to model increasingly larger
segments of the input point cloud. 3D-SeND is designed to
extract local geometric features, also referred to as patch
embeddings, from the internal feature representations of a
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specific network layer. Selecting a particular layer for this
extraction means choosing the granularity of the patches.

More formally, given an input point cloud x and a 3D
network ϕ, we denote the output feature map from its l-th
layer as ϕl(x) ∈ RPl×Cl . This tensor can be interpreted as
a collection of patch embeddings {vk}Plk=1, where Pl is the
number of patches extracted at the l-th layer, each with a
feature descriptor with a dimension of Cl . Depending on the
chosen architecture and the specific value of l, each vector
vk captures information about a distinct-sized portion of the
3D shape. For PointNet++, we use the multi-scale grouping
classification backbone and extract patch embeddings after
the l-th Set Abstraction (SA) layer. In this case, the number
of patch embeddingPl obtained from each input point cloud is
equal to the number of FPS points at the chosen SA layer. EPN
exploits a point convolutional operator functioning within a
discretized space of SO(3) rotations. Each convolutional layer
produces a feature map of size (Pl × R × Cl), where Pl
represents the number of FPS points at the l-th layer, R de-
notes the fixed number of explicit rotations, and Cl represents
the number of output channels. To extract patch embeddings
from a specific layer, we employ a symmetric max function to
aggregate information across the rotation dimension R, thus
obtaining a (Pl × Cl) output tensor. Unlike PointNet++ and
EPN, the patch embeddings of OpenShape and Uni3D corre-
spond to the tokens output of the transformer blocks, and their
number Pl remains constant throughout the network’s depth.
Due to the self-attention mechanism, as tokens pass through
successive layers (or transformer blocks), they gather and
integrate information from other tokens, modeling increasing
portions of the input shape.

By feeding the support set S to any of the described frozen
large-scale pre-trained models, having chosen a specific layer
l, we obtain a set of patch-class pairs {vsk , ysk}

Pl×N
k=1 . Here each

patch embeddings is annotated with the label of the object
sample from which it has been extracted. These pairs are
aggregated into a unified memory bank, denoted as M, and
used as a reference to evaluate whether a test sample belongs
to a known class.

C. SCORING FUNCTION
For each test sample xt , we extract a set of patch embeddings
ϕl(xt) = {vk}Plk=1. Subsequently, for each patch, we perform
nearest neighbormatchingwith samples stored in thememory
bank and we define:

δ(vk) = min
vs∈M

d(vk , vs), (1)

λ(vk) = ysv∗ , where v
∗ = argmin

vs∈M
d(vk , vs) . (2)

Here, δ(vk) is the Euclidean distance of vk to the nearest patch
in the memory bank M, and λ(vk) denotes the class label of
the nearest patch v∗ in the memory bank M. We use them
to obtain the average distance of sample xt to the support
set class ys, aggregating distances of patches whose nearest

neighbors share the same label:

Dys(xt) =
1

Pl

Pl∑
k=1

δ(vk)1λ(vk)=ys , (3)

we indicate this quantity as Class Average Distance. We also
quantify the fraction of patches from xt that are assigned to
the class ys:

Lys(xt) =
1

Pl

Pl∑
k=1

1λ(vk)=ys , (4)

that we name Class Assignment. Using these metrics, we
derive a normalcy score based on the inverse entropy of the
patch class assignments:

H(xt) =
C∑

ys=1

Lys(xt) log Lys(xt) . (5)

This function yields low normalcy scores when class assign-
ments are spread across different classes, indicative of high
entropy. However, it overlooks patches’ embedding distances,
which can provide valuable insights into sample normalcy. To
address this limitation, we draw inspiration from theweighted
entropy [43] formulation and augment the entropy-based nor-
malcy score with class-level aggregated embedding distances
(Lys ):

Hw(xt) =
C∑

ys=1

Dys(xt)Lys(xt) log Lys(xt) . (6)

Incorporating class-level embedding distances improves ro-
bustness by resolving the ambiguity in OOD samples whose
patch class assignments match only a few support set classes
(resulting in low entropy) yet exhibit a large embedded dis-
tance.

IV. EXPERIMENTS
In this section, we present a thorough experimental analysis
of 3D-SeND on a realistic and challenging scenario in which
the support set is composed of clean, synthetic point clouds,
while the test set is drawn from a collection of real-world 3D
scans affected by acquisition artifacts such as vertex noise,
non-uniform density, missing parts, and occlusions. This set-
ting encompasses a combination of covariate and semantic
shifts, and the goal is to identify semantic novelty regardless
of the domain gap. We show how 3D-SeND outperforms
several state-of-the-art competitors, both training-free and
traditional training-based ones. 3D-SeND also excels when
the support set contains only a very limited amount of samples
(few-shot).
We complete the experimental evaluation by considering

also the in-domain scenario involving only the semantic shift,
when the support set and test data are drawn from the real-
world distribution. Finally, we provide an analysis of the role
of the different components of the proposed 3D-SeND.
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A. EXPERIMENTAL SETUP
Pre-training Details. 3D-SeND extracts patches as the in-
ternal feature representation at a chosen layer within the
network hierarchy to obtain vk . For the EPN backbone, we
select the last convolutional block (out of a total of 4 blocks)
designated as l = 4. This choice yields for each point cloud
Pl = 256 patches with Cl = 256 channels. In the case of the
PointNet++ backbone, we opt for the second Set Abstraction
layer (out of a total of 2 layers), labeled as l = 2. This results
in Pl = 128 patches and Cl = 640 channels. During training,
we augment the point clouds with jittering, SO(3) rotation,
random rescaling, random translation, and random crop of a
small neighborhood of points.

For OpenShape and Uni3D we leverage the pre-trained
weights made publicly available by the authors. In the case
of OpenShape, we extract patches from the final transformer
block (l = 11), resulting in a total of Pl = 512 patches
and Cl = 256 channels. Similarly, for the Uni3D model,
we utilize the last transformer block (l = 11), which yields
Pl = 512 patches, and Cl = 1024.
Testbed Dataset. We run our experiments on the 3DOS

benchmark [14] that offers several tracks. We focus mainly
on the Synthetic to Real one composed by synthetic point
clouds from ModelNet40 [44] for the support set, and real-
world point clouds from ScanObjectNN [45] for the test set. It
features three distinct groups of categories: SR1 (chair, shelf,
door, sink, sofa), SR2 (bed, toilet, desk, table, display), and
SR3 (bag, bin, box, pillow, cabinet). Either of the first two is
designed as the known class set, while the other two sets are
labeled as unknown. In this way we obtain two experimental
sets of different difficulty (easy/hard): we report their separate
results as well as the overall average.

We also consider the Real to Real track based on the
same SR category sets created from ScanObjectNN described
above. Specifically, each of them is used as unknown in the
test set, while the other two are divided into train and test
and used as known classes. This provides three experimental
sets of different difficulties (easy/med/hard) and we report the
obtained average results.

Reference Methods and Embedding Distances. In col-
lecting the 3D-SeND competitors to be used as references, we
considered the literature on large-scale pre-trained models, as
well as more specific OOD detection approaches.

For the former, the main objective is to obtain a rich and re-
liable representation, reusable for diverse downstream tasks.
In such learned embeddings, sample similarity is directly
expressed by their feature vector closeness, thus a simple way
to probe them for SeND is by defining the normalcy score
for a test sample as the inverse of its Euclidean distance to
the nearest neighbor within the support set. We indicate this
approach as 1NN. We also evaluate alternative techniques
based on a parametric estimate of the per-class feature dis-
tributions. EVM [46] assumes the embeddings to conform
to a Weibull distribution, while Mahalanobis [25] assumes
a multivariate Gaussian distribution. During testing, the first
method calculates the likelihood of the test sample belonging

to each known class and selects the maximum likelihood as
the measure of normalcy, whereas the second method utilizes
the inverse Mahalanobis distance from the nearest class dis-
tribution as the indicator of normalcy.
In the case of multi-modal pre-trained models, we opt for

the cosine distance rather than the Euclidean one as it better
aligns with their pre-training objective. Moreover, as these
models involve language, the names of the known categories
may serve as class prototypes. Thus, at deployment time it is
possible to evaluate the distance of a test sample from them
and apply Maximum Concept Matching (MCM, [7]).
All the aforementioned approaches exploit pre-trained

models without any additional learning stage, exactly as our
3D-SeND. Differently, standard OOD detection models re-
quire training or at least fine-tuning on the support set. This
is considered an essential step to capture discriminative infor-
mation on the available classes and then use this knowledge to
reject novelty. Despite the evident inefficiency of these post-
hoc solutions, we include three of them in our analysis to
contextualize 3D-SeND within the broader OOD detection
literature.MSP [1] exploits themaximum softmax probability
as a normalcy score, assuming that unknown samples will
be classified with lower confidence. MLS [47] proposes to
discard the normalization step provided by the softmax appli-
cation, and uses the maximum logit value directly. ReAct [13]
improves the known-unknown separation by applying a rec-
tification on the network activations.
Performance metrics. As SeND is inherently a binary

task, we employ AUROC and FPR95 [1] as evaluation met-
rics. We refer to the samples belonging to known and un-
known classes respectively as positive and negative The AU-
ROC (higher is better) is the Area Under the Receiver Op-
erating Characteristics curve, which plots the True Positive
Rate against the False Positive Rate when varying a threshold
applied to the predicted positive scores. As a result, this
metric is threshold-independent and can be interpreted as the
probability for a nominal sample to have a greater score than
an unknown one. The FPR95 (lower is better) is the False
Positive Rate computed when the threshold is set at the value
that corresponds to a True Positive Rate of 95%. Although
AUROC is the metric that better reflects the potential abil-
ity of a method to correctly detect novelty, FPR95 offers
a more concrete idea of the operational performance of an
OOD detection method: it provides a guarantee about the safe
recognition of known data and gauges the risk of mistakenly
accept as known a sample of an unseen object class.

B. TRAINING-FREE RESULTS
In the following, we present and discuss the results obtained
by leveraging large-scale pre-trained models without any fur-
ther learning stage. The top part of Tab. 1 shows the per-
formance of the first family of models based on single-modal
data pre-training and medium-sized architectures. Here 3D-
SeND surpasses all competitors in both SR1 and SR2 tracks
by a large margin, indicating that 3D-SeND is better able to
exploit the internal representation of the models to evaluate
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Pre-training Db. Objaverse-LVIS [37]
Architecture EPN [39] PointNet++ [38]

Method
Setting SR1 (easy) SR2 (hard) Avg SR1 (easy) SR2 (hard) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
1NN 57.59 95.11 56.94 90.15 57.27 92.63 57.79 89.97 59.96 93.67 58.87 91.82

EVM [46] 71.58 80.00 60.60 91.48 66.09 85.74 60.69 92.23 61.30 87.70 61.00 89.97
Mahalanobis [25] 61.07 92.04 60.18 91.20 60.63 91.62 61.15 92.53 58.20 85.68 59.68 89.11

3D-SeND 71.61 82.87 72.73 80.97 72.17 81.92 68.55 87.83 63.26 89.68 65.90 88.75
Pre-training Db. Objaverse [15], ShapeNet [40], ABO [41], 3D-Future [42])
Architecture OpenShape [16] Uni3D [17]

Method
Setting SR1 (easy) SR2 (hard) Avg SR1 (easy) SR2 (hard) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
1NN 87.08 64.90 53.32 98.04 70.20 81.47 90.79 49.42 81.59 67.46 86.19 58.44

EVM [46] 76.00 88.64 58.91 93.48 67.46 91.06 58.40 93.98 54.70 94.47 56.55 94.23
Mahalanobis [25] 73.80 89.70 65.25 83.25 69.53 86.48 85.56 71.19 74.99 74.11 80.28 72.65

MCM [7] 87.10 66.70 64.40 90.10 75.75 78.40 84.70 69.90 64.40 92.30 74.55 81.10
3D-SeND 83.35 55.72 73.73 71.69 78.54 63.71 91.85 47.80 80.79 59.90 86.32 53.85

TABLE 1. Training-free SeND results on the 3DOS Synthetic to Real benchmark [14], where SR1 and SR2 are used as support sets defining two tasks of
increasing complexity. The top part of the table presents the performance of different methods that leverage a classification pre-training on point clouds
from Objaverse-LVIS when using respectively the EPN (top-left) and PointNet++ (top-right) backbones. For the results in the bottom part of the table, the
pre-training was executed on four multi-modal datasets with a contrastive objective by using the OpenShape-PointBERT (bottom-left) and Uni3D-Base
(bottom-right) architectures. 3D-SeND shows top results in all the settings.

Pre-training Db. Objaverse [15] excluding Objaverse-LVIS [37]
Architecture OpenShape [16]

Method
Setting SR1 (easy) SR2 (hard) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
1NN 83.53 69.36 57.95 90.80 70.74 80.08

Mahalanobis [25] 78.73 77.98 58.71 89.53 68.72 83.76
MCM [7] 82.63 80.28 58.66 94.81 70.65 87.55
3D-SeND 78.56 74.01 69.58 80.97 74.07 77.49

TABLE 2. Training-free SeND results on the 3DOS Synthetic to Real
benchmark [14] with OpenShape. In these experiments, the pre-training
dataset is reduced to avoid label overlap with the support set. EVM is
discarded as it produces the worst results in the more favorable setting.
Notably, 3D-SeND presents the best performance.

object similarity. Moreover, the advantage of EPN on Point-
Net++ reveals the suitability of a rotation-invariant backbone
for the SeND task. The bottom part of Tab. 1 reports the
result of the second family of models based on multi-modal
data pre-training and very large architectures. Even in this
case, 3D-SeND effectively leverages the robust feature em-
beddings to outperform competitor methods, includingMCM
that exploits language at test time. Interestingly, when using
Uni3D as pre-training, the advantage of 3D-SeND over 1NN
is thin in terms of AUROC, indicating that the learned embed-
ding is particularly expressive and simple distances among
samples provide useful information to detect novelty. Still, the
enhancement brought by 3D-SeND remains evident in terms
of FPR95.

We further extended our analysis to address scenarios
involving two possible constraints: one involving multi-
modal data used for pre-training, and another involving
the available support set at deployment time.

In the first case, we consider OpenShape with restricted
access to only one dataset for pre-training, rather than four
datasets as considered before. In particular, the pre-training
is executed on Objaverse, deliberately excluding the LVIS
subset to minimize category overlap with the downstream
task. Tab. 2 shows the obtained results: by comparing them
with those in the bottom-left part of Tab. 1 we notice a general
drop in performance indicating the relevance of the cho-

Pre-train.
Db.

train
on S Method

Setting SR1 (easy) SR2 (hard) Avg
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

EPN [39]

✗ ✓

1NN [24] 72.49 92.91 69.78 85.78 71.14 89.35
MSP [1] 74.00 89.10 69.10 89.8 71.60 89.50
MLS [47] 72.80 92.80 71.70 79.00 72.30 85.90
ReAct [13] 76.60 92.50 72.20 76.70 74.40 84.60

Obj-LVIS
[37]

✓

1NN [24] 71.80 89.72 68.06 89.87 69.93 89.80
MSP [1] 74.30 88.50 71.30 83.40 72.80 85.90
MLS [47] 72.80 87.70 73.40 79.90 73.10 83.80
ReAct [13] 73.60 90.40 73.90 76.10 73.70 83.20

✗ 3D-SeND 71.61 82.87 72.73 80.97 72.17 81.92
Uni3D [17]

Objaverse [15]
ShapeNet [40]
ABO [41]

3D-Future [42]

✓

1NN [24] 82.99 66.37 72.24 83.30 80.16 74.84
MSP [1] 82.00 70.88 75.17 86.36 78.59 78.62
MLS [47] 82.49 68.51 76.40 82.70 79.45 75.61
ReAct [13] 82.08 68.55 73.86 97.61 77.97 83.08

✗ 3D-SeND 91.85 47.80 80.79 59.90 86.32 53.85

TABLE 3. Training-based vs Training-free SeND results on the 3DOS
Synthetic to Real benchmark [14]. The difference between the two
settings is specified by the second column that indicates whether the
approach undergoes training on the support set S (✓), or not (✗). The top
part of the table contains results obtained with the EPN architecture and
the training when needed is executed for classification with a standard
cross-entropy loss. The bottom part of the table shows results obtained
with Uni3D backbone pre-trained on four multi-modal datasets,
fine-tuned S (✓) or not (✗) on the support set data.

sen pre-training set. Nevertheless, 3D-SeND (AUROC:74.07,
FPR95:77.49) confirms its superiority to the other reference
methods, even remaining competitive with MCM defined on
the ensemble of four datasets (AUROC:75.75, FPR95:78.40).
The second constrained scenario aims to mimic real-world

applications where it is challenging to collect a sizable and
varied support set of 3Dmodels that accurately represent nor-
malcy and can be used for training purposes. To simulate this
few-shot condition, we concentrate on the SR2 (hard) bench-
mark track and create splits with n randomly selected samples
for each class in the support set with n ∈ {5, 10, 20, 50}. We
repeat the sampling process 10 times for each n and report
the average results of our experiments in Fig. 2. Across all
evaluated pre-trainings and methods, 3D-SeND consistently
surpasses all competing approaches even with low n values.

C. TRAINING-BASED VS TRAINING-FREE RESULTS
To position 3D-SeND within the broader landscape of the
OOD detection literature we consider a benchmark with
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FIGURE 2. Few-shot Training-free SeND results on the Synthetic to Real SR2 (hard) benchmark. n represents the number of support set samples for each
known class. The plot titles refer to the same architectures (and corresponding pre-training databases) already adopted for the experiments presented in
Tab. 1. Here we discard PointNet++ as it was producing the worst results in the more favorable full-shot setting. 3D-SeND consistently surpasses all
competing approaches even with low n values.

conventional methodologies that adopt support set data for
either training or fine-tuning. The top part of Tab. 3 shows
results obtained with the EPN architecture. When learning
on the support set is possible, ReAct [13] delivers the best
performance. This holds both if the training on the support set
data is done from scratch or through fine-tuning, transferring
knowledge from an initial pre-training phase on Objaverse-
LVIS. However, this second strategy might backfire: transfer
learning causes a detrimental effect on performance, with
ReAct showing a slight AUROC decrease. The results of 3D-
SeND are close to those of MSP with pre-training and MLS
without pre-training, both of which anyway require learning
on the support set. Moreover, 3D-SeND gets a lower AUROC
with respect to the top training-based ReAct method, but
remarkably it shows a better FPR95.

The bottom part of Tab. 3 shows results obtained with
Uni3D. In this case, we are dealing with a very large
model (88.96M parameters) pre-trained on four multi-modal
datasets. As previously explored, leveraging this compre-
hensive knowledge base enables 3D-SeND to achieve top
results even without an application-specific training. Still,
to investigate whether a learning phase on the support set
could provide further improvement, we devised a tailored
fine-tuning strategy. Specifically, we use low-rank adaptation
with LoRA [48] which freezes the pre-trained model weights
and injects trainable rank decomposition matrices into each
layer of the Uni3D transformer architecture. Additionally, we
substitute the contrastive training objective with a standard
cross-entropy classification objective. The classification head
and the fine-tuning training regime replicate those employed
for EPN fine-tuning. The obtained results produced with
post-hoc OOD detection approaches indicate that fine-tuning
the original large-scale model may be detrimental even if
performed with a state-of-the-art technique.

D. IN-DOMAIN EXPERIMENTS
To assess the performance of 3D-SeND in an in-domain sce-
nario involving only semantic shift, we benchmark training-
free methods on the 3DOS Real to Real benchmark, where
both the support set and test data are sourced from the same
real-world distribution. The results are presented in Tab. 4. In

Real to Real with Pre-train. Db.: Objaverse [15],
ShapeNet [40], ABO [41], 3D-Future [42])

Architecture OpenShape [16] Uni3D [17]

Method
Setting Avg Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓
1NN [24] 70.27 81.12 90.10 40.96
EVM [46] 71.37 90.43 80.69 85.71

Mahalanobis [25] 64.31 85.21 87.78 54.40
MCM [7] 67.52 90.45 68.43 88.32
3D-SeND 74.50 76.17 86.36 53.91

TABLE 4. Training-free SeND results on the 3DOS Real to Real
benchmark [14]. In this scenario, there is no Domain Shift between the
support set and test data. Our 3D-SeND provides the best results with
OpenShape while ranking second in terms of FPR95 and third in terms of
AUROC with Uni3D.

this simpler setting, 1NN combined with the Uni3D feature
encoding is competitive with 3D-SeND which still delivers
strong performance with both OpenShape and Uni3D en-
codings. We can conclude that reasoning on object patches
becomes particularly relevant in case of domain shift, while
leveraging a global shape representation with 1NN may be
effective otherwise.

E. COMPONENT ANALYSIS
To better understand the peculiarities and limits of 3D-SeND
we provide a comprehensive analysis of the technical choices
made for its three main components: the patch feature extrac-
tion, thememory bank, and the scoring function. For this anal-
ysis, we run several evaluations considering the EPN, Open-
Shape, and Uni3D architectures with the same pre-trainings
already presented in the previous sections and focusing on the
most challenging Synthetic to Real (SR2) scenario.
Extraction Layer. The layer from which the patch em-

beddings are extracted impacts the representation’s detail and
subsequent sample similarity evaluation. The histogram bars
on the left side of Fig. 3 demonstrate 3D-SeND performance
enhancement as we move from shallow to deeper layers. This
trend holds for all the architectures and signifies the growing
semantic information inherent in the patch embeddings when
progressing toward the network’s output.
Memory Bank Subsampling. By removing the need for

a learning phase on the support set, 3D-SeND already pro-
vides a significant efficiency advantage over the post-hoc
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FIGURE 3. Component Analysis of 3D-SeND on the SR2 benchmark. Left: AUROC trends of 3D-SeND for EPN, OpenShape, and Uni3D backbones when
varying the patches Extraction Layer. Right: Evaluation of 3D-SeND with different portions of the total patches retained for each support set class (Coreset
Percentage).

FIGURE 4. Left: Qualitative results of 3D-SeND results with the EPN Backbone. We offer a visual inspection of one ID (known) and three OOD (novel) test
samples, showcasing for each instance a pair with the patches’ class assignments (left) and their distances to support data patches in the memory banks
(right). These are the key components in calculating our Weighted Entropy scoring. Right: We compare Entropy and Weighted Entropy for normalcy
scoring of an OOD test sample. After calculating the normalcy scores for both strategies, a binary prediction is made using the FPR95 threshold. Entropy
scoring misclassifies the sample as ID, as its normalcy score (-1.20) exceeds the FPR95 threshold (-1.81). In contrast, Weighted Entropy scoring, which
integrates Class Average Distances into the normalcy score computation, correctly identifies the sample as OOD, with its normalcy score (-4.65) falling
below the FPR95 threshold (-4.30).

OOD detection methods. Still, the process of matching patch
embeddings of a test sample to elements in the memory
bank may be cumbersome and can be optimized by reducing
the cardinality of those reference elements extracted from
the support set. Specifically, we can minimize their redun-
dancy with a tailored sub-selection strategy such as greedy
coreset [30], [49], [50]. This procedure is applied separately
to each class in the memory bank, reducing the number of
per-class patches to a specific fraction indicated as Coreset
Percentage. The right part of Fig. 3 depicts the variation in
AUROC at 1%, 5%, 10%, 50%, and 100% of the overall
patch count. When based on OpenShape our method shows
almost stable performance. Interestingly, for Uni3D, patch
redundancy in the memory bank appears counterproductive,
with optimal AUROC observed when only 10% of patches at
each class are retained. EPN appears instead more sensitive
to the Coreset Percentage with an almost linear performance
decrease.

Scoring functions. In Tab. 5 we present the results ob-
tained by evaluating 3D-SeND with different scoring func-
tions. We compare the effect of the chosen Weighted Entropy
(Hw) with that of the naïve entropy (H ) and considering
purely distance-based scoring functions such as max and

mean respectively defined as Max = max k=1,...,Pl (δ(vk))
and Mean =

∑Pl
k (δ(vk))/Pl . The results confirm the effec-

tiveness of the proposed weighted-entropy-based solution but
also indicate that using the entropy can be slightly preferable
with the OpenShape architecture.
Qualititative analysis. As 3D-SeND operates by leverag-

ing self-discovered relevant object patches and their combina-
tion, its predictions can be easily interpreted by visualization.
A test sample will be labeled as unknownwhen its component
patches are recognized as belonging to a large variety of
classes (high entropy), or possibly a limited number of classes
(low entropy), but with a highly uncertain prediction (large
distance between the test sample patches and those in the
memory bank). Using the EPN backbone, we present in Fig. 4
(left) four test samples and show the distribution of patches’
class assignments and distances with color coding - each
point in the point cloud inherits the color from its patch. In
the right part of Fig. 4, we present a detailed comparison
between Entropy and Weighted Entropy normalcy scoring
strategies for an OOD test sample. The pure Entropy scoring
method fails to identify the test sample as OOD, while the
Weighted Entropy scoring method, by incorporating Class
Average Distances, successfully detects the sample as OOD.
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Scoring
Functions

EPN OpenShape Uni3D
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Max 60.93 92.71 66.79 77.59 65.85 91.53
Mean 68.34 84.90 60.45 85.35 75.03 71.50
H 70.80 86.82 74.71 68.65 78.65 67.20
Hw 72.73 80.97 73.73 71.69 80.79 59.90

TABLE 5. 3D-SeND results on top of EPN, OpenShape and Uni3D feature
encoders for the SR2 benchmark when varying the Scoring Function.

V. CONCLUSION
We introduced 3D-SeND, a model that effectively detects
semantic novelty in 3D data without requiring to be trained
or fine-tuned on task-specific support set data. We proposed
a strategy to extract generalizable patch features from a pre-
trained 3D deep learning architecture and we designed an
innovative approach that combines semantic and relative dis-
tance information to accurately identify test samples belong-
ing to novel classes.

What sets 3D-SeND apart is its remarkable ability to op-
erate in limited data scenarios and its resilience to domain
shifts regarding the Synthetic to Real scenario. 3D-SeND
proves to be a flexible solution for real-world applications
and provides clear and intuitive visualization to understand
its inner functioning. It can be effectively deployed in data-
constrained environments, eliminating the need for running
custom data collections and training expensive task-specific
models.
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