
24 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Embedded Feature Selection in MCU Performance Screening / Bellarmino, Nicolo'; Cantoro, Riccardo; Huch, Martin;
Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - (In corso di stampa). (Intervento presentato al convegno IEEE
2nd International conference on Design, Test & Technology of Integrated Systems tenutosi a Aix-en-Provence (FRA) nel
October 14th -16th 2024).

Original

Embedded Feature Selection in MCU Performance Screening

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992731 since: 2024-09-24T09:43:54Z

IEEE

Embedded Feature Selection in MCU Performance
Screening

Nicolò Bellarmino∗, Riccardo Cantoro∗, Martin Huch†, Tobias Kilian†‡,
Ulf Schlichtmann‡ and Giovanni Squillero∗

∗Politecnico di Torino
Torino, Italy

†Infineon Technologies AG
Munich, Germany

‡Technical University of Munich
Munich, Germany

Abstract—In safety-critical applications, microcontrollers must
satisfy strict quality constraints in terms of maximum operating
frequency (Fmax). Data from on-chip ring oscillators, the so-
called Speed Monitors, can be used as features of Machine
Learning models to predict Fmax. Increasing the number of ring
oscillators on the chip can increase the information retrieved
about the device’s speed. However this may also lead to overfit-
ting, and a lack of generalization capabilities.

This paper focuses on supervised feature selection in perfor-
mance screening during the early phase of prototyping. The
aim is to reduce the number of features while maintaining the
accuracy of machine learning models. Two distinct approaches
for obtaining feature rankings based on ring oscillators’ signif-
icance in predicting performance are compared: one based on
Recursive Feature Elimination, and one on regularized linear
models. Experiments showed that the chosen subset of features
leads to simpler ML models that can achieve lower prediction
error, reducing overfitting. This permits avoiding inserting the
full set of sensors in the final product, saving money and physical
space in the silicon.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
Feature Selection

I. INTRODUCTION

Microcontroller (MCU) performance screening aims to
identify devices that do not meet the specified characteristics,
such as the maximum operating frequency (Fmax) indicated
in the datasheet. Existing literature has demonstrated the
effectiveness of machine learning (ML) models trained on data
correlated with Fmax in accurately predicting the operating
frequency [1]–[4]. Previous research has advocated for the use
of on-chip ring oscillators (ROs), also denoted as Speed MON-
itors (SMONs) to predict Fmax values [4]–[7]. In principle,
having numerous predictor sensors may increase the informa-
tion about the device’s speed. However practically speaking,
having hundreds of features for ML models potentially causes
overfitting because of the Curse of Dimensionality (COD): in
higher dimensional space, data tends to be sparse, and more
and more labeled data are needed to estimate a reliable relation
between features and target. But since obtaining accurate Fmax

value is a time-consuming process, we often have only a

Authors are listed in alphabetical order.

limited availability of labeled data, in the scale of hundreds of
samples.

This paper addresses this challenge by focusing on feature
selection, aiming to reduce the number of features (and thus,
the number of SMONs) required for building ML models.
The approach involves ranking features based on their im-
portance in the supervised performance prediction task. We
compared two different methods, both based on repeated
feature-selection: the first, from previous work [8], relies
on state-of-the-art Recursive Feature Elimination (RFE). The
proposed approach, instead, is based on Embedded Feature
Selection and regularized linear models.

Experimental results showcase the viability of this approach,
demonstrating to be effective in significantly reducing the
dimensionality of the feature space without compromising
prediction performance. Acceptable prediction error can be
reached even with a fraction of the original SMONs (17%).
Additionally, since a SMONs ranking is a natural outcome
of the proposed procedure, they provide valuable insights
for test engineers regarding the correlation between SMONs
and Fmax. Reducing the SMONs contributes both to efficient
prediction models and cost savings and optimized use of
silicon space in the microcontroller.

The rest of the paper is organized as follows. Section II
presents related work on the topic. Section III describes theory
and concept useful for understanding successive experiments;
in particular, Section III-A describes the characterization pro-
cess used to derive the dataset for ML algorithms; Sec-
tion III-B describes the SMONs used as features, while Sec-
tion III-C introduces the concepts of ML and Feature Selection
and Section III-D describes the regularized linear models
setting. In Section IV, the motivations why we need feature
selection are given. In Section V, details on the proposed
approach are given. Section VI presents the experimental
evaluation. Finally, Section VII draws the conclusions.

II. RELATED WORK

Several approaches to performance prediction have been
proposed in the past [9]–[11]. In the literature, using indirect
measures to predict circuit parameters is called ‘alternate test’
and has been widely studied for analog circuits [12]–[15]. The
core idea is to learn a mapping between indirect measurements
and some circuit parameters, and to use only the indirect979-8-3503-6312-8/24/$31.00 ©2024 IEEE

low-cost measurements to predict circuits parameters during
production testing.

The authors of [1]–[3] worked on building ML models for
Fmax prediction, to be used in MCU performance screen-
ing. In [2], they correlated the frequency values of 27 on-
chip SMONs to functional Fmax. Dimensionality reduction
is well-covered topic both in the ML [16], [17] and CAD
communities, with several works in the realm of alternate
tests for analog circuits [18], [19]. The importance of feature
selection in MCU performance screening was firstly addressed
in [8]. However, existing methods often rely on filtering or
wrapper approaches. Filtering approaches are usually univari-
ate (considering only one feature at once). Wrapper methods
like Sequential with Forward and Backward feature selection
or RFE, instead, usually have a high computational cost
and dependency on the model and data, with the risk of
overfitting [20].

Two main techniques exist for dimensionality reduction:
features selection (FS) and features extraction (FE). FS selects
subsets of features based on some criteria (like the effective-
ness in predicting the target label). FE builds a new and smaller
set of features as a combination of the original ones, com-
pacting the information on the dataset. Principal Component
Analysis (PCA), a feature extraction technique [21], has been
effectively used in related works on SMONs [4].

III. BACKGROUND

A. Microcontroller Characterization Process

Frequencies from on-chip ROs, referred to also as SMONs,
provide features for the ML model. These frequencies are
accurately measured during production using a stable, fast, and
straightforward process. As measuring SMON frequencies is
part of the regular production test, these features are potentially
available for every produced Microcontroller Unit (MCU).
However, training ML models necessitates a properly labeled
dataset, requiring MCU characterization.

The labeling process is time-consuming, involving mea-
suring each MCU individually with functional test patterns
[2]. This process is conducted on a small subset of manu-
factured devices. The labeling procedure includes mounting
each MCU on a board and executing a specific functional
pattern with a low frequency, incrementally increasing until
a functional failure occurs, with the last working frequency
Fmax being recorded [22]. This process is repeated using
various functional test patterns, resulting in a multi-label
dataset. For each device, the most critical pattern is the one
with the lowest Fmax value. In order to ensure robustness
in the measurement process and exclude outliers from the
training procedure, devices with Fmax deviating by more than
2.5 standard deviations from the wafer median in at least one
functional pattern are eliminated. This ensures a high-quality
set of labeled devices for ML training.

B. The SMONs

The structure and sensitivity of the SMONs significantly
influence the performance prediction model. To address this,

the goal is to incorporate a diverse array of SMON types
into the MCU. They also need to be spatially distributed to
account for Within-die (WID) process variation, particularly
prominent as feature sizes of manufacturing technologies are
reduced further [23].

Thus, an SMON module is designed to contain a heteroge-
neous set of various SMONs. Multiple instances of identical
SMONs modules are strategically placed throughout the MCU
to ensure comprehensive spatial coverage.

An SMON module comprises generic and design-dependent
ROs. Generic ROs include inverter gates, NAND gates and
NOR gates, which are taken from cell libraries used in the
design of the MCU. Meanwhile, the design-dependent ROs
are replicated functional paths derived from the design.

The feature set includes SMONs from multiple SMON
modules and functional path ROs, offering a robust foundation
for understanding the chip’s behavior across various scenarios.

In order to streamline information from different SMON
modules, aggregation can be employed. For each SMON in
various modules, a single value is extracted by an aggregation
function (like the mean or the median). This approach, referred
to as the ”Virtual Module (VM)” [8], serves the dual purpose
of reducing the number of SMONs analyzed by the ML model
and capitalizing on the correlations and variations among
SMONs at different locations. The VM strategy allows for
a simplified ML algorithm, even in the presence of multiple
SMON modules, and permits decreasing variance and remov-
ing possible outliers from the measured SMON values.

C. Machine Learning

Training an ML model involves establishing a relationship
between inputs and outputs based on available labeled data.
The model evaluates certain features to generate an output. For
instance, simple linear regression algorithms combine input
features linearly using weights assigned during training.

The number of samples required to accurately estimate a
function increases exponentially with the number of input
variables, also known as the dimensionality of the data [24].
In simpler terms, having more features necessitates a larger
dataset to construct robust ML models. To address this,
dimensionality reduction techniques such as FS [17] can be
employed. RFE [25], [26] stands out as a popular algorithm
for FS. RFE effectively identifies the features the more relevant
for predicting the target variable based on an underlying ML
model. The hyperparameters involved in RFE include the
number of features to select and the choice of the ML model to
address the underlying supervised problem. RFE operates by
utilizing an external estimator that assigns weights to features,
such as coefficients in a linear model or feature importance
scores derived from impurity measurements in decision trees
[27]. It recursively considers smaller sets of features, starting
with the entire set, and prunes the least important features
until the desired number of features is reached. RFE with
Cross Validation (RFE-CV) incorporates cross-validation to
determine the optimal number of features automatically [26].

D. Regularized Linear Models

Some ML algorithms can handle FS internally: these are
called embedded methods. There, the feature selection is
automatic as part of the model training process, eliminating
the need for separate feature selection steps. As an example,
Regularized linear models can perform embedded feature
selection. These models add a penalty term (usually the Lp

norm) computed on the coefficients’ vector in the ordinary
least-square linear regression objective function:

min
w

1

2nsamples
||Xw − y||22 + α

(
n∑

i=1

|wi|p
) 1

p

(1)

Some examples of embedded FS based on regularization are
Lasso Regression, ElasticNet, and Orthogonal Matching Pur-
suit (OMP) [28]–[30]. Lasso is a linear regression model with
L1 regularization. It tends to drive some coefficients to exactly
zero, effectively performing FS. ElasticNet is an extension
of Lasso that combines L1 and L2 regularization. While L0

regularization is non-convex and computationally challenging,
some optimization methods like OMP approximate the fit of
a linear model with constraints imposed on the number of
non-zero coefficients (ie. the L0 pseudo-norm).

IV. MOTIVATIONS

As discussed in Section III-B, incorporating a greater num-
ber of SMONs at various locations on the MCU could enhance
the handling of WID process variation, providing more com-
prehensive insights into MCU performance. While having a
multitude of SMONs might contribute to superior performance
predictions, practical constraints limit the feasibility of this
approach for two key reasons:

• Physical Area and Overhead: Each additional SMON
integrated into the design occupies physical space on the
chip. Incorporating hundreds of SMONs leads to a no-
ticeable area overhead, contributing to current leakages.
Given that SMONs serve testing purposes exclusively and
hold no functional value for customers, minimizing the
occupied area is essential.

• Curse of Dimensionality: From an ML perspective,
an increased number of SMONs results in a higher
feature count for the predictive models. This may lead
to suboptimal models due to the COD, or models with
a higher footprint than needed (in terms of number of
coefficients).

• Interpretability : The higher the number of SMONs, the
more difficult is to catch which of them is relevant for
the performance prediction task.

Technologically, a reduced feature set lowers production costs
by incorporating only the most informative sensors into future
products and also mitigates the associated physical space
and current leakage concerns. Additionally, a feature ranking
emerges as a byproduct of the proposed FS techniques, of-
fering valuable insights for diagnostic purposes. This ranking
informs test engineers about the correlation between individual
SMONs and patterns, guiding selection and design decisions.

Reducing the feature set also contributes to enhanced gen-
eralization performances of ML models, allowing for simpler
models that operate on fewer inputs. This strategic reduction
aligns with both technological and machine learning consid-
erations, facilitating cost-effective and efficient integration of
SMONs into MCU designs.

Also, opting for a linear model over more sophisticated
methods has several advantages including, simplicity and inter-
operability, computational efficiency, avoidance of overfitting,
and small data requirements.

In a previous work [8], authors have used a Feature Selec-
tion approach based on Recursive Feature Elimination (RFE).
As stated in Section III, RFE involves iteratively fitting a
model and removing the least important features until a prede-
termined number of features is reached. Typically, the number
of features to retain is not known in advance. To identify
the optimal number of features, RFE can be used in a cross-
validation loop (RFE-CV) to score various feature subsets and
select the set that yields the best performance. RFE relies on
an underlying model: we can use more than one ML model
[8], benefitting from the different kinds of feature ranking
they perform (Ridge Regressor, Lasso, Elasticnet, Random
Forest [31], Gradient Boosting [32]). This procedure, based on
different types of learners, permits reaching an optimal feature
set, but at the cost of a high computational time: since this
approach involves training several models on different feature
sets of different sizes.

Specifically, the process outlined in [8] might require a
dedicated server for approximately a week, and need to be re-
peated for each new device family. Additionally, as the number
of SMONs under consideration rises, the computational time
significantly escalates.

Thus, a simpler procedure is needed, that can lead to an
acceptable feature subset in a reasonable time.

V. PROPOSED APPROACH

The approach followed in this work using regularized linear
models to select the most relevant feature set for each available
functional testing pattern, finally ranking the SMONs based
on their importance in the supervised performance screening
task. The developed approach can be summarized in 3 steps,
explained in detail in this section:

1) Obtain a ranking for the SMONs
2) Identify a reasonable number of features to keep
3) Train the models with the best SMONs
The SMON ranking was obtained by repeatedly applying

steps of feature selection. We looped over all the SMON
modules (avoiding location bias in the result), over all the 10
functional testing patterns considered, for 6 different training-
test splits and using 3 different regularized linear models
(Lasso, ElasticNet, OMP). This was done to find feature
subsets most likely independent by physical location and
choice of training samples.

For each step of feature selection, if an SMON was selected
by the underlying feature selection method, we increase a
counter for that SMON. SMONs ranking could give test

engineers insights on the importance of each SMONs for the
downstream performance screening task. Algorithm 1 sketches
how the ranking of the SMONs based on linear models is
computed.

We compared the proposed method with a more sophisti-
cated one that relies on RFE, from previous work [8].

For the RFE procedure, as underlying estimators, we also
included non-linear models (Decision Trees and Random
Forests). This can make the SMON ranking creation more
accurate, but it comes at the cost of a not negligible increase
in the computation time.

The RFE procedure starts considering the whole feature
subset and pruning feature until a pre-determined number of
features is reached. Thus, we need to fix it as an hyper-
parameter. To do this, we can use the RFE-CV procedure.
We used four different algorithms: Random Forest and three
Linear models with regularization (Ridge, Lasso, ElasticNet)
as base estimators, with no feature transformation (Fig. 1).

For the second step, we can still use a regularized linear
model like Lasso Regressor or OMP as a Feature Selector.
We trained these two models on all the features (directly on
SMONs frequency, no feature transformation) on 5 different
train splits, and we recorded the mean number of non-zero
coefficients n among the run.

Finally, we selected the first n SMONs from the ranking and
we built a Polynomial Ridge Regressor model: we applied a
degree-2 polynomial transformation of the SMONs frequency.

The Virtual SMON module strategy [8] was implemented:
for each selected SMON, its value was computed by consid-
ering the median values among all the identical SMONs from
the different SMON modules (as stated in Section III-B).

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed methodology has been validated on a dataset
composed of a thousand samples with hundreds of SMONs,
divided into several identical SMON modules.

The evaluation was performed with a 5-folds CV strati-
fied per wafer. All experiments were performed in Python.
Experiments run on a server equipped with a dual-socket
AMD ®EPYC 7301 16-Core CPU @ 3.20GHz, 128GB of
RAM. Each column of the dataset was scaled by subtract-
ing the mean and dividing it by the variance (Standard
Scaler). As the final model, we used a pipeline composed
of the Standard Scaler, a polynomial transformation of the
input features, and a Ridge Regressor. This model is called
Polynomial (or Poly) Ridge [4]. Results are presented in
terms of normalized Root Mean Square Error (nRMSE) and
the coefficient of determination (R2). RMSE is a popular
regression performance index [33] but in this context, we
normalized it by the mean value of Fmax in the test set, i.e.
nRMSE = RMSE(ytrue, ypred)/mean(ytrue) to obtain a
percentage of the error concerning the mean frequency of the
samples. R2 is the proportion of the variation in the dependent
variable that is predictable from the independent variable(s)
[34]. A regressor that perfectly fits the data would have an R2

Fig. 1. RFECV algorithm run on the full features set, mean error across
5-folds plus error band. On the x-axes the number of features, on the y-axes
the R2 score. The maximum performance (dotted line) is reached with about
65% of SMONs, but going over 15% of SMONs, the gain increases only by
0.5% of R2 scores (lower plot, with a close-up in the range 15%-100% of
features.

Fig. 2. Example of SMONs ranking obtained. On the Y axis, the importance
of each SMONs (RO or replicated functional paths)

score of 1 (or 100%). A dummy regressor that always predicts
the mean value of the target has an R2 score of 0.

To find a good number of features to select, we used Lasso
Regressor on 5 different train splits (step 2, as stated in
Section V).

The regularized linear regressors used for the SMON rank-
ing (i.e. Lasso, ElasticNet, OMP) used an internal 5-fold CV
to tune hyper-parameter α parameters in Eq. (1).

To validate this (and implement the RFE-based comparison,
as stated in Section V), we run the RFE-CV algorithm (5-fold

Algorithm 1: SMONs Ranking creation
Result:
SMONs ranking SR
Data:
S = Set of Regularized Linear Models
M = SMONs modules
m = # of SMONs per modules
k = Number of Training Splits
Y = Testing programs
D = SMONs Frequencies;
Init:
SR[m] = 0
for currentSmons in M do

for X in D.split(k) do
for y in Y do

for model in S do
model.fit(X[currentSmons], y)
selectedSmons = [1 if abs(c) > 0 else 0

for c in model.coef]
SR[selectedSmons] += 1

end
end

end
end

CV and 4 base-regressors) on the median-VM (Section III-B).

B. Results

We can compute the score of the SMON grouping by
patterns, obtaining the importance of SMONs for each pattern
or we can group by location, or, to compute a general score, we
can sum up all the results (Fig. 2). This latter approach gives
us a general view of the importance of each SMON, and we
can select the best subsets of SMONs that should work well
on average for each pattern.

From step 2 of the proposed approach (Section V), we
obtained about 17% ± 1.33% of non-zero coefficients for Lasso
models. We also use an OMP algorithm with an internal 5-
folds CV to automatically find the best number of features.
This latter model chose about 14% ± 4%. The two results
are similar. The outcome of the models was, in our setting,
practically immediate (few seconds). As a comparison, we can
use the RFE-CV procedure: from Fig. 1, we can see that we
practically find a plateau in terms of R2 score with about
66% of the total number of SMONs, for each algorithm. This
number is thus the outcome of the RFE-CV procedure. But
going over 15-17% of SMONs, the gain increases only by
0.5% of R2 scores. Notably, the size of each feature set tried in
RFECV procedure (x-axis of Fig. 1) does not reflect the actual
number of non-zero coefficients in the underlying model: this
is especially true if we use a regularized linear model as the
underlying estimator. With Lasso, RFE-CV procedure stated
that the best possible performance (about 88% of R2 score)
is obtained with 94% of the available SMONs. But if we look
at the non-zero coefficients of the model trained with that

number of SMONs, only a few of them are non-zero entries
(i.e. about 17% of the total: the same obtained without the
RFE-CV, as stated previously). This fact, combined with the
analysis of the RFE-CV curves, confirms that Lasso was able
to find the correct number of coefficients, even lower than
the RFE-CV procedure. Notably, in our setting, a whole day
(about 24 hours) was required to obtain Fig. 1, while only few
seconds were needed to fit Lasso and OMP-CV on 5 train-test
splits. 17% of the SMONs are sufficient to retrieve relevant
information about the performance of the device. Also, this
justifies the fact that relying only on regularized linear models,
letting them choose among the whole feature without inserting
an additional step of optimization loop (i.e. the RFE step) is
beneficial because they can effectively choose a good feature
set among the whole SMONs set. This led to a simpler and
faster feature selection method: the proposed SMON ranking
procedure comes with a high speed-up in the computation
time. While more than an entire week of computation and
CPU-time was needed to obtain the feature ranking from
[8], dropping the RFE step decreases the time to only a few
hours(i.e. from about 168 hours for SMONs ranking plus 24
hours for choosing the size of the feature set (192 hours)
to only 4: roughly 2% of the time). The features set from
the RFE procedure [8] (namely, RFE-FS) come with higher
accuracy with respect to performing no FS, but with lower
results concerning the proposed approach (namely, Linear-FS):
this may be due to the higher number of ROs chosen. But even
decrease the number of chosen SMONs up to 17% (number
found by regularized linear models), we still have lower
performance concerning Linear-FS (Table I). The simpler
alternative, based only on regularized linear models is the best
in terms of execution time and prediction accuracy: 89.69% R2

and a gain of several days. Pruning a high number of SMONs
is beneficial when further feature interaction transformations
are computed (like the Polynomial transformation). Imagine
having 150 SMONs on a chip. Since we are using a Polyno-
mial Regressor, computing feature interaction would lead to
11475 features, and thus to 11475 coefficients. By computing a
feature ranking, retaining only 17% of the SMONs, we would
have 377 polynomial terms. But, if needed, for example, to
reduce further the model footprint in terms of the number
of coefficients, it is possible to add a further step of L1

regularization after the polynomial transformation, and before
feeding the ridge regressor. This would reduce the number of
coefficients thanks to Lasso ability to find a sparse solution.
We called this solution Lasso+Ridge (Table I). Starting from
43% of Poly terms, Lasso keeps only 0.46% non-zero coefs
(Table I), with only a little drop in performance. However, as
the number of features increases, also the time needed to train
a Lasso model increases: starting from the whole features set,
about 2 hours are needed to train the models, while it takes
seconds on the reduced features set into account. This is due to
polynomial transformation, in which the dimensionality of the
outcome increases polynomially with the number of SMONs.
We mentioned the ability of Regularized Linear models to
crucially decrease the risk of overfitting. We can state this

TABLE I
PREDICTION ERROR WITH DIFFERENT FEATURE SETS AND MODELS

(AVERAGE RESULTS ON 5-SPLITS)

FS Method Model. Used
SMONs(%)

Input
Features(%) nRMSE% R2% Time

(h)
No-FS Ridge 100% 100% 1.53 88.07 –
RFE-FS Ridge 66% 43% 1.47 88.85 192
RFE-FS (2) Ridge 17% 3% 1.42 89.61 192
Linear-FS Ridge 17% 3% 1.42 89.69 4
No-FS Lasso+Ridge 100% 0.80% 1.50 88.54 –
RFE-FS Lasso+Ridge 66% 0.62% 1.44 89.36 192
RFE-FS (2) Lasso+Ridge 17% 0.33% 1.44 89.37 192
Linear-FS Lasso+Ridge 17% 0.46% 1.43 89.63 4
No-FS Linear 100% 100% 2.24 74.39 –
RFE-FS Linear 66% 43% 2.44 69.50 192
RFE-FS (2) Linear 17% 3% 1.86 82.29 192
Linear-FS Linear 17% 3% 1.75 84.30 4

by substituting Ridge with a simpler Linear Regression (no
L2 regularization). Final prediction accuracies are much lower
(Table I). Introducing some kind of regularization enhances the
generalization capabilities of the model.

VII. CONCLUSIONS

We presented a feature selection framework to be used in
MCU performance screening. SMON values are good alternate
measures for performance prediction, and industries/test engi-
neers may use a large number of SMONs to catch performance
variation. Our framework permits to rank SMONs based on
their importance in the performance prediction task. The
experiments showed that linear models with regularization can
effectively reduce the number of SMONs automatically, with-
out relying on RFE loop. They also can compact information,
reducing the number of coefficients of the final linear model.
The obtained feature ranking obtained superior accuracy with
respect to RFE, and can be produced quickly. In general, this
approach is useful for every kind of situation in which we
have features highly correlated with each other and relations
feature-target linear or pseudo-linear.

REFERENCES

[1] N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in IEEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

[2] R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in IEEE International Test
Conference (ITC), 2020.

[3] N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in IEEE European Test Symposium (ETS),
2021.

[4] N. Bellarmino et al., “A Multi-Label Active Learning Framework
for Microcontroller Performance Screening,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2023.

[5] J. Chen et al., “Data learning techniques and methodology for fmax
prediction,” in IEEE International Test Conference (ITC), 2009.

[6] J. Chen et al., “Selecting the most relevant structural fmax for system
fmax correlation,” in 28th VLSI Test Symposium (VTS), 2010.

[7] M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2017.

[8] N. Bellarmino et al., “Feature Selection for Cost Reduction In MCU
Performance Screening,” in IEEE 24th Latin American Test Symposium
(LATS), 2023.

[9] K. von Arnim et al., “An effective switching current methodology
to predict the performance of complex digital circuits,” in IEEE
International Electron Devices Meeting (IEDM), 2007.

[10] G. Sannena et al., “Low overhead warning flip-flop based on charge
sharing for timing slack monitoring,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2018.

[11] T. B. Chan et al., “DDRO: A novel performance monitoring method-
ology based on design-dependent ring oscillators,” in Thirteenth In-
ternational Symposium on Quality Electronic Design (ISQED), May
2012.

[12] H. Ayari et al., “Making predictive analog/rf alternate test strategy
independent of training set size,” in IEEE International Test Conference
(ITC), 2012.

[13] P. Variyam et al., “Prediction of analog performance parameters using
fast transient testing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2002.

[14] H.-G. Stratigopoulos et al., “Error moderation in low-cost machine-
learning-based analog/rf testing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2008.

[15] J. Brockman et al., “Predictive subset testing: Optimizing ic parametric
performance testing for quality, cost, and yield,” IEEE Transactions on
Semiconductor Manufacturing, 1989.

[16] W. Jia et al., “Feature Dimensionality Reduction: a Review,” Complex
& Intelligent Systems, Jun. 2022.

[17] I. Guyon et al., “An Introduction to Variable and Feature Selection,”
The Journal of Machine Learning Research, Mar. 2003.

[18] S. Larguech et al., “Efficiency evaluation of analog/rf alternate test:
Comparative study of indirect measurement selection strategies,” Mi-
croelectronics Journal, 2015.

[19] M. J. Barragan et al., “A procedure for alternate test feature design
and selection,” IEEE Design and Test, 2015.

[20] U. M. Khaire et al., “Stability of feature selection algorithm: A review,”
Journal of King Saud University - Computer and Information Sciences,
2022.

[21] I. T. Jolliffe et al., “Principal component analysis: A review and recent
developments,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, Apr. 2016.

[22] R. McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in 27th IEEE VLSI Test Symposium, 2009.

[23] S. Asai, Ed., VLSI Design and Test for Systems Dependability. Springer
Japan, 2019.

[24] R. Bellman, ”Adaptive Control Processes: A Guided Tour”, 1961.
[25] A. A. Megantara et al., “Feature importance ranking for increasing

performance of intrusion detection system,” in 2020 3rd International
Conference on Computer and Informatics Engineering (IC2IE), 2020.

[26] I. Guyon et al., “Gene Selection for Cancer Classification Using
Support Vector Machines,” Machine Learning, Jan. 2002.

[27] L. Breiman, “Random forests,” en, Machine Learning, Oct. 2001.
[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,”

Journal of the Royal Statistical Society. Series B (Methodological),
1996.

[29] H. Zou et al., “Regularization and Variable Selection via the Elastic
Net,” Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 2005.

[30] J. A. Tropp et al., “Signal Recovery From Random Measurements
Via Orthogonal Matching Pursuit,” IEEE Transactions on Information
Theory, 2007.

[31] Q. Lv et al., “Enhanced-Random-Feature-Subspace-Based Ensemble
CNN for the Imbalanced Hyperspectral Image Classification,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 2021.

[32] Z. He et al., Gradient Boosting Machine: A Survey, 2019.
[33] T. Chai et al., “Root Mean Square Rrror (RMSE) or Mean Absolute

Error (MAE)?– Arguments Against Avoiding RMSE in the Literature,”
Geoscientific Model Development, Jun. 2014.

[34] D. Chicco et al., The coefficient of determination R-squared is more
informative than SMAPE, MAE, MAPE, MSE and RMSE in regression
analysis evaluation, en, Jul. 2021.

