
30 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Autonomous attack mitigation through firewall reconfiguration / Bringhenti, Daniele; Pizzato, Francesco; Sisto, Riccardo;
Valenza, Fulvio. - In: INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT. - ISSN 1099-1190. - (In corso di
stampa). [10.1002/nem.2307]

Original

Autonomous attack mitigation through firewall reconfiguration

Publisher:

Published
DOI:10.1002/nem.2307

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992751.15 since: 2024-09-25T09:05:47Z

Wiley

1 of 18International Journal of Network Management, 2024; 0:e2307
https://doi.org/10.1002/nem.2307

International Journal of Network Management

SPECIAL ISSUE PAPER OPEN ACCESS

Autonomous Attack Mitigation Through Firewall
Reconfiguration
Daniele Bringhenti   | Francesco Pizzato  | Riccardo Sisto  | Fulvio Valenza

Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy

Correspondence: Daniele Bringhenti (daniele.bringhenti@polito.it)

Received: 30 July 2024  |  Revised: 9 September 2024  |  Accepted: 24 September 2024

Funding: This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the
European Union—NextGenerationEU.

Keywords: attack mitigation | firewall configuration | security automation

ABSTRACT
Packet filtering firewalls represent a main defense line against cyber attacks that target computer networks daily. However, the
traditional manual approaches for their configuration are no longer applicable to next-generation networks, which have become
much more complex after the introduction of virtualization paradigms. Some automatic strategies have been investigated in the
literature to change that old-fashioned configuration approach, but they are not fully autonomous and still require several human
interventions. In order to overcome these limitations, this paper proposes an autonomous approach for firewall reconfiguration
where all steps are automated, from the derivation of the security requirements coming from the logs of IDSs to the deployment
of the automatically computed configurations. A core component of this process is React-VEREFOO, which models the firewall
reconfiguration problem as a Maximum Satisfiability Modulo Theories problem, allowing the combination of full automation,
formal verification, and optimization in a single technique. An implementation of this proposal has undergone experimental
validation to show its effectiveness and performance.

1   |   Introduction

The growing size and complexity of modern computer networks,
designed around virtualization principles such as network func-
tions virtualization (NFV) and software-defined networking
(SDN), made impractical the traditional approaches for net-
work security configuration. According to the most recent Data
Breach Investigations Report by Verizon, misconfiguration was
seen in approximately 10% of breaches [1]. The main reason is
that old-fashioned configuration strategies were manual, so
they could be applied successfully only to static networks, where
every component was under the direct control of the network
administrator. In order to tackle the dynamic and evolutionary
nature of next-generation networks, automatic approaches for
network security configuration have recently become popular
as a possible solution to this management problem. Nowadays,

many solutions adopt policy-based management approaches,
where the administrators simply specify the security require-
ments that must be enforced in their network (e.g., they specify
which traffic flows should be blocked before reaching their des-
tination because potentially malicious), and then, an automated
process computes the configuration of the required network se-
curity functions [2].

Among the automated approaches for security configuration
proposed in the literature, many of them address this prob-
lem for packet filtering firewalls because they represent the
most effective response to a large number of possible cyber
attacks. The solutions investigated for firewalls are quite rich,
especially the ones for distributed firewalls. Indeed, config-
uring them automatically in a virtual network means both
establishing how firewall instances must be allocated in the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2024 The Author(s). International Journal of Network Management published by John Wiley & Sons Ltd.

https://doi.org/10.1002/nem.2307
https://doi.org/10.1002/nem.2307
mailto:
https://orcid.org/0000-0002-3086-7364
mailto:daniele.bringhenti@polito.it
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnem.2307&domain=pdf&date_stamp=2024-10-20

2 of 18 International Journal of Network Management, 2024

logical topology and computing their filtering rules. Besides,
those proposals have been progressively enriched with other
features. For example, some of those solutions embed formal
methods to address the problem, ensuring solution correct-
ness by construction. This is crucial because it allows the
avoidance of possible misconfigurations, which is essential to
provide adequate network security [3, 4].

Despite the different advantages achieved by these solutions for
firewall configuration, such as avoiding trial-and-error human
operations and improving security management through auto-
mation, most of them have two common weaknesses related to
the fact that they are not explicitly designed to address the re-
configuration problem.

On the one hand, whenever there is a change in the set of secu-
rity networks to be enforced as a consequence of a cyber attack,
most of the approaches proposed so far need to be re-executed
from scratch to synthesize a new valid configuration, result-
ing in a wasteful process, both in terms of computation power
and time. Moreover, this may produce a significantly different
configuration with respect to the original one. Consequently, in
order to deploy the updated configuration, a large part of the
network needs to be shut down, updated, and restarted, add-
ing another time delay that is not negligible (e.g., OpenStack
requires more than 5 s for the deployment of a single machine
[5], and Open Source MANO, a well-known NFV orchestrator,
requires a delay of 134 s to deploy a virtual function [6]). This
also clashes with the trend for modern network attacks, as re-
ported by various sources [7, 8]. Cloudflare reported [7] that in
2022, 96% of DDoS attacks remain below 500 Mbps, with 52% of
the total attacks lasting less than 10 min. Also, the news of the
attack undergone by Proton in 2022 [8] showed evidence of burst
DDoS attacks, with multiple attack vectors and rapid changes
within minutes.

On the other hand, these approaches proposed in literature
still require a large number of interactions with human ad-
ministrators, and this represents a two-fold issue in terms of
time and correctness. Concerning time, these interactions
significantly delay the moment in which the automatically
computed configuration can actually be deployed in the phys-
ical infrastructure of the virtual networks. If the objective
is to address cyber attacks as soon as possible, then it is not
reached. Concerning correctness, these interactions may lead
to introducing new errors in firewall configurations. For ex-
ample, administrators must still analyze the logs produced by
intrusion detection systems (IDSs) to get information about
ongoing cyber attacks, and they must create a new set of secu-
rity requirements. If some parts of the logs are misinterpreted,
then the policies may not be coherent. Similarly, administra-
tors must manually issue all the configuration commands pro-
duced by automatic approaches to make firewalls operative.
Unfortunately, also this operation may be prone to decision-
making errors, due to the variety of real-world firewall
products.

This paper aims to overcome these existing limitations by pro-
posing a novel approach whose objective is to automatically re-
configure a distributed firewall in virtual computer networks

whenever an IDS alerts about a detected cyber attack by writ-
ing a new log entry. This approach is meant to be autonomous
and continuously active to provide prompt automatic reactions
whenever required. After the initial input specification, the
human administrator should no longer be required to interact
with our proposed process. In particular, the administrator does
not have to define new security requirements to specify how the
attack must be mitigated and does not have to issue the low-level
configuration commands personally. This solution is thus suit-
able for the timing of modern attacks that can reconfigure the
network quickly and adapt to evolving attack scenarios.

The proposed approach includes multiple steps dedicated to the
automated operations: firewall configuration translation and
deployment, IDS log monitoring and requirement extraction,
merging of old requirements with the extracted ones, and fire-
wall reconfiguration computation. The last step is the most com-
plex one because understanding how firewall instances should
be repositioned and reconfigured to satisfy new security require-
ments implies a high degree of versatility for decision-making.
For the resolution of the problem involved in this step, the pro-
posed approach includes an algorithmic methodology, named
Reactive VErified REFinement and Optimized Orchestration
(React-VEREFOO), which represents a primary component.
React-VEREFOO performs an optimized security reconfigura-
tion of distributed packet filters for an already deployed network
within a short computation time. Its novelty lies in the coexis-
tence of three important features that, to the best of our knowl-
edge, are not supported by any other reconfiguration approach
in literature: complete automation, optimization, and formal
correctness assurance. This is made possible by the adopted
technique, which is based on the resolution of a partial weighted
Maximum Satisfiability Modulo Theories (MaxSMT) problem.
This type of problem allows, with a carefully designed model
of the network configuration and the desired security policies,
the computation of a solution that correctly enforces the given
requirements while seeking additional optimality goals, going
beyond what is achievable with commonly used approaches
based on heuristics. Such an automated approach based on for-
mal methods thus proves to be a valid solution to address the
continuous generation of network attacks, being able to quickly
defend against incoming attacks through the optimized com-
putation of an updated firewall configuration that blocks the
attacker within a short time delay, while ensuring formal cor-
rectness with respect to all security policies in place.

This paper is an extension of the conference paper published
in the proceedings of the 2024 IEEE/IFIP Network Operations
and Management Symposium (NOMS 2024) [9]. That confer-
ence paper only presented the React-VEREFOO component.
Instead, this extension describes the design of all the other
components of the process, that is, the modules related to trans-
lating and deploying the firewall configuration produced by
React-VEREFOO, monitoring IDS logs and extracting new re-
quirements, and merging the extracted requirements with the
previous ones. In this way, this paper casts React-VEREFOO
into a more complete approach, where all steps of attack miti-
gation through firewall reconfiguration are automated. Besides,
it also describes new validation tests that were carried out to as-
sess the effectiveness of the whole process.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

3 of 18

The remainder of this paper is structured as follows. Section 2
contains a summary of the related work. Section 3 describes
the proposed approach. Section 4 introduces some key formal-
isms used to represent the network and the security require-
ments, but it also discusses the design of the main algorithms
and of the MaxSMT problem employed in React-VEREFOO.
Section 5 discusses the results of the validation and perfor-
mance tests conducted on the implementation of the proposed
approach. Finally, Section 6 outlines the conclusion and fu-
ture work.

2   |   Related Work

Previous related work can be divided into three main categories:
(1) approaches that pursue a similar idea but are applied to a
different issue with different characteristics and needs, that is,
the problem of routing management (Section 2.1); (2) approaches
that are designed for the same problem, that is, reconfiguration
of firewalls, but lacking some of the features with respect to our
approach (Section 2.2); and (3) approaches for the configuration
of distributed firewalls with a similar set of features, namely,
automation, formal correctness assurance, and optimality, but
without the support for a specific reconfiguration procedure
(Section 2.3).

2.1   |   Optimized Reconfiguration for Routing
Problems

A small number of studies [10–12] adopt an approach similar to
the one presented in this paper but address a distinct issue, that
is, routing management. Indeed, they deal with routers, routing
algorithms, and forwarding policies instead of network security
functions and policies. In greater detail, Gember-Jacobson et al.
[10] describe the design of the control plane repair algorithm, an
approach based on a MaxSMT problem to automatically com-
pute correct and minimal repairs for network control planes.
The solution is based on a carefully crafted formal model for
the network, the routing protocols, and the exchanged traffic.
It supports minimizing the lines written in the configuration as
an optimization goal. Abhashkumar et al. [11] outline another
synthesis tool, named AED, that formally models the network
and its configuration into a MaxSMT problem. The optimality
goals considered in the resolution are more refined, allowing
the operator to specify different management objectives, such as
maintaining structural similarity across devices or minimizing
the number of modified devices. Finally, Tian et al. [12] present
JINJING, an approach for the automatic and correct update of
routing configuration on the base of intents expressed using an
ad hoc language. This approach models the network as an SMT
problem, leaving as open variables all the elements causing the
inconsistencies between the current configuration and desired
policies while keeping the other elements fixed. Optimality, in
this case, is not present. Moreover, the approach could produce
redundancy in the computed rules as it requires a postprocessing
task to minimize the lines of the computed configuration, and
it just focuses on traditional networks, not allowing the modifi-
cation of the topology of the control plane but only its configu-
ration. Overall, while these studies share similarities with our
work, such as combining a similar set of features (automation,

formal verification, and optimization) and focusing on reconfig-
uration, they operate within a different context.

2.2   |   Automatic Fixing of Firewall Configurations

Other studies [13–17] investigate the problem considered in this
paper, that is, automatic reconfiguration of firewalls, but they
address it partially, as their proposed solutions lack some of the
features that are included in our proposal. Chen et al. [13] pro-
pose five algorithms to automatically reconfigure a faulty fire-
wall after five corresponding issues (wrong rule order, missing
rules, wrong condition predicates, wrong decision actions, and
wrong extra rules). This approach uses samples of misclassified
packets as input for the reconfiguration, proposing a fix that
tries to maximize the number of solved misclassifications de-
tected through samples of misclassified packets used as input
of the reconfiguration process. Adi et al. [15] use a dedicated
calculus to formally verify if the configuration is compliant with
the security policies defined by the user and, if not, to automati-
cally generate the optimal and correct configuration repair. The
repair is computed using the adopted calculus and a quotient
operator that can compute which changes are needed to reach
the desired state and which must comply with the defined se-
curity policies. Cheminod et al. [17] illustrate a methodology for
configuration refinement, formal verification, and, if needed,
the automatic computation of a fixing strategy in case the cur-
rent configuration does not correctly enforce the user-defined
policies. This is based on an SMT model and, for the fixing, on
a constraint refinement approach, which keeps everything fixed
in the configuration, but the elements causing the anomalies are
recomputed by the refinement process. Youssef and Bouhoula
[14] compute, whenever a misconfiguration is detected, a for-
mally correct fixing action by resolving a carefully designed
SMT problem, and use a formal model for the security policies
and the network configuration. Whenever a misconfiguration
is detected, it computes a formally correct fixing action solving
a carefully designed SMT problem. Hallahan et al. [16] pres-
ent another approach based on formal models and the design
of an SMT problem. It follows a repair-by-example paradigm,
providing a set of user-defined examples of the desired filtering
behavior as input for the reconfiguration process. Also, in this
case, the model can be solved to synthesize a formally correct
reconfiguration. Note that this approach does not model the de-
sired security policies, but it follows a repair-by-example para-
digm, considering examples of the desired behavior that the user
provides. The approach automatically synthesizes new firewall
rules for the existing configuration so that the new set of rules
respects the provided examples.

Concerning their limitations, Chen et al. [13] and Hallahan et al.
[16] cannot guarantee the formal correctness of the configura-
tion with respect to a set of security policies, because they do
not model all the traffics but either only those provided in the
examples or those involved in a detected misclassification, and
so they cannot guarantee the correctness for all traffics. Almost
all approaches [13–16] are not designed for distributed firewalls,
but they support only single firewall instances. Moreover, they
do not support the synthesis of new services from scratch but
can only modify those already deployed. Youssef and Bouhoula
[14] and Hallahan et al. [16] adopt limited or no optimization for

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 18 International Journal of Network Management, 2024

the computation of the new configuration. The approach pro-
posed by Cheminod et al. [17] is the most complete one in terms
of features, but its focus is primarily on access control instead of
reachability policies, and it is mostly a description of a possible
approach rather than a fully functional solution.

2.3   |   Automatic, Formal, and Optimal Firewall
Configuration

Finally, some studies propose automatic techniques for allocat-
ing or configuring distributed firewall systems with all the fea-
tures we are considering. Among all the ones that are reported in
a state-of-the-art survey about automatic security configuration
[2], the most relevant ones are ConfigSynth [18] and VEREFOO
[19, 20]. The former automates the generation of the firewall al-
location scheme (but not of the configuration) with an optimized
and formal approach based on the definition of an iterative SMT
problem. The idea is that the architecture is tuned at each step
of the algorithm until it properly enforces all the security prop-
erties. In this case, the optimization criteria is the minimization
of the network security functions allocated in the network. The
latter proposes the definition of a MaxSMT problem to model the
network and its configuration. The formal assurance is provided
with a correctness-by-construction approach, and the involved
optimality criteria are the minimization of the number of allo-
cated firewalls and the number of firewall rules so as to reduce
the amount of consumed resources.

Despite the relevance of these two studies and other related
ones in the same category, they do not provide an optimized
procedure for reconfiguration. As they simply regenerate the
allocation scheme or configuration from scratch every time,
the result may have significant differences with respect to the
previous configuration status (e.g., the position of the firewalls
is significantly modified or several new firewalls are allocated
[21]). Consequently, these differences would lead to a significant
delay required to instantiate many new virtual firewalls or to
change several rule sets of the preserved ones. Unlike them, our
proposed approach has been specifically designed to optimize
firewall reconfiguration by minimizing the number of the re-
quired changes to satisfy new security requirements.

3   |   The Proposed Approach

The proposed methodology aims to provide automatic firewall
reconfiguration after attack detection in virtual computer net-
works through an autonomous process of operations that mini-
mizes the number of interactions with the human administrator.
As shown in Figure 1, the approach that we designed involves
multiple steps, which are defined for the different tasks of attack
mitigation through firewall reconfiguration: initial input spec-
ification, firewall configuration translation and deployment,
IDS log monitoring and requirement extraction, merging of old
requirements with the extracted ones, and firewall reconfigura-
tion computation. The remainder of this section will detail all of
them more precisely.

3.1   |   Initial Input Specification

The main interaction point between the proposed approach and
the human administrator occurs at the beginning of the process,
when no firewalls are operative yet in the computer network. At
this stage, the administrator must specify the initial inputs that
kick off the autonomous loop of mitigation operations. In greater
detail, two inputs are required: a service graph (SG) and an ini-
tial set of network security requirements (NSRs).

The SG consists in a description of the logical topology of the
virtual computer network where security must be enforced.
As such, it describes how the network nodes interconnect with
each other and provides information about the configuration of
network service functions such as network address translators
and load balancers. The way these service functions work may
impact the satisfaction of security requirements, as they may
modify the received traffic. Consequently, their behavior must
be known by our automatic approach so that it can later under-
stand where firewalls should be allocated and how they should
be configured. For example, a network address translator may
change the source or destination IP address of a received packet.
Therefore, depending on whether a firewall is allocated before
or after the network address translator in the path followed by
a traffic flow, it will analyze packets with different values for
those address fields so that it will need different filtering rules.

FIGURE 1    |    The proposed approach for attack mitigation through firewall reconfiguration.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5 of 18

The input SG also provides information about the configuration
of the already present firewall, which will have to be reconfig-
ured in the future. This configuration comprises the allocation
scheme, specifying the positions in the network where the fire-
wall instances are allocated, and the filtering rule set for each
instance. Additionally, an assumption about the input SG is that
all the virtual network functions (VNFs) composing its logical
topology are already deployed in the physical network infra-
structure, with the exception of firewall instances, because allo-
cating and configuring them is another task of our autonomous
process.

The initial set of NSRs describes the security requirements (or
policies) that are already enforced in the input SG. As our ap-
proach works with packet filtering firewalls, whose objective
is to block malicious traffic and enable desired communica-
tions, the NSRs that are envisioned in this study are connec-
tivity requirements, that is, policies that provide information
about how and if network nodes can communicate with each
other. From this point of view, two possible NSR types may
exist: isolation requirements if they request that certain packet
classes are blocked before reaching their destination because
potentially malicious and reachability requirements if they re-
quest that certain packet classes must reach their destination
to ensure a connectivity service. The packet classes of interest
are identified by the condition of each NSR, which expresses
the values (or range of values) that each field of the IP 5-tuple
must have so that its related packet is considered to belong to
the class of interest for a certain NSR.

Both the SG description and the initial set of NSRs are pro-
vided by the human administrator through a medium-level
policy specification language, which is independent of the
specific low-level settings of the network service and security
function configuration. In the literature, several languages
exist for policy specification to provide different abstraction
levels. For this level, XML or JSON representations can be
used, so as to abstract from the technicalities of the specific
firewall implementations.

Moreover, the definition of the firewall configuration included
in the SG and required to satisfy the initial set of input NSRs
do not necessarily require manual operators to be performed by
the human administrator. In fact, it may be computed automat-
ically with state-of-the-art tools described in Section 2.3 such
as VEREFOO [20]. In this way, the administrator simply has to
feed the automatic tool with the information needed for firewall
configuration.

In general, this operation of initial input specification represents
the only interaction point where the human administrator must
actively do something to provide information to the automatic
approach, but this task cannot be avoided because all autono-
mous processes need a starting point.

3.2   |   Conversion and Provisioning of the Firewall
Configuration

The firewall configuration, inclusive of its allocation scheme
and filtering rule sets, is not already deployed in the active

virtual network. Therefore, a specific module of the methodol-
ogy is dedicated to the operation of deploying them.

Both provisioning and conversion operations are not very
complex. On the one hand, the provisioning operation, that is,
deploying the VNFs in the network, is a simple operation be-
cause it simply requires the module to interact with the APIs
of the specific VNF orchestrator that is used by the adminis-
trator to handle VNF management. On the other hand, the
configuration that is provided by the user cannot be directly
pushed onto the deployed VNFs because it is a medium-level
implementation-agnostic language. Consequently, all firewall
rule sets must be converted from XML/JSON representations
to the specific commands of different firewall implementa-
tions, such as iptables, ipfirewall, eBPF firewall, and Open
vSwitch. The module envisioned for this task must be flexi-
ble enough to be extended easily to other technologies, thus
providing forward compatibility. Anyway, this conversion is
simply a translation, as it moves the same information from a
structured format to another structured format without add-
ing other information or removing any. Therefore, overall, the
module dedicated to this operation does not require an intelli-
gent engine to work differently from other modules of the pro-
posed autonomous process. At the same time, it contributes to
avoiding that these simple operations are performed manually
by a human administrator, who may introduce easily avoid-
able mistakes.

3.3   |   Intrusion and Attack Detection

After the provisioning of the firewall configuration has been com-
pleted, the network must be able to identify possible cyber attacks
that were not taken into account in the initial set of NSRs. For
this purpose, among all the deployed VNFs, some of them must
be IDSs. These monitoring functions have the objective of analyz-
ing all packets crossing them to understand if they may possibly
belong to a malicious traffic flow. The literature on IDS technolo-
gies and behaviors is extremely rich. To mention a few examples,
passive IDSs evaluate the received packets against a set of rules
expressing the conditions under which the IDS should assume
that a specific attack is occurring. Instead, active IDSs try to un-
derstand the presence of an attack depending on statistics, such as
the occurrence of packets with the same structure and field val-
ues in the past. Several active IDS are also enhanced with intel-
ligent algorithms, such as data-driven techniques and Artificial
Intelligence strategies based on Support Vector Machines.

Considering the richness of the literature on this topic and the
continuous progress in it, it is not the purpose nor contribution
of this paper to introduce new strategies for intrusion detec-
tion. Therefore, any kind of IDS can be used and work with our
proposed approach, as long as the IDS produces a log file that
the next steps of the proposed methodology can later exploit.

3.4   |   Extraction of Security Requirements from
IDS Log Files

Whenever an IDS writes a new log entry, it may notify the oc-
currence of a cyber attack, for which new NSRs should be

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 18 International Journal of Network Management, 2024

defined, and a new firewall configuration should be produced.
Consequently, the first step of such mitigation consists of mon-
itoring the log files, understanding if a new entry is about an
attack, and extracting a new NSR for its management.

A specific module of the proposed methodology is responsible
for these tasks. Specifically, it continuously monitors log files
written by the IDSs deployed in the network. Whenever a new
entry is written, it parses it to understand if it is related to a
cyber attack. In that case, it extracts all the valuable pieces of
information from that entry, identifying the packet class related
to the attack from the values of the IP 5-tuple fields. Next, start-
ing from this information, the module identifies all traffic flows
related to the identified packet class. In this study, a traffic flow
represents how a specific packet class is forwarded and trans-
formed within its path, so multiple flows can exist for each class
(e.g., it is simply possible that the packets of this malicious class
can come from multiple sources). After identifying the flows, a
new NSR is created for each one of them. This new NSR has a
condition whose source IP address and port are the ones of the
packet class at the beginning of the flow, and whose destination
IP address and port are the ones of the packet class at the end
of the flow. Those condition fields cannot be directly mutated
from the packet class extracted from the log entry because some
packet fields may have been modified by intermediate nodes,
such as network address translators, while the conditions of an
NSR should be defined over an end-to-end communication.

After concluding all these operations, a new set of NSRs is pro-
duced, called extracted set of NSRs.

3.5   |   Merging of Initial and Extracted
Requirements

All the NSRs belonging to the extracted set require satisfaction in
an updated version of the firewall configuration to be deployed
in the virtual network because they are necessary to stop the
cyber attack identified by the monitoring agents and reported
in their log files. At the same time, the initial set of NSRs should
also be preserved, as long as those NSRs do not conflict with
the target ones. For instance, some flows that were permitted by
an initial reachability NSR may not have to be blocked because
of a target isolation NSR. As each NSR may be associated with
multiple flows, partial conflicts are possible, so the problem of
conflicting NSRs cannot be solved just by removing the initial
conflicting NSR, which instead must be opportunely modified.

A tailored module of the proposed methodology is responsible
for performing this merging operation in an enhanced way to
create a merged set, also named target set of NSRs, because this
is the set of all the NSRs that will have to be actually satisfied in
the network, in place of the previous initial NSRs.

The module in charge of creating the target set works according
to a strategy based on the following sequential steps:

1.	 First, it includes all the extracted NSRs into the target set, as
they are required to block the detected cyber attack.

2.	 Then, for each initial NSR, it checks if it conflicts with any
extracted NSR (already included in the target set) to decide if

and how to include it. In particular, two NSRs are conflicting
if they have different actions and (at least partially) overlap-
ping conditions.

3.	 The initial NSR may conflict or not with some extracted
NSRs.
•	 If the initial NSR does not conflict with any extracted

NSR, it is directly included in the target set.
•	 If the initial NSR conflicts with an extracted NSR, the

merging module must modify its condition so that it does
not include the overlapped part anymore, and then, it can
put the modified NSR into the target set. For example, if
an initial reachability NSR was previously applied to the
TCP traffic targeting all ports in the range [50,800, 50,900]
while an extracted isolation NSR imposes that TCP traffic
to 50,900 must be blocked because it is used by a cyber
attack, then the initial reachability NSR must be modified
so that the condition on the destination port is defined on
the restricted interval [50,800, 50,899]. Clearly, if there
is a complete overlapping between the conditions of the
initial and extracted NSRs, the initial NSR is completely
removed.

3.6   |   React-VEREFOO

After the merging operation has been concluded, the new fire-
wall configuration can finally be produced. This operation is
performed by a central module of the proposed methodology,
that is, React-VEREFOO.

As shown in Figure 2, React-VEREFOO works on two inputs.
The first input is the SG that is currently deployed, that is, the
logical topology of a virtual network with an already existing
distributed firewall configuration, composed of the allocation
scheme of its instances and their filtering rules. The second
input is a pair of NSR sets: the initial set of NSRs, including the
old NSRs already satisfied by the existing firewall configuration,
and the target set of NSRs, coinciding with the previously com-
puted merged set and therefore including the newly extracted
NSRs to be enforced in the updated network configuration. The
produced outputs are the updated allocation scheme and the re-
configured filtering rules of the firewall.

React-VEREFOO achieves this outcome by combining automa-
tion, formal correctness, and optimization. This achievement is
feasible because the firewall reconfiguration problem is mod-
eled in React-VEREFOO as a MaxSMT problem. A MaxSMT
problem differs from an SMT problem because it allows the defi-
nition of two types of clauses: the hard constraints that are com-
pulsory and the soft constraints that are optional and have an
associated weight. The selected solution is the one that satisfies
all the hard constraints and maximizes the sum of the weights
of the satisfied soft constraints. Hard constraint satisfaction con-
tributes to achieving formal correctness as long as all problem
components are formally modeled. The attempt of the solver to
achieve soft constraint satisfaction contributes to the optimiza-
tion of the result.

The approach pursued by React-VEREFOO avoids the need
to recompute the entire network from scratch, significantly

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7 of 18

reducing computation time. It speeds up the process by nar-
rowing down the space of possible solutions that are ana-
lyzed, keeping certain parts of the configuration as fixed, and
providing optimality-related clauses, which are provided to
the solver, to have a faster convergence toward the optimal
solution. Specifically, the optimality objectives are the mini-
mization of resource usage and the preference for reusing the
original firewall configuration.

As React-VEREFOO is a main contribution of this study,
Section 4 will be dedicated to exploring the details about the
formal models used in it, the algorithms to identify the net-
work areas to reconfigure, and the formulation of the MaxSMT
problems.

3.7   |   Repetition of the Approach

After the new firewall configuration, including the allocation
scheme and filtering rules, is computed, the process envisioned
in our approach is repeated without any active intervention by
the human administrator. The configuration is translated and
provisioned in the network. Whenever an IDS writes a new log
entry related to an attack that was not considered in the previous
target set of NSRs, which have now become the initial set, a new
set of NSRs is extracted and is merged with the previous one, so
that React-VEREFOO can be executed again.

4   |   React-VEREFOO

The approach of React-VEREFOO is composed of multiple
steps. The first one involves the definition of a complete and
formal model that represents the network, the configuration
of the different network functions, and the traffic exchanged
(Section 4.1). Then, a central part of this proposal, representing
a main novelty introduced here, is the design of an algorithm
able to identify the network areas that must be reconfigured
based on the intersection of the two sets of NSRs provided as
input (Section 4.2). Having computed this intersection, it is pos-
sible to discern which NSRs have been added, kept, or deleted

in the new set of NSRs with respect to the original one. The
algorithm identifies, for all the “added” requirements, that is,
those relevant for the reconfiguration scenario, which elements
of the provided network should be modified because in conflict
with the new set of security requirements. The configuration of
these elements is therefore put under question. Finally, the ap-
proach formulates a MaxSMT problem whose resolution allows
to generate the new allocation graph (AG) and configuration
rules of the needed firewalls (Section 4.3). This approach starts
from the hypothesis that the configured rules for each firewall
are anomaly-free and without overlapping. This is not restric-
tive because there are techniques that allow to generate such set
from nondisjoint rules. Given this hypothesis, the order of rules
within each firewall is irrelevant, as each packet will match at
most one rule.

4.1   |   Formal Models

The formal models used in this paper stem from VEREFOO
[19, 20], a policy-based approach for automatic firewall config-
uration, which has all the features (automation, formal verifica-
tion, and optimization) we are interested in. Here, we report the
main features of those models that are required to understand
the remainder of the section, focusing on the ones that are differ-
ent with respect to the ones already presented in the VEREFOO
papers [19, 20].

The logical topology of the input network is modeled as a di-
rected graph, named SG, whose nodes represent all the network
functions and endpoints (e.g., web clients, web servers, firewalls,
and NATs) and whose edges represent directed connections.
However, the SG model is not directly used by the next steps of
the proposed approach, but it is preliminarily preprocessed to
create an alternative representation, named AG. The main dif-
ference is that the AG model is characterized by an extra node
type, named allocation place (AP), representing a placeholder
node that can be used by the MaxSMT solver to potentially al-
locate a firewall. The transformation of the SG model into the
AG consists in adding an AP only in-between pairs of network
nodes that do not contain any function that could be reused, for

FIGURE 2    |    Approach of React-VEREFOO.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 18 International Journal of Network Management, 2024

example, firewalls, as the idea is to reconfigure previously al-
located firewall instances whenever it is possible, rather than
placing additional ones in other APs.

The packets that may cross the AG are grouped in classes, de-
pending on the values of their header fields. Each packet class,
also called traffic in this paper, is represented as a predicate
computed over some variables representing the header fields.
Packets whose fields have the same values belong to the same
traffic, represented by the same predicate, and are therefore
managed in the same way by all nodes crossed in the network.
The predicate representing the formal model of each traffic is
a conjunction of subpredicates, one for each considered packet
field. Because this approach works with packet filters, the mod-
eled fields are the five ones composing the IP 5-tuple, that is,
source and destination IP addresses, source and destination
ports, and protocol type. Each subpredicate can represent a sin-
gle value, a range of values, or the range of all possible values,
denoted with the “*” symbol. For example, 10.22.34. ∗ used as
IP address subpredicate stands for 10.22.34.0/24, while ∗ used
as port subpredicate stands for the range [0, 65,535]. The set of
all different traffics, that is, packet classes, crossing the AG is
denoted as T. The generated firewall rules are modeled with
the same predicate representing the IP 5-tuple. In this way, the
approach produces a set of rules that is independent of the spe-
cific implementation, allowing to easily convert the computed
configuration into a specific kind of packet filter system (e.g.,
iptables, ipfirewall, and eBPF firewall) with a translator.

The way each node composing the AG handles each input packet
class is then modeled in a way that is as lightweight as possible,
by considering only the parameters that are actually relevant for
the security reconfiguration problem. In particular, it is modeled
by means of two functions, representing respectively the forward-
ing and transformation behaviors. On the one hand, the function
modeling the forwarding behavior of node ni is denyi :T → �.
This function maps an ingress traffic t to true, if and only if ni
blocks all the packets of that traffic. For simplicity, for each node
ni, we denote i the set of denied traffics and i the set of allowed
traffics. On the other hand, the function modeling the transfor-
mation behavior of node ni is i :T → T. This function maps an
input traffic t to the corresponding output traffic, after the pos-
sible modifications that it may apply. For several function types
(e.g., forwarders, traffic monitors, and firewalls), i is the iden-
tity function, as they cannot modify the input traffic. Instead,
for functions such as NATs and load balancer, it provides the
information related to the changes applied to the 5-tuple fields.
Note that for the sake of conciseness and performance, we do not
model single packets but only packet classes or traffics.

These models (i.e., the ones of packet classes and network node
behavior) allow to introduce the concept of traffic flow. A traffic
flow represents how a specific packet class is forwarded and trans-
formed within its path. A flow f ∈ F is modeled as a list of alter-
nating nodes and packet classes [ns, tsa,na, tab,nb, … ,nz , tzd,nd],
where each node ni in the list represents a node crossed by the
flow, whereas the traffic tij is a predicate representing the class
of packets transmitted from node ni to node nj. The definition of
the traffic flows crossing the AG may differ, depending on how
single packets are grouped into the corresponding classes. From
this point of view, we decided to adopt the grouping strategy

named atomic flow (AF) [22]. The reason is that, according to
that study, it is the technique that provides more benefits and
better performance for solving an automatic (re)configuration
problem. In greater detail, this grouping strategy is based on the
atomic predicate concept, proposed by Yang and Lam [23] for
the network reachability problem. According to their definition,
given a set of initial predicates, it is possible to apply an algo-
rithm on them to compute a derived set of atomic predicates,
which is proved to be minimum and unique. The main property
of this set is that each initial predicate is equal to the disjunction
of a subset of atomic predicates. The idea was to apply this con-
cept to computer networks so that, given a set of predicates of the
network, it is possible to compute a set of corresponding atomic
predicates that are minimal, unique, and fully representative of
the initial set. Then, a flow f = [ns, tsa,na, tab,nb, … ,nz , tzd,nd]
can be defined atomic if each traffic tij is an atomic predicate. To
compute the set of atomic predicates, and then the set of AFs, we
consider the “interesting" predicates extracted from the NSRs
and the network configuration. The algorithms are not reported
here, because they are already described in literature [22].

Lastly, the security requirements that must be enforced in the AG
are modeled as the combination of two elements: a set of specific
NSRs R and a general behavior. On the one hand, each specific
NSR r ∈ R is formally modeled as a tuple (a,C), where a is the ac-
tion that must be applied on packets matching with the condition
predicate C. The NSR is defined isolation requirement if the ac-
tion a is deny, reachability requirement if instead the action a is
allow. The set of specific NSRs provided by the user is assumed to
be anomaly-free, which is not a limitation because there are many
well-known anomaly analysis techniques [24, 25] that easily allow
deriving anomaly-free policy sets. On the other hand, the general
behavior adopted in this proposal is a “don't care” approach, which
allows users to define both reachability and isolation requirements
without imposing any restriction on other packet classes (i.e., users
are not concerned about the reachability and isolation of packets
for which they have not specified a specific NSR).

The formalization of the specific reachability and isolation NSRs
in terms of traffic flows management is as follows: an isolation
NSR is satisfied if for any associated traffic flow there is at least
one node with an allocated function configured to block the
traffic in input for that flow, as shown in Equation (2), whereas
a reachability NSR is satisfied if there is at least one associated
traffic flow that is not blocked from source to destination by any
of the crossed nodes, as shown in Equation (1). These will be
modeled in the MaxSMT problem as hard constraints, making
their satisfaction mandatory. Note that the reported equations
are using some utility functions whose meaning is as follows:
�(f) returns the nodes belonging to flow f (excluding the
source), allocated(n) returns true if there is a firewall allocated
in node n, and finally, �(f ,n) returns the traffic in input to node
n for flow f . Instead, Fr represents the set of AFs that respect the
condition of NSR r.

Moreover, the input NSR set R is composed of two subsets: the
Initial set Ri, including the NSRs that are already enforced in

(1)∃ f ∈ Fr . ∀ i. (ni ∈ �(f) ∧ allocated(ni) ⇒ ¬denyi(�(f ,ni))),

(2)∀ f ∈ Fr . ∃ i. (ni ∈ �(f) ∧ allocated(ni) ∧ denyi(�(f ,ni))).

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

9 of 18

the existing network modeled by the AG, and the Target set Rt,
including the new NSRs to be enforced in the updated network
configuration.

4.2   |   Algorithm for Detection of Network Area to
Reconfigure

Starting from the formal models of all the input components (i.e.,
network topology, function behavior, traffic flows, and NSRs),
our approach envisions the execution of an algorithm, designed
to detect the network areas that actually require firewall recon-
figuration for the satisfaction of the Target NSRs included in Rt.

First, this algorithm classifies each NSR r ∈ {Rt ∪ Ri} to one of
the following groups: (i) d = {r ∈ Ri|r ∉ Rt}, the “deleted” NSRs
which are no more needed in the final configuration but are
present in the initial one, (ii) a = {r ∈ Rt|r ∉ Ri}, the “added”
NSRs that should be enforced in the final configuration and are
not present in the initial one, and (iii) k = {r ∈ Rt|r ∈ Ri}, the
“kept” NSRs that are already configured in the provided network
and should continue to be enforced in the final configuration.

Second, the algorithm detects, for all “added” requirements a,
that is, those relevant to the reconfiguration scenario, which el-
ements of the provided network should be modified because in
conflict with at least a new requirement. Due to the different
formulations of the two requirement types, this part of the algo-
rithm is differently formulated for the case of isolation require-
ments, and the case of reachability requirements. Anyhow, it is
important to underline that the algorithm selects as reconfigu-
rable all the nodes which can potentially be used to fulfill the
NSRs in a, because it cannot decide a priori which is either the
optimal node for blocking a traffic or the optimal traffic flow
which must be allowed from source to destination.

Considering a new isolation requirement r ∈a and a given AG
A, the procedure to compute the network elements to be reconfig-
ured is presented in Algorithm 1. This procedure starts consider-
ing for each isolation requirement, r, all the correlated AFs, Fr. The

algorithm checks whether there is a node along the flow path that
is currently blocking the incoming traffic for that flow (Lines 3–7).
If no such node is found for a given flow, then all the nodes crossed
along the flow path are designated as eligible for reconfiguration
(Lines 9–11). This would allow the solver to subsequently decide
in which node a firewall should be allocated to enforce the isola-
tion requirement r. Figure 3 clarifies this with an example, where
the algorithm takes as inputs the two sets of Initial and Target
NSRs, along with a partially configured network that comprises a
firewall and two forwarders. The new requirement that should be
enforced is the isolation requirement for the traffic from the web
client 10.0.0.1 to the web server 20.0.0.1. In this case, there are two
paths associated with this requirement. A path crosses only the
forwarders, whereas the other one crosses also the firewall. As the
two paths are characterized by different network node lists, there
are two AFs, one for each path, because each flow includes the
crossed node list in its model. These two flows are labeled A and
B, respectively. The algorithm analyzes each flow to determine if
there exists a node blocking the traffic. In this scenario, Flow B
encounters a firewall that blocks all traffic through its default ac-
tion, consequently the condition is satisfied. Instead, Flow A does
not cross any network function that is blocking the traffic. So the
nodes belonging to its path must be added to the set of nodes to
be reconfigured, Nreconfigure (i.e., the two forwarders in this case).

Considering a new reachability requirement r ∈a and an AG
A, the procedure for selecting the network elements to be recon-
figured is presented in Algorithm 2. In this case, the satisfiability
condition is the logical negation of the prior scenario. The algo-
rithm has to look for the existence of an AF that is not blocked by
any firewall from the source up to the destination. If such a flow
is found to satisfy the reachability condition, the algorithm may
terminate before having checked all flows. For all the flows Fr
correlated with the reachability requirement r, the algorithm ex-
amines whether the nodes along the path are blocking the incom-
ing traffic for the given flow. If this is the case, these nodes are
added to a temporary list (Lines 4–8). In the end, if the algorithm
does not find an AF satisfying the reachability condition, all the
nodes in the temporary list are selected for reconfiguration and
added to the set Nreconfigure. Considering the example in Figure 4,

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 18 International Journal of Network Management, 2024

we encounter a situation analogous to the previous scenario but
with different inputs. In this case, the network consists of two
firewalls configured in whitelisting mode and a forwarder. The
new requirement that should be added is the reachability from
node 10.0.0.1 to node 20.0.0.1, encompassing all possible ports
and protocol types. This requirement is associated with two
paths, each with an associated AF. These are referred as A and
B. In this instance, the algorithm checks whether at least one of
these flows is not blocked by any firewall. If this is not the case,
the algorithm proceeds to select for reconfiguration, in each
flow, the nodes that are blocking the traffic. In this specific case,
both flows encounter a firewall that is blocking their traffic. As

a result, the algorithm selects the nodes that are blocking both
flows, as the solution would be to reconfigure either FW1 or
FW2. This ensures that at least one AF can reach the destination,
thus meeting the reachability requirement condition.

4.3   |   MaxSMT Problem Formulation

After the algorithm has identified all the firewall instances that
may potentially require reconfiguration, this information is
used, jointly with the formal models of the input, for the formu-
lation of the MaxSMT problem. The core of this formulation is

FIGURE 3    |    Example of addition of an isolation requirement.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11 of 18

mutated from the one proposed for automatic firewall configu-
ration from scratch [19, 20]. However, some key changes have
been introduced to contextualize that formulation to the opti-
mized reconfiguration scenario.

A first difference is that the approach proposed in this paper
restricts the set of APs that are available for the solver to al-
locate firewall instances and keeps some of them as static
elements, which cannot be updated within the security config-
uration. Moreover, to further optimize this approach, also the
soft constraints involved in the optimization phase have been
adjusted, leading to an additional performance improvement.
The guiding principle is that the optimal reconfiguration is
the one that does not require any update to the network, thus
causing the lowest possible delay. Following this idea, the soft
constraints have been updated to prefer an already allocated
firewall instead of deploying a new one, as well as an already
configured rule must be preferred with respect to a newly gen-
erated one.

The same classes of soft constraint have been employed to ex-
press both objectives, namely, the minimization of resource
usage and the preference of reusing the original firewall config-
uration. However, the weights associated with these constraints
differ in relation to the considered subject, whether it is an empty
AP or a reconfigured firewall, or a newly generated firewall rule
with respect to an already configured one. This difference is
such that the usage of a reconfigured node, as any of its rules,
would result in a higher sum of weight and a preferred solution.
As a result, the final configuration will be the one that not only
minimizes the number of consumed resources in general but
also the one that produces the smallest number of changes with
respect to the initial configuration.

In particular, the soft constraint regulating the allocation of a
firewall for each node n in the set of APs  is formulated as in

Equation (3). This instructs the solver to prefer a solution that
does not allocate a firewall for any APs. Indeed, the nonallo-
cation soft constraint produces a contribution to the sum of
weights equal to ck.

Similarly, the soft constraint regulating the configuration of
firewall rules is presented in Equation (4). In this case, a dif-
ferent weight cki, smaller than the previous, is assigned to the
non-configuration of each potential firewall rule pi. The set Pk
contains all the rules that should be potentially configured in a
firewall if it is allocated.

In the approach optimized for reconfiguration, the weights as-
sociated to these soft constraints are modified for the nodes in
Nreconfigured. The first soft constraint has been modified in such
a way that the nonallocation of each firewall in Nreconfigured pro-
duces a contribution cR

k
 to the sum of weights, such that cR

k
< ck.

In this way, the nonallocation of an empty AP would be preferred
to the nonallocation of a reconfigured firewall because it has a
higher weight. The same principle is applied for the second soft
constraint. In this case, for each firewall in Nreconfigured, any of
the configured rules pi has an associated weight cR

ki
, such that

cR
ki
< cki. As before, this implies that the non-configuration

of a new potential rule is preferred with respect to the non-
configuration of a previously used one.

Finally, it is worth noting that the proposed approach may only
produce a solution that is optimal with respect to the network
areas identified as to be reconfigured and not an optimal solution
in a global sense. Nevertheless, this limitation is compensated by
the improved computation time, which represents a more critical
parameter in the proposed scenario of a cybersecurity attack.

(3)∀ai ∈. Soft(¬allocated(ai), ck).

(4)∀pi ∈ Pk . Soft(¬configured(pi), cki).

FIGURE 4    |    Example of addition of a reachability requirement.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 18 International Journal of Network Management, 2024

5   |   Implementation and Validation

The implementation of the proposed approach was carried out
by developing prototypes for the different modules composing
its approach:

•	The module for firewall configuration translation has been
implemented with the Java language. As input medium-
level policy specification language, this module can work
with one of the most commonly known languages in the
literature, that is, the Medium Security Policy Language
(MSPL), based on an XML format. As output, it can pro-
duce configuration rules for multiple types of firewall
solutions: iptables, ipfirewall, Open vSwitch, and eBPF
firewall are already supported, but the framework is
flexible enough to be extended to support other firewall

technologies. For the conversion from MSPL documents to
the low-level settings of these firewalls, the JAXB library
is used to convert XML documents to Java objects inter-
nally (and vice versa). This internal conversion eases the
final translation to the low-level firewall configuration
settings.

•	 The module for NSR extraction from IDS log files has been
developed with the python3 language, and it is a continu-
ously active framework that monitors IDS log files, to see if
new entries are added after the detection of a cyber attack.
Currently, the implemented prototype for this module al-
ready supports the analysis of two state-of-the-art IDS solu-
tions, which are OSSEC3.7 and Snort3. However, also this
module has been implemented in a way to ease extension
to other IDS technologies. The extracted NSRs are similarly

FIGURE 5    |    Initial service graph.

TABLE 1    |    Current NSRs.

Action IPSrc IPDst pSrc pDst tProto

Allow 57.73.0. ∗ 84.20.2.1 ∗ ∗ TCP

Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

Allow 84.20.2.2 232.61.10.2 37895 ∗ TCP

Allow 232.61.10.2 84.20.2.2 ∗ 37895 TCP

Allow 232.61.10.2 232.61.10.1 ∗ ∗ ∗

Allow 232.61.10.1 232.61.10.2 ∗ ∗ ∗

Deny 232.61.10.1 57.73.0.1 ∗ ∗ ∗

Deny 232.61.10.2 57.73.0.2 ∗ ∗ ∗

Deny 57.73.0.1 232.61.10.1 ∗ ∗ ∗

Deny 57.73.0.2 232.61.10.2 ∗ ∗ ∗

Deny 84.20.2.1 84.20.2.2 ∗ ∗ ∗

Deny 84.20.2.2 84.20.2.1 ∗ ∗ ∗

Deny 232.61.10.1 57.73.0.1 ∗ ∗ ∗

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

13 of 18

expressed in MSPL, to provide forward compatibility to all
other modules of the whole framework.

•	 The module for NSR merging has been developed with the
python3 language, and works with two sets of NSRs (initial
and extracted sets of NSRs) to produce a target set of NSRs.
All NSRs are still specified in MSPL.

•	 React-VEREFOO has been implemented as a Java-based
framework, and it employs the open-source Z3 theorem
prover [26], developed by Microsoft Research, to solve the
formulated MaxSMT problem.

•	 All these modules have interfaces for their communica-
tions (e.g., firewall reconfiguration is produced by React-
VEREFOO after a request is sent to its REST interface by
the module dedicated to NSR merging).

The framework has been validated both in terms of effectiveness
(Section 5.1) and performance (Section 5.2) with a series of tests.
All the MaxSMT instances have been solved on a machine with an
Intel i7-6700 CPU at 3.40 GHz, 32 GB of RAM, and Z3 version 4.8.5.

5.1   |   Effectiveness Validation

The effectiveness and efficacy of the framework have been
validated on some use cases, where attacks were simulated
and a new firewall configuration had to be produced. In this

subsection, we report a use case example to show how the
framework reacts to stop an ongoing attack of Denial of Service
(DoS). In this use case, a TCP SYN port scan is simulated. This
kind of attack can discover the state of TCP ports without
establishing a full connection, and it can thus understand if
there are open ports exploitable to carry out an attack to the
victim host.

The network that was used for the execution of this experiment
was realized with Dockers and its topology, inspired from our
research laboratory computer network, is graphically depicted
in Figure 5. In this network, the currently enforced NSRs are
the ones listed in Table 1. Besides, there are two already in-
stalled firewalls, f12 and f16, configured as shown in Table 2,
and there is an IDS f8 with OSSEC3.7 configured as reported
in Listing 1.

Rule 100009 matches any TCP SYN request without logging it.
This rule must work jointly with rule 100010, which is activated
when at least 20 TCP SYN requests from the same source IP are
identified within 60 s, notifying a potential port scan.

The attack simulation starts by accessing the Docker represent-
ing end point e4 with a shell:

sudo docker exec -it e4 /bin/sh

The port scan is simulated with nmap:

TABLE 2    |    Current firewall filtering rules.

Action IPSrc IPDst pSrc pDst tProto

Firewall f12
1 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

2 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

3 Allow 84.20.2.2 232.61.10.2 37895 ∗ TCP

4 Allow 232.61.10.2 84.20.2.2 ∗ 37895 TCP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗

Firewall f16
1 Allow 57.73.0. ∗ 84.20.2.1 ∗ ∗ TCP

2 Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

3 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

4 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 of 18 International Journal of Network Management, 2024

nmap -p 1-25 84.20.2.1 This command sends 25 TCP
SYN requests to e5, triggering the rule in OSSEC and result-
ing in the following alert, represented by the log entry listed in
Listing 2.

When the module focusing on NSR extraction sees that a new
log entry has been written by the IDS, it automatically parses
it and extracts an isolation NSR written formatted as the XML
object reported in Listing 3.

At this point, the merging module merges the extracted NSR
with the initial set of NSRs. The only conflicting initial NSR is
the one appearing at the top of Table 1. That reachability NSR
requested that the TCP traffic from all endpoints with IP ad-
dresses in the 57.73.0.0/24 range must be able to contact the
IP address 84.20.2.1. However, this is not acceptable anymore,
because the TCP traffic from 57.73.0.2 must now be stopped.
Therefore, the merging module modifies that initial NSR so that
the only acceptable source IP address is 57.73.0.1, and introduces
the extracted isolation NSR in that list.

When the target set of NSRs is thus created, React-VEREFOO
uses it to formulate a MaxSMT problem and compute the new
optimized firewall reconfiguration. In particular, it finds the re-
configuration solution where no new firewalls are added, thus
avoiding delays related to the deployment of new VNFs. Instead,
in this solution, the filtering rules of the firewall f16 are just
modified. The new rules are reported in Table 3.

Then, the conversion module converts the medium-level config-
uration produced by React-VEREFOO to iptables commands,
producing the script reported in Listing 4.

As soon as the configuration of f16 is updated, the attack is
successfully stopped. This result has been experimentally con-
firmed by reapplying the command to perform a port scan from
e4 to e5. This time, the attack turns unsuccessful.

5.2   |   Performance Validation

The framework has been extensively tested to assess its correct-
ness and its performance improvement with respect to the tra-

ditional approach for firewall configuration from scratch. The
validation was carried out on synthetic networks of increasing
sizes, generated as extensions of the network shown in Figure 5,
and under various reconfiguration scenarios. The performance
tests were designed to evaluate how much the results obtained
with the proposed optimized reconfiguration approach deviate
from those obtained with a state-of-the-art approach lacking
support for optimized reconfiguration. For this purpose, the
comparison has been done with the official implementation of
VEREFOO [27]. The evaluation also covered the achievement
of the optimality goals, quantifying the deviations of the pro-
posed approach from the global optimum in terms of resource
consumption. As mentioned in 4.3, this approach considers a
limited subset of the solution space, thus it may compute a con-
figuration that is locally optimal concerning the reconfigured
nodes but not in a global sense.

The main parameters used in the different test cases are the
number of NSRs, the number of endpoints, and number of
NATs (which introduces an additional complexity factor, and
they can modify the crossing traffic). Another important pa-
rameter is PercReqKept, which represents the percentage of

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

15 of 18

requirements in the set k with respect to the complete set
of NSRs. In other words, it represents the proportion of kept
requirements with respect to the total number of defined
NSRs. Clearly, if the percentage of requirements maintained
between the Initial and Target sets of NSRs increases, then
the number of NSRs in the added (a) and deleted (d) groups
will consequently decrease.

The first analysis, shown in Figure 6, compares the perfor-
mance of the algorithm in five different types of networks,
differentiated by an increasing number of endpoints, NSRs
and NATs, and with two reconfiguration scenarios, differ-
entiated by the value of the PercReqKept parameter. In par-
ticular, the five different classes of networks that have been
tested are Case-A with 10 NSRs, 60 endpoints, and 5 NATs;
Case-B with 15 NSRs, 80 endpoints, and 10 NATs; Case-C with
20 NSRs, 100 endpoints, and 15 NATs; Case-D with 25 NSRs,
120 endpoints, and 20 NATs; and Case-E with 30 NSRs, 140
endpoints, and 25 NATs. Then, the application of the frame-
work to each of these network classes has been tested in two
different reconfiguration scenarios, each characterized by a
decreasing value of PercReqKept, and, as a consequence, an in-
creased number of modified NSRs. The values adopted for this
parameter are 90% and 70%. Note that the tested scenarios are
concentrated on higher values of PercReqKept, as justified by
multiple sources. For instance, it is reported [28] that updates

in the Facebook infrastructure affect on average 157 lines of
configuration, considering only the backbone, or 738 lines, if
also data centers and edge servers are considered. Both are
relatively small numbers when compared to the huge scale of
their network. Instead, other researchers [29] questioned dif-
ferent online service providers and found out that, for 75% of
the networks operated by them, the median change includes
only three devices.

For each value of PercReqKept, and for each type of network,
the algorithm has been executed 100 times. Moreover, this
analysis aimed to highlight the improvement versus an unop-
timized approach, which is referred in the tests as the Complete
Reconfiguration case, and it corresponds to the vanilla version
of VEREFOO.

The observed trend is that the computation time is directly pro-
portional to the number of endpoints and NSRs and inversely
proportional to the percentage of kept requirements. Every con-
sidered reconfiguration scenario achieves an average computa-
tion time significantly lower than the approach adopted in the
vanilla VEREFOO. The obtained results highlight that the main
parameters increasing the computation time are the number of
endpoints, the number of NSRs, and just for the reconfiguration
case, the percentage of NSRs which are maintained, that is, the
PercReqKept parameter. Indeed, the Initial and Target NSR sets,

TABLE 3    |    Updated firewall filtering rules.

Action IPSrc IPDst pSrc pDst tProto

Firewall f16
1 Allow 57.73.0.1 84.20.2.1 ∗ ∗ TCP

2 Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

3 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

4 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗

FIGURE 6    |    Performance tests.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 of 18 International Journal of Network Management, 2024

once overlapped, form a shared region representing the group
k. The larger this area, the smaller the sets a and d, repre-
senting the added and deleted NSRs, and fewer NSRs must be
processed, making the reconfiguration process less computa-
tionally expensive.

These results show that the highest advantage in terms of com-
putation time is obtained when the reconfiguration regards a
small subset of the total NSRs. This is an expected result. In
fact, the optimization improvement of the presented approach
is mainly achieved by limiting the solution space that is con-
sidered by the solver. This reduction is achieved by fixing the
configurations of some network elements which are unaf-
fected by the new NSRs, shrinking the set of variables whose
values must be determined with the resolution of the problem.
If the modified NSRs represent a major part of the whole set,
then the unaffected area is reduced, and the optimization ef-
fect is limited. This validation phase also assessed that the im-
pact of the designed algorithm could be considered irrelevant
when compared to the overall computation time, because its
contribution always ranged between 0 and 100 ms, with most
of the runs being under 10 ms. In general, the results confirm
the feasibility of the proposed approach and its relevant ad-
vantages in terms of computation time when compared to the
previous solution, based on a complete reconfiguration of the
whole network.

In this phase, also the optimality of the solution has been
analyzed. The results show that the reconfiguration ap-
proach achieves a slightly higher number of allocated fire-
walls and configured rules. The extent of this difference
changes depending on the ratio between the weight assigned
to a reconfigured node and that used for a new one. This is
demonstrated by the additional tests shown in Figure 7. Two
different cases are represented here, one in which the ratio
between the weight assigned to a new AP and the weight as-
signed to a reconfigured node is equal to 2, in Figure 7a, and
another case in which the same ratio is equal to 10, Figure 7b.
As we can see, increasing this ratio results in an increase for
the number of generated firewall rules, and the same applies
to the number of firewalls (even if not represented here). The
suboptimality of the result is due to two factors: first, the re-
duction of the solution space for the solver which is limited to
the subset of APs that could be modified, and second, the soft

constraints which force the preference of reusing old configu-
ration elements even if a completely new configuration would
result in a slightly better optimality. Note that the results for
performance and scalability have been conducted using the
value 2 for the ratio, which allows to reduce the computation
time while achieving a nearly optimal usage of resources. All
the values assigned to the weights of each soft constraint are
the results of different tests that have been conducted.

The second validation analysis tested the approach with larger
networks and considering just a single reconfiguration scenario
in which 70% of NSRs are kept from the Initial to the Target
set. Figure 8 compares the obtained average computation time
for the proposed approach compared with the previous one. The
considered network types have increasing sizes, specifically
the considered cases are from left to right: 200 NSRs and 40
endpoints, 300 NSRs and 60 endpoints, with 400 NSRs and 80
endpoints, and 500 NSRs and 100 nodes. As we can see, even
considering the high variability of the obtained values, the re-
configuration approach performs well when compared to the
previous one also in terms of scalability. In this specific case,
which can be considered as a sort of upper bound, the average
computation time decreases by a factor of 60% over a similar
nonoptimized approach. When the update involves a smaller
portion, the gain is even higher.

FIGURE 8    |    Scalability tests.

FIGURE 7    |    Optimality comparison.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

17 of 18

6   |   Conclusion and Future Work

This paper presented an autonomous methodology for the op-
timized reconfiguration of distributed firewall systems. This
methodology aims to avoid human interventions when an attack
must be mitigated in order to avoid mistakes in firewall config-
urations being introduced when humans try to step on them.
This methodology is composed of multiple steps, such as the one
for converting firewall configurations from medium-level pol-
icy languages to concrete low-level settings and the one for ex-
tracting security requirements automatically from IDS log files.
However, a core component of this approach is React-VEREFOO,
which models firewall reconfiguration as a MaxSMT problem.
Thanks to this formalization, to the best of our knowledge,
React-VEREFOO is the first one in the literature to address that
problem while combining three main features: full automation
in computing the firewall reconfiguration, formal correctness
assurance of the computed configuration, and optimizations in
terms of resource consumption. The proposal was designed con-
sidering use cases of network attacks, requiring the computation
of a new formally correct and secure solution within a short com-
putation time, so as to limit the exposure of the systems to the
attack. The proposed strategy has been implemented as a frame-
work, whose validation showed benefits in terms of performance
with respect to a state-of-the-art technique that automatically
computes the firewall configuration from scratch.

As future work, further evaluations with real and more exten-
sive networks are currently ongoing to improve our claims, con-
sidering real networks and business use cases and also assessing
the different contributions of each operation to the total compu-
tation time. We will then evaluate to extend the current method-
ology to the reconfiguration of other network security functions,
such as antispam filters and web application firewalls, and to
other possible firewall countermeasures to fight against in-
trusions, such as forwarding malicious traffic to a honeynet.
Finally, we will investigate the possible impacts of false positives
on the operations of this methodology and new mechanisms to
unblock ports once a related attack is terminated, so as to fur-
ther improve the effectiveness of the proposed approach.

Acknowledgements

This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union—NextGenerationEU.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

References

1. Verizon, “2024 Data Breach Investigations Report,” (2024), https://​
www.​veriz​on.​com/​busin​ess/​resou​rces/​Tef6/​repor​ts/​2024-​dbir-​data-​
breac​h-​inves​tigat​ions-​report.​pdf, Visited: 2024-09-03.

2. D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation
for Network Security Configuration: State of the Art and Research
Trends,” ACM Computing Surveys 56, no. 3 (2024): 57:1–57:37, https://​
doi.​org/​10.​1145/​3616401.

3. S. Singh, Y.-S. Jeong, and J. H. Park, “A Survey on Cloud Computing
Security: Issues, Threats, and Solutions,” Journal of Network and Com-
puter Applications 75 (2016): 200–222, https://​doi.​org/​10.​1016/j.​jnca.​
2016.​09.​002.

4. H. Tabrizchi and M. K. Rafsanjani, “A Survey on Security Challenges
in Cloud Computing: Issues, Threats, and Solutions,” Journal of Super-
computing 76, no. 12 (2020): 9493–9532, https://​doi.​org/​10.​1007/​s1122​
7-​020-​03213​-​1.

5. A. Paradowski, L. Liu, and B. Yuan, “Benchmarking the Performance
of Openstack and Cloudstack,” in Proceedings of the 17th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC 2014 (Reno, NV: IEEE, 2014), 405–412,
https://​doi.​org/​10.​1109/​ISORC.​2014.​12.

6. G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. P. Costa, “Bench-
marking Open Source NFV MANO Systems: OSM and ONAP,” Com-
puter Communications 161 (2020): 86–98, https://​doi.​org/​10.​1016/j.​
comcom.​2020.​07.​013.

7. Cloudflare, “DDoS Attack Trends for 2022 Q2,” (2022), https://​blog.​
cloud​flare.​com/​ddos-​attac​k-​trend​s-​for-​2022-​q2/​ (Visited: 2024-07-25).

8. Proton, “A Brief Update Regarding Ongoing DDoS Incidents,” (2022),
https://​proton.​me/​blog/​a-​brief​-​updat​e-​regar​ding-​ongoi​ng-​ddos-​incid​
ents, (Visited: 2024-07-25).

9. F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and
Optimized Firewall Reconfiguration,” in Proceedings of NOMS 2024
IEEE Network Operations and Management Symposium, May 6-10, 2024
(Seoul, Republic of Korea: IEEE, 2024), 1–9, https://​doi.​org/​10.​1109/​
NOMS5​9830.​2024.​10575212.

10. A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Auto-
matically Repairing Network Control Planes Using an Abstract Repre-
sentation,” in Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China: Association for Computing Machinery,
2017), 359–373, https://​doi.​org/​10.​1145/​31327​47.​3132753.

11. A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “AED: Incre-
mentally Synthesizing Policy-Compliant and Manageable Configura-
tions,” in Proceedings of CoNEXT '20: The 16th International Conference
on Emerging Networking EXperiments and Technologies (Barcelona,
Spain: Association for Computing Machinery, 2020), 482–495, https://​
doi.​org/​10.​1145/​33863​67.​3431304.

12. B. Tian, X. Zhang, E. Zhai, et al., “Safely and Automatically
Updating In-Network ACL Configurations With Intent Language,” in
Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM 2019 (Beijing, China: Association for Computing Machinery,
2019), 214–226, https://​doi.​org/​10.​1145/​33413​02.​3342088.

13. F. Chen, A. X. Liu, J. Hwang, and T. Xie, “First Step Towards Auto-
matic Correction of Firewall Policy Faults,” ACM Transactions on Au-
tonomous and Adaptive Systems 7, no. 2 (2012): 1–24, https://​doi.​org/​10.​
1145/​22401​66.​2240177.

14. N. B. Youssef and A. Bouhoula, “A Fully Automatic Approach for
Fixing Firewall Misconfigurations,” in Proceedings of the 11th IEEE In-
ternational Conference on Computer and Information Technology, CIT
2011 (Pafos, Cyprus: IEEE, 2011), 461–466, https://​doi.​org/​10.​1109/​CIT.​
2011.​84.

15. K. Adi, L. Hamza, and L. Pene, “Automatic Security Policy Enforce-
ment in Computer Systems,” Computers & Security 73 (2018): 156–171,
https://​doi.​org/​10.​1016/j.​cose.​2017.​10.​012.

16. W. T. Hallahan, E. Zhai, and R. Piskac, “Automated Repair by Ex-
ample for Firewalls,” Formal Methods in System Design 56, no. 1 (2020):
127–153, https://​doi.​org/​10.​1007/​s1070​3-​020-​00346​-​0.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.verizon.com/business/resources/Tef6/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/Tef6/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/Tef6/reports/2024-dbir-data-breach-investigations-report.pdf
https://doi.org/10.1145/3616401
https://doi.org/10.1145/3616401
https://doi.org/10.1016/j.jnca.2016.09.002
https://doi.org/10.1016/j.jnca.2016.09.002
https://doi.org/10.1007/s11227-020-03213-1
https://doi.org/10.1007/s11227-020-03213-1
https://doi.org/10.1109/ISORC.2014.12
https://doi.org/10.1016/j.comcom.2020.07.013
https://doi.org/10.1016/j.comcom.2020.07.013
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://proton.me/blog/a-brief-update-regarding-ongoing-ddos-incidents
https://proton.me/blog/a-brief-update-regarding-ongoing-ddos-incidents
https://doi.org/10.1109/NOMS59830.2024.10575212
https://doi.org/10.1109/NOMS59830.2024.10575212
https://doi.org/10.1145/3132747.3132753
https://doi.org/10.1145/3386367.3431304
https://doi.org/10.1145/3386367.3431304
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/2240166.2240177
https://doi.org/10.1145/2240166.2240177
https://doi.org/10.1109/CIT.2011.84
https://doi.org/10.1109/CIT.2011.84
https://doi.org/10.1016/j.cose.2017.10.012
https://doi.org/10.1007/s10703-020-00346-0

18 of 18 International Journal of Network Management, 2024

17. M. Cheminod, L. Durante, L. Seno, F. Valenza, and A. Valenzano,
“A Comprehensive Approach to the Automatic Refinement and Ver-
ification of Access Control Policies,” Computers & Security 80 (2019):
186–199, https://​doi.​org/​10.​1016/j.​cose.​2018.​09.​013.

18. M. A. Rahman and E. Al-Shaer, “Automated Synthesis of Distrib-
uted Network Access Controls: A Formal Framework With Refine-
ment,” IEEE Transactions on Parallel and Distributed Systems 28, no. 2
(2017): 416–430, https://​doi.​org/​10.​1109/​TPDS.​2016.​2585108.

19. D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated Optimal Firewall Orchestration and Configuration
in Virtualized Networks,” in Proceedings of NOMS 2020—IEEE/
IFIP Network Operations and Management Symposium (Budapest,
Hungary: IEEE, 2020), 1–7, https://​doi.​org/​10.​1109/​NOMS4​7738.​
2020.​9110402.

20. D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated Firewall Configuration in Virtual Networks,” IEEE Trans-
actions on Dependable and Secure Computing 20, no. 2 (2023): 1559–
1576, https://​doi.​org/​10.​1109/​TDSC.​2022.​3160293.

21. D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Towards a Fully Automated and Optimized Network Security Func-
tions Orchestration,” in 2019 4th International Conference on Comput-
ing, Communications and Security (ICCCS) (Rome, Italy: IEEE, 2019),
1–7, https://​doi.​org/​10.​1109/​CCCS.​2019.​8888130.

22. D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “A Two-Fold Traffic
Flow Model for Network Security Management,” IEEE Transactions on
Network and Service Management 21, no. 4 (2024): 3740–3758, https://​
doi.​org/​10.​1109/​TNSM.​2024.​3407159.

23. H. Yang and S. S. Lam, “Real-Time Verification of Network Prop-
erties Using Atomic Predicates,” IEEE/ACM Transactions on Net-
working 24, no. 2 (2016): 887–900, https://​doi.​org/​10.​1109/​TNET.​
2015.​2398197.

24. E. Al-Shaer, H. H. Hamed, R. Boutaba, and M. Hasan, “Conflict
Classification and Analysis of Distributed Firewall Policies,” IEEE Jour-
nal on Selected Areas in Communications 23, no. 10 (2005): 2069–2084,
https://​doi.​org/​10.​1109/​JSAC.​2005.​854119.

25. F. Valenza, S. Spinoso, and R. Sisto, “Formally Specifying and
Checking Policies and Anomalies in Service Function Chaining,” Jour-
nal of Network and Computer Applications 146 (2019): 102419, https://​
doi.​org/​10.​1016/j.​jnca.​2019.​102419.

26. L. de Moura and N. S. Bjørner, “Z3: An Efficient SMT Solver,” in Pro-
ceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS, Vol. 4963 (Budapest,
Hungary: Springer, 2008), 337–340, https://​doi.​org/​10.​1007/​978-​3-​540-​
78800​-​3_​24.

27. VEREFOO, “VEREFOO GitHub Page,” (2024), https://​github.​com/​
netgr​oup-​polito/​veref​oo/​ (Visited: 2024-07-25).

28. Y.-W. E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng, “Robotron: Top-
Down Network Management at Facebook Scale,” in Proceedings of the
ACM SIGCOMM 2016 Conference (Florianopolis, Brazil: Association for
Computing Machinery, 2016), 426–439, https://​doi.​org/​10.​1145/​29348​
72.​2934874.

29. A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan,
“Management Plane Analytics,” in Proceedings of the 2015 ACM Inter-
net Measurement Conference, IMC 2015 (Tokyo, Japan: Association for
Computing Machinery, 2015), 395–408, https://​doi.​org/​10.​1145/​28156​
75.​2815684.

 10991190, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.2307 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.cose.2018.09.013
https://doi.org/10.1109/TPDS.2016.2585108
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/TDSC.2022.3160293
https://doi.org/10.1109/CCCS.2019.8888130
https://doi.org/10.1109/TNSM.2024.3407159
https://doi.org/10.1109/TNSM.2024.3407159
https://doi.org/10.1109/TNET.2015.2398197
https://doi.org/10.1109/TNET.2015.2398197
https://doi.org/10.1109/JSAC.2005.854119
https://doi.org/10.1016/j.jnca.2019.102419
https://doi.org/10.1016/j.jnca.2019.102419
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/netgroup-polito/verefoo/
https://github.com/netgroup-polito/verefoo/
https://doi.org/10.1145/2934872.2934874
https://doi.org/10.1145/2934872.2934874
https://doi.org/10.1145/2815675.2815684
https://doi.org/10.1145/2815675.2815684

	Autonomous Attack Mitigation Through Firewall Reconfiguration
	ABSTRACT
	1   |   Introduction
	2   |   Related Work
	2.1   |   Optimized Reconfiguration for Routing Problems
	2.2   |   Automatic Fixing of Firewall Configurations
	2.3   |   Automatic, Formal, and Optimal Firewall Configuration

	3   |   The Proposed Approach
	3.1   |   Initial Input Specification
	3.2   |   Conversion and Provisioning of the Firewall Configuration
	3.3   |   Intrusion and Attack Detection
	3.4   |   Extraction of Security Requirements from IDS Log Files
	3.5   |   Merging of Initial and Extracted Requirements
	3.6   |   React-­VEREFOO
	3.7   |   Repetition of the Approach

	4   |   React-­VEREFOO
	4.1   |   Formal Models
	4.2   |   Algorithm for Detection of Network Area to Reconfigure
	4.3   |   MaxSMT Problem Formulation

	5   |   Implementation and Validation
	5.1   |   Effectiveness Validation
	5.2   |   Performance Validation

	6   |   Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement

	References

