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Efficient solution validation of constraint
satisfaction problems on neuromorphic hardware:

the case of Sudoku puzzles
Riccardo Pignari, Vittorio Fra, Enrico Macii, Fellow, IEEE, Gianvito Urgese, Senior Member, IEEE

Abstract—Spiking neural networks (SNNs) offer an effective
approach to solving constraint satisfaction problems (CSPs)
by leveraging their temporal, event-driven dynamics. Moreover,
neuromorphic hardware platforms provide the potential for
achieving significant energy efficiency in implementing such
models. Building upon these foundations, we present an en-
hanced, fully spiking pipeline for solving CSPs on the SpiNNaker
neuromorphic hardware platform. Focusing on the use case of
Sudoku puzzles, we demonstrate that the adoption of a constraint
stabilization strategy, coupled with a neuron idling mechanism
and a built-in validation process, enables this application to be
realized through a series of additional layers of neurons capable
of performing control logic operations, verifying solutions, and
memorizing the network’s state. Simulations conducted in the
GPU-enhanced Neuronal Networks (GeNN) environment validate
the contributions of each pipeline component before deployment
on SpiNNaker. This approach offers three key advantages:
i) Improved success rates for solving CSPs, particularly for
challenging instances from the hard class, surpassing state-of-the-
art SNN-based solvers. ii) Reduced data transmission overhead
by transmitting only the final activity state from SpiNNaker
instead of all generated spikes. iii) Substantially decreased spike
extraction time. Compared to previous work focused on the same
use case, our approach achieves a significant reduction in the
number of extracted spikes (54.63% to 99.98%) and extraction
time (88.56% to 96.41%).

Impact Statement—This work presents a novel approach to
address Constraint Satisfaction Problems through Spiking Neural
Networks (SNNs) utilising neuromorphic tools like the GeNN
framework and the SpiNNaker platform. We propose a new
fully spiking pipeline that incorporates a constraint stabilization
strategy, a neuron idling mechanism, and a built-in validation
procedure. Our pipeline targets efficiency and performance of
SNN-based solvers for Sudoku puzzles, leading to improvements
in success rates and data transmission compared to previous
solutions. Specifically, the reduction of extracted spikes, ranging
from 54.63% to 99.98%, provides extraction time reduced by
values between 88.56% and 96.41%. This results in significant
enhancements in terms of energy efficiency and computational
performance. Therefore, we show further evidence of the po-
tential advantages of brain-inspired approaches that rely on
neuromorphic HW for implementing effective and low-power
solutions, which are suitable for real-world problems that char-
acterise constrained key technological domains such as AI, IoT
and Industry 4.0.

Index Terms—Constraint satisfaction problem, GeNN, neuro-
morphic computing, spiking neural network, SpiNNaker, sudoku.

I. INTRODUCTION

The authors are with the Electronic Design Automation (EDA) Group at
Politecnico di Torino, Turin, Italy (e-mail: riccardo.pignari@polito.it, gian-
vito.urgese@polito.it).

CONSTRAINT satisfaction problems (CSPs) are math-
ematical problems involving a collection of elements

whose state must satisfy a set of constraints. The definition
of a CSP is formulated through a triplet describing the
collection of variables, their respective domains, and the set
of constraints. The applications of CSPs cover a wide range
of scenarios such as logistics optimization [1]–[3], develop-
ment of new drugs [4], [5], warehouse management [6]–[9],
scheduling [10], structural optimization [11]–[13] and resource
allocation [14]–[16]. One possible approach to solve CSPs
involves the use of spiking neural networks (SNNs), a specific
type of artificial neural networks (ANNs) that uses action
potentials, or spikes, for neural communication [17]. SNNs are
effective in solving CSPs like the traveling salesman problem
(TSP) and the 3-SAT problem [18] as well as graph coloring,
Latin squares, and Ising spin glasses [19]. The basic idea
behind relying on SNNs as CSP solvers is to design a network
of spiking neurons that evolves in time to search for viable
solutions. Such a network is designed with a core set of
interconnected neurons, or neuron populations, supplemented
by a group of auxiliary neural units, either single neurons or
populations, representing the specific problem domain.

A notable advantage of employing SNNs for solving CSPs
lies in the possibility of deploying these models on neu-
romorphic hardware platforms. These specialized hardware
architectures are designed to mimic the structural and func-
tional characteristics of the human brain, enabling efficient
computation through biologically inspired principles. While
the deployment of an SNN-based CSP solver on neuromorphic
platforms has been demonstrated in a previous work [19],
the overall workflow was not entirely independent of external
hardware resources. Specifically, the validation of solutions
was typically performed after extracting the spiking activity
from the neuromorphic hardware, requiring additional compu-
tational effort on external hardware components.

In this context, our work aims to address this limitation
by proposing an enhanced, fully spiking pipeline, depicted
in Figure 1, that directly incorporates solution identification
and validation on the neuromorphic hardware platform, min-
imizing the reliance on external hardware. To achieve this,
we designed a series of layers implementing logic operations
to support the main network. These layers enable network
activity filtering operations (Polisher block), validate solutions
and interrupt neuronal activity (the NetChecker and the If
blocks), and memorize the state representing the solution (the
Memory block).
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Fig. 1. Building blocks of the fundamental (a) and enhanced (b) pipeline.
In (a), the solution proposed by [19] is depicted, with the CSP solver in
charge of identifying the solution of the given problem. The Poisson source
and Spike array blocks can be thought of as the spiking input and output
respectively. The output collected from this latter needs to be transmitted
out of the neuromorphic platform to be validated. The enhanced pipeline
(b) introduces additional blocks to implement both a stop condition and the
solution validation on neuromorphic hardware. By embedding such operations,
and hence by taking advantage of entirely spike-based computation for both
solving the problem and validating the solution, it largely reduces the amount
of data to be transmitted back from the neuromorphic platform. Consequently,
the time required for such operation is significantly lowered, and the compu-
tational cost of validating the found solution on non-neuromorphic hardware
is completely removed.

To demonstrate the advantages of our SNN-based blocks,
we focused on the Sudoku puzzle variant of the Latin square
problem. The relevance of the latter is given by its va-
riety of practical applications in different fields, including
cryptography (Hill cipher algorithm) [20], scheduling and
timetabling [21], error-correcting codes [22], [23], and agro-
nomic research [24].

II. BACKGROUND

Optimization problems target the identification of the best
solution among a number of possible candidates, given a
specific task. The complexity of such problems is propor-
tionally related to the degrees of freedom of the considered
system, which affect the solutions space to be investigated: the
more complex the problem, the larger the number of possible
solutions and the less feasible the brute force approach to find
the optimal one.

Over the years, numerous methods have been developed
to address optimization. Among them, analytical approaches,
based on the Lagrange multipliers or on linear programming,
and the most modern strategies relying on statistical ap-
proaches and machine learning (ML) methods. Additionally, a
frontier application is represented by SNNs, which can explore
the possible solutions by exploiting an attractor dynamics with
a considerable reduction in computational and energy cost.

CSPs are a specific type of optimization problems which be-
long to the NP-complete set. Their mathematical formulation
is based on the triplet ⟨X,D,C⟩ where:

• X = {X1, X2, ..., Xn} describes the set of variables
present in the problem;

• D = {D1, D2, ..., Dn} describes the set of domains the
variables belong to;

• C = {C1, C2, ..., Cn} defines the set of constraints.
Among the above mentioned examples of CSP, the Latin

Square problem consists of a matrix with n×n cells, partially
filled with n different elements, such that once solved each
symbol appears in each row and column only once. In the
Sudoku variant, the structure is constituted by a square of
9 × 9 cells, subdivided into 9 blocks of 3 × 3 sub-squares.
Each cell of the Sudoku puzzles must be filled in with numbers
from 1 to 9. Solutions to Sudoku puzzles and other CSPs can
be investigated by means of SNNs [18], [19], [25]–[28] by
replacing the standard nonlinearity adopted in ANNs through
perceptron-based units with bioinspired elements such as leaky
integrate-and-fire (LIF) neurons. A generalized formulation for
CSP mapping onto SNNs was shown by Jonke et al. in [18],
where a methodology to model the energy landscape of a given
problem through the topological structure of a neuromorphic
model was proposed. The resulting dynamics of the network
corresponds to a dynamical system with a temporal evolution
described through an attractor model [29], with a continuous
exploration of possible states related to the original problem,
whose fixed points correspond to the possible solutions.

In [19], SNNs designed to translate the mathematical for-
mulation of the problem into the number of neurons and their
synaptic connections are used for a stochastic search of the
solution. Precisely, three CSP classes are taken into account,
namely Graph Coloring, Latin Square Problem and Ising
Model, showing the feasibility of such approach. Nonetheless,
some limitations can be identified which partially limit the
prospective impact of the proposed methodology. Specifically,
three main aspects can be outlined. First, the fixed simulation
time hinders the possibility of stopping the process once
a solution is found, translating into an unnecessary energy
consumption. Similarly, performing the solution validation on
an external platform with respect to the one onto which the
SNN runs implies data preparation and transfer which induce
further time and energy consumption. Third, reliability issues
affecting the problem mapping can arise if specific design
choices in the clues definition are not taken.

Further studies [30]–[32] have also investigated neuromor-
phic approaches to the solution of the Latin square problem,
exploring different methodologies and platforms and validat-
ing the efficacy of novel neuron models in the domain of
CSPs.

III. IMPLEMENTATION

A Sudoku puzzle consists of 81 cells arranged in a squared
9 × 9 matrix made of 9 blocks of 3 × 3 sub-squares. Each
cell represents the elemental unit of the puzzle, namely the
basic building block of the system. The relationships between
different cells along rows and columns and within the sub-
squares, together with the initial clues, define the specific
characteristic of each CSP of this type.

A. Network for puzzle solution
1) Neuron populations as elemental units: Every single cell

of the Sudoku puzzle is modelled by employing 9 populations
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Fig. 2. Example of a Sudoku puzzle (a) with its corresponding SNN-based CSP solver (b). Connections for internal inhibition are depicted in blue, while
purple lines represent lateral inhibition. All the stimulus populations are shown in red together with the corresponding connections. For the initial clues, single
stimulus populations are shown according to the specific cell values. To improve clearness, lateral inhibition connections are shown for the top-left cell only.
In (c), the 9 possible values for each cell of a Sudoku puzzle are modelled by means of 9 populations (depicted in green) of neurons. The winner-take-all
configuration (achieved through the blue inter-population connections) ensures that only one population is active and only one value is taken by a cell. In red,
the stimulus populations and the corresponding connections are shown. On the right-hand side, an example of clue modelling to fix a single cell value, 4 in
this case, is reported.

of LIF neurons, one for each possible digit, connected one to
another through a mechanism of internal inhibition resulting
in the so-called winner-take-all configuration [29]: a single
population can remain active while suppressing all the other
ones, to ensure that each cell takes a single value at a time.
Across cells, populations representing the same value are con-
nected to implement lateral inhibition, ensuring that a single
value can not appear more than once along a row, a column,
or in a sub-square. Additionally, all the populations have a
further synaptic connection to so-called stimulus populations,
whose purpose is to keep available the number that the cell
can assume. A schematic of the inter-population connections is
reported in Figure 2. The specific neuron model implemented
is a current-based (CuBa) LIF [19], [33], with membrane
potential and synaptic current described in time by Equation 1
and Equation 2 respectively:

dVm(t)

dt
=

Isyn(t) + Ioffset
Cm

− Vm(t)− Vrest

τm
(1)

τd
dIsyn(t)

dt
= −Isyn(t) + Ispike(t− ts) (2)

where Vm(t) is the membrane potential; Vrest is the leaky
component; Cm models the membrane capacitance; τm is
the temporal decay constant for the membrane potential;
Ioffset is an additional bias current to control the internal
dynamics; Ispike = wδ(t− ts) is the contribution through the
synaptic weight w of the incoming spiking activity occurring
at time ts; τd is the temporal decay constant for the synaptic
components. Each time the membrane potential reaches the
threshold voltage Vth, a spike is emitted and the membrane
voltage is reset to a value Vreset for a time τreset. In Table I,
the constant neuronal parameters of the above equations are
reported with their values.

The SNN-based system describing the Sudoku puzzle is
made stochastically evolve, in terms of spiking activity, to
explore the configuration space with neural dynamics kept

slightly above the firing threshold condition. Such a system is
also referred to as the CSP solver, being the real responsible
for the solution investigation. Its initial condition is defined
through a random initialization of the synaptic weights, uni-
formly distributed within a given range of values, for the
connections to the stimuli and for both internal and lateral
inhibition, as reported in Table II.

Starting from such random initialization, the network
evolves, at each simulation step, determining the most active
population for each cell of the Sudoku puzzle as a result of the
winner-take-all configuration. In order to allow the enabling of
the possible values that a cell can take on, stimulus populations
are used. In Figure 2a, a generic cell is shown with its
connectivity structure involving all the stimulus populations.
This represents the condition of the initially empty cells of
a Sudoku puzzle, whose specific value is not yet determined.
To ensure the initial clues are preserved, namely to model
cells with predefined values that cannot be changed during the
system evolution, stimulus populations are instead employed
as depicted in Figure 2c: given the value to be kept, 4 in the
example, only the corresponding population is connected to
the stimulus.

2) Attractor dynamics: Using the above-mentioned archi-
tecture, a Sudoku puzzle is mapped onto a sparsely connected
graph, as the one depicted in Figure 2b, by encoding the
properties and the constraints of the problem through the
population connections. As a result of such connections, it
is not possible to deduce the global behavior of the entire net-
work from the functioning of the individual components. The
SNN evolution can be instead described through an attractor
dynamics, where the attractive fixed point corresponds to the
solution of the puzzle. However, although there is only one
possible solution to the puzzle, the mapping process may result
in other minor attractive fixed points which do not represent
a solution but can be interpreted as local minima trapping the
network evolution.
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This dynamics strongly depends on the neuron population
size: too small results in a noisy network without solving capa-
bility; excessively large makes populations far too active, with
the consequence of corrupting the correct interplay between
different cells.

B. Constraint stabilization
A possible effect induced by large neuron populations is the

change of the initial clues during the evolution of the system.
The very origin of such phenomenon is however to be ascribed
to the spiking activity rather than to the population dimension.
We indeed observed that changes of the initial clues can be
reproduced by acting on neuron parameters like the threshold
voltage and the bias current, or on the synaptic connections,
which induce a higher spiking activity.

Interestingly, if the initial clues are changed, the network
can still find the correct solution to the new problem. In a
sense, the network demonstrates its ability as a problem gen-
erator. However, such reformulation and adaptation capability
must actually be seen as an issue: the solution found by the
network is not related to the problem we want to solve but to
a different one.

Among the potential causes for the alteration of the initial
clues, including threshold voltage, bias current, and synaptic
connections, it was determined that addressing the latter would
be the most effective solution to resolve this issue.

As outlined in [19], lateral inhibition connections, depicted
in purple in Figure 2, are established to relay the presence
and value of the initial clues throughout the network via
bidirectional connections between Sudoku cells subject to
the same constraints. To mitigate the alteration of states,
lateral inhibition connections from the initial clue populations
are made unidirectional towards empty cells, thus preventing
lateral inhibition from other populations and avoiding the
modification of the initial states corresponding to the original
constraints.

C. Neuron idling and built-in validation
To address the limitations found in the CSP solver of [19],

as well as in the solution validation process, we introduced an

TABLE I
SUMMARY OF THE NEURONAL PARAMETERS USED TO IMPLEMENT THE

CUBA-LIF MODEL

Neuronal parameter Value

Cm 0.25 nF

Ioffset 0.1 (*) nA

Vrest -65.0 mV

Vth -50.0 mV

Vreset -70.0 mV

τm 25.0 ms

τrefrac 2.0 ms

τd 5.0 ms

(*) For the CSP solver, 0.3 is used to ensure
neural activity in the absence of input stimuli.

Fig. 3. The four blocks (Polisher, NetChecker, If and Memory) are introduced
to implement the neuron idling mechanism and the built-in validation in the
enhanced, fully spiking pipeline. The dashed lines are used to emphasize the
inter-block interatcion scheme by highliting the connections of individual sub-
units. The connection between CSP solver and Memory is depicted in green
as one of the two components of the If block to specify that such connection
is active in specific conditions only.

additional element playing the role of an auxiliary network.
Such a network is composed of 4 blocks, depicted in Figure 3
together with the CSP solver. It is responsible of multiple ac-
tions aimed at avoiding unnecessary activity and validating the
solution found by the main network, namely the CSP solver.
First, the Polisher block is used to collect and filter out the
activity of the main network, so that only the spikes from the
most active population are kept; then, the NetChecker block
verifies if the original constraints have been preserved during
the system evolution; third, the If block, upon validating the
found solution, interrupts the activity of the CSP solver and it
activates the final block, called Memory, in charge of keeping
the activity state corresponding to the validated solution.

The Polisher block, introduced with the objective of elim-
inating the background noise produced by the less active
populations, consists of a layer whose structure is inspired
by that of the CSP solver, with two key differences. First, a
reduced number of neurons per population is used, as detailed
in Table II. Second, each population receives stimuli from its
counterpart in the CSP solver.

The NetChecker is composed by 3× 9 units containing 10
populations each. Analyzing the structure in more detail, the
units are defined as follows: 3 as the number of constraint
types, namely on rows, on columns and for sub-squares; 9
for the number of rows, columns and sub-squares. The 10
populations that each cell is made up of are structured with
the objective of verifying that all the constraints are respected.
This is achieved through the use of 9 control populations for
replicated digits and an additional population, designated as
the ’check population’, which is activated if all the constraints
are satisfied. The 9 control populations are connected in a
one-to-one scheme with the corresponding populations in the
Polisher block: each control population models a digit and
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each unit is connected to all the Sudoku cells along a row,
along a column or in a sub-square. For instance, the unit in
position (1,4) of the NetChecker in Figure 3 contains the 9
control populations connected to the populations of the fourth
row in the Polisher according to the digit they represent, and
the check population connected to all the populations of the
same row.

Once all constraints are satisfied, the If block verifies the
solution validity with respect to the initial problem. Such
block consists of a single layer with two populations of
neurons which are activated depending on the True or False
outcome of the constraints conservation check. False is
active if at least one of the 9 constraint-related populations of
the NetChecker is active; True is instead obtained if all the
’check populations’ of the NetChecker are active. To ensure
that the two populations for True and False are not active
at the same time, a winner-take-all scheme is adopted.

If the solution found is validated, the If block stops the
evolution of the system by activating the True population that
inhibits all the cells in the CSP solver, with the subsequent
deactivation of the False population which enables the Memory
block to save the last state of the CSP solver. Both of these
mechanisms are implemented through inhibitory synapses.

The structure of the Memory block is analogous to that of
the CSP solver, with the exception of the change in the number
of neurons in each population, which is reduced to 3. As in the
Polisher, each population receives stimuli from its counterpart
in the CSP solver.

The structure of the four blocks, which facilitate the process
of neuron idling and built-in validation, is the consequence of
a topological mapping onto a spiking network of the type of
constraints that a generic Sudoku puzzle must adhere to. This
conversion, specifically tailored for problems belonging to the
Latin square class, is nonetheless independent of the specific
puzzles being analysed, and it can be readily scaled up for
the identification of new forms of constraints by acting on the
NetChecker.

D. Step-by-step implementation
This section provides an overall view of the proposed

fully spiking pipeline, with the aim of giving a step-by-step
description of the end-to-end implementation.

The core element, namely the CSP solver, is built to
replicate the 9× 9 grid of the Sudoku puzzle. Each of the 81

cells is made of 9 populations of LIF neurons, connected one
to another through inhibitory synapses designated as internal
inhibition. Such connectivity is adopted to employ a winner-
take-all scheme, which eventually ensures a single active
population per cell as required by the rules of Sudoku puzzles.
In order to determine which digit corresponds to a cell, each of
them is connected to a single stimulus population representing
values from 1 to 9. Cells with stimulus populations for the
same digit are also inter-connected for lateral inhibition, to
ensure that a given digit will not appear more than once along
a row, a column, or in a sub-square. Figure 2c depicts an
example of mapping by focusing on an empty cell in position
(2,4) and an initial clue in position (2,5). The former has all the
populations connected to a stimulus, while the latter imposes
4 as cell value by enabling only the connection of that specific
stimulus population.

Connected to this main part is the Polisher block. It is
structured in the same way as the CSP solver except for the
absence of the stimulus populations and the reduced number of
neurons per population (Table II). Stimuli arrive to the cells
of this block through individual direct connections with the
CSP solver cells, and the aim is to suppress possible residual
background noise produced by the non-dominant populations
within the CSP solver.

The Polisher block is then connected to the NetChecker,
which is responsible for verifying that the spiking activity
collected from the CSP solver adheres to the constraints of the
Sudoku puzzle. The structure of this block is made of 3 × 9
units of 10 populations of neurons. Its role is to verify the
three types of constraints: the first 9 units are responsible for
the constraints on the rows, the next 9 ones for verifying the
constraints on the columns, and the final 9 ones for checking
the constraints on the sub-squares. The 10 populations are
instead implemented as 9 control populations and one addi-
tional population, designated as the ’check population’, which
is activated if all the constraints are satisfied. Connections
between the NetChecker and the Polisher block have the
following scheme: the control populations refer to single cell
values and every unit is connected to an entire row, column
or sub-square.

Subsequent to the NetChecker is the If block, which consists
of two populations inter-connected with a winner-take-all
strategy: the True and the False population. The former is
connected to the ’check populations’ of the NetChecker, while

TABLE II
SUMMARY OF THE PARAMETERS USED FOR THE DIFFERENT COMPONENTS OF THE WHOLE MODEL RUN IN GENN. WHERE RANGES INSTEAD OF VALUES

ARE REPORTED, UNIFORM DISTRIBUTION OF VALUES WITHIN SUCH RANGES ARE CONSIDERED.

Neurons
per population

Synaptic connection weight
Stimulus Internal Lateral to CSP solver to Memory

CSP solver 27 (*) [1.4, 1.6] [-0.08, 0.00] [-0.08, 0.00] / /
Polisher 10 1.0 -1.0 / / /

NetChecker 10
1.00

0.15 (check pop.) / -1.2 / /

If 10
11.00

0.02 (val. pop.)
0.5 (True)

0.0 (False) -1.0 -2.0 -0.6

Memory 3 1.0 0.4 -0.3 / /
(*) The solution for two of the three puzzles belonging to the easy class (#2 and #3 specifically) has been simulated by using 28
neurons per populations in the CSP solver due to an observed gain in performance.
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TABLE III
SUMMARY OF THE SOLUTIONS FOUND PERFORMING 300 SIMULATIONS IN GENN FOR THREE DIFFERENT PUZZLES OF EACH CLASS

Class Easy Medium Hard
Constraint stabilization ✗ ✓ ✗ ✓ ✗ ✓

Neuron idling and built-in validation ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Puzzle:
#1 293 289 292 297 5 5 210 202 0 0 121 147
#2 188 203 216 233 0 1 126 136 0 0 0 0
#3 248 245 273 282 0 0 7 7 0 0 91 89

Fig. 4. Comparison of the different strategies investigated through simu-
lations in GeNN. The values correspond to the success rate, evaluated as
the percentage of solutions found for three different puzzles of each class
simulated 300 times.

the latter is connected to all the control populations within the
NetChecker. Additionally, the False population is connected
to all the cells of the Memory block.

As final element, the Memory block has the same structure
and connections with the CSP solver as the Polisher block,
with the only exception of just 3 neurons per population. It is
also connected to the False population of the If block.

IV. EVALUATION

We tested our fully spiking approach on nine Sudoku
puzzles belonging to three different difficulty classes: easy,
medium, and hard. Specifically, we used the ones from [19]

belonging to the easy and hard classes and added a selection
of puzzles from [34].

At the software level, we leveraged the capabilities of the
GeNN environment [35] on a hardware platform equipped
with an Intel 11th Gen i7-11700KF (16) @ 5 GHz processor,
32GB of RAM, NVIDIA RTX A4000 graphics card with
16GB of VRAM and Ubuntu 20.04.5 LTS x86 64 operating
system, while on the neuromorphic hardware side we relied
on SpiNNaker [36]. Compared to [19] we were forced to use
the sPyNNaker8 library for PyNN instead of sPyNNaker7
due to deprecation of the latter.

In order to produce a comprehensive analysis, and a valu-
able comparison, we solved the puzzles with four different
strategies, all of them based on the same CSP solver:

a) as in [19] to obtain the baselines for our fully spiking
approach;

b) by including constraint stabilization only;
c) by including neuron idling and built-in validation only;
d) by merging b and c.

By performing 300 simulations to solve each puzzle with
all configurations, we collected results from a total of 10800
experiments.

The adoption of a constraint stabilization mechanism re-
sulted in the complete fix of the issue affecting the original
implementation. It was indeed verified that the initial clues
were never changed when including such additional element
for the puzzle solution, in comparison with the 171 constraint
changes identified using the solver of [19]. From Table III and
Figure 4, the impact of constraint stabilization, which corre-
sponds to the above mentioned strategy b, can be appreciated
in detail. Especially for the medium and hard classes, the
number of successful solutions increases by more than one
order of magnitude, and the success rate does accordingly:

Fig. 5. By introducing the neuron idling mechanism and the built-in validation, the median number of spike produced by the whole pipeline is significantly
reduced for puzzles of the easy class. For the medium and the hard class, the poor solving capability of the CSP solver, which leads to the exploitation of
the whole simulation time in most of the cases, hides such effect.
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TABLE IV
SUMMARY OF THE SOLUTIONS FOUND PERFORMING 100 EXPERIMENTS ON SPINNAKER FOR THREE DIFFERENT PUZZLES OF EACH CLASS

Class Easy Medium Hard
Constraint stabilization ✗ ✓ ✗ ✓ ✗ ✓

Neuron idling and built-in validation ✗ ✓ ✗ ✓ ✗ ✓

Puzzle:
#1 97 85 0 12 0 14
#2 69 64 0 0 0 0
#3 81 87 0 0 0 5

from 0.56% to 38.11% for the medium class and from 0.00%
to 23.56% for the hard one. Concerning the puzzles of the
easy class, the success rate increases instead from 81.00% to
86.78%.

By adopting the strategy c, we instead showed the suitability
of a neuron idling mechanism in a fully spiking pipeline
that comprises both the puzzle solution and its validation.
Specifically, such mechanism significantly reduces the energy
consumption if a solution is found early in the simulation time.
For the easy puzzles, it resulted in a decrease of the median
number of spikes during the simulations of about 59.87%
with respect to strategy a. As it is reported in Figure 5, this
improvement was not observed for the other classes, the reason
being the much smaller success count which implies a much
longer time spent by the CSP solver in its dynamical evolution.
The idling mechanism is indeed not triggered until a solution
to the puzzle is found, which consequently means that it does
not act on the spiking activity of the system if a valid solution
is not identified. The relevant increase of spikes produced
with the strategy c for the medium and hard classes, shown
in Figure 5, hence arises from the reduced capability of the
CSP solver of finding valid solutions, which in turn translates
into longer simulations with increased computational efforts.
In terms of success count, and success rate accordingly, as it
can be appreciated from Table III and Figure 4, the strategy
c provides a slight improvement: 0.89% and 0.11% for easy
and medium puzzles respectively. This increase in the number
of valid solutions found, given that the CSP solver is not
changed, can be directly ascribed to the built-in validation,
which replaces the bin-based approach of strategy a.

Finally, the coupling of strategies b and c gives rise to the
complete pipeline we label as strategy d, where constraint
stabilization and neuron idling with built-in validation are all
used. As it is reported in Figure 4, such synergy eventually
results in relevant improvements for all the classes compared
to the original strategy a: from 81.00% to 90.22% for the easy
puzzles, from 0.56% to 38.33% for the medium class and from
0.00% to 26.22% for the hard one.

Following the simulations in GeNN, we assessed the actual
performance of our fully spiking pipeline on neuromorphic
hardware by running it on SpiNNaker. Specifically, we com-
pared strategy a and d with 100 simulations for each puzzle of
each class in both cases, thus collecting results from a total of
1800 experiments. As it is well known, the fundamental and
distinguishing characteristic of neuromorphic platforms like
SpiNNaker compared to GPUs is the spike-based computa-
tion. As a consequence, while the results of the simulations
performed in GeNN could be deeply investigated by directly

Fig. 6. Comparison between the original pipeline from [19] (strategy a) and
the enhanced, fully spiking pipeline (strategy d). The values correspond to
the success rate from 100 experiments run on SpiNNaker for three different
puzzles of each class.

probing the different populations activity, any analysis of the
activity produced when running the model on SpiNNaker
could be performed exclusively after dedicated spike collection
and transmission. Therefore, the most reliable approach to
inspect the results from SpiNNaker without introducing any
overhead was to collect and transmit spikes only at the end of
the simulations.

Table IV and Figure 6 show the success count and the
corresponding success rate respectively. Coherently with the
results achieved in GeNN, startegy d turns out to introduce
improvements in the success rate for the medium and hard
classes, although they are smaller than on GPU: from 0.00% to
4.00% and from 0.00% to 6.33% respectively. On the contrary,
a reduction of solving capability from 82.33% to 78.67% was
reported for the easy class. Such differences with respect to
the behaviour observed on GPU, despite being undesired, are
not completely unexpected, and they can be ascribed to the
reduced numeric precision of the fixed-point representation
introduced by the SpiNNaker platform during the synaptic
weights quantization process.

Such phenomenon was reported by Ostrau et al. [31]
also, whose work investigated three neuromorphic hardware
platforms, namely SpiNNaker, Spikey and BrainScaleS, and
the NEST software framework. A discrepancy between the
software framework and the hardware platforms in terms of
their capacity to solve Sudoku problems was shown, as a
consequence of the different numeric precision employed. To
verify whether this hypothesis could hold for our fully spiking
pipeline as well, we performed additional simulations in GeNN
to adopt two different numeric precisions other than the default
one of 32-bit floating point: float16 and float64. For all
the classes, each puzzle solution was simulated with strategy
d performing 300 runs, which led to a total of 5400 new
experiments.
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Fig. 7. Success rate as a function of the numeric precision employed for simulations in GeNN. By varying the floating point precision, changes in the success
rate have been observed for all the classes: moving from float64 down to float16, the percentage of successfully solved Sudoku puzzles decreased.

The results, summarized in Figure 7, confirmed that the
success rate is indeed influenced by the numeric precision,
with linear reduction as precision decreases. The transition
from float64 to float32 entails an overall reduction of
1.11% (from 52.70% to 51.59%) when transitioning from
float64 to float32 and a further reduction of 1.59%
(from 51.59% to 50.00%) when moving from float32 to
float16.

The further advantage provided by our fully spiking pipeline
when running on SpiNNaker to implement strategy d can be
appreciated from Figure 8, where both the number of spikes
to extract and the corresponding extraction time is shown with
respect to strategy a. The reported reductions, ranging from
54.63% to 99.98% for the number of spikes and from 88.56%
to 96.41% for the extraction time, highlight that strategy d
allows to significantly increase the overall efficiency of the
pipeline: once the simulation is completed, the amount of data
to be transmitted from the SpiNNaker platform is strongly
reduced, and so are the time and the energy required for such
operation.

V. DISCUSSION

The attractor network investigated in this work originates
from [19] and stems from the possibility of even further
exploiting the efficiency of spike-based computation. It in-
troduces two major changes: the adoption of a constraint
stabilization mechanism and the use of the four blocks Pol-
isher, NetChecker, If and Memory to build a fully spiking
pipeline for the solution of Sudoku puzzles and its validation
entirely on neuromorphic hardware. Simulations in GeNN are
performed to assess the impact of such changes individually.

The constraint stabilization mechanism, implemented by
modifying the lateral inhibition scheme within the neuron
populations that model the Sudoku cells, and investigated by
the experiments carried out with strategy b, has a strong impact
on the success rate, as it is highlighted in Figure 4. Its role is
to preserve the problem formulation throughout the dynamical
evolution of the network. Changes of the initial clues during
the system evolution were indeed observed when reproducing
the original implementation of [19]. The origin of such effect

Fig. 8. Comparison of strategy a and strategy d in terms of spike extraction from SpiNNaker. The 100 experiments run for three different puzzles of each class
highlighted that both the number of spikes to be extracted and, consequently, the extraction time required are strongly reduced thanks to the combined effect
of the built-in validation and the neuron idling mechanism. This translates into a significant gain in efficiency thanks to the reduction in the computational
cost required to external, non-neuromorphic, platforms.
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Fig. 9. In order to correctly save the final activity state of the CSP solver
when the found solution is validated (i.e. the True population of the If block
is activated), a temporal overlap between the functioning of this latter before
it is shut down and the activation of the Memory block is needed. Such delay
refers to the time elapsing between a successful built-in validation and the
activation of the neuron idling, and it is implemented through the synaptic
connections between the If block and the CSP solver.

was traced back to the inhibition of the Sudoku cells con-
taining the initial values to be kept unchanged. Specifically,
being their synaptic connectivity of inhibitory type, the state
of such cells can be corrupted if other neuron populations
produce a high enough activity. Therefore, to avoid the initial
clue changes, this possibility must be hindered by removing
the inhibitory synaptic connections towards these cells.

By introducing the constraint stabilization, the original
problem cannot be changed during the stochastic evolution
of the system, thus improving the rate of the CSP solver in
finding the correct solution to the correct Sudoku puzzle. From
Figure 4, it can be appreciated that the constraint stabilization
plays a major role for all the classes and it is vitally important
in the solution of hard Sudoku puzzles.

Neuron idling and built-in validation are instead the two
mechanisms implemented by means of the four blocks Pol-
isher, NetChecker, If and Memory. They represent the distin-
guishing elements with respect to [19] in the definition of our
fully spiking pipeline, and they are investigated by adopting
strategy c. As it is summarized in Figure 4 and Figure 5, their
effect is directly related to the efficiency of a successful CSP
solver. From Figure 5, it can indeed be appreciated how such

contribution disruptively appears for the easy puzzles, which
are the ones with the highest success rate (Figure 4).

The explanation of this result is in the specific behaviour,
and activation conditions, of the If block. Given a CSP solver
for a certain Sudoku puzzle, the Polisher block is operated
to continuously receive the activity of the evolving network
and to identify the most active populations. It can be thought
of as a noise suppression mechanism applied to the spiking
activity of the CSP solver. The cleaned activity state of all the
populations is then passed to the NetChecker, which verifies if
all the constraints of the Sudoku, i.e. along the rows, along the
columns and within the sub-squares, are satisfied. This is the
newly introduced built-in validation. When all the conditions
are verified, one of the two components of the If block, namely
the True population, is activated, thus enabling the writing
of the current state of the CSP solver into the Memory block
and the subsequent idling of the solver itself. The writing step
represents the copy into the Memory block of the last activity
state of the CSP solver populations, and it is possible thanks
to an increased synaptic delay introduced in the connections
between the If block and the latter.

Figure 9 visually summarizes the fundamental role played
by such delay. When the True population of the If block is
activated, the False population is deactivated, the Memory
block is activated and the CSP solver is shut down. The two
latter operations must be properly delayed in order to correctly
retrieve the final activity state of the CSP solver and to write
it into the Memory block: only if the two blocks are active
at the same time the writing operation can be successfully
performed. It is hence fundamental the definition of an overlap
between the solver shutting down and the Memory activation.
The synaptic delay between the True population of the If
block and the CSP solver produces it.

A crucial aspect in the development of our fully spiking
pipeline and its deployment on SpiNNaker is tightly related to
such synaptic delay, and a tailored implementation was needed
due to the hardware specifications. We realized it by emulating
an axonal structure through a Delay population made of a
series of smaller, concatenated neuron populations with the
characteristics summarized in Table V. As the biological axon
does, the Delay population introduces a delay: the synaptic

TABLE V
SUMMARY OF THE PARAMETERS USED FOR THE DIFFERENT COMPONENTS OF THE WHOLE MODEL RUN ON SPINNAKER. WHERE RANGES INSTEAD OF
VALUES ARE REPORTED, UNIFORM DISTRIBUTION OF VALUES WITHIN SUCH RANGES MUST BE CONSIDERED. THE OPTIMAL VALUES CHANGED WITH

RESPECT TO TABLE II ARE HIGHLIGHTED IN BOLD. FOR THE Delay POPULATION, BOTH THE NUMBER OF INNER POPULATIONS (18) AND THEIR
DIMENSION (10) ARE REPORTED.

Neurons
per population

Synaptic connection weight
Stimulus Internal Lateral to CSP solver to Memory

CSP solver 27 (*) [1.4, 1.6] [-0.08, 0.00] [-0.08, 0.00] / /
Polisher 10 1.0 -1.0 / / /

NetChecker 10
1.00

0.15 (check pop.) / -1.2 / /

If 10
1.00

0.11 (val. pop.)
1.1 (True)

0.0 (False) -1.0 / -0.6

Delay 10 (×18) 2.5 / -1.0 -2.0 /
Memory 3 1.0 0.8 -0.3 / /
(*) The solution for two of the three puzzles belonging to the easy class (#2 and #3 specifically) has been simulated by using 28
neurons per populations in the CSP solver due to an observed gain in performance.
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delay needed during the spike propagation from the If block to
the CSP solver. The axonal length, i.e. the number of concate-
nated populations, was designed to overcome the upper limit of
144 time steps imposed by single synapses in SpiNNaker and
insufficient to reproduce the behaviour simulated in GeNN.

To effectively incorporate such changes with respect to the
GPU-based simulations in GeNN, where it was actually pos-
sible to effortlessly implement the synaptic delay as a single
variable, an optimization of the Delay population dimension
and of the synaptic weights for the If and Memory block
was performed through the Neural Network Intelligence (NNI)
toolkit [37]. The optimal values found are highlighted in bold
in Table V to highlight the changes with respect to Table II.

The relevance of the neuron idling mechanism is particularly
evident in the comparison of strategy a and strategy d on
SpiNNaker. As it is reported in Figure 8, the fully spiking
pipeline provides huge gains, especially for the medium and
the hard class, for the number of extracted spikes the extraction
time. Both of these quantities are related to the CSP solver
activity through the state stored in the Memory block: the
number of extracted spikes represents the amount of spikes
produced by the latter; the extraction time refers to the internal
operations performed by SpiNNaker to extract packages of
these spikes.

The built-in validation introduced with our fully spiking
pipeline allows to avoid the binning procedure adopted by [19]
to validate the solutions. By replacing it with the NetChecker,
the computational effort required to analyze the extracted
spikes on external hardware is completely prevented. As a
result, the overall efficiency is improved from a twofold
perspective: on the one hand, a significantly reduced data
transmission is needed from SpiNNaker, on the other hand,
the computational cost for solution validation on external
hardware is reduced to zero.

The process of creating the CSP solver is ultimately contin-
gent upon the specific puzzle under analysis and the synaptic
connections defined through probability distributions. Each
puzzle configuration would require a custom mapping in the
CSP solver populations. On the other hand, our enhanced
pipeline employs a process of topological mapping of the
constraints and their validation, which allows the blocks pro-
ducing neuron idling and built-in validation to have a univocal
definition of the synaptic connections and their weights. This
enables an independent validation process for the puzzle.
Clearly, as our enhanced pipeline offers the potential to create
a bespoke validation network for Latin square problems, its
applicability is constrained to such a specific class. To extend
and adapt the proposed approach to other classes, tailored
solutions must be identified that take into account the specific
characteristics and metrics of the targeted problem.

VI. CONCLUSIONS

Starting from the SNN-based solver for CSPs presented
in [19], we have shown how the use of neuromorphic hardware
can be extended to achieve further beneficial effects. By
implementing not only the problem solver but also the solution
validation on SpiNNaker, together with the adoption of a

mechanism to reduce unnecessary energy consumption, we
have presented an enhanced, fully spiking pipeline. As a
result, we have reported a strong reduction in data trans-
mission from the platform and the consequent computational
effort required to process such data. Compared to [19], we
indeed exploited a built-in validation mechanism within the
neuromorphic hardware, so that it is not needed to extract
the whole spiking activity produced by the network, and its
verification also is not required. With our enhanced, fully
spiking pipeline, only the final state of the solver network
is sent out from SpiNNaker, thus dramatically reducing the
extraction time. Additionally, we have introduced a constraint
stabilization mechanism that ensures that the initial clues are
preserved, so that the problem definition and characteristics
are not affected by the stochastic evolution of the solver. With
such a mechanism, we have shown that the success rate in
finding proper solutions for the selected use case of Sudoku
puzzles increases. Specifically, puzzles from the hard class also
can be solved.

In order to provide a more comprehensive and general
overview of the alternative methodologies for solving Latin
Square problems, a detailed analysis of the current state of
the art methods is presented in the Supplementary Material.
This facilitates a thorough comparison between different ap-
proaches and techniques.

Through our enhanced, fully spiking pipeline, we demon-
strated the potential of leveraging neuromorphic hardware for
efficient and effective solution of CSPs, paving the way for
further advancements in the field of brain-inspired computing
and its applications.
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