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ABSTRACT Shifting deep learning models from lab environments to real-world settings entails preparing
them to handle unforeseen conditions, including the chance of encountering novel objects from classes that
were not included in their training data. Such occurrences can pose serious threats in various applications. The
task of Semantic Novelty detection has attracted significant attention in the last years mainly on 2D images,
overlooking the complex 3D nature of the real-world. In this study, we address this gap by examining the
geometric structures of objects within 3D point clouds to detect semantic novelty effectively. We advance
the field by introducing 3D-SeND, a method that harnesses a large-scale pre-trained model to extract
patch-based object representations directly from its intermediate feature representation. These patches are
used to characterize each known class precisely. At inference, a normalcy score is obtained by assessing
whether a test sample can be reconstructed predominantly from patches of a single known class or from
multiple classes. We evaluate 3D-SeND on real-world point cloud samples when the reference known data
are synthetic and demonstrate that it excels in both standard and few-shot scenarios. Thanks to its patch-based
object representation, it is possible to visualize 3D-SeND’s predictions with a valuable explanation of
the decision process. Moreover, the inherent training-free nature of 3D-SeND allows for its immediate
application to a wide array of real-world tasks, offering a compelling advantage over approaches that require
a task-specific learning phase. Our code is available at https://paolotron.github.io/3DSend.github.io.

INDEX TERMS 3D point clouds, semantic novelty detection, out-of-distribution detection, training-free.

I. INTRODUCTION
Semantic Novelty Detection (SeND) consists of identifying
instances of object categories not previously observed in a
reference dataset. This task involves analyzing the semantic
image content to determine whether it contains unfamiliar
information. Despite the widely acknowledged success of
deep learning models, SeND offers them several challenges
when shifting from the constrained laboratory setting to the
open world. In this scenario, recognizing novelty is crucial in
ensuring the model’s reliability and safety.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

Traditional Out-of-Distribution (OOD) detection
approaches focus onmitigating classification over-confidence
but they often overlook the distinction between domain and
semantic novelty which leads to rejecting instances of known
classes appearing with a different visual style [1], [2], [3],
[4]. Moreover, these approaches are not suitable for many
practical applications where the learning agent has access to
limited computational resources that constrain the training
phase, and the reference dataset that exemplifies normalcy is
composed of only a few object exemplars.

A recent trend consists of leveraging large-scale pre-
trained models and fine-tuning them on the reference set.
However, this process may be suboptimal as fine-tuning can
lead to catastrophic forgetting, reducing the generalization
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ability of the original model rather than supporting novelty
recognition [5], [6]. Alternative solutions adopt a zero-shot
approach by exploiting vision-language foundation mod-
els [7], [8]. This strategy has the advantage of avoiding any
further learning process as the test samples are compared
directly to textual class names used as prototypes in the shared
embedding space. More recently, prompt engineering has
been proposed to add refined linguistic descriptions of the
known classes, which however either require manual tuning
or re-introduces a training phase [9], [10], [11].

Overall, research in the field of novelty detection has
attracted a lot of attention in the last years mainly for 2D
data types [12], [13]. Only recently the introduction of the
3DOS benchmark [14] for 3D Open-Set recognition and the
described challenges of adapting 2D OOD detection methods
to 3D data started to call for new 3D solutions. At the same
time, the emergence of vast multi-modal datasets featuring
3D modality, such as Objaverse [15], is transforming the
3D research landscape, showcasing how large deep learning
models can support reasoning on 3D data [16], [17]. This shift
paves the way to explore foundation-model-based training-
free strategies for OOD detection on 3D data. Indeed,
strategies that do not require learning on tailored task-specific
data collections sound well suited for 3D data as the costs
of data collection and model training increase with data
dimensionality.

In this work, we present a comprehensive examination
of large-scale pre-trained models, discussing how their
latent representation can be efficiently and effectively
exploited for 3D semantic novelty detection. We focus on
a challenging SeND setting that mimics a typical industrial
scenario where the reference set consists of a few curated
3D synthetic data, while the test samples are derived from
real-world scans captured by on-site 3D sensors. These scans
exhibit a different visual domain compared to the curated
synthetic data and encompass samples from both known
categories present in the support set and novel unknown ones.
To tackle the task we introduce 3D-SeND, an innovative
method that utilizes large-scale pre-trained 3D feature
encoders for extracting patch-based representations of
3D objects. These representations capture both local and
global attributes of objects and we use their co-occurrence
to devise a tailored novelty score. We perform an extensive
analysis assessing the role of different pre-training networks
and objectives, further considering score variants, and show
experimentally that 3D-SeND excels in the separation of
known and unknown test samples without requiring a tailored
fine-tuning phase on the reference set. Remarkably, 3D-
SeND surpasses competing methods, demonstrating excep-
tional performance even in scenarios where the reference
data is scarce. Furthermore, its design based on discovered
semantically relevant (i.e., a leg of a table) and geometrically
significant (i.e., a cylinder) patches, provides visualizations
that make it inherently explainable.

We believe that our new solution to leverage the knowledge
captured by 3D foundation models will serve as a stepping

stone to enhance the dependability of artificial intelligence
approaches for open-world applications.

II. RELATED WORKS
Out-of-distribution detection is an umbrella term for many
subcategories of methods designed to identify novelty at
inference time. Part of the differences among these categories
originate from the source of novelty (i.e. due to covariate
or semantic shift) while others relate to the exact experi-
mental setting. The basic OOD detection framework consists
of a simple binary task that separates samples belonging to
a known reference distribution from samples drawn from
a different unknown one. The instances of the first group
are often identified as In-Distibution (ID) samples and they
may be structured in multiple classes. Discriminating among
these classes while rejecting novelty is indicated as Open Set
Recognition. Finally, the focus of Anomaly Detection is on
locating abnormal parts within a scene or an object instance.
In industrial applications, this means training a model for
each object class to spot possible components (e.g. defective
parts) that deviate from the reference normalcy.

In this work we are interested in Semantic Novelty
detection, thus we overview those methods in the OOD
detection literature that can be used with the binary objective
of recognizing whether a new sample belongs to one of the
known classes or not, neglecting domain or style variations.
A simple strategy consists of relying on the Maximum
Softmax Prediction (MSP) of a classifier trained on the ID
reference data [1]. Other approaches have followed the same
post-hoc paradigm exploiting a classifier output by introduc-
ing temperature scaling to reduce overconfidence [2], energy
scores that estimate the probability density of the input [3],
leveraging the norm of the network gradients [12], or rec-
tifying the network activations [13]. The outlier exposure
methods [18], [19], [20], [21] assume the availability of
either real or synthetically generated OOD examples during
training but present limited generalization abilities. Density
and reconstruction methods explicitly model the distribution
of known data. This can involve learning a generative model
for input reconstruction [22] or exploiting a likelihood regret
strategy [23]. Distance-based methods exploit a learned
feature embedding and evaluate sample distances by using
the L2 norm [24], layer-wise Mahalanobis [25] or similarity
metrics based on Gram [26] matrices.

In real-world applications, efficiency and robustness
are pivotal, and three-dimensional reasoning is essential
for agents interacting with their environment. Therefore,
methods that can elaborate on 3D data for detecting novelty,
requiring minimal learning effort, and exhibiting broad
transferability and generalization across tasks should be
prioritized. A few recent works have started to propose
training-free OOD detection strategies in the 2D literature
by exploiting the representation learned by large-scale pre-
trained models [7], [27]. This logic has been also applied
for 2D anomaly detection with promising results [28], [29],
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FIGURE 1. Schematic visualization of the three main components of 3D-SeND and the associated research questions. Left: we start from a model
pre-trained on a large-scale dataset capable of extracting semantically and geometrically relevant patch embeddings from point clouds. Middle: the
embeddings extracted from the support set are collected into a memory bank encoding known classes. Right: at test time we extract patch
embeddings from any new sample and compare them with the memory bank. If the nearest neighbors of the test patches in the memory bank are
far away and the associated class labels show high entropy the score will suggest novelty (OOD), while a sample composed of patches with low
distances and low entropy will be recognized as belonging to a known class (ID).

[30]. Despite these progresses in 2D, the research on OOD
detection and SeND on 3D data is still in its infancy and
deserves much more attention [31], [32], [33], [34], [35].
Indeed, as shown by the thorough OOD detection benchmark
pursued in [14], 2D methods extended to 3D data are only
mildly effective. A 3D approach based on part composition
learning with outlier exposure for Open Set Recognition
recently appeared in [36]. Although reasoning on object parts
sounds promising, it falls short in addressing cross-domain
scenarios and still necessitates ad-hoc training on task-
specific ID reference data.

With our work, we explain how relevant 3D object
patches and their relations can be extracted from the latent
representation of large-scale pre-trained models and can be
effectively used for SeND without requiring any further
training.

III. METHOD
In SeND we are provided with annotated samples S =

{xsi , y
s
i }
N
i=1 where ysi ∈ Ys = {1, . . . ,C} indicate the label

set, and we are asked to evaluate whether a test sample xt

belongs to an observed object class in Ys or not. We name
the reference annotated dataset S as support set and Ys as
known classes. The unlabeled data T = {xtj }

J
j=1 define the

test set with ytj ∈ Yt = {1, . . . ,C,C + 1, . . . ,K } where all
the classes in Yt\s are indicated as unknown.
Our method, named 3D-SeND, comprises three key

components, as illustrated in Figure 1. The first is the pre-
training. Unlike standard approaches that train a model on
the support set S, we leverage the expressive feature repre-
sentation from a large-scale pre-trained model, eliminating
the need for task-specific training. The choice of dataset,
learning objective, and network architecture for pre-training
may have varying effects on the downstream SeND task.
The second component is the procedure for patch feature
extraction which is used for both the support set and
the test samples. This involves using the large-scale pre-
trained feature encoder and selecting a specific layer within

the network hierarchy to extract embeddings that represent
portions of the input point cloud. In particular, the patch
embeddings collected from the support set are organized in a
memory bank that embodies the concept of known classes for
the task at hand. Finally, the third component is the scoring
function. For each of the patch features extracted from a test
sample, we evaluate the distance to its nearest neighbor in the
memory bank and its label. These two pieces of information
are combined into a score that reflects the level of confidence
in assigning the test sample to one of the known classes.

In the following subsections, we describe each of these
components in more detail.

A. LARGE-SCALE PRE-TRAINING
3D-SeND leverages models that have encoded comprehen-
sive knowledge about the structure of object point clouds
within their latent representation. We consider two families
of models, that are respectively trained on single-modal
and multi-modal data. The first includes two point cloud
encoding backbones trained for object classification with
standard cross-entropy loss function on the Objaverse-LVIS
dataset [37] containing 47K samples from 1156 semantic cat-
egories. Specifically, the architectures are PointNet++ [38]
(1.50M backbone parameter) and EPN [39] (8.10M), with the
latter chosen for its peculiar ability to learn SE(3)-equivariant
features. The second family includes OpenShape [16] and
Uni3D [17] which mainly differ from each other for the
number of backbone parameters, respectively 32.33M and
88.96M. They are both pre-trained with a contrastive objec-
tive across three distinct input modalities (point cloud, image,
and text) on an ensemble of four datasets (Objaverse [15],
ShapeNet [40], ABO [41], 3D-Future [42]), resulting in 876K
training shapes from 21K semantic categories.

B. PATCH FEATURE EXTRACTOR AND MEMORY BANK
Point-based backbone architectures employ a hierarchical
approach to encode point clouds. They begin by capturing
local features that represent detailed geometric structures
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from small neighborhood areas within the point cloud. These
local features are then progressively aggregated into larger
units, forming more semantic, higher-level features. As the
network delves deeper, the receptive field of its layers broad-
ens, enabling the deeper layers to model increasingly larger
segments of the input point cloud. 3D-SeND is designed to
extract local geometric features, also referred to as patch
embeddings, from the internal feature representations of a
specific network layer. Selecting a particular layer for this
extraction means choosing the granularity of the patches.

More formally, given an input point cloud x and a 3D
network φ, we denote the output feature map from its l-th
layer as φl(x) ∈ RPl×Cl . This tensor can be interpreted as
a collection of patch embeddings {vk}

Pl
k=1, where Pl is the

number of patches extracted at the l-th layer, each with a
feature descriptor with a dimension of Cl . Depending on the
chosen architecture and the specific value of l, each vector
vk captures information about a distinct-sized portion of the
3D shape. For PointNet++, we use the multi-scale grouping
classification backbone and extract patch embeddings after
the l-th Set Abstraction (SA) layer. In this case, the number
of patch embedding Pl obtained from each input point
cloud is equal to the number of FPS points at the chosen
SA layer. EPN exploits a point convolutional operator
functioning within a discretized space of SO(3) rotations.
Each convolutional layer produces a feature map of size
(Pl × R × Cl), where Pl represents the number of FPS
points at the l-th layer, R denotes the fixed number of explicit
rotations, and Cl represents the number of output channels.
To extract patch embeddings from a specific layer, we employ
a symmetric max function to aggregate information across
the rotation dimension R, thus obtaining a (Pl × Cl) output
tensor. Unlike PointNet++ and EPN, the patch embeddings
of OpenShape and Uni3D correspond to the tokens output of
the transformer blocks, and their number Pl remains constant
throughout the network’s depth. Due to the self-attention
mechanism, as tokens pass through successive layers (or
transformer blocks), they gather and integrate information
from other tokens, modeling increasing portions of the input
shape.

By feeding the support set S to any of the described frozen
large-scale pre-trained models, having chosen a specific layer
l, we obtain a set of patch-class pairs {vsk , y

s
k}
Pl×N
k=1 . Here each

patch embeddings is annotated with the label of the object
sample from which it has been extracted. These pairs are
aggregated into a unified memory bank, denoted asM, and
used as a reference to evaluate whether a test sample belongs
to a known class.

C. SCORING FUNCTION
For each test sample xt , we extract a set of patch embeddings
φl(xt ) = {vk}

Pl
k=1. Subsequently, for each patch, we perform

nearest neighbor matching with samples stored in the
memory bank and we define:

δ(vk ) = min
vs∈M

d(vk , vs), (1)

λ(vk ) = ysv∗ , where v∗ = argmin
vs∈M

d(vk , vs) . (2)

Here, δ(vk ) is the Euclidean distance of vk to the nearest patch
in the memory bankM, and λ(vk ) denotes the class label of
the nearest patch v∗ in the memory bank M. We use them
to obtain the average distance of sample xt to the support
set class ys, aggregating distances of patches whose nearest
neighbors share the same label:

Dys (xt ) =
1
Pl

Pl∑
k=1

δ(vk )1λ(vk )=ys , (3)

we indicate this quantity as Class Average Distance. We also
quantify the fraction of patches from xt that are assigned to
the class ys:

Lys (xt ) =
1
Pl

Pl∑
k=1

1λ(vk )=ys , (4)

that we name Class Assignment. Using these metrics,
we derive a normalcy score based on the inverse entropy of
the patch class assignments:

H (xt ) =

C∑
ys=1

Lys (xt ) logLys (xt ) . (5)

This function yields low normalcy scores when class
assignments are spread across different classes, indicative
of high entropy. However, it overlooks patches’ embedding
distances, which can provide valuable insights into sample
normalcy. To address this limitation, we draw inspiration
from the weighted entropy [43] formulation and augment
the entropy-based normalcy score with class-level aggregated
embedding distances (Lys ):

Hw(xt ) =

C∑
ys=1

Dys (xt )Lys (xt ) logLys (xt ) . (6)

Incorporating class-level embedding distances improves
robustness by resolving the ambiguity in OOD samples
whose patch class assignments match only a few support
set classes (resulting in low entropy) yet exhibit a large
embedded distance.

IV. EXPERIMENTS
In this section, we present a thorough experimental analysis
of 3D-SeND on a realistic and challenging scenario in which
the support set is composed of clean, synthetic point clouds,
while the test set is drawn from a collection of real-world 3D
scans affected by acquisition artifacts such as vertex noise,
non-uniform density, missing parts, and occlusions. This
setting encompasses a combination of covariate and semantic
shifts, and the goal is to identify semantic novelty regardless
of the domain gap. We show how 3D-SeND outperforms
several state-of-the-art competitors, both training-free and
traditional training-based ones. 3D-SeND also excels when
the support set contains only a very limited amount of samples
(few-shot).
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We complete the experimental evaluation by considering
also the in-domain scenario involving only the semantic shift,
when the support set and test data are drawn from the real-
world distribution. Finally, we provide an analysis of the role
of the different components of the proposed 3D-SeND.

A. EXPERIMENTAL SETUP
1) PRE-TRAINING DETAILS
3D-SeND extracts patches as the internal feature representa-
tion at a chosen layer within the network hierarchy to obtain
vk . For the EPN backbone, we select the last convolutional
block (out of a total of 4 blocks) designated as l = 4. This
choice yields for each point cloud Pl = 256 patches with
Cl = 256 channels. In the case of the PointNet++ backbone,
we opt for the second Set Abstraction layer (out of a total of
2 layers), labeled as l = 2. This results in Pl = 128 patches
and Cl = 640 channels. During training, we augment the
point clouds with jittering, SO(3) rotation, random rescaling,
random translation, and random crop of a small neighborhood
of points.

For OpenShape and Uni3D we leverage the pre-trained
weights made publicly available by the authors. In the case
of OpenShape, we extract patches from the final transformer
block (l = 11), resulting in a total of Pl = 512 patches
and Cl = 256 channels. Similarly, for the Uni3D model,
we utilize the last transformer block (l = 11), which yields
Pl = 512 patches, and Cl = 1024.

2) TESTBED DATASET
We run our experiments on the 3DOS benchmark [14] that
offers several tracks. We focus mainly on the Synthetic
to Real one composed by synthetic point clouds from
ModelNet40 [44] for the support set, and real-world point
clouds from ScanObjectNN [45] for the test set. It features
three distinct groups of categories: SR1 (chair, shelf, door,
sink, sofa), SR2 (bed, toilet, desk, table, display), and SR3
(bag, bin, box, pillow, cabinet). Either of the first two is
designed as the known class set, while the other two sets are
labeled as unknown. In this way we obtain two experimental
sets of different difficulty (easy/hard): we report their
separate results as well as the overall average.

We also consider the Real to Real track based on the
same SR category sets created from ScanObjectNN described
above. Specifically, each of them is used as unknown in the
test set, while the other two are divided into train and test
and used as known classes. This provides three experimental
sets of different difficulties (easy/med/hard) andwe report the
obtained average results.

3) REFERENCE METHODS AND EMBEDDING DISTANCES
In collecting the 3D-SeND competitors to be used as
references, we considered the literature on large-scale pre-
trained models, as well as more specific OOD detection
approaches.

For the former, the main objective is to obtain a rich
and reliable representation, reusable for diverse downstream
tasks. In such learned embeddings, sample similarity is
directly expressed by their feature vector closeness, thus
a simple way to probe them for SeND is by defining the
normalcy score for a test sample as the inverse of its Euclidean
distance to the nearest neighbor within the support set.
We indicate this approach as 1NN. We also evaluate alterna-
tive techniques based on a parametric estimate of the per-class
feature distributions. EVM [46] assumes the embeddings to
conform to a Weibull distribution, while Mahalanobis [25]
assumes a multivariate Gaussian distribution. During testing,
the first method calculates the likelihood of the test sample
belonging to each known class and selects the maximum
likelihood as the measure of normalcy, whereas the second
method utilizes the inverse Mahalanobis distance from the
nearest class distribution as the indicator of normalcy.

In the case of multi-modal pre-trained models, we opt for
the cosine distance rather than the Euclidean one as it better
aligns with their pre-training objective. Moreover, as these
models involve language, the names of the known categories
may serve as class prototypes. Thus, at deployment time it is
possible to evaluate the distance of a test sample from them
and apply Maximum Concept Matching (MCM, [7]).

All the aforementioned approaches exploit pre-trained
models without any additional learning stage, exactly as
our 3D-SeND. Differently, standard OOD detection models
require training or at least fine-tuning on the support set.
This is considered an essential step to capture discriminative
information on the available classes and then use this
knowledge to reject novelty. Despite the evident inefficiency
of these post-hoc solutions, we include three of them in our
analysis to contextualize 3D-SeND within the broader OOD
detection literature. MSP [1] exploits the maximum softmax
probability as a normalcy score, assuming that unknown
samples will be classified with lower confidence. MLS [47]
proposes to discard the normalization step provided by the
softmax application, and uses the maximum logit value
directly. ReAct [13] improves the known-unknown separation
by applying a rectification on the network activations.

4) PERFORMANCE METRICS
As SeND is inherently a binary task, we employ AUROC and
FPR95 [1] as evaluation metrics. We refer to the samples
belonging to known and unknown classes respectively as pos-
itive and negative The AUROC (higher is better) is the Area
Under the Receiver Operating Characteristics curve, which
plots the True Positive Rate against the False Positive Rate
when varying a threshold applied to the predicted positive
scores. As a result, this metric is threshold-independent and
can be interpreted as the probability for a nominal sample
to have a greater score than an unknown one. The FPR95
(lower is better) is the False Positive Rate computed when
the threshold is set at the value that corresponds to a True
Positive Rate of 95%. Although AUROC is the metric that
better reflects the potential ability of a method to correctly
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TABLE 1. Training-free SeND results on the 3DOS Synthetic to Real benchmark [14], where SR1 and SR2 are used as support sets defining two tasks of
increasing complexity. The top part of the table presents the performance of different methods that leverage a classification pre-training on point clouds
from Objaverse-LVIS when using respectively the EPN (top-left) and PointNet++ (top-right) backbones. For the results in the bottom part of the table, the
pre-training was executed on four multi-modal datasets with a contrastive objective by using the OpenShape-PointBERT (bottom-left) and Uni3D-Base
(bottom-right) architectures. 3D-SeND shows top results in all the settings.

TABLE 2. Training-free SeND results on the 3DOS Synthetic to Real
benchmark [14] with OpenShape. In these experiments, the pre-training
dataset is reduced to avoid label overlap with the support set. EVM is
discarded as it produces the worst results in the more favorable setting.
Notably, 3D-SeND presents the best performance.

detect novelty, FPR95 offers a more concrete idea of the
operational performance of an OOD detection method: it
provides a guarantee about the safe recognition of known data
and gauges the risk of mistakenly accept as known a sample
of an unseen object class.

B. TRAINING-FREE RESULTS
In the following, we present and discuss the results obtained
by leveraging large-scale pre-trained models without any
further learning stage. The top part of Tab. 1 shows
the performance of the first family of models based on
single-modal data pre-training and medium-sized architec-
tures. Here 3D-SeND surpasses all competitors in both SR1
and SR2 tracks by a large margin, indicating that 3D-
SeND is better able to exploit the internal representation
of the models to evaluate object similarity. Moreover, the
advantage of EPN on PointNet++ reveals the suitability
of a rotation-invariant backbone for the SeND task. The
bottom part of Tab. 1 reports the result of the second family
of models based on multi-modal data pre-training and very
large architectures. Even in this case, 3D-SeND effectively
leverages the robust feature embeddings to outperform
competitor methods, including MCM that exploits language
at test time. Interestingly, when using Uni3D as pre-training,
the advantage of 3D-SeND over 1NN is thin in terms of
AUROC, indicating that the learned embedding is particularly

TABLE 3. Training-based vs Training-free SeND results on the 3DOS
Synthetic to Real benchmark [14]. The difference between the two
settings is specified by the second column that indicates whether the
approach undergoes training on the support set S (✓), or not (✗). The top
part of the table contains results obtained with the EPN architecture and
the training when needed is executed for classification with a standard
cross-entropy loss. The bottom part of the table shows results obtained
with Uni3D backbone pre-trained on four multi-modal datasets,
fine-tuned S (✓) or not (✗) on the support set data.

expressive and simple distances among samples provide
useful information to detect novelty. Still, the enhancement
brought by 3D-SeND remains evident in terms of FPR95.

We further extended our analysis to address scenar-
ios involving two possible constraints: one involving
multi-modal data used for pre-training, and another
involving the available support set at deployment time.

In the first case, we consider OpenShape with restricted
access to only one dataset for pre-training, rather than four
datasets as considered before. In particular, the pre-training
is executed on Objaverse, deliberately excluding the LVIS
subset to minimize category overlap with the downstream
task. Tab. 2 shows the obtained results: by comparing them
with those in the bottom-left part of Tab. 1 we notice a general
drop in performance indicating the relevance of the chosen
pre-training set. Nevertheless, 3D-SeND (AUROC:74.07,
FPR95:77.49) confirms its superiority to the other reference
methods, even remaining competitive with MCM defined on
the ensemble of four datasets (AUROC:75.75, FPR95:78.40).
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FIGURE 2. Few-shot Training-free SeND results on the Synthetic to Real SR2 (hard) benchmark. n represents the number of support set
samples for each known class. The plot titles refer to the same architectures (and corresponding pre-training databases) already adopted
for the experiments presented in Tab. 1. Here we discard PointNet++ as it was producing the worst results in the more favorable full-shot
setting. 3D-SeND consistently surpasses all competing approaches even with low n values.

The second constrained scenario aims to mimic real-world
applications where it is challenging to collect a sizable and
varied support set of 3D models that accurately represent
normalcy and can be used for training purposes. To simulate
this few-shot condition, we concentrate on the SR2 (hard)
benchmark track and create splits with n randomly selected
samples for each class in the support set with n ∈

{5, 10, 20, 50}. We repeat the sampling process 10 times for
each n and report the average results of our experiments in
Fig. 2. Across all evaluated pre-trainings and methods, 3D-
SeND consistently surpasses all competing approaches even
with low n values.

C. TRAINING-BASED VS TRAINING-FREE RESULTS
To position 3D-SeND within the broader landscape of the
OOD detection literature we consider a benchmark with
conventional methodologies that adopt support set data for
either training or fine-tuning. The top part of Tab. 3 shows
results obtained with the EPN architecture. When learning
on the support set is possible, ReAct [13] delivers the best
performance. This holds both if the training on the support set
data is done from scratch or through fine-tuning, transferring
knowledge from an initial pre-training phase on Objaverse-
LVIS. However, this second strategy might backfire: transfer
learning causes a detrimental effect on performance, with
ReAct showing a slight AUROC decrease. The results of 3D-
SeND are close to those of MSP with pre-training and MLS
without pre-training, both of which anyway require learning
on the support set. Moreover, 3D-SeND gets a lower AUROC
with respect to the top training-based ReAct method, but
remarkably it shows a better FPR95.

The bottom part of Tab. 3 shows results obtained with
Uni3D. In this case, we are dealing with a very large
model (88.96M parameters) pre-trained on four multi-
modal datasets. As previously explored, leveraging this
comprehensive knowledge base enables 3D-SeND to achieve
top results even without an application-specific training. Still,
to investigate whether a learning phase on the support set
could provide further improvement, we devised a tailored
fine-tuning strategy. Specifically, we use low-rank adaptation
with LoRA [48] which freezes the pre-trained model weights

TABLE 4. Training-free SeND results on the 3DOS Real to Real
benchmark [14]. In this scenario, there is no Domain Shift between the
support set and test data. Our 3D-SeND provides the best results with
OpenShape while ranking second in terms of FPR95 and third in terms of
AUROC with Uni3D. .

and injects trainable rank decomposition matrices into each
layer of the Uni3D transformer architecture. Additionally,
we substitute the contrastive training objective with a stan-
dard cross-entropy classification objective. The classification
head and the fine-tuning training regime replicate those
employed for EPNfine-tuning. The obtained results produced
with post-hoc OOD detection approaches indicate that
fine-tuning the original large-scale model may be detrimental
even if performed with a state-of-the-art technique.

D. IN-DOMAIN EXPERIMENTS
To assess the performance of 3D-SeND in an in-domain
scenario involving only semantic shift, we benchmark
training-free methods on the 3DOS Real to Real benchmark,
where both the support set and test data are sourced from
the same real-world distribution. The results are presented in
Tab. 4. In this simpler setting, 1NN combined with the Uni3D
feature encoding is competitive with 3D-SeND which still
delivers strong performancewith bothOpenShape andUni3D
encodings. We can conclude that reasoning on object patches
becomes particularly relevant in case of domain shift, while
leveraging a global shape representation with 1NN may be
effective otherwise.

E. COMPONENT ANALYSIS
To better understand the peculiarities and limits of 3D-
SeND we provide a comprehensive analysis of the technical
choices made for its three main components: the patch feature
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FIGURE 3. Component Analysis of 3D-SeND on the SR2 benchmark. Left: AUROC trends of 3D-SeND for EPN, OpenShape, and Uni3D backbones when
varying the patches Extraction Layer. Right: Evaluation of 3D-SeND with different portions of the total patches retained for each support set class
(Coreset Percentage).

FIGURE 4. Left: Qualitative results of 3D-SeND results with the EPN Backbone. We offer a visual inspection of one ID (known) and three OOD (novel) test
samples, showcasing for each instance a pair with the patches’ class assignments (left) and their distances to support data patches in the memory banks
(right). These are the key components in calculating our Weighted Entropy scoring. Right: We compare Entropy and Weighted Entropy for normalcy
scoring of an OOD test sample. After calculating the normalcy scores for both strategies, a binary prediction is made using the FPR95 threshold. Entropy
scoring misclassifies the sample as ID, as its normalcy score (−1.20) exceeds the FPR95 threshold (−1.81). In contrast, Weighted Entropy scoring, which
integrates Class Average Distances into the normalcy score computation, correctly identifies the sample as OOD, with its normalcy score (−4.65) falling
below the FPR95 threshold (−4.30). .

extraction, the memory bank, and the scoring function. For
this analysis, we run several evaluations considering the
EPN, OpenShape, and Uni3D architectures with the same
pre-trainings already presented in the previous sections and
focusing on the most challenging Synthetic to Real (SR2)
scenario.

1) EXTRACTION LAYER
The layer from which the patch embeddings are extracted
impacts the representation’s detail and subsequent sample
similarity evaluation. The histogram bars on the left side
of Fig. 3 demonstrate 3D-SeND performance enhancement
as we move from shallow to deeper layers. This trend
holds for all the architectures and signifies the growing
semantic information inherent in the patch embeddings when
progressing toward the network’s output.

2) MEMORY BANK SUBSAMPLING
By removing the need for a learning phase on the support set,
3D-SeND already provides a significant efficiency advantage
over the post-hoc OOD detection methods. Still, the process
of matching patch embeddings of a test sample to elements in
the memory bank may be cumbersome and can be optimized

by reducing the cardinality of those reference elements
extracted from the support set. Specifically, we can minimize
their redundancy with a tailored sub-selection strategy such
as greedy coreset [30], [49], [50]. This procedure is applied
separately to each class in the memory bank, reducing the
number of per-class patches to a specific fraction indicated
as Coreset Percentage. The right part of Fig. 3 depicts the
variation in AUROC at 1%, 5%, 10%, 50%, and 100%
of the overall patch count. When based on OpenShape
our method shows almost stable performance. Interestingly,
for Uni3D, patch redundancy in the memory bank appears
counterproductive, with optimal AUROC observed when
only 10% of patches at each class are retained. EPN appears
instead more sensitive to the Coreset Percentage with an
almost linear performance decrease.

3) SCORING FUNCTIONS
In Tab. 5 we present the results obtained by evaluating 3D-
SeNDwith different scoring functions.We compare the effect
of the chosen Weighted Entropy (Hw) with that of the naïve
entropy (H ) and considering purely distance-based scoring
functions such as max and mean respectively defined as
Max = maxk=1,...,Pl (δ(vk )) andMean =

∑Pl
k (δ(vk ))/Pl . The
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TABLE 5. 3D-SeND results on top of EPN, OpenShape and Uni3D feature
encoders for the SR2 benchmark when varying the scoring function.

results confirm the effectiveness of the proposed weighted-
entropy-based solution but also indicate that using the
entropy can be slightly preferable with the OpenShape
architecture.

4) QUALITITATIVE ANALYSIS
As 3D-SeND operates by leveraging self-discovered relevant
object patches and their combination, its predictions can
be easily interpreted by visualization. A test sample will
be labeled as unknown when its component patches are
recognized as belonging to a large variety of classes (high
entropy), or possibly a limited number of classes (low
entropy), but with a highly uncertain prediction (large
distance between the test sample patches and those in the
memory bank). Using the EPN backbone, we present in Fig. 4
(left) four test samples and show the distribution of patches’
class assignments and distances with color coding - each
point in the point cloud inherits the color from its patch. In
the right part of Fig. 4, we present a detailed comparison
between Entropy and Weighted Entropy normalcy scoring
strategies for an OOD test sample. The pure Entropy scoring
method fails to identify the test sample as OOD, while the
Weighted Entropy scoring method, by incorporating Class
Average Distances, successfully detects the sample as OOD.

V. CONCLUSION
We introduced 3D-SeND, a model that effectively detects
semantic novelty in 3D data without requiring to be trained
or fine-tuned on task-specific support set data. We proposed
a strategy to extract generalizable patch features from a
pre-trained 3D deep learning architecture and we designed
an innovative approach that combines semantic and relative
distance information to accurately identify test samples
belonging to novel classes.

What sets 3D-SeND apart is its remarkable ability to oper-
ate in limited data scenarios and its resilience to domain shifts
regarding the Synthetic to Real scenario. 3D-SeND proves to
be a flexible solution for real-world applications and provides
clear and intuitive visualization to understand its inner func-
tioning. It can be effectively deployed in data-constrained
environments, eliminating the need for running custom data
collections and training expensive task-specific models.
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