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ABSTRACT
Packet filtering firewalls represent a main defense line against cyber attacks that target computer networks daily. However, the 
traditional manual approaches for their configuration are no longer applicable to next-generation networks, which have become 
much more complex after the introduction of virtualization paradigms. Some automatic strategies have been investigated in the 
literature to change that old-fashioned configuration approach, but they are not fully autonomous and still require several human 
interventions. In order to overcome these limitations, this paper proposes an autonomous approach for firewall reconfiguration 
where all steps are automated, from the derivation of the security requirements coming from the logs of IDSs to the deployment 
of the automatically computed configurations. A core component of this process is React-VEREFOO, which models the firewall 
reconfiguration problem as a Maximum Satisfiability Modulo Theories problem, allowing the combination of full automation, 
formal verification, and optimization in a single technique. An implementation of this proposal has undergone experimental 
validation to show its effectiveness and performance.

1   |   Introduction

The growing size and complexity of modern computer networks, 
designed around virtualization principles such as network func-
tions virtualization (NFV) and software-defined networking 
(SDN), made impractical the traditional approaches for net-
work security configuration. According to the most recent Data 
Breach Investigations Report by Verizon, misconfiguration was 
seen in approximately 10% of breaches [1]. The main reason is 
that old-fashioned configuration strategies were manual, so 
they could be applied successfully only to static networks, where 
every component was under the direct control of the network 
administrator. In order to tackle the dynamic and evolutionary 
nature of next-generation networks, automatic approaches for 
network security configuration have recently become popular 
as a possible solution to this management problem. Nowadays, 

many solutions adopt policy-based management approaches, 
where the administrators simply specify the security require-
ments that must be enforced in their network (e.g., they specify 
which traffic flows should be blocked before reaching their des-
tination because potentially malicious), and then, an automated 
process computes the configuration of the required network se-
curity functions [2].

Among the automated approaches for security configuration 
proposed in the literature, many of them address this prob-
lem for packet filtering firewalls because they represent the 
most effective response to a large number of possible cyber 
attacks. The solutions investigated for firewalls are quite rich, 
especially the ones for distributed firewalls. Indeed, config-
uring them automatically in a virtual network means both 
establishing how firewall instances must be allocated in the 
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logical topology and computing their filtering rules. Besides, 
those proposals have been progressively enriched with other 
features. For example, some of those solutions embed formal 
methods to address the problem, ensuring solution correct-
ness by construction. This is crucial because it allows the 
avoidance of possible misconfigurations, which is essential to 
provide adequate network security [3, 4].

Despite the different advantages achieved by these solutions for 
firewall configuration, such as avoiding trial-and-error human 
operations and improving security management through auto-
mation, most of them have two common weaknesses related to 
the fact that they are not explicitly designed to address the re-
configuration problem.

On the one hand, whenever there is a change in the set of secu-
rity networks to be enforced as a consequence of a cyber attack, 
most of the approaches proposed so far need to be re-executed 
from scratch to synthesize a new valid configuration, result-
ing in a wasteful process, both in terms of computation power 
and time. Moreover, this may produce a significantly different 
configuration with respect to the original one. Consequently, in 
order to deploy the updated configuration, a large part of the 
network needs to be shut down, updated, and restarted, add-
ing another time delay that is not negligible (e.g., OpenStack 
requires more than 5 s for the deployment of a single machine 
[5], and Open Source MANO, a well-known NFV orchestrator, 
requires a delay of 134 s to deploy a virtual function [6]). This 
also clashes with the trend for modern network attacks, as re-
ported by various sources [7, 8]. Cloudflare reported [7] that in 
2022, 96% of DDoS attacks remain below 500 Mbps, with 52% of 
the total attacks lasting less than 10 min. Also, the news of the 
attack undergone by Proton in 2022 [8] showed evidence of burst 
DDoS attacks, with multiple attack vectors and rapid changes 
within minutes.

On the other hand, these approaches proposed in literature 
still require a large number of interactions with human ad-
ministrators, and this represents a two-fold issue in terms of 
time and correctness. Concerning time, these interactions 
significantly delay the moment in which the automatically 
computed configuration can actually be deployed in the phys-
ical infrastructure of the virtual networks. If the objective 
is to address cyber attacks as soon as possible, then it is not 
reached. Concerning correctness, these interactions may lead 
to introducing new errors in firewall configurations. For ex-
ample, administrators must still analyze the logs produced by 
intrusion detection systems (IDSs) to get information about 
ongoing cyber attacks, and they must create a new set of secu-
rity requirements. If some parts of the logs are misinterpreted, 
then the policies may not be coherent. Similarly, administra-
tors must manually issue all the configuration commands pro-
duced by automatic approaches to make firewalls operative. 
Unfortunately, also this operation may be prone to decision-
making errors, due to the variety of real-world firewall 
products.

This paper aims to overcome these existing limitations by pro-
posing a novel approach whose objective is to automatically re-
configure a distributed firewall in virtual computer networks 

whenever an IDS alerts about a detected cyber attack by writ-
ing a new log entry. This approach is meant to be autonomous 
and continuously active to provide prompt automatic reactions 
whenever required. After the initial input specification, the 
human administrator should no longer be required to interact 
with our proposed process. In particular, the administrator does 
not have to define new security requirements to specify how the 
attack must be mitigated and does not have to issue the low-level 
configuration commands personally. This solution is thus suit-
able for the timing of modern attacks that can reconfigure the 
network quickly and adapt to evolving attack scenarios.

The proposed approach includes multiple steps dedicated to the 
automated operations: firewall configuration translation and 
deployment, IDS log monitoring and requirement extraction, 
merging of old requirements with the extracted ones, and fire-
wall reconfiguration computation. The last step is the most com-
plex one because understanding how firewall instances should 
be repositioned and reconfigured to satisfy new security require-
ments implies a high degree of versatility for decision-making. 
For the resolution of the problem involved in this step, the pro-
posed approach includes an algorithmic methodology, named 
Reactive VErified REFinement and Optimized Orchestration 
(React-VEREFOO), which represents a primary component. 
React-VEREFOO performs an optimized security reconfigura-
tion of distributed packet filters for an already deployed network 
within a short computation time. Its novelty lies in the coexis-
tence of three important features that, to the best of our knowl-
edge, are not supported by any other reconfiguration approach 
in literature: complete automation, optimization, and formal 
correctness assurance. This is made possible by the adopted 
technique, which is based on the resolution of a partial weighted 
Maximum Satisfiability Modulo Theories (MaxSMT) problem. 
This type of problem allows, with a carefully designed model 
of the network configuration and the desired security policies, 
the computation of a solution that correctly enforces the given 
requirements while seeking additional optimality goals, going 
beyond what is achievable with commonly used approaches 
based on heuristics. Such an automated approach based on for-
mal methods thus proves to be a valid solution to address the 
continuous generation of network attacks, being able to quickly 
defend against incoming attacks through the optimized com-
putation of an updated firewall configuration that blocks the 
attacker within a short time delay, while ensuring formal cor-
rectness with respect to all security policies in place.

This paper is an extension of the conference paper published 
in the proceedings of the 2024 IEEE/IFIP Network Operations 
and Management Symposium (NOMS 2024) [9]. That confer-
ence paper only presented the React-VEREFOO component. 
Instead, this extension describes the design of all the other 
components of the process, that is, the modules related to trans-
lating and deploying the firewall configuration produced by 
React-VEREFOO, monitoring IDS logs and extracting new re-
quirements, and merging the extracted requirements with the 
previous ones. In this way, this paper casts React-VEREFOO 
into a more complete approach, where all steps of attack miti-
gation through firewall reconfiguration are automated. Besides, 
it also describes new validation tests that were carried out to as-
sess the effectiveness of the whole process.
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The remainder of this paper is structured as follows. Section 2 
contains a summary of the related work. Section 3 describes 
the proposed approach. Section 4 introduces some key formal-
isms used to represent the network and the security require-
ments, but it also discusses the design of the main algorithms 
and of the MaxSMT problem employed in React-VEREFOO. 
Section  5 discusses the results of the validation and perfor-
mance tests conducted on the implementation of the proposed 
approach. Finally, Section  6 outlines the conclusion and fu-
ture work.

2   |   Related Work

Previous related work can be divided into three main categories: 
(1) approaches that pursue a similar idea but are applied to a 
different issue with different characteristics and needs, that is, 
the problem of routing management (Section 2.1); (2) approaches 
that are designed for the same problem, that is, reconfiguration 
of firewalls, but lacking some of the features with respect to our 
approach (Section 2.2); and (3) approaches for the configuration 
of distributed firewalls with a similar set of features, namely, 
automation, formal correctness assurance, and optimality, but 
without the support for a specific reconfiguration procedure 
(Section 2.3).

2.1   |   Optimized Reconfiguration for Routing 
Problems

A small number of studies [10–12] adopt an approach similar to 
the one presented in this paper but address a distinct issue, that 
is, routing management. Indeed, they deal with routers, routing 
algorithms, and forwarding policies instead of network security 
functions and policies. In greater detail, Gember-Jacobson et al. 
[10] describe the design of the control plane repair algorithm, an 
approach based on a MaxSMT problem to automatically com-
pute correct and minimal repairs for network control planes. 
The solution is based on a carefully crafted formal model for 
the network, the routing protocols, and the exchanged traffic. 
It supports minimizing the lines written in the configuration as 
an optimization goal. Abhashkumar et al. [11] outline another 
synthesis tool, named AED, that formally models the network 
and its configuration into a MaxSMT problem. The optimality 
goals considered in the resolution are more refined, allowing 
the operator to specify different management objectives, such as 
maintaining structural similarity across devices or minimizing 
the number of modified devices. Finally, Tian et al. [12] present 
JINJING, an approach for the automatic and correct update of 
routing configuration on the base of intents expressed using an 
ad hoc language. This approach models the network as an SMT 
problem, leaving as open variables all the elements causing the 
inconsistencies between the current configuration and desired 
policies while keeping the other elements fixed. Optimality, in 
this case, is not present. Moreover, the approach could produce 
redundancy in the computed rules as it requires a postprocessing 
task to minimize the lines of the computed configuration, and 
it just focuses on traditional networks, not allowing the modifi-
cation of the topology of the control plane but only its configu-
ration. Overall, while these studies share similarities with our 
work, such as combining a similar set of features (automation, 

formal verification, and optimization) and focusing on reconfig-
uration, they operate within a different context.

2.2   |   Automatic Fixing of Firewall Configurations

Other studies [13–17] investigate the problem considered in this 
paper, that is, automatic reconfiguration of firewalls, but they 
address it partially, as their proposed solutions lack some of the 
features that are included in our proposal. Chen et al. [13] pro-
pose five algorithms to automatically reconfigure a faulty fire-
wall after five corresponding issues (wrong rule order, missing 
rules, wrong condition predicates, wrong decision actions, and 
wrong extra rules). This approach uses samples of misclassified 
packets as input for the reconfiguration, proposing a fix that 
tries to maximize the number of solved misclassifications de-
tected through samples of misclassified packets used as input 
of the reconfiguration process. Adi et  al. [15] use a dedicated 
calculus to formally verify if the configuration is compliant with 
the security policies defined by the user and, if not, to automati-
cally generate the optimal and correct configuration repair. The 
repair is computed using the adopted calculus and a quotient 
operator that can compute which changes are needed to reach 
the desired state and which must comply with the defined se-
curity policies. Cheminod et al. [17] illustrate a methodology for 
configuration refinement, formal verification, and, if needed, 
the automatic computation of a fixing strategy in case the cur-
rent configuration does not correctly enforce the user-defined 
policies. This is based on an SMT model and, for the fixing, on 
a constraint refinement approach, which keeps everything fixed 
in the configuration, but the elements causing the anomalies are 
recomputed by the refinement process. Youssef and Bouhoula 
[14] compute, whenever a misconfiguration is detected, a for-
mally correct fixing action by resolving a carefully designed 
SMT problem, and use a formal model for the security policies 
and the network configuration. Whenever a misconfiguration 
is detected, it computes a formally correct fixing action solving 
a carefully designed SMT problem. Hallahan et  al. [16] pres-
ent another approach based on formal models and the design 
of an SMT problem. It follows a repair-by-example paradigm, 
providing a set of user-defined examples of the desired filtering 
behavior as input for the reconfiguration process. Also, in this 
case, the model can be solved to synthesize a formally correct 
reconfiguration. Note that this approach does not model the de-
sired security policies, but it follows a repair-by-example para-
digm, considering examples of the desired behavior that the user 
provides. The approach automatically synthesizes new firewall 
rules for the existing configuration so that the new set of rules 
respects the provided examples.

Concerning their limitations, Chen et al. [13] and Hallahan et al. 
[16] cannot guarantee the formal correctness of the configura-
tion with respect to a set of security policies, because they do 
not model all the traffics but either only those provided in the 
examples or those involved in a detected misclassification, and 
so they cannot guarantee the correctness for all traffics. Almost 
all approaches [13–16] are not designed for distributed firewalls, 
but they support only single firewall instances. Moreover, they 
do not support the synthesis of new services from scratch but 
can only modify those already deployed. Youssef and Bouhoula 
[14] and Hallahan et al. [16] adopt limited or no optimization for 
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the computation of the new configuration. The approach pro-
posed by Cheminod et al. [17] is the most complete one in terms 
of features, but its focus is primarily on access control instead of 
reachability policies, and it is mostly a description of a possible 
approach rather than a fully functional solution.

2.3   |   Automatic, Formal, and Optimal Firewall 
Configuration

Finally, some studies propose automatic techniques for allocat-
ing or configuring distributed firewall systems with all the fea-
tures we are considering. Among all the ones that are reported in 
a state-of-the-art survey about automatic security configuration 
[2], the most relevant ones are ConfigSynth [18] and VEREFOO 
[19, 20]. The former automates the generation of the firewall al-
location scheme (but not of the configuration) with an optimized 
and formal approach based on the definition of an iterative SMT 
problem. The idea is that the architecture is tuned at each step 
of the algorithm until it properly enforces all the security prop-
erties. In this case, the optimization criteria is the minimization 
of the network security functions allocated in the network. The 
latter proposes the definition of a MaxSMT problem to model the 
network and its configuration. The formal assurance is provided 
with a correctness-by-construction approach, and the involved 
optimality criteria are the minimization of the number of allo-
cated firewalls and the number of firewall rules so as to reduce 
the amount of consumed resources.

Despite the relevance of these two studies and other related 
ones in the same category, they do not provide an optimized 
procedure for reconfiguration. As they simply regenerate the 
allocation scheme or configuration from scratch every time, 
the result may have significant differences with respect to the 
previous configuration status (e.g., the position of the firewalls 
is significantly modified or several new firewalls are allocated 
[21]). Consequently, these differences would lead to a significant 
delay required to instantiate many new virtual firewalls or to 
change several rule sets of the preserved ones. Unlike them, our 
proposed approach has been specifically designed to optimize 
firewall reconfiguration by minimizing the number of the re-
quired changes to satisfy new security requirements.

3   |   The Proposed Approach

The proposed methodology aims to provide automatic firewall 
reconfiguration after attack detection in virtual computer net-
works through an autonomous process of operations that mini-
mizes the number of interactions with the human administrator. 
As shown in Figure 1, the approach that we designed involves 
multiple steps, which are defined for the different tasks of attack 
mitigation through firewall reconfiguration: initial input spec-
ification, firewall configuration translation and deployment, 
IDS log monitoring and requirement extraction, merging of old 
requirements with the extracted ones, and firewall reconfigura-
tion computation. The remainder of this section will detail all of 
them more precisely.

3.1   |   Initial Input Specification

The main interaction point between the proposed approach and 
the human administrator occurs at the beginning of the process, 
when no firewalls are operative yet in the computer network. At 
this stage, the administrator must specify the initial inputs that 
kick off the autonomous loop of mitigation operations. In greater 
detail, two inputs are required: a service graph (SG) and an ini-
tial set of network security requirements (NSRs).

The SG consists in a description of the logical topology of the 
virtual computer network where security must be enforced. 
As such, it describes how the network nodes interconnect with 
each other and provides information about the configuration of 
network service functions such as network address translators 
and load balancers. The way these service functions work may 
impact the satisfaction of security requirements, as they may 
modify the received traffic. Consequently, their behavior must 
be known by our automatic approach so that it can later under-
stand where firewalls should be allocated and how they should 
be configured. For example, a network address translator may 
change the source or destination IP address of a received packet. 
Therefore, depending on whether a firewall is allocated before 
or after the network address translator in the path followed by 
a traffic flow, it will analyze packets with different values for 
those address fields so that it will need different filtering rules. 

FIGURE 1    |    The proposed approach for attack mitigation through firewall reconfiguration.
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The input SG also provides information about the configuration 
of the already present firewall, which will have to be reconfig-
ured in the future. This configuration comprises the allocation 
scheme, specifying the positions in the network where the fire-
wall instances are allocated, and the filtering rule set for each 
instance. Additionally, an assumption about the input SG is that 
all the virtual network functions (VNFs) composing its logical 
topology are already deployed in the physical network infra-
structure, with the exception of firewall instances, because allo-
cating and configuring them is another task of our autonomous 
process.

The initial set of NSRs describes the security requirements (or 
policies) that are already enforced in the input SG. As our ap-
proach works with packet filtering firewalls, whose objective 
is to block malicious traffic and enable desired communica-
tions, the NSRs that are envisioned in this study are connec-
tivity requirements, that is, policies that provide information 
about how and if network nodes can communicate with each 
other. From this point of view, two possible NSR types may 
exist: isolation requirements if they request that certain packet 
classes are blocked before reaching their destination because 
potentially malicious and reachability requirements if they re-
quest that certain packet classes must reach their destination 
to ensure a connectivity service. The packet classes of interest 
are identified by the condition of each NSR, which expresses 
the values (or range of values) that each field of the IP 5-tuple 
must have so that its related packet is considered to belong to 
the class of interest for a certain NSR.

Both the SG description and the initial set of NSRs are pro-
vided by the human administrator through a medium-level 
policy specification language, which is independent of the 
specific low-level settings of the network service and security 
function configuration. In the literature, several languages 
exist for policy specification to provide different abstraction 
levels. For this level, XML or JSON representations can be 
used, so as to abstract from the technicalities of the specific 
firewall implementations.

Moreover, the definition of the firewall configuration included 
in the SG and required to satisfy the initial set of input NSRs 
do not necessarily require manual operators to be performed by 
the human administrator. In fact, it may be computed automat-
ically with state-of-the-art tools described in Section  2.3 such 
as VEREFOO [20]. In this way, the administrator simply has to 
feed the automatic tool with the information needed for firewall 
configuration.

In general, this operation of initial input specification represents 
the only interaction point where the human administrator must 
actively do something to provide information to the automatic 
approach, but this task cannot be avoided because all autono-
mous processes need a starting point.

3.2   |   Conversion and Provisioning of the Firewall 
Configuration

The firewall configuration, inclusive of its allocation scheme 
and filtering rule sets, is not already deployed in the active 

virtual network. Therefore, a specific module of the methodol-
ogy is dedicated to the operation of deploying them.

Both provisioning and conversion operations are not very 
complex. On the one hand, the provisioning operation, that is, 
deploying the VNFs in the network, is a simple operation be-
cause it simply requires the module to interact with the APIs 
of the specific VNF orchestrator that is used by the adminis-
trator to handle VNF management. On the other hand, the 
configuration that is provided by the user cannot be directly 
pushed onto the deployed VNFs because it is a medium-level 
implementation-agnostic language. Consequently, all firewall 
rule sets must be converted from XML/JSON representations 
to the specific commands of different firewall implementa-
tions, such as iptables, ipfirewall, eBPF firewall, and Open 
vSwitch. The module envisioned for this task must be flexi-
ble enough to be extended easily to other technologies, thus 
providing forward compatibility. Anyway, this conversion is 
simply a translation, as it moves the same information from a 
structured format to another structured format without add-
ing other information or removing any. Therefore, overall, the 
module dedicated to this operation does not require an intelli-
gent engine to work differently from other modules of the pro-
posed autonomous process. At the same time, it contributes to 
avoiding that these simple operations are performed manually 
by a human administrator, who may introduce easily avoid-
able mistakes.

3.3   |   Intrusion and Attack Detection

After the provisioning of the firewall configuration has been com-
pleted, the network must be able to identify possible cyber attacks 
that were not taken into account in the initial set of NSRs. For 
this purpose, among all the deployed VNFs, some of them must 
be IDSs. These monitoring functions have the objective of analyz-
ing all packets crossing them to understand if they may possibly 
belong to a malicious traffic flow. The literature on IDS technolo-
gies and behaviors is extremely rich. To mention a few examples, 
passive IDSs evaluate the received packets against a set of rules 
expressing the conditions under which the IDS should assume 
that a specific attack is occurring. Instead, active IDSs try to un-
derstand the presence of an attack depending on statistics, such as 
the occurrence of packets with the same structure and field val-
ues in the past. Several active IDS are also enhanced with intel-
ligent algorithms, such as data-driven techniques and Artificial 
Intelligence strategies based on Support Vector Machines.

Considering the richness of the literature on this topic and the 
continuous progress in it, it is not the purpose nor contribution 
of this paper to introduce new strategies for intrusion detec-
tion. Therefore, any kind of IDS can be used and work with our 
proposed approach, as long as the IDS produces a log file that 
the next steps of the proposed methodology can later exploit.

3.4   |   Extraction of Security Requirements from 
IDS Log Files

Whenever an IDS writes a new log entry, it may notify the oc-
currence of a cyber attack, for which new NSRs should be 
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defined, and a new firewall configuration should be produced. 
Consequently, the first step of such mitigation consists of mon-
itoring the log files, understanding if a new entry is about an 
attack, and extracting a new NSR for its management.

A specific module of the proposed methodology is responsible 
for these tasks. Specifically, it continuously monitors log files 
written by the IDSs deployed in the network. Whenever a new 
entry is written, it parses it to understand if it is related to a 
cyber attack. In that case, it extracts all the valuable pieces of 
information from that entry, identifying the packet class related 
to the attack from the values of the IP 5-tuple fields. Next, start-
ing from this information, the module identifies all traffic flows 
related to the identified packet class. In this study, a traffic flow 
represents how a specific packet class is forwarded and trans-
formed within its path, so multiple flows can exist for each class 
(e.g., it is simply possible that the packets of this malicious class 
can come from multiple sources). After identifying the flows, a 
new NSR is created for each one of them. This new NSR has a 
condition whose source IP address and port are the ones of the 
packet class at the beginning of the flow, and whose destination 
IP address and port are the ones of the packet class at the end 
of the flow. Those condition fields cannot be directly mutated 
from the packet class extracted from the log entry because some 
packet fields may have been modified by intermediate nodes, 
such as network address translators, while the conditions of an 
NSR should be defined over an end-to-end communication.

After concluding all these operations, a new set of NSRs is pro-
duced, called extracted set of NSRs.

3.5   |   Merging of Initial and Extracted 
Requirements

All the NSRs belonging to the extracted set require satisfaction in 
an updated version of the firewall configuration to be deployed 
in the virtual network because they are necessary to stop the 
cyber attack identified by the monitoring agents and reported 
in their log files. At the same time, the initial set of NSRs should 
also be preserved, as long as those NSRs do not conflict with 
the target ones. For instance, some flows that were permitted by 
an initial reachability NSR may not have to be blocked because 
of a target isolation NSR. As each NSR may be associated with 
multiple flows, partial conflicts are possible, so the problem of 
conflicting NSRs cannot be solved just by removing the initial 
conflicting NSR, which instead must be opportunely modified.

A tailored module of the proposed methodology is responsible 
for performing this merging operation in an enhanced way to 
create a merged set, also named target set of NSRs, because this 
is the set of all the NSRs that will have to be actually satisfied in 
the network, in place of the previous initial NSRs.

The module in charge of creating the target set works according 
to a strategy based on the following sequential steps:

1.	 First, it includes all the extracted NSRs into the target set, as 
they are required to block the detected cyber attack.

2.	 Then, for each initial NSR, it checks if it conflicts with any 
extracted NSR (already included in the target set) to decide if 

and how to include it. In particular, two NSRs are conflicting 
if they have different actions and (at least partially) overlap-
ping conditions.

3.	 The initial NSR may conflict or not with some extracted 
NSRs.
•	 If the initial NSR does not conflict with any extracted 

NSR, it is directly included in the target set.
•	 If the initial NSR conflicts with an extracted NSR, the 

merging module must modify its condition so that it does 
not include the overlapped part anymore, and then, it can 
put the modified NSR into the target set. For example, if 
an initial reachability NSR was previously applied to the 
TCP traffic targeting all ports in the range [50,800, 50,900] 
while an extracted isolation NSR imposes that TCP traffic 
to 50,900 must be blocked because it is used by a cyber 
attack, then the initial reachability NSR must be modified 
so that the condition on the destination port is defined on 
the restricted interval [50,800, 50,899]. Clearly, if there 
is a complete overlapping between the conditions of the 
initial and extracted NSRs, the initial NSR is completely 
removed.

3.6   |   React-VEREFOO

After the merging operation has been concluded, the new fire-
wall configuration can finally be produced. This operation is 
performed by a central module of the proposed methodology, 
that is, React-VEREFOO.

As shown in Figure 2, React-VEREFOO works on two inputs. 
The first input is the SG that is currently deployed, that is, the 
logical topology of a virtual network with an already existing 
distributed firewall configuration, composed of the allocation 
scheme of its instances and their filtering rules. The second 
input is a pair of NSR sets: the initial set of NSRs, including the 
old NSRs already satisfied by the existing firewall configuration, 
and the target set of NSRs, coinciding with the previously com-
puted merged set and therefore including the newly extracted 
NSRs to be enforced in the updated network configuration. The 
produced outputs are the updated allocation scheme and the re-
configured filtering rules of the firewall.

React-VEREFOO achieves this outcome by combining automa-
tion, formal correctness, and optimization. This achievement is 
feasible because the firewall reconfiguration problem is mod-
eled in React-VEREFOO as a MaxSMT problem. A MaxSMT 
problem differs from an SMT problem because it allows the defi-
nition of two types of clauses: the hard constraints that are com-
pulsory and the soft constraints that are optional and have an 
associated weight. The selected solution is the one that satisfies 
all the hard constraints and maximizes the sum of the weights 
of the satisfied soft constraints. Hard constraint satisfaction con-
tributes to achieving formal correctness as long as all problem 
components are formally modeled. The attempt of the solver to 
achieve soft constraint satisfaction contributes to the optimiza-
tion of the result.

The approach pursued by React-VEREFOO avoids the need 
to recompute the entire network from scratch, significantly 
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reducing computation time. It speeds up the process by nar-
rowing down the space of possible solutions that are ana-
lyzed, keeping certain parts of the configuration as fixed, and 
providing optimality-related clauses, which are provided to 
the solver, to have a faster convergence toward the optimal 
solution. Specifically, the optimality objectives are the mini-
mization of resource usage and the preference for reusing the 
original firewall configuration.

As React-VEREFOO is a main contribution of this study, 
Section  4 will be dedicated to exploring the details about the 
formal models used in it, the algorithms to identify the net-
work areas to reconfigure, and the formulation of the MaxSMT 
problems.

3.7   |   Repetition of the Approach

After the new firewall configuration, including the allocation 
scheme and filtering rules, is computed, the process envisioned 
in our approach is repeated without any active intervention by 
the human administrator. The configuration is translated and 
provisioned in the network. Whenever an IDS writes a new log 
entry related to an attack that was not considered in the previous 
target set of NSRs, which have now become the initial set, a new 
set of NSRs is extracted and is merged with the previous one, so 
that React-VEREFOO can be executed again.

4   |   React-VEREFOO

The approach of React-VEREFOO is composed of multiple 
steps. The first one involves the definition of a complete and 
formal model that represents the network, the configuration 
of the different network functions, and the traffic exchanged 
(Section 4.1). Then, a central part of this proposal, representing 
a main novelty introduced here, is the design of an algorithm 
able to identify the network areas that must be reconfigured 
based on the intersection of the two sets of NSRs provided as 
input (Section 4.2). Having computed this intersection, it is pos-
sible to discern which NSRs have been added, kept, or deleted 

in the new set of NSRs with respect to the original one. The 
algorithm identifies, for all the “added” requirements, that is, 
those relevant for the reconfiguration scenario, which elements 
of the provided network should be modified because in conflict 
with the new set of security requirements. The configuration of 
these elements is therefore put under question. Finally, the ap-
proach formulates a MaxSMT problem whose resolution allows 
to generate the new allocation graph (AG) and configuration 
rules of the needed firewalls (Section 4.3). This approach starts 
from the hypothesis that the configured rules for each firewall 
are anomaly-free and without overlapping. This is not restric-
tive because there are techniques that allow to generate such set 
from nondisjoint rules. Given this hypothesis, the order of rules 
within each firewall is irrelevant, as each packet will match at 
most one rule.

4.1   |   Formal Models

The formal models used in this paper stem from VEREFOO 
[19, 20], a policy-based approach for automatic firewall config-
uration, which has all the features (automation, formal verifica-
tion, and optimization) we are interested in. Here, we report the 
main features of those models that are required to understand 
the remainder of the section, focusing on the ones that are differ-
ent with respect to the ones already presented in the VEREFOO 
papers [19, 20].

The logical topology of the input network is modeled as a di-
rected graph, named SG, whose nodes represent all the network 
functions and endpoints (e.g., web clients, web servers, firewalls, 
and NATs) and whose edges represent directed connections. 
However, the SG model is not directly used by the next steps of 
the proposed approach, but it is preliminarily preprocessed to 
create an alternative representation, named AG. The main dif-
ference is that the AG model is characterized by an extra node 
type, named allocation place (AP), representing a placeholder 
node that can be used by the MaxSMT solver to potentially al-
locate a firewall. The transformation of the SG model into the 
AG consists in adding an AP only in-between pairs of network 
nodes that do not contain any function that could be reused, for 

FIGURE 2    |    Approach of React-VEREFOO.
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example, firewalls, as the idea is to reconfigure previously al-
located firewall instances whenever it is possible, rather than 
placing additional ones in other APs.

The packets that may cross the AG are grouped in classes, de-
pending on the values of their header fields. Each packet class, 
also called traffic in this paper, is represented as a predicate 
computed over some variables representing the header fields. 
Packets whose fields have the same values belong to the same 
traffic, represented by the same predicate, and are therefore 
managed in the same way by all nodes crossed in the network. 
The predicate representing the formal model of each traffic is 
a conjunction of subpredicates, one for each considered packet 
field. Because this approach works with packet filters, the mod-
eled fields are the five ones composing the IP 5-tuple, that is, 
source and destination IP addresses, source and destination 
ports, and protocol type. Each subpredicate can represent a sin-
gle value, a range of values, or the range of all possible values, 
denoted with the “*” symbol. For example, 10.22.34. ∗ used as 
IP address subpredicate stands for 10.22.34.0/24, while ∗ used 
as port subpredicate stands for the range [0, 65,535]. The set of 
all different traffics, that is, packet classes, crossing the AG is 
denoted as T. The generated firewall rules are modeled with 
the same predicate representing the IP 5-tuple. In this way, the 
approach produces a set of rules that is independent of the spe-
cific implementation, allowing to easily convert the computed 
configuration into a specific kind of packet filter system (e.g., 
iptables, ipfirewall, and eBPF firewall) with a translator.

The way each node composing the AG handles each input packet 
class is then modeled in a way that is as lightweight as possible, 
by considering only the parameters that are actually relevant for 
the security reconfiguration problem. In particular, it is modeled 
by means of two functions, representing respectively the forward-
ing and transformation behaviors. On the one hand, the function 
modeling the forwarding behavior of node ni is denyi :T → �. 
This function maps an ingress traffic t to true, if and only if ni 
blocks all the packets of that traffic. For simplicity, for each node 
ni, we denote i the set of denied traffics and i the set of allowed 
traffics. On the other hand, the function modeling the transfor-
mation behavior of node ni is i :T → T. This function maps an 
input traffic t to the corresponding output traffic, after the pos-
sible modifications that it may apply. For several function types 
(e.g., forwarders, traffic monitors, and firewalls), i is the iden-
tity function, as they cannot modify the input traffic. Instead, 
for functions such as NATs and load balancer, it provides the 
information related to the changes applied to the 5-tuple fields. 
Note that for the sake of conciseness and performance, we do not 
model single packets but only packet classes or traffics.

These models (i.e., the ones of packet classes and network node 
behavior) allow to introduce the concept of traffic flow. A traffic 
flow represents how a specific packet class is forwarded and trans-
formed within its path. A flow f ∈ F is modeled as a list of alter-
nating nodes and packet classes [ns, tsa,na, tab,nb, … ,nz , tzd,nd], 
where each node ni in the list represents a node crossed by the 
flow, whereas the traffic tij is a predicate representing the class 
of packets transmitted from node ni to node nj. The definition of 
the traffic flows crossing the AG may differ, depending on how 
single packets are grouped into the corresponding classes. From 
this point of view, we decided to adopt the grouping strategy 

named atomic flow (AF) [22]. The reason is that, according to 
that study, it is the technique that provides more benefits and 
better performance for solving an automatic (re)configuration 
problem. In greater detail, this grouping strategy is based on the 
atomic predicate concept, proposed by Yang and Lam [23] for 
the network reachability problem. According to their definition, 
given a set of initial predicates, it is possible to apply an algo-
rithm on them to compute a derived set of atomic predicates, 
which is proved to be minimum and unique. The main property 
of this set is that each initial predicate is equal to the disjunction 
of a subset of atomic predicates. The idea was to apply this con-
cept to computer networks so that, given a set of predicates of the 
network, it is possible to compute a set of corresponding atomic 
predicates that are minimal, unique, and fully representative of 
the initial set. Then, a flow f = [ns, tsa,na, tab,nb, … ,nz , tzd,nd] 
can be defined atomic if each traffic tij is an atomic predicate. To 
compute the set of atomic predicates, and then the set of AFs, we 
consider the “interesting" predicates extracted from the NSRs 
and the network configuration. The algorithms are not reported 
here, because they are already described in literature [22].

Lastly, the security requirements that must be enforced in the AG 
are modeled as the combination of two elements: a set of specific 
NSRs R and a general behavior. On the one hand, each specific 
NSR r ∈ R is formally modeled as a tuple (a,C), where a is the ac-
tion that must be applied on packets matching with the condition 
predicate C. The NSR is defined isolation requirement if the ac-
tion a is deny, reachability requirement if instead the action a is 
allow. The set of specific NSRs provided by the user is assumed to 
be anomaly-free, which is not a limitation because there are many 
well-known anomaly analysis techniques [24, 25] that easily allow 
deriving anomaly-free policy sets. On the other hand, the general 
behavior adopted in this proposal is a “don't care” approach, which 
allows users to define both reachability and isolation requirements 
without imposing any restriction on other packet classes (i.e., users 
are not concerned about the reachability and isolation of packets 
for which they have not specified a specific NSR).

The formalization of the specific reachability and isolation NSRs 
in terms of traffic flows management is as follows: an isolation 
NSR is satisfied if for any associated traffic flow there is at least 
one node with an allocated function configured to block the 
traffic in input for that flow, as shown in Equation (2), whereas 
a reachability NSR is satisfied if there is at least one associated 
traffic flow that is not blocked from source to destination by any 
of the crossed nodes, as shown in Equation  (1). These will be 
modeled in the MaxSMT problem as hard constraints, making 
their satisfaction mandatory. Note that the reported equations 
are using some utility functions whose meaning is as follows: 
�(f ) returns the nodes belonging to flow f  (excluding the 
source), allocated(n) returns true if there is a firewall allocated 
in node n, and finally, �(f ,n) returns the traffic in input to node 
n for flow f . Instead, Fr represents the set of AFs that respect the 
condition of NSR r. 

Moreover, the input NSR set R is composed of two subsets: the 
Initial set Ri, including the NSRs that are already enforced in 

(1)∃ f ∈ Fr . ∀ i. (ni ∈ �(f ) ∧ allocated(ni) ⇒ ¬denyi(�(f ,ni))),

(2)∀ f ∈ Fr . ∃ i. (ni ∈ �(f ) ∧ allocated(ni) ∧ denyi(�(f ,ni))).
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the existing network modeled by the AG, and the Target set Rt, 
including the new NSRs to be enforced in the updated network 
configuration.

4.2   |   Algorithm for Detection of Network Area to 
Reconfigure

Starting from the formal models of all the input components (i.e., 
network topology, function behavior, traffic flows, and NSRs), 
our approach envisions the execution of an algorithm, designed 
to detect the network areas that actually require firewall recon-
figuration for the satisfaction of the Target NSRs included in Rt.

First, this algorithm classifies each NSR r ∈ {Rt ∪ Ri} to one of 
the following groups: (i) d = {r ∈ Ri|r ∉ Rt}, the “deleted” NSRs 
which are no more needed in the final configuration but are 
present in the initial one, (ii) a = {r ∈ Rt|r ∉ Ri}, the “added” 
NSRs that should be enforced in the final configuration and are 
not present in the initial one, and (iii) k = {r ∈ Rt|r ∈ Ri}, the 
“kept” NSRs that are already configured in the provided network 
and should continue to be enforced in the final configuration.

Second, the algorithm detects, for all “added” requirements a, 
that is, those relevant to the reconfiguration scenario, which el-
ements of the provided network should be modified because in 
conflict with at least a new requirement. Due to the different 
formulations of the two requirement types, this part of the algo-
rithm is differently formulated for the case of isolation require-
ments, and the case of reachability requirements. Anyhow, it is 
important to underline that the algorithm selects as reconfigu-
rable all the nodes which can potentially be used to fulfill the 
NSRs in a, because it cannot decide a priori which is either the 
optimal node for blocking a traffic or the optimal traffic flow 
which must be allowed from source to destination.

Considering a new isolation requirement r ∈a and a given AG 
A, the procedure to compute the network elements to be reconfig-
ured is presented in Algorithm 1. This procedure starts consider-
ing for each isolation requirement, r, all the correlated AFs, Fr. The 

algorithm checks whether there is a node along the flow path that 
is currently blocking the incoming traffic for that flow (Lines 3–7). 
If no such node is found for a given flow, then all the nodes crossed 
along the flow path are designated as eligible for reconfiguration 
(Lines 9–11). This would allow the solver to subsequently decide 
in which node a firewall should be allocated to enforce the isola-
tion requirement r. Figure 3 clarifies this with an example, where 
the algorithm takes as inputs the two sets of Initial and Target 
NSRs, along with a partially configured network that comprises a 
firewall and two forwarders. The new requirement that should be 
enforced is the isolation requirement for the traffic from the web 
client 10.0.0.1 to the web server 20.0.0.1. In this case, there are two 
paths associated with this requirement. A path crosses only the 
forwarders, whereas the other one crosses also the firewall. As the 
two paths are characterized by different network node lists, there 
are two AFs, one for each path, because each flow includes the 
crossed node list in its model. These two flows are labeled A and 
B, respectively. The algorithm analyzes each flow to determine if 
there exists a node blocking the traffic. In this scenario, Flow B 
encounters a firewall that blocks all traffic through its default ac-
tion, consequently the condition is satisfied. Instead, Flow A does 
not cross any network function that is blocking the traffic. So the 
nodes belonging to its path must be added to the set of nodes to 
be reconfigured, Nreconfigure (i.e., the two forwarders in this case).

Considering a new reachability requirement r ∈a and an AG 
A, the procedure for selecting the network elements to be recon-
figured is presented in Algorithm 2. In this case, the satisfiability 
condition is the logical negation of the prior scenario. The algo-
rithm has to look for the existence of an AF that is not blocked by 
any firewall from the source up to the destination. If such a flow 
is found to satisfy the reachability condition, the algorithm may 
terminate before having checked all flows. For all the flows Fr 
correlated with the reachability requirement r, the algorithm ex-
amines whether the nodes along the path are blocking the incom-
ing traffic for the given flow. If this is the case, these nodes are 
added to a temporary list (Lines 4–8). In the end, if the algorithm 
does not find an AF satisfying the reachability condition, all the 
nodes in the temporary list are selected for reconfiguration and 
added to the set Nreconfigure. Considering the example in Figure 4, 
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we encounter a situation analogous to the previous scenario but 
with different inputs. In this case, the network consists of two 
firewalls configured in whitelisting mode and a forwarder. The 
new requirement that should be added is the reachability from 
node 10.0.0.1 to node 20.0.0.1, encompassing all possible ports 
and protocol types. This requirement is associated with two 
paths, each with an associated AF. These are referred as A and 
B. In this instance, the algorithm checks whether at least one of 
these flows is not blocked by any firewall. If this is not the case, 
the algorithm proceeds to select for reconfiguration, in each 
flow, the nodes that are blocking the traffic. In this specific case, 
both flows encounter a firewall that is blocking their traffic. As 

a result, the algorithm selects the nodes that are blocking both 
flows, as the solution would be to reconfigure either FW1 or 
FW2. This ensures that at least one AF can reach the destination, 
thus meeting the reachability requirement condition.

4.3   |   MaxSMT Problem Formulation

After the algorithm has identified all the firewall instances that 
may potentially require reconfiguration, this information is 
used, jointly with the formal models of the input, for the formu-
lation of the MaxSMT problem. The core of this formulation is 

FIGURE 3    |    Example of addition of an isolation requirement.
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mutated from the one proposed for automatic firewall configu-
ration from scratch [19, 20]. However, some key changes have 
been introduced to contextualize that formulation to the opti-
mized reconfiguration scenario.

A first difference is that the approach proposed in this paper 
restricts the set of APs that are available for the solver to al-
locate firewall instances and keeps some of them as static 
elements, which cannot be updated within the security config-
uration. Moreover, to further optimize this approach, also the 
soft constraints involved in the optimization phase have been 
adjusted, leading to an additional performance improvement. 
The guiding principle is that the optimal reconfiguration is 
the one that does not require any update to the network, thus 
causing the lowest possible delay. Following this idea, the soft 
constraints have been updated to prefer an already allocated 
firewall instead of deploying a new one, as well as an already 
configured rule must be preferred with respect to a newly gen-
erated one.

The same classes of soft constraint have been employed to ex-
press both objectives, namely, the minimization of resource 
usage and the preference of reusing the original firewall config-
uration. However, the weights associated with these constraints 
differ in relation to the considered subject, whether it is an empty 
AP or a reconfigured firewall, or a newly generated firewall rule 
with respect to an already configured one. This difference is 
such that the usage of a reconfigured node, as any of its rules, 
would result in a higher sum of weight and a preferred solution. 
As a result, the final configuration will be the one that not only 
minimizes the number of consumed resources in general but 
also the one that produces the smallest number of changes with 
respect to the initial configuration.

In particular, the soft constraint regulating the allocation of a 
firewall for each node n in the set of APs  is formulated as in 

Equation (3). This instructs the solver to prefer a solution that 
does not allocate a firewall for any APs. Indeed, the nonallo-
cation soft constraint produces a contribution to the sum of 
weights equal to ck. 

Similarly, the soft constraint regulating the configuration of 
firewall rules is presented in Equation  (4). In this case, a dif-
ferent weight cki, smaller than the previous, is assigned to the 
non-configuration of each potential firewall rule pi. The set Pk 
contains all the rules that should be potentially configured in a 
firewall if it is allocated. 

In the approach optimized for reconfiguration, the weights as-
sociated to these soft constraints are modified for the nodes in 
Nreconfigured. The first soft constraint has been modified in such 
a way that the nonallocation of each firewall in Nreconfigured pro-
duces a contribution cR

k
 to the sum of weights, such that cR

k
< ck. 

In this way, the nonallocation of an empty AP would be preferred 
to the nonallocation of a reconfigured firewall because it has a 
higher weight. The same principle is applied for the second soft 
constraint. In this case, for each firewall in Nreconfigured, any of 
the configured rules pi has an associated weight cR

ki
, such that 

cR
ki
< cki. As before, this implies that the non-configuration 

of a new potential rule is preferred with respect to the non-
configuration of a previously used one.

Finally, it is worth noting that the proposed approach may only 
produce a solution that is optimal with respect to the network 
areas identified as to be reconfigured and not an optimal solution 
in a global sense. Nevertheless, this limitation is compensated by 
the improved computation time, which represents a more critical 
parameter in the proposed scenario of a cybersecurity attack.

(3)∀ai ∈. Soft(¬allocated(ai), ck).

(4)∀pi ∈ Pk . Soft(¬configured(pi), cki).

FIGURE 4    |    Example of addition of a reachability requirement.
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5   |   Implementation and Validation

The implementation of the proposed approach was carried out 
by developing prototypes for the different modules composing 
its approach:

•	The module for firewall configuration translation has been 
implemented with the Java language. As input medium-
level policy specification language, this module can work 
with one of the most commonly known languages in the 
literature, that is, the Medium Security Policy Language 
(MSPL), based on an XML format. As output, it can pro-
duce configuration rules for multiple types of firewall 
solutions: iptables, ipfirewall, Open vSwitch, and eBPF 
firewall are already supported, but the framework is 
flexible enough to be extended to support other firewall 

technologies. For the conversion from MSPL documents to 
the low-level settings of these firewalls, the JAXB library 
is used to convert XML documents to Java objects inter-
nally (and vice versa). This internal conversion eases the 
final translation to the low-level firewall configuration 
settings.

•	 The module for NSR extraction from IDS log files has been 
developed with the python3 language, and it is a continu-
ously active framework that monitors IDS log files, to see if 
new entries are added after the detection of a cyber attack. 
Currently, the implemented prototype for this module al-
ready supports the analysis of two state-of-the-art IDS solu-
tions, which are OSSEC3.7 and Snort3. However, also this 
module has been implemented in a way to ease extension 
to other IDS technologies. The extracted NSRs are similarly 

FIGURE 5    |    Initial service graph.

TABLE 1    |    Current NSRs.

Action IPSrc IPDst pSrc pDst tProto

Allow 57.73.0. ∗ 84.20.2.1 ∗ ∗ TCP

Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

Allow 84.20.2.2 232.61.10.2 37895 ∗ TCP

Allow 232.61.10.2 84.20.2.2 ∗ 37895 TCP

Allow 232.61.10.2 232.61.10.1 ∗ ∗ ∗

Allow 232.61.10.1 232.61.10.2 ∗ ∗ ∗

Deny 232.61.10.1 57.73.0.1 ∗ ∗ ∗

Deny 232.61.10.2 57.73.0.2 ∗ ∗ ∗

Deny 57.73.0.1 232.61.10.1 ∗ ∗ ∗

Deny 57.73.0.2 232.61.10.2 ∗ ∗ ∗

Deny 84.20.2.1 84.20.2.2 ∗ ∗ ∗

Deny 84.20.2.2 84.20.2.1 ∗ ∗ ∗

Deny 232.61.10.1 57.73.0.1 ∗ ∗ ∗
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expressed in MSPL, to provide forward compatibility to all 
other modules of the whole framework.

•	 The module for NSR merging has been developed with the 
python3 language, and works with two sets of NSRs (initial 
and extracted sets of NSRs) to produce a target set of NSRs. 
All NSRs are still specified in MSPL.

•	 React-VEREFOO has been implemented as a Java-based 
framework, and it employs the open-source Z3 theorem 
prover [26], developed by Microsoft Research, to solve the 
formulated MaxSMT problem.

•	 All these modules have interfaces for their communica-
tions (e.g., firewall reconfiguration is produced by React-
VEREFOO after a request is sent to its REST interface by 
the module dedicated to NSR merging).

The framework has been validated both in terms of effectiveness 
(Section 5.1) and performance (Section 5.2) with a series of tests. 
All the MaxSMT instances have been solved on a machine with an 
Intel i7-6700 CPU at 3.40 GHz, 32 GB of RAM, and Z3 version 4.8.5.

5.1   |   Effectiveness Validation

The effectiveness and efficacy of the framework have been 
validated on some use cases, where attacks were simulated 
and a new firewall configuration had to be produced. In this 

subsection, we report a use case example to show how the 
framework reacts to stop an ongoing attack of Denial of Service 
(DoS). In this use case, a TCP SYN port scan is simulated. This 
kind of attack can discover the state of TCP ports without 
establishing a full connection, and it can thus understand if 
there are open ports exploitable to carry out an attack to the 
victim host.

The network that was used for the execution of this experiment 
was realized with Dockers and its topology, inspired from our 
research laboratory computer network, is graphically depicted 
in Figure 5. In this network, the currently enforced NSRs are 
the ones listed in Table  1. Besides, there are two already in-
stalled firewalls, f12 and f16, configured as shown in Table 2, 
and there is an IDS f8 with OSSEC3.7 configured as reported 
in Listing 1.

Rule 100009 matches any TCP SYN request without logging it. 
This rule must work jointly with rule 100010, which is activated 
when at least 20 TCP SYN requests from the same source IP are 
identified within 60 s, notifying a potential port scan.

The attack simulation starts by accessing the Docker represent-
ing end point e4 with a shell:

sudo docker exec -it e4 /bin/sh

The port scan is simulated with nmap:

TABLE 2    |    Current firewall filtering rules.

# Action IPSrc IPDst pSrc pDst tProto

Firewall f12
1 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

2 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

3 Allow 84.20.2.2 232.61.10.2 37895 ∗ TCP

4 Allow 232.61.10.2 84.20.2.2 ∗ 37895 TCP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗

Firewall f16
1 Allow 57.73.0. ∗ 84.20.2.1 ∗ ∗ TCP

2 Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

3 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

4 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗
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nmap -p 1-25 84.20.2.1 This command sends 25 TCP 
SYN requests to e5, triggering the rule in OSSEC and result-
ing in the following alert, represented by the log entry listed in 
Listing 2.

When the module focusing on NSR extraction sees that a new 
log entry has been written by the IDS, it automatically parses 
it and extracts an isolation NSR written formatted as the XML 
object reported in Listing 3.

At this point, the merging module merges the extracted NSR 
with the initial set of NSRs. The only conflicting initial NSR is 
the one appearing at the top of Table 1. That reachability NSR 
requested that the TCP traffic from all endpoints with IP ad-
dresses in the 57.73.0.0/24 range must be able to contact the 
IP address 84.20.2.1. However, this is not acceptable anymore, 
because the TCP traffic from 57.73.0.2 must now be stopped. 
Therefore, the merging module modifies that initial NSR so that 
the only acceptable source IP address is 57.73.0.1, and introduces 
the extracted isolation NSR in that list.

When the target set of NSRs is thus created, React-VEREFOO 
uses it to formulate a MaxSMT problem and compute the new 
optimized firewall reconfiguration. In particular, it finds the re-
configuration solution where no new firewalls are added, thus 
avoiding delays related to the deployment of new VNFs. Instead, 
in this solution, the filtering rules of the firewall f16 are just 
modified. The new rules are reported in Table 3.

Then, the conversion module converts the medium-level config-
uration produced by React-VEREFOO to iptables commands, 
producing the script reported in Listing 4.

As soon as the configuration of f16 is updated, the attack is 
successfully stopped. This result has been experimentally con-
firmed by reapplying the command to perform a port scan from 
e4 to e5. This time, the attack turns unsuccessful.

5.2   |   Performance Validation

The framework has been extensively tested to assess its correct-
ness and its performance improvement with respect to the tra-

ditional approach for firewall configuration from scratch. The 
validation was carried out on synthetic networks of increasing 
sizes, generated as extensions of the network shown in Figure 5, 
and under various reconfiguration scenarios. The performance 
tests were designed to evaluate how much the results obtained 
with the proposed optimized reconfiguration approach deviate 
from those obtained with a state-of-the-art approach lacking 
support for optimized reconfiguration. For this purpose, the 
comparison has been done with the official implementation of 
VEREFOO [27]. The evaluation also covered the achievement 
of the optimality goals, quantifying the deviations of the pro-
posed approach from the global optimum in terms of resource 
consumption. As mentioned in 4.3, this approach considers a 
limited subset of the solution space, thus it may compute a con-
figuration that is locally optimal concerning the reconfigured 
nodes but not in a global sense.

The main parameters used in the different test cases are the 
number of NSRs, the number of endpoints, and number of 
NATs (which introduces an additional complexity factor, and 
they can modify the crossing traffic). Another important pa-
rameter is PercReqKept, which represents the percentage of 
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requirements in the set k with respect to the complete set 
of NSRs. In other words, it represents the proportion of kept 
requirements with respect to the total number of defined 
NSRs. Clearly, if the percentage of requirements maintained 
between the Initial and Target sets of NSRs increases, then 
the number of NSRs in the added (a) and deleted (d) groups 
will consequently decrease.

The first analysis, shown in Figure  6, compares the perfor-
mance of the algorithm in five different types of networks, 
differentiated by an increasing number of endpoints, NSRs 
and NATs, and with two reconfiguration scenarios, differ-
entiated by the value of the PercReqKept parameter. In par-
ticular, the five different classes of networks that have been 
tested are Case-A with 10 NSRs, 60 endpoints, and 5 NATs; 
Case-B with 15 NSRs, 80 endpoints, and 10 NATs; Case-C with 
20 NSRs, 100 endpoints, and 15 NATs; Case-D with 25 NSRs, 
120 endpoints, and 20 NATs; and Case-E with 30 NSRs, 140 
endpoints, and 25 NATs. Then, the application of the frame-
work to each of these network classes has been tested in two 
different reconfiguration scenarios, each characterized by a 
decreasing value of PercReqKept, and, as a consequence, an in-
creased number of modified NSRs. The values adopted for this 
parameter are 90% and 70%. Note that the tested scenarios are 
concentrated on higher values of PercReqKept, as justified by 
multiple sources. For instance, it is reported [28] that updates 

in the Facebook infrastructure affect on average 157 lines of 
configuration, considering only the backbone, or 738 lines, if 
also data centers and edge servers are considered. Both are 
relatively small numbers when compared to the huge scale of 
their network. Instead, other researchers [29] questioned dif-
ferent online service providers and found out that, for 75% of 
the networks operated by them, the median change includes 
only three devices.

For each value of PercReqKept, and for each type of network, 
the algorithm has been executed 100 times. Moreover, this 
analysis aimed to highlight the improvement versus an unop-
timized approach, which is referred in the tests as the Complete 
Reconfiguration case, and it corresponds to the vanilla version 
of VEREFOO.

The observed trend is that the computation time is directly pro-
portional to the number of endpoints and NSRs and inversely 
proportional to the percentage of kept requirements. Every con-
sidered reconfiguration scenario achieves an average computa-
tion time significantly lower than the approach adopted in the 
vanilla VEREFOO. The obtained results highlight that the main 
parameters increasing the computation time are the number of 
endpoints, the number of NSRs, and just for the reconfiguration 
case, the percentage of NSRs which are maintained, that is, the 
PercReqKept parameter. Indeed, the Initial and Target NSR sets, 

TABLE 3    |    Updated firewall filtering rules.

# Action IPSrc IPDst pSrc pDst tProto

Firewall f16
1 Allow 57.73.0.1 84.20.2.1 ∗ ∗ TCP

2 Allow 84.20.2.1 57.73.0.1 ∗ ∗ ∗

3 Allow 232.61.10.2 84.20.2.1 ∗ 37894 UDP

4 Allow 84.20.2.1 232.61.10.2 37894 ∗ UDP

D Deny ∗ . ∗ . ∗ . ∗ ∗ . ∗ . ∗ . ∗ ∗ ∗ ∗

FIGURE 6    |    Performance tests.
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once overlapped, form a shared region representing the group 
k. The larger this area, the smaller the sets a and d, repre-
senting the added and deleted NSRs, and fewer NSRs must be 
processed, making the reconfiguration process less computa-
tionally expensive.

These results show that the highest advantage in terms of com-
putation time is obtained when the reconfiguration regards a 
small subset of the total NSRs. This is an expected result. In 
fact, the optimization improvement of the presented approach 
is mainly achieved by limiting the solution space that is con-
sidered by the solver. This reduction is achieved by fixing the 
configurations of some network elements which are unaf-
fected by the new NSRs, shrinking the set of variables whose 
values must be determined with the resolution of the problem. 
If the modified NSRs represent a major part of the whole set, 
then the unaffected area is reduced, and the optimization ef-
fect is limited. This validation phase also assessed that the im-
pact of the designed algorithm could be considered irrelevant 
when compared to the overall computation time, because its 
contribution always ranged between 0 and 100 ms, with most 
of the runs being under 10 ms. In general, the results confirm 
the feasibility of the proposed approach and its relevant ad-
vantages in terms of computation time when compared to the 
previous solution, based on a complete reconfiguration of the 
whole network.

In this phase, also the optimality of the solution has been 
analyzed. The results show that the reconfiguration ap-
proach achieves a slightly higher number of allocated fire-
walls and configured rules. The extent of this difference 
changes depending on the ratio between the weight assigned 
to a reconfigured node and that used for a new one. This is 
demonstrated by the additional tests shown in Figure 7. Two 
different cases are represented here, one in which the ratio 
between the weight assigned to a new AP and the weight as-
signed to a reconfigured node is equal to 2, in Figure 7a, and 
another case in which the same ratio is equal to 10, Figure 7b. 
As we can see, increasing this ratio results in an increase for 
the number of generated firewall rules, and the same applies 
to the number of firewalls (even if not represented here). The 
suboptimality of the result is due to two factors: first, the re-
duction of the solution space for the solver which is limited to 
the subset of APs that could be modified, and second, the soft 

constraints which force the preference of reusing old configu-
ration elements even if a completely new configuration would 
result in a slightly better optimality. Note that the results for 
performance and scalability have been conducted using the 
value 2 for the ratio, which allows to reduce the computation 
time while achieving a nearly optimal usage of resources. All 
the values assigned to the weights of each soft constraint are 
the results of different tests that have been conducted.

The second validation analysis tested the approach with larger 
networks and considering just a single reconfiguration scenario 
in which 70% of NSRs are kept from the Initial to the Target 
set. Figure 8 compares the obtained average computation time 
for the proposed approach compared with the previous one. The 
considered network types have increasing sizes, specifically 
the considered cases are from left to right: 200 NSRs and 40 
endpoints, 300 NSRs and 60 endpoints, with 400 NSRs and 80 
endpoints, and 500 NSRs and 100 nodes. As we can see, even 
considering the high variability of the obtained values, the re-
configuration approach performs well when compared to the 
previous one also in terms of scalability. In this specific case, 
which can be considered as a sort of upper bound, the average 
computation time decreases by a factor of 60% over a similar 
nonoptimized approach. When the update involves a smaller 
portion, the gain is even higher.

FIGURE 8    |    Scalability tests.

FIGURE 7    |    Optimality comparison.
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6   |   Conclusion and Future Work

This paper presented an autonomous methodology for the op-
timized reconfiguration of distributed firewall systems. This 
methodology aims to avoid human interventions when an attack 
must be mitigated in order to avoid mistakes in firewall config-
urations being introduced when humans try to step on them. 
This methodology is composed of multiple steps, such as the one 
for converting firewall configurations from medium-level pol-
icy languages to concrete low-level settings and the one for ex-
tracting security requirements automatically from IDS log files. 
However, a core component of this approach is React-VEREFOO, 
which models firewall reconfiguration as a MaxSMT problem. 
Thanks to this formalization, to the best of our knowledge, 
React-VEREFOO is the first one in the literature to address that 
problem while combining three main features: full automation 
in computing the firewall reconfiguration, formal correctness 
assurance of the computed configuration, and optimizations in 
terms of resource consumption. The proposal was designed con-
sidering use cases of network attacks, requiring the computation 
of a new formally correct and secure solution within a short com-
putation time, so as to limit the exposure of the systems to the 
attack. The proposed strategy has been implemented as a frame-
work, whose validation showed benefits in terms of performance 
with respect to a state-of-the-art technique that automatically 
computes the firewall configuration from scratch.

As future work, further evaluations with real and more exten-
sive networks are currently ongoing to improve our claims, con-
sidering real networks and business use cases and also assessing 
the different contributions of each operation to the total compu-
tation time. We will then evaluate to extend the current method-
ology to the reconfiguration of other network security functions, 
such as antispam filters and web application firewalls, and to 
other possible firewall countermeasures to fight against in-
trusions, such as forwarding malicious traffic to a honeynet. 
Finally, we will investigate the possible impacts of false positives 
on the operations of this methodology and new mechanisms to 
unblock ports once a related attack is terminated, so as to fur-
ther improve the effectiveness of the proposed approach.
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