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Article 1 
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Abstract: The aim of this contribution is to present a segmentation method for the identification of 9 

voluntary movements from inertial data acquired through a single inertial measurement unit placed 10 

on the subject’s wrist. Inertial data were recorded from 25 healthy subjects while performing 75 11 

consecutive reach-to-grasp movements. The approach herein presented, called DynAMoS, is based 12 

on an adaptive thresholding step on the angular velocity norm, followed by a statistics-based post- 13 

processing on the movement duration distribution. Post-processing aims at reducing the number of 14 

erroneous transitions in the movement segmentation. We assessed the segmentation quality of this 15 

method using a stereophotogrammetric system as the gold standard. Two popular methods already 16 

presented in the literature were compared to DynAMoS in terms of the number of movements iden- 17 

tified, onset and offset mean absolute errors, and movement duration. Moreover, we analyzed the 18 

sub-phase durations of the drinking movement to further characterize the task. Results showed that 19 

the proposed method performs significantly better than the two state-of-the-art approaches (i.e., 20 

percentage of erroneous movements = 3%; onset and offset mean absolute error < 0.08 s), suggesting 21 

that DynAMoS could make more effective home monitoring applications for assessing the motion 22 

improvements of patients following domicile rehabilitation protocols. 23 

Keywords: Activity of daily living; functional assessment; IMU; movement segmentation; telereha- 24 

bilitation; upper limb 25 

 26 

1. Introduction 27 

Activities of Daily Living (ADLs) are fundamental for independent living and, in this 28 

regard, the functionality of the upper limb is crucial for a good quality of life [1,2]. Unfor- 29 

tunately, 28% of the population over 50 years of age and 50% of the population over 80 30 

years are affected by movement disorders [3]. 31 

To define appropriate interventions for motor disorders management, an accurate 32 

clinical assessment sets the basis for designing an effective motor rehabilitation program 33 

and for testing its effectiveness. Clinical assessment is usually performed using scales 34 

grading functional and movement disorders based on the clinician's evaluation of the ex- 35 

ecution of a specific task. However, in the last decades, many motion analysis systems 36 

have been proposed and used for reducing the subjectivity in patient clinical evaluation 37 

and enhancing the effectiveness of rehabilitation outcome evaluation, especially for the 38 

upper limb [4–8]. In particular, Inertial Measurement Units (IMUs) have been widely used 39 

for the assessment and rehabilitation of movement disorders of the upper limb [9]. IMUs 40 

measure acceleration and angular velocity of the body segment they are fixed to, allowing 41 

for the quantitative analysis of patient movements based on parameters derived from in- 42 

ertial recordings [9]. The use of IMUs arose because of their ease of use, portability, and 43 

low cost. For example, using IMUs allows clinicians to tailor rehabilitation protocols to 44 

the patient’s needs [10] and, in the context of therapy delivery systems, allows patients to 45 
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decide when and where to carry out therapeutic sessions [11]. However, these devices are 46 

not yet considered adequate for measuring the quality of movement during functional 47 

tasks in a clinical environment [12]. Therefore, there is a need to develop and validate new 48 

methods that increase the reliability and validity of IMU-derived evaluation metrics in 49 

clinics [12]. 50 

Among all the proposed parameters, execution time is one of the most commonly 51 

used metrics for the assessment of patient functionality in a clinical context. Hence, it is 52 

necessary to precisely identify voluntary movements. To this end, several methods, based 53 

on the inertial data, have been presented in the literature. The most straightforward ap- 54 

proach is to define a threshold that discriminates between voluntary movements and in- 55 

voluntary ones. For example, Schwarz et al. [13] identified voluntary movements by ap- 56 

plying a fixed threshold to the angular velocity norm. Voluntary movements were identi- 57 

fied in correspondence to the time instants above this threshold. Carpinella et al. [14] pro- 58 

posed a similar approach setting an adaptive threshold at 25% of the maximum of the 59 

angular velocity norm during the movement. Setting the threshold value equal to a per- 60 

centage of the maximum recorded value guarantees that the threshold is more suited to 61 

the characteristics of the subject under analysis, reducing the influence of inter-subject 62 

variability on the segmentation results. Moreover, Hughes et al. [15] identified voluntary 63 

movement onset and offset by applying a kinematic criterion on the linear velocity de- 64 

rived from the IMU accelerometer. In detail, the onset was determined as the first instance 65 

in the time series where the resultant velocity exceeded 1.5% of the first velocity peak, and 66 

the offset was determined when the velocity dropped under 1.5% of the velocity peak. 67 

The method proposed by Hughes et al. presents several challenges. First, the reconstruc- 68 

tion of the linear velocity relies on numerically integrating the linear acceleration after 69 

removing the gravitational bias. This process requires accurately estimating the sensor 70 

orientation using a sensor fusion filter. Even with fine-tuning of the filter parameters re- 71 

sidual errors persist, leading to propagation errors in the numerical integration process 72 

[16]. Additionally, the initial conditions of orientation and velocity are critical factors that 73 

significantly impact the accuracy of the results. Repnik et al. [17] presented a different 74 

segmentation method, based on the biomechanical model reconstruction of the upper 75 

limb from multiple IMUs mounted on the patient chest, arm, and forearm. Apart from the 76 

approach used by Schwarz et al. [13], all the other methods cannot be used in real-time 77 

applications since they need to extract information from the whole IMU recordings before 78 

performing movement segmentation. 79 

Among the aforementioned methods, the most used approaches for voluntary move- 80 

ment segmentation are those presented by Schwarz et al. [13] and Carpinella et al. [14], 81 

due to their simplicity and scalability. Nevertheless, both methods are subject to limita- 82 

tions. The segmentation method proposed by Schwarz et al. [13] does not present a tech- 83 

nical validation. Moreover, the application of a fixed arbitrary threshold may strongly re- 84 

duce the adaptability of the method to different movement and subject characteristics. 85 

These limitations have been partially solved by Carpinella et al. [14], who performed a 86 

technical validation and employed an adaptive threshold to identify voluntary movement 87 

from the angular velocity norm. However, the definition of the adaptive threshold can 88 

have a significant impact on the final segmentation results. The choice of a high value 89 

(e.g., 25% of the maximum angular velocity norm) could lead to the exclusion of parts of 90 

movements or even whole movements. On the other hand, selecting a value that is too 91 

low may lead to the inclusion of involuntary movements or background noise. This is 92 

especially true when analyzing movements that are composed of sub-phases executed at 93 

very different intensity levels. Moreover, the reliability of the segmentation results may 94 

be compromised by signal fluctuations around the threshold value, resulting in fast erro- 95 

neous transitions. 96 

To overcome the limitations of the approaches proposed by Schwarz et al. [13] and 97 

Carpinella et al. [14], we developed a new method and performed a technical validation 98 

using a StereoPhotogrammetric (SP) system as a gold standard. The newly proposed 99 
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segmentation method, DynAMoS (Dynamic Adaptive Movement Segmentation), en- 100 

hances the state-of-the-art adaptive thresholding approach with statistics-based post-pro- 101 

cessing aimed to reduce erroneous segmentation by applying statistical considerations to 102 

the movement duration histograms. In this paper, after the evaluation of the effectiveness 103 

of the proposed method against the gold standard and state-of-the-art approaches (i.e., 104 

Schwarz et al. [13] and Carpinella et al. [14]), segmentation results are used for the charac- 105 

terization of a reach-to-grasp movement. With the aim of supporting the adoption and 106 

standardization of IMU-derived parameters in clinical environment, we freely distribute 107 

the DynAMoS Matlab algorithm, its detailed documentation, and a sample dataset on the 108 

BIOLAB GitHub repository (https://github.com/Biolab-PoliTO/DynAMoS). 109 

 110 

2. Materials and Methods 111 

2.1 Participants 112 

Twenty-five healthy subjects (12 females and 13 males; age: 22.5 ± 2.1 years; 6 left- 113 

handed and 19 right-handed) participated in the study. To participate, volunteers were 114 

required to have no history of physical or neurological pathologies that might interfere 115 

with their ability to perform the task. The subject height and weight were recorded by 116 

self-report. The dominant forearm length was measured with a flexible measuring tape 117 

with the forearm facing downward, measuring from the lateral epicondyle to the ulnar 118 

styloid process. 119 

This study was approved by the Ethics Committee of Politecnico di Torino (Protocol 120 

N. 24766/2022, approved on July 19, 2022). Written informed consent was obtained from 121 

each participant before the experimental sessions, and all the acquisitions were performed 122 

following the Declaration of Helsinki. 123 

 124 

2.2 Acquisition System 125 

Recordings were carried out at the Motion Analysis Laboratory of PolitoBIOMed Lab, 126 

Politecnico di Torino (Turin, Italy). Inertial data were recorded using an IMU-based wear- 127 

able device designed and developed at the BIOLAB of Politecnico di Torino (Turin, Italy). 128 

This device incorporates an IMU featuring a three-axial accelerometer and gyroscope 129 

(LSM9DS1, STMicroelectronics), a Bluetooth Low Energy module, a floating-point micro- 130 

controller (SAME70, Microchip) to easily install and run custom algorithms onboard, a 131 

micro-SD card to store raw and processed data, and an 1 Ah rechargeable battery [18]. All 132 

the IMU recordings are acquired at a sampling frequency of 100 Hz. 133 

A twelve infrared camera SP system (Vicon T20, Vicon Motion Systems, sampling 134 

frequency: 100 Hz) was used to reconstruct the trajectories of 4 photo-reflective markers 135 

(diameter: 9.5 mm) attached to the IMU. The IMU was secured to the wrist of the subject 136 

using double-sided adhesive tape [19] with its short edge roughly aligned with the wrist’s 137 

flexion-extension axis. 138 

Three RGB cameras integrated with the SP system were used to record the acquisi- 139 

tions (sampling frequency: 50 Hz). Video recordings were anonymized by blurring sub- 140 

jects’ faces. 141 

Figure 1a shows a schematic representation of the acquisition system. 142 

The IMU and SP signals were then imported into MATLAB release r2023b (The Math- 143 

Works Inc., Natick, MA, USA) to be offline processed through custom routines. 144 

 145 

2.3 Experimental Protocol 146 

Volunteers were seated at a table (distance between the tabletop and the seat: 30 cm; 147 

table height: 70 cm) and were asked to perform a drinking task using their dominant up- 148 

per limb. The bottle was positioned in front of the subject sternum at a distance from the 149 

table edge equal to 1.5 times the forearm length. The drinking task consisted of reaching 150 
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and grasping the bottle (Phase I), lifting the bottle simulating drinking (Phase II), placing 151 

the bottle back on the table (Phase III), and returning to the resting position (Phase IV). 152 

Figure 1b schematically represents the experimental protocol with the indication of the 153 

three task sub-phases. The investigated task represents a typical ADL and is part of the 154 

Frenchay Arm Test, which is commonly used to evaluate upper limb function [20]. The 155 

position of the bottle on the table and the wrist resting position were marked using adhe- 156 

sive tape, to ensure the repeatability of the movement. 157 

At the start of each trial, subjects were requested to perform a 30-second static acqui- 158 

sition, after which they were instructed to raise the instrumented arm (dominant side) and 159 

perform three rapid rotations along the forearm longitudinal axis before returning to the 160 

resting position for 30 seconds. This movement was necessary to synchronize the SP sys- 161 

tem and the wrist-worn IMU. Subsequently, subjects were required to perform 25 repeti- 162 

tions of the drinking task. The drinking task sub-phases were executed following verbal 163 

instructions from the investigator. Between consecutive drinking tasks belonging to the 164 

same trial, a resting period of 4 seconds was performed. In conclusion, a single trial con- 165 

sisted of a 30-second static acquisition, a synchronization movement, another 30-second 166 

static acquisition, and 25 consecutive repetitions of the drinking task. Each volunteer com- 167 

pleted three consecutive trials with a 2-minute rest in between. For each trial, considering 168 

the sub-phases as separated movements, 100 movements are expected. 169 

 170 

2.4 Data Pre-Processing and Synchronization 171 

The IMU position in space was reconstructed using the Vicon Nexus 2.12 software. 172 

The marker trajectories were visually checked and possible gaps were manually filled. To 173 

remove random noise, marker trajectories were low-pass filtered using a 2nd-order zero- 174 

lag Butterworth filter with a cut-off frequency of 6 Hz. A Marker-cluster Local Frame 175 

(MLF) was defined using the markers attached to the IMU to determine its reference ori- 176 

entation with respect to the SP system global reference frame. The orientation of the MLF 177 

was performed using the Singular Value Decomposition (SVD) [21]. Then, the angular 178 

 

Figure 1. Panel (a): Representation of the acquisition setup composed by the SP system and the 

IMU (in dark blue color) and a picture of the wrist-worn IMU with 4 photo-reflective markers. 

Panel (b): Representation of the drinking task sub-phases. The drinking task consisted of 

reaching and grasping the bottle (step 1 and 2), lifting the bottle simulating drinking (step 2 and 

3), placing the bottle back on the table (step 3 and 2), and returning to the resting position (step 

2 and 1). 
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velocities were obtained from the orientation data [22]. The angular velocities estimated 179 

from the SP system were cross-correlated with the angular velocities recorded through 180 

the IMU to synchronize the two systems. 181 

To reduce rapid signal fluctuations that could lead to inaccurate movement segmen- 182 

tation, marker trajectories and IMU recordings were further smoothed by means of a 4th- 183 

order zero-lag low-pass Butterworth filter with a cut-off frequency of 1.5 Hz. 184 

 185 

2.5 Movement Segmentation 186 

2.5.1 Stereophotogrammetric-based segmentation 187 

Considering the SP system, voluntary movements were identified based on linear 188 

rather than angular velocity. Tri-axial linear velocity and its norm (|𝑣|) were calculated 189 

from the marker trajectories. Each linear velocity norm was normalized in amplitude be- 190 

tween 0 and 1 considering the absolute maximum value recorded over the task duration 191 

(|𝑣_𝑚𝑎𝑥|). To determine voluntary movement onset and offset, an adaptive threshold was 192 

implemented, defined as the average over trials of the optimal thresholds computed 193 

through Otsu’s method from the linear velocity norm of each trial [23,24]. Otsu’s method 194 

is an unsupervised threshold selection method developed in image processing for the sep- 195 

aration of objects from the background using the image gray-level histogram. In our case, 196 

Otsu’s method was applied to the normalized linear velocity norm to identify the thresh- 197 

old that best distinguishes between the “background” (i.e., involuntary movements or 198 

background noise) and the “main object” (i.e., voluntary movements). Based on Otsu’s 199 

method, the optimal threshold is selected as the one maximizing the inter-class variance. 200 

In this study, the adaptive threshold for the SP-based segmentation (𝑇ℎ𝑆𝑃) was set equal 201 

to  0.11 ∙ |𝑣_𝑚𝑎𝑥|. 202 

Additionally, the results of the SP-based segmentation were manually checked by an 203 

expert operator, using the videos of the acquisitions as a reference. These segmentations 204 

were considered the Gold Standard (GS) for the IMU-based segmentation approaches. 205 

Figure 2a shows an example of voluntary movement segmentation obtained consid- 206 

ering the SP-derived linear velocity norm. 207 

2.5.2 IMU-based segmentation 208 

The performance of the Dynamic Adaptive Movement Segmentation (DynAMoS) 209 

method was compared against two of the most widely used approaches: the fixed thresh- 210 

olding approach proposed by Schwartz et al. (M1) [13] and the adaptive thresholding ap- 211 

proach proposed by Carpinella et al. (M2) [14]. All the tested methods were based on the 212 

application of a threshold on the angular velocity norm (Ω). In the following, the three 213 

tested segmentation approaches are described: 214 

a) Fixed thresholding by Schwarz et al. (M1): The method consists of the application of a sin- 215 

gle threshold (𝑇ℎ𝑀1) whose value was set equal to 0.1 𝑟𝑎𝑑/𝑠. Ω values higher than the 216 

threshold are identified as voluntary movements. This empirically selected threshold rep- 217 

resents a reasonable value for discriminating between stationary and non-stationary 218 

states. Figure 2b represents the segmentation results obtained by applying the M1 method 219 

to the angular velocity norm of a representative healthy subject during a drinking task; 220 

b) Adaptive thresholding by Carpinella et al. (M2): The method consists of the application of 221 

an adaptive threshold defined as 𝑇ℎ𝑀2 =  0.25 ∙ 𝛺𝑚𝑎𝑥, where Ωmax represents the maxi- 222 

mum value of the angular velocity norm recorded over task duration. Setting the thresh- 223 

old to 25% of the maximum value of the angular velocity norm represents a more con- 224 

servative approach to the segmentation task, ensuring that all the segmented sections are 225 

actual movements. Figure 2c represents the segmentation results obtained by applying 226 

the M2 method to the angular velocity norm of a representative healthy subject during a 227 

drinking task; 228 
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c) Dynamic Adaptive Movement Segmentation (DynAMoS): This newly proposed algorithm 229 

is based on an adaptive threshold and statistics-based post-processing applied to the du- 230 

ration of the identified movements to compensate for erroneous segmentations. The post- 231 

processing step implemented in DynAMoS was originally developed for clinical gait anal- 232 

ysis to improve gait cycle segmentation [25]. First, movement onset and offset are identi- 233 

fied through the application of an adaptive threshold to the angular velocity norm Ω. In 234 

particular, the adaptive threshold was defined as 𝑇ℎ𝐷𝑦𝑛𝐴𝑀𝑜𝑆 =  0.11 𝛺𝑚𝑎𝑥 , where Ωmax 235 

represents the maximum value of the angular velocity norm recorded during the task and  236 

the multiplicative constant was defined through Otsu’s method [23,24] as detailed in sec- 237 

tion 2.5.1 Stereophotogrammetric-based segmentation. Then, the duration of each segmented 238 

movement was calculated as the difference between the offset and onset time instants. 239 

Finally, the statistics-based post-processing is iteratively applied to the movement dura- 240 

tions according to the following steps: 241 

1. Definition of the movement duration histogram (see Figure 3) and computation 242 

of the median (𝑀) value; 243 

2. From the median value 𝑀, the lower threshold 𝛼𝑀 (with 0 < 𝛼 < 1) and the 244 

upper threshold 𝛽𝑀 (with 1 < 𝛽 < 2) are obtained. The two thresholds will be 245 

used to identify data distribution outliers (i.e., movements characterized by 246 

“atypical” durations). The algorithm analyzes movements with "atypical" dura- 247 

tions. If a movement has a duration lower than the threshold 𝛼𝑀, the algorithm 248 

tries to merge it with the preceding or following movement. Meanwhile, if a 249 

movement has a duration longer than the upper threshold 𝛽𝑀, the algorithm 250 

tries to split it into two movements. In the case of a duration lower than the 251 

threshold 𝛼𝑀, the algorithm attempts to merge the movement under analysis 252 

with the preceding or the following, separately. The first attempt is performed 253 

with the merging candidate closest in time. If it fails, the other movement is con- 254 

sidered. Merging fails if the new movement duration is lower than 𝛼𝑀  or 255 

higher than the 𝛽𝑀 thresholds. If none of the attempts satisfies the thresholds, 256 

 
Figure 2. Example of segmentation results obtained through the application of the the gold standard and three tested methods 

(i.e., the method by Schwarz et al. – M1, the method by Carpinella et al. – M2, and the newly proposed method - DynAMoS) on 

inertial data acquired during drinking tasks. Dotted horizontal lines represent the threshold values of each method, while colored 

binary masks represent the segmentation output of each method. 
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the movements are not merged. In case of merging success, the extremities of 257 

the “parent” movements are used as starting and ending points. In the case of a 258 

movement with a duration longer than the upper threshold 𝛽𝑀, the algorithm 259 

tries to split it into two movements. To this purpose, the algorithms use local 260 

minima points in the signal as possible splitting points. From the minimum 261 

point with the lowest value, it splits the movement in two, with the new ending 262 

and new starting at the identified minimum. If these movements have a length 263 

longer than 𝛼𝑀 and shorter than 𝛽𝑀 thresholds, the split is accepted and the 264 

two new movements are created. Otherwise, the algorithm moves to another 265 

minimum point, if it exists; 266 

3. After each splitting or merging event, 𝑀, 𝛼𝑀, and 𝛽𝑀 values are updated con- 267 

sidering the new movements; 268 

4. The algorithm runs iteratively until all the movement duration outliers are pro- 269 

cessed. 270 

Further details about DynAMoS functioning are freely available on the BIOLAB 271 

GitHub repository (https://github.com/Biolab-PoliTO/DynAMoS). 272 

Figure 2d represents an example of segmentation obtained using the previously de- 273 

scribed method. 274 

The optimization of the parameters 𝛼 and 𝛽 was performed using a grid search ap- 275 

proach on all the acquired IMU data. Specifically, the value of 𝛼 was chosen between 0.5 276 

and 0.95 with steps of 0.05. Similarly, 𝛽 was chosen between 1.05 and 1.5 with steps of 277 

0.05. To find the best pair of parameters the following cost function (𝐹𝑐) was defined as 278 

detailed in Eq. (1): 279 

𝐹𝑐 =  
𝐸𝑥𝑡𝑟𝑎𝐼𝑀𝑈

𝑇𝑜𝑡𝑎𝑙𝐼𝑀𝑈

+
𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐼𝑀𝑈

𝑇𝑜𝑡𝑎𝑙𝐼𝑀𝑈

+ ∆𝑂𝑛𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  ∆𝑂𝑓𝑓𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + ∆𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (1) 

where 𝐸𝑥𝑡𝑟𝑎𝐼𝑀𝑈 represents the number of “extra” movements obtained from the IMU 280 

data compared to the number of movements identified by the GS. 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐼𝑀𝑈 represents 281 

the number of missing movements compared to the number of movements identified by 282 

the GS. 𝑇𝑜𝑡𝑎𝑙𝐼𝑀𝑈 is the total number of movements obtained from the IMU data. ∆𝑂𝑛𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  283 

and ∆𝑂𝑓𝑓𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represent the onset and offset mean errors (expressed in seconds) between 284 

the movements obtained from IMU data and the GS, respectively. ∆𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents 285 

the mean duration difference (expressed in seconds) between the movements obtained 286 

 
Figure 3. Example of movement duration histograms before (left side) and after (right side) the 

application of the statistics-based post-processing. 

https://github.com/Biolab-PoliTO/DynAMoS
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from IMU data and the GS. The best pair of parameters 𝛼 and 𝛽 was determined by find- 287 

ing the minimum value of the cost function 𝐹𝑐. 288 

 289 

2.6 PerformanceAssessment 290 

To evaluate the performance of each of the presented methods, several parameters 291 

have been used. For each trial, it has been calculated whether the specific method detected 292 

erroneous movements (𝑁𝑚𝑜𝑣 ) compared to the GS, the percentage of erroneous move- 293 

ments (𝐸𝑟𝑟𝑀𝑜𝑣) with respect to the GS, the onset and offset Mean Absolute Error (𝑀𝐸𝐴𝑂𝑛𝑠𝑒𝑡  294 

and 𝑀𝐸𝐴𝑂𝑓𝑓𝑠𝑒𝑡 , respectively) against the GS. Notice that 𝑀𝐸𝐴𝑂𝑛𝑠𝑒𝑡  and 𝑀𝐸𝐴𝑂𝑓𝑓𝑠𝑒𝑡were 295 

calculated only for those movements that were consistent between the GS- and the IMU- 296 

based segmentation. Additionally, the duration of each movement (𝑇) was calculated as 297 

the difference between the offset and onset time instants. 298 

In the following analyses, the average over the three trials of the temporal parameters 299 

(i.e., percentage of erroneous movements, onset/offset mean absolute error, and move- 300 

ment duration) was considered. 301 

 302 

2.7 Drinking Task Characterization 303 

After the evaluation of the effectiveness of the identification of voluntary movements 304 

from the inertial data, the drinking task was characterized in terms of the duration of each 305 

sub-phase. First, each repetition of the drinking task was split using the longer resting 306 

time (approximately 4 s) between consecutive movements. Then, the single sub-phases 307 

were identified and classified using the SP as a reference. For each segmentation method, 308 

the mean duration of each sub-phase over trials was calculated as the difference between 309 

the offset and onset time instants and compared against the GS. 310 

 311 

2.8 Statistical Analysis 312 

We applied the Kolmogorov-Smirnov test to assess the data distribution normality 313 

of the percentage of erroneous movements, the onset and offset mean absolute error, and 314 

the movement duration. Based on the Kolmogorov-Smirnov test results, a 1-way ANOVA 315 

(in case of normal distributions) or a Kruskal-Wallis test (for non-normal distributions) 316 

was used followed by post-hoc analysis with Bonferroni adjustments for multiple compar- 317 

isons. All the analyses were performed setting the significance level (𝛼) at 0.05. Parameter 318 

estimates are represented as mean ± standard error over the population. The effect size of 319 

the statistically significant differences was calculated through the Hedges’ 𝑔 statistic [26]. 320 

A 𝑔 value of 0.2, 0.5, and 0.8 are considered a small, medium, and large effect size, re- 321 

spectively. 322 

The statistical analyses were performed using the Statistical and Machine Learning 323 

Toolbox of MATLAB release r2023b (The MathWorks Inc., Natick, MA, USA). 324 

 325 

3. Results and Discussion 326 

3.1 DynAMoS Optimization Process 327 

Figure 4 shows the results of the DynAMos optimization process aimed at selecting 328 

the optimal 𝛼 and 𝛽 values. The optimal parameters selected were 𝛼 =  0.8 and 𝛽 = 329 

 1.4. All DynAMoS results described in the following sections were obtained using these 330 

optimal parameter values. 331 

 332 

3.2 Performance Assessment 333 

The performance of IMU-based segmentation approaches against the stereophoto- 334 

grammetric system (i.e., gold standard) is represented in Table 1 with the indication of 335 

the statistically significant differences. 336 
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The SP-based segmentation identified, on average, 100 ± 4 voluntary movements 337 

(mean ± standard error) per trial. Considering the IMU-based segmentation approaches, 338 

168 ± 24 movements, 101 ± 7 movements, and 103 ± 5 movements were obtained consid- 339 

ering M1, M2, and DynAMoS methods, respectively. Overall, the newly presented algo- 340 

rithm identified only 3% erroneous movements (i.e., 2.8% extra movements and 0.2% 341 

missed movements) compared to the GS. M1 resulted in 39.8% erroneous movements (i.e., 342 

39.8% extra movements) compared to the GS, while M2 gave significantly better results, 343 

revealing only 3.7% erroneous movements (i.e., 2.5% extra movements and 1.2% missed 344 

movements). As shown in Figure 5, in some cases, the percentage of missed and extra 345 

movements per trial is relatively high, with a maximum of 51.5% and 15.1% of the move- 346 

ments, respectively. Statistically significant differences in the percentage of erroneous 347 

movements were detected among all the tested approaches (p < 0.0001). In particular, the 348 

worst performance was obtained considering the M1 approach. Even if no statistically 349 

significant differences in the percentage of erroneous movements were detected between 350 

Table 1. Performance assessment of the three tested approaches against the stereophotogram-

metric system. 

Performance 

Assessment 

Segmentation Method Kruskal-Wallis 

GS M1 M2 DynAMoS p-value 

𝑁𝑚𝑜𝑣  100 ± 4*,†,‡ 168 ± 24*,⁑ 101 ± 7†,⁑ 103 ± 5‡,⁑ < 0.0001 

𝐸𝑟𝑟𝑀𝑜𝑣  (%) N/A 39.8%*,† 3.7%* 3.0%† < 0.0001 

𝑀𝐴𝐸𝑂𝑛𝑠𝑒𝑡 (𝑠) N/A 0.22 ± 0.05*,† 0.10 ± 0.04*,‡ 0.07 ± 0.02†,‡ < 0.0001 

𝑀𝐴𝐸𝑂𝑓𝑓𝑠𝑒𝑡  (𝑠) N/A 0.29 ± 0.07*,† 0.20 ± 0.04*,‡ 0.08 ± 0.03†,‡ < 0.0001 

𝑇 (𝑠) 0.97 ± 0.08* 0.98 ± 0.17† 0.67 ± 0.08*,†,‡ 0.98 ± 0.11‡ < 0.0001 

Parameters are represented as mean ± standard error over the population. 

N/A: Not Applicable; GS: Gold Standard. 

Asterisks (*), double asterisks (⁑), daggers (†), and double daggers (‡) represent statistically significant 

differences between methods. 

 

Figure 4. Values assumed by the cost function 𝐹𝑐 when considering different 𝛼 and 𝛽. The 

red dot identifies the minimum of the cost function 𝐹𝑐 found when 𝛼 = 0.8 and 𝛽 = 1.4. 
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M2 and DynAMoS, it is noticeable the difference in the number of outliers (i.e., DynAMoS 351 

revealed a reduced number of outliers compared to M2). 352 

These results confirm that the application of a low threshold, as employed by M1, 353 

can result in the detection of an excessive number of voluntary movements, which may 354 

be attributed to noise or involuntary movements. In contrast, the detection method M2 is 355 

characterized by a high number of missing movements, despite the adaptive threshold. 356 

Considering the onset mean absolute errors, statistically significant differences were 357 

detected between all the tested approaches (p < 0.0001). Post-hoc analysis identified signif- 358 

icant differences between DynAMoS and M1 (p < 0.0001; 𝑔 = 3.9), between DynAMoS and 359 

M2 (p < 0.0001; 𝑔 = 1.3), and betwen M1 and M2 (p < 0.0001; 𝑔 = 2.5). Figure 6a represents 360 

 

Figure 5. Boxplots representing the percentage of erroneous movements computed between 

each tested segmentation approach (M1, M2, and DynAMoS) and the gold standard. Statistically 

significant differences are represented through asterisks (*** p < 0.0001). 

 
Figure 6. Boxplots representing (a) the 𝑀𝐴𝐸𝑂𝑛𝑠𝑒𝑡 and (b) the 𝑀𝐴𝐸𝑂𝑓𝑓𝑠𝑒𝑡  computed between each tested segmentation approach 

(M1, M2, and DynAMoS) and the gold standard. Statistically significant differences are represented through asterisks (*** p < 

0.0001). 
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the 𝑀𝐴𝐸𝑂𝑛𝑠𝑒𝑡 distributions with the indication of the statistically significant differences. 361 

Similarly, when considering the offset mean absolute error, significant differences were 362 

detected between DynAMoS and all the tested approaches (p < 0.0001). Bonferroni adjust- 363 

ments for multiple comparisons revealed significant differences between DynAMoS and 364 

M1 (p < 0.0001; 𝑔 = 3.7), between DynAMoS and M2 (p < 0.0001; 𝑔 = 3.7), and between 365 

M1 and M2 (p < 0.0001; 𝑔 = 1.4). Figure 6b represents the 𝑀𝐴𝐸𝑂𝑓𝑓𝑠𝑒𝑡  distributions with 366 

the indication of the statistically significant differences. The distributions of the onset and 367 

offset mean absolute errors obtained using DynAMoS are largely concentrated below 0.1 368 

s., a value that deviates considerably from those obtained considering M1 (mean absolute 369 

error higher than 0.2 s). In contrast, M2 errors have a different behavior. The mean onset 370 

error is 0.1 s, with the major part of the distribution lower than 0.15 s, whereas the mean 371 

offset error is 0.2 s.  372 

Considering the movement durations, the tested approaches showed statistically sig- 373 

nificant differences (p < 0.0001). In particular, statistically significant differences were de- 374 

tected between M2 and the GS (p < 0.0001; 𝑔 = 3.6), between M2 and M1 (p < 0.0001; 𝑔 = 375 

2.3), and between M2 and DynAMoS (p < 0.0001; 𝑔 = 3.3). The mean duration of the move- 376 

ment, as identified by M2, is approximately 30% shorter than the one identified by the GS. 377 

Although there was no statistically significant difference in the mean durations, the dis- 378 

tribution obtained applying M1 is notably more variable than the one obtained consider- 379 

ing the GS and DynAMoS. A lower and fixed threshold results in longer movements and 380 

fast transitions given by small fluctuations around the threshold level, increasing the var- 381 

iability in the results. Figure 7 shows the distributions of the movement duration for all 382 

the tested approaches, with the indication of the statistically significant differences. 383 

 384 

3.3 Drinking Task Characterization 385 

Figure 8 and Table 2 report the drinking task characterization results for all the tested 386 

methods. 387 

For all the sub-phases, a statistically significant difference in sub-phase duration was 388 

observed. Multiple comparisons resulted in a significant difference between the M1 and 389 

 
Figure 7. Boxplots representing the movement durations (𝑇) computed considering the GS 

(yellow), M1 (red), M2 (blue), and DynAMoS (green) methods. Statistically significant 

differences are represented through asterisks (*** p < 0.0001). 
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M2 methods, and between both the M1 and M2 methods and the GS and DynAMoS (p < 390 

0.0001; 𝑔 > 1.7). In particular, the data distribution obtained considering M2 is below the 391 

lower quartile of the other distributions, while the data distribution obtained considering 392 

M1 is above the upper quartile of the other distributions. On the other hand, for all the 393 

sub-phases, there was no statistically significant difference (p > 0.8) between the timings 394 

obtained through the GS and those obtained through DynAMoS. The application of M2 395 

results in a mean duration of the sub-phases that deviates downward from that obtained 396 

through the GS of approximately 20%, for Phase II and III, and 40%, for Phase I and IV. It 397 

is worth noting that similar sub-phases, in terms of the range of motion but opposed in 398 

terms of the goal of the movement, present similar timings and errors. In contrast, the 399 

result obtained by applying M1 overestimates movement sub-phase durations by approx- 400 

imately 45%. The estimates obtained by means of DynAMoS align with the GS results. 401 

4. Final Considerations 402 

This study presents a novel segmentation method developed to overcome the limita- 403 

tions of the most popular existing methods published in the literature. In particular, the 404 

presented algorithm was compared with the threshold-based segmentation approaches 405 

proposed by Schwarz et al. [13] (M1) and Carpinella et al. [14] (M2). 406 

Although the mean number of movements identified by M2 was the closest to that 407 

obtained by the GS, it is worth noticing from the 𝐸𝑟𝑟𝑀𝑜𝑣  distribution represented in Fig- 408 

ure 5 that in numerous instances the number of missing movements was significant. While 409 

selecting an adaptive threshold may be more appropriate for different movements, a high 410 

threshold can result in a higher percentage of missed movements (51% in the case of the 411 

M2 approach), especially when the movement consists of different sub-phases with vary- 412 

ing intensities. In contrast, results obtained through the M1 approach indicate a consistent 413 

over-detection of voluntary movements, revealing that the threshold is too low and likely 414 

influenced by small signal fluctuations close to the threshold (see Figure 2). As can be seen 415 

from Figure 5, DynAMoS 𝐸𝑟𝑟𝑀𝑜𝑣 distribution is similar in variability to the results ob- 416 

tained with M2. However, the number of outliers and the percentage of missed move- 417 

ments are considerably reduced, revealing the reliability of the segmentation. 418 

Focusing on movement onset and offset detection, the method presented in this study 419 

was more accurate than the other tested approaches when compared to the GS. In fact, the 420 

movement durations of the 4 sub-phases obtained through DynAMoS were closer to the 421 

GS (with an average difference of 0.04 s). Previously published research reports that a 15% 422 

variation in movement performance metrics is considered a clinically important differ- 423 

ence [12]. In our study, movement durations obtained by means of M1 and M2 methods 424 

differ from the GS from a minimum of 20% to over 40%, whereas a maximum of 3% vari- 425 

ation was obtained considering the newly proposed method. Therefore, the difference in 426 

Table 2. Drinking task sub-phase durations. 

Sub-phase 

duration 

(𝒔) 

Segmentation Method Kruskal-Wallis 

GS M1 M2 DynAMoS p-value 

Phase I 0.97 ± 0.11*,⁑ 1.44 ± 0.19*,†,‡ 0.59 ± 0.14⁑,†,• 1.01 ± 0.14‡,• < 0.0001 

Phase II 0.98 ± 0.13*,⁑ 1.47 ± 0.17*,†,‡ 0.79 ± 0.08⁑,†,• 1.02 ± 0.13‡,• < 0.0001 

Phase III 0.98 ± 0.10*,⁑ 1.44 ± 0.20*,†,‡ 0.77 ± 0.07⁑,†,• 1.01 ± 0.13‡,• < 0.0001 

Phase IV 0.98 ± 0.09*,⁑ 1.54 ± 0.22*,†,‡ 0.58 ± 0.14
⁑,†,• 1.00 ± 0.13‡,• < 0.0001 

Parameters are represented as mean ± standard error over the population. GS: Gold Standard. 

Asterisks (*), double asterisks (⁑), daggers (†),double daggers (‡), and point (•) represent statistically 

significant differences between methods. 
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movement timing between the two tested state-of-the-art methods and the GS is consid- 427 

erably higher than 15%, suggesting that the use of these segmentation methods may 428 

strongly impact the clinical assessment. In contrast, the small differences in movement 429 

timings between DynAMoS and the GS make the proposed method considerably more 430 

reliable and potentially applicable in the clinical assessment of patients. 431 

Even though a clinical validation of the method was not performed, it is possible to 432 

compare the obtained results with similar results presented in the literature. For example, 433 

Patterson et al. [27] evaluated post-stroke patients and healthy controls reaching a target 434 

at a comfortable speed by using a SP system. On average, the duration of the movements 435 

was 0.96 ± 0.27 s and 0.67 ± 0.12 s considering the post-stroke patients and the healthy 436 

controls, respectively. The difference in movement durations between the stroke survi- 437 

vors and the healthy controls is lower than the difference in durations observed in our 438 

data. Thus, the application of different segmentation approaches may not be able to dif- 439 

ferentiate between a healthy and a pathological population. Furthermore, Carpinella et al. 440 

[14] demonstrated a statistically significant difference of approximately 0.4 s in grasp 441 

movement duration between Multiple Sclerosis patients and healthy controls. This differ- 442 

ence is not substantially larger than the sub-phase duration error between M1, M2, and 443 

the GS. 444 

Although the results are promising, there are some limitations associated with the 445 

method. The first is the impossibility of applying the algorithm in real-time, due to the 446 

adaptive thresholding and the post-processing step. Both these steps require the whole 447 

inertial data to compute the required parameters (i.e., the maximum angular velocity 448 

norm and the movement duration distribution). Moreover, this study was carried out on 449 

healthy subjects only. Further studies are needed to validate this approach for patient as- 450 

sessment in a clinical environment. 451 

 452 

 453 

 454 

 

Figure 8. Distribution of the mean duration of the sub-phases of the drinking task for the sample population for the tested methods 

and the SP Gold Standard. Statistically significant differences are represented through asterisks (*** p < 0.0001). 
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5. Conclusions 455 

In this study, we compare a new IMU-based segmentation method for upper limb 456 

movements with two popular segmentation methods [13,14]. The movement herein con- 457 

sidered is the reach-to-grasp movement, because of its frequent use in the clinical evalua- 458 

tion of patients suffering from upper limb motion disorders. Results show that the pro- 459 

posed method performs significantly better than the two implemented ones. According 460 

to Kwakkel et al. [12], the segmentation accuracy of DynAMoS could make it available for 461 

clinical applications. Using IMU for motion detection and the proposed algorithm for time 462 

segmentation of upper limb voluntary movements could make more effective home mon- 463 

itoring applications for assessing the motion improvements of patients following domicile 464 

rehabilitation protocols. 465 
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