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Detecting lung diseases in medical images can be quite challenging for

radiologists. In some cases, even experienced experts may struggle with

accurately diagnosing chest diseases, leading to potential inaccuracies due

to complex or unseen biomarkers. This review paper delves into various

datasets and machine learning techniques employed in recent research for

lung disease classification, focusing on pneumonia analysis using chest X-

ray images. We explore conventional machine learning methods, pretrained

deep learning models, customized convolutional neural networks (CNNs), and

ensemble methods. A comprehensive comparison of di�erent classification

approaches is presented, encompassing data acquisition, preprocessing, feature

extraction, and classification using machine vision, machine and deep learning,

and explainable-AI (XAI). Our analysis highlights the superior performance of

transfer learning-based methods using CNNs and ensemble models/features for

lung disease classification. In addition, our comprehensive review o�ers insights

for researchers in other medical domains too who utilize radiological images.

By providing a thorough overview of various techniques, our work enables the

establishment of e�ective strategies and identification of suitable methods for

a wide range of challenges. Currently, beyond traditional evaluation metrics,

researchers emphasize the importance of XAI techniques in machine and deep

learning models and their applications in classification tasks. This incorporation

helps in gaining a deeper understanding of their decision-making processes,

leading to improved trust, transparency, and overall clinical decision-making.

Our comprehensive review serves as a valuable resource for researchers and

practitioners seeking not only to advance the field of lung disease detection using

machine learning and XAI but also from other diverse domains.

KEYWORDS

chest X-ray images, deep learning models, ensemble methods, traditional machine

learning, pretrained deep learning models, feature extraction, explainable-AI
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1 Introduction

In modern healthcare, radiology imaging has emerged as
a primary tool for the early detection of various diseases
(Beets-Tan et al., 2020). Multiple modalities of radiological
imaging are employed, including X-ray, Computed Tomography
(CT), Magnetic-Resonance Imaging (MRI), Positron Emission
Tomography (PET), and Ultrasound (US). Among these, chest
radiography is particularly notable for its widespread use in
achieving precise and rapid diagnoses (Abhisheka et al., 2023;
Hussain et al., 2022; Philip et al., 2023). Radiologists, in the context
of chest diseases, predominantly rely on X-rays and CT scans (Hall
and Giaccia, 2006).

In most radiological imaging chest diseases, Pneumonia is an
acute infection affecting the alveoli and distal airways of one or
both lungs. It causes narrowing or closing of the airways due to
inflammatory cells and fluid deposition in the alveolar sack of the
lungs. It is a common and potentially lethal illness, affecting more
frequently susceptible individuals, especially children of<5 years of
age, accounting for 15 % of all deaths caused in this year’s groups.
Babies born too early (prematurely) face higher health risks because
their organs are still developing. The younger the baby is, the higher
the chance of getting lung infection (Prodanovic et al., 2024). The
infectious agents can be viruses, bacteria, or fungi with a great
geographical prevalence and outcome variations, among developed
and low-and-middle-income countries. Yearly over millions of
people are being infected with this virus. Early diagnosis is crucial
for the successful treatment process. Generally, the disease can be
diagnosed from chest X-ray images, but it is challenging due to
unclear appearances and confusion with other diseases. There is an
increasing effort to reach the poor community, in term of helping
strategies recognizing and managing pneumonia (Rudan et al.,
2004; Torres et al., 2021; Bhutta, 2007; Nelson et al., 1995; UNICEF,
2022; Franquet, 2001). In Africa, a significant shortage of healthcare
workers poses a critical challenge, with an estimated deficit of 2.4
million doctors and nurses. Numerous studies have highlighted
the severe scarcity of medical professionals and other healthcare
resources across the continent (Narasimhan et al., 2004; Naicker
et al., 2009). Due to critical health issues, the early detection of this
disease, especially in neonates, is very important as it interferes with
brain growth development and leads to other visual and hearing
impairments including heart diseases (Maeda et al., 2023; Yildirim
and Canayaz, 2023; Prodanovic et al., 2024).

Considering AI as a promising tool in medical imaging, AI can
improve pediatric pneumonia diagnosis in the early stages (Yoon
and Kang, 2024; Bal et al., 2024). In this scenario, specific kinds of
challenges arise when working with pediatric chest X-ray datasets.
Firstly, the available data scarcity, as compared to adult datasets,
can hinder the development of robust trained AI models. Secondly,
pediatric X-ray images reveal diverse anatomical development
structure as compared to adults. Thirdly, it is also very challenging
to acquire high quality images from uncooperative young ages
patients and will result in various noise factors and artifacts caused
by positioning and breathing patterns. Due to this, it will lead to
more complicated analysis. Finally, ethical rules and regulations
come into play even more critically when dealing with pediatric
patients as compared to adults. Strict anonymization protocols

and parental consent procedures are very important to ensure
data collection and further utilization (Singh, 2024; Candemir and
Antani, 2019; Ciet et al., 2024). Considering all these challenges, the
collaborative effort of data collection and the development of robust
AI powered diagnostic tools require standard image normalization
techniques and strict anonymity rules and regulations for early
diagnostic of pneumonia in pediatric patients.

Over the last 20 years, it is noted that chest infection has
decreased. New conjugate vaccines for diagnosing Haemophilus

influenzae type b and Streptococcus pneumonia helped to decrease
in radiologic, clinical and immense pneumonia cases have
reduce hospitalization (Le Roux and Zar, 2017). In 2011, the
western pacific region, recorded that 61,900 yearly deaths are
due to pneumonia in <5-year-old children (Nguyen et al.,
2017). According to world health organization (WHO), all these
extraordinary reductions in deaths, pneumonia is one of biggest
killer of children <5 years old (Chavez et al., 2015).

Today, chest X-ray is used to show the presence of different
lung diseases in humans. Experienced radiologists can assume the
probability of chest disease in humans after checking the x ray
images. Notably, in 2019, hospitals in Italy and the UK primarily
employed radiography imaging to diagnose coronavirus patients
(Fields et al., 2020). In some regions of the world, there is a
limited amount of medical equipment and a shortage of doctors
and experienced professionals who can effectively interpret chest
X-rays. The most often experts of radiology examine the two-
dimension (2D) chest x-ray images to clarify the pneumonia
bacteria or virus instead of three-dimension (3D) chest structure
(Mahomed et al., 2020).

The ease of obtaining radiographic images, however, also poses
a significant challenge, as a single radiologist may need to evaluate
as many as 100 images daily through radiography imaging [3].
Therefore, medical image analysis is a time taking process to reach
chest disease diagnosis. In this scenario, information technology
(IT) has a cardinal importance and is assisting the radiologists. It
has also demonstrated itself as a backbone in other medical fields
too. Further, health IT is administering the information of different
kinds of disease using computational knowledge and its progress.
The promising capability of health IT in decision making is a lot
more as compared to a human. In this way, health IT can provide
more better assistance in diagnosing various diseases to all over the
world’s medical community such as for acute coronary syndrome
(D’Ascenzo et al., 2021), cardio-vascular risk (Navarini et al., 2020),
and so on. Moreover, the most tremendous things in IT is the
available data on the internet and that anyone can access at any
time (Bohr and Memarzadeh, 2020). In parallel, advancements in
artificial intelligence (AI) has led the medical field to consider AI as
a promising tool for tackling complex biomarkers and supporting
medical researchers in comprehending the progression of various
diseases (Xing et al., 2020).

In this comprehensive review, we have examined and compared
20 computer-aided systems designed to assist clinicians in
diagnosing pneumonia. Our exploration began with an in-depth
analysis of publicly available datasets. We also provided detailed
insights into various pre-processing techniques to aid researchers
related to the available data. Furthermore, we conducted an
extensive discussion on the various machine learning and deep
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learning algorithms that have been predominantly utilized in
recent research efforts. Our aim is to highlight the best models
for a reliable and versatile tool useful in the middle- and low-
income communities.

The paper is divided into several sections. Section 2 focuses
on the dataset and its modality. Section 3 describes the data
preprocessing and balancing techniques, and Section 4 discusses
the different performance measures used in the studies. Section
5 elaborates numerous techniques proposed in this domain and
section 6 provides a detailed comparative analysis and discussion
of all techniques used for chest diseases’ classification. Section 7
discusses progress and challenges in research works related to chest
diseases. Finally, Section 8 concludes the review work.

2 Available training datasets

In contemporary times, a variety of datasets for lung diseases,
complete with labels, have become accessible for training diverse
machine learning and deep learning algorithms. These datasets
have consistently served as standard references in numerous
research endeavors, facilitating the comparison of results achieved
through different techniques. Considering the wealth of available
datasets, it is evident that they provide ample resources for
training, validating, and testing machine learning and deep
learning algorithms, including the creation of holdout datasets
for evaluation. In our study, we focused on several benchmark
datasets containing chest disease data and reviewed pneumonia
experiments on these datasets, as mentioned below.

2.1 OCT-CXR

This dataset (Kermany et al., 2018) comprises 5,863 chest X-
ray (CXR) scans from children, organized into three partitions:
training, validation, and testing. The CXR images were taken
meticulously and carefully selected from pediatric patients treated
at the China Medical Center. All X-rays were taken as part of
routine checkups.

2.2 CHEST X-ray 14

This dataset (Wang et al., 2017) was collected from the clinical
picture archiving and communication system (PACS) and consisted
of several frontal chest X-ray images. The dataset contains 112,120
front-facing chest X-ray images, which were subdivided into 14
classes. Each class represents a disease that could be identified from
radiology reports.

2.3 MIMIC-CXR-JPG

This dataset (Johnson et al., 2019) is the largest publicly
available chest X-ray dataset. The dataset was gathered by the USA
Medical Center from 2011 to 2016. More than 35,000 chest X-
ray images that represent 14 different chest diseases, including
pneumonia and normal cases, were obtained.

Additionally, Table 1 provides an overview of the chest X-
ray datasets that were used in previous studies for pneumonia
classification. Some datasets were custom designed by compiling
for pneumonia classification tasks, while others included multiple
chest diseases, including pneumonia by default. The general steps
that were taken by most of the strategies to make the data ready for
classification have been described previously Figure 1 and have also
been employed by many related studies (Benhar et al., 2020). The
dataset with the highest number of pneumonia cases is called CXR,
but in terms of image count, the MIMIC-CXR-JPG dataset is larger
due to its inclusion of multiple chest diseases.

TABLE 1 Comparison of datasets for pneumonia cases.

Dataset No. of
images

Description

OCT-CXR 5,856 Pneumonia binary cases either
pneumonia or normal class

Chest X-ray14 108,948 1,500 pneumonia cases. The dataset
includes 8 different chest diseases

MIMIC-CXR-JPG 377,110 Enormous dataset consisting of 65,079
number of pneumonia patients

PneumoCAD 156 Only 78 pneumonia cases exist

COVID-19 219 Comprises samples of three classes
COVID-19 positive, normal, and viral
pneumonia

PediCXR 9,125 Consists of 481 pneumonia cases and
remaining dataset is divided into other
14 different labels

CheXpert 224,316 Having 14 different classes while
pneumonia cases are 4,576

NIH Chest X-ray 112,120 Comprises 1,062 pneumonia images and
remaining other pathologies are divided
into 7 classes

2.4 PneumoCAD

This dataset (Oliveira et al., 2008) comprises pneumonia
presence (PP) and pneumonia absence (PA) images based on
children scans. All these findings were confirmed by two
radiologists. These authors interpreted the chest radiography
images according to the WHO instructions. These radiography
images had a resolution of 1,024 x 768 pixels and an 8-bit grayscale.
A total of 156 X-ray images were inspected by radiologists; 78
images were from pneumonia patients, and the remaining 78 were
labeled as normal.

2.5 COVID-19

The COVID-19 dataset (Cohen et al., 2020) consists a of
total 219 chest X-ray images. It comprises three classes COVID-
19 positive, normal, and viral pneumonia. Further, each image
varies in size, typically around 1,024 x 1,024 pixels, though this
can vary due to different sources and preprocessing steps. The
dataset is organized into three classes, each representing a different
health condition, providing a balanced set of examples to train
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FIGURE 1

Illustration of the general preprocessing steps.

and evaluate machine learning models for accurate diagnosis and
classification of COVID-19 and related respiratory conditions.

2.6 PediCXR

This dataset (Pham et al., 2023) is a very valuable resource for
training and evaluating AI models for pediatric chest X-ray images.
It consists of 9,125 X-ray scans and gathered at major pediatric
hospital in Vietnam between 2020 and 2021. Each image possesses a
different pixel range, but most cases have more than 1,000 pixels in
both x and y dimensions. The dataset is enriched with 36 critical
findings and 15 distinct disease categories. This comprehensive
labeling scheme allows researchers to train AI models for various
tasks, from pinpointing specific abnormalities to making broader
diagnoses in pediatric chest X-rays.

2.7 CheXpert

CheXpert (Irvin et al., 2019) is a larger collection, containing
224,316 chest radiographs from adult patients. While image sizes

aren’t explicitly stated, they likely adhere to medical imaging
standards, potentially ranging from 512 x 512 pixels to 1,024
x 1,024 pixels. In addition, CheXpert includes labels for 14
different pathologies.

2.8 NIH Chest X-ray

The NIH Chest X-ray dataset (Wang et al., 2017) is containing
112,120 frontal and lateral chest X-rays from adult patients. Image
sizes are likely similar to CheXpert’s. However, the dataset utilizes
a simpler labeling scheme, focusing on the presence or absence of
eight common findings, including pneumonia.

3 Preprocessing

The purpose of preprocessing is to improve the quality of
images by reducing variations and eliminating any discrepancies
that may cause complications during the processing stage,
thereby reducing the consumption of resources (Tripathy and
Swarnkar, 2020). Preprocessing achieves three main objectives,
namely noise removal, contrast enhancement, and brightness
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and color correction. To remove noise, filters such as mean
and median filters, and Gaussian low-pass filtering are widely
used. Morphological techniques are also used for image
information enhancement purposes (Courtenay et al., 2020).
Contrast stretching techniques and histogram equalization
techniques have been widely used for contrast enrichment.
For brightness, color correction, and color standardization
techniques have been used also such as Gastal and Oliveira
(2012).

Furthermore, standard x-ray images generally have a
dimension of (3,000 x 2,000) pixels, which is quite large and
contains unnecessary information. These large images require
high storage space and powerful hardware for analysis. To
save time and obtain better results, many publicly available
datasets have resized their images from their original size. For
example, the Chest X-ray 14 dataset has reduced the image
sizes to 512 x 512 pixels, while the MIMIC-CXR-JPG and
OCT-CXR datasets have image sizes of (2,048 x 2,048) and
(1,024 x 1,024) pixels, respectively. In our studies, we have
also emphasized the importance of a balanced experimental
dataset for training, validation, test sets. An unbalanced data
set can lead to biased classifications toward the majority
image set. Therefore, data balancing techniques are used to
prevent such biased classification results. Table 2 illustrates some
traditional and deep learning data balancing techniques along with
their descriptions.

TABLE 2 Data balancing techniques.

References Technique Description

Wang and Lu
(2018)

Mean Square Error
(MSE)

Sum square error of every sample
class wise and then calculated
their average

Wang et al.
(2016)

Mean False Error (MFE) Calculate the loss based on
average error

Baltruschat
et al. (2019)

Manually sampling Samples randomly duplicates in
minority class while samples
randomly removed from majority
class

Feng et al.
(2019)

Synthetic Minority
Oversampling
Technique (SMOT)

Oversampling method

4 Performance metrics

The performance measures (Michelucci et al., 2021) for
pneumonia detection and classification depend upon various
factors. These factors are discussed below:

• True positives (TPs) that identified the correct pneumonia
cases from the training data.

• True negatives (TNs) were those that identified normal cases
from the training data.

• False positives (FPs) that incorrectly identified
pneumonia cases.

• A false negative (FN) was used to identify the wrongly
normal cases.

The following equations represent the performance metrics
used to evaluate the robustness of the models: accuracy (1),
sensitivity (2), specificity (3), and precision (4).

Accuracy (acc) =
TP + TN

TP + FN + TN + FP
(1)

Recall/Sensitivity (rec/sen) =
TP

TP + FN
(2)

Specificity (spe) =
TN

TN + FP
(3)

Precision (pre) =
TP

TP + FP
(4)

5 Classification methods

Over time, machine learning approaches, a general concept,
have been shown Figure 2 to be implemented in numerous studies
(Hameed et al., 2020; Javaid and Haleem, 2020), significantly
assisting in the medical field. Even today, machine learning is useful
in the medical field and helps researchers continue to address
novel medical issues. A number of relevant studies on pneumonia
have been published in the subsequent subsections based on CXR
datasets. These used CXR datasets are frequently used in research as
a standard dataset for comparison with the results of other studies.
In our review, we adhered to the same framework.

5.1 Machine learning models

In traditional machine learning, researchers have applied
feature extraction algorithms to images to address specific
problems. In this context, datasets have been analyzed for only
a single domain at a time. More complexity and more time are
required to obtain results from these algorithm techniques.

Oliveira et al. (2008) proposed a machine learning technique
that classifies X-ray images as pneumonia or normal cases. On
the images, they employed the Haar wavelet transform feature
extraction computer vision technique. The KNN algorithm was
subsequently used, where K was 15, to train and classify the model
on the extracted features. As a result, they reported an accuracy
of 97% compared to that of other previously published feature
extraction studies in this domain. The results showed that this
method achieved good accuracy due to the application of relevant
feature extraction techniques.

Sousa et al. (2013) compared different machine learning
techniques and evaluated their results. In this work, three random
sets of 40 images were used for training, and 15 images were
randomly selected for the testing phase. For features, different
texture-based feature extractors based on the Haar wavelet
transform (Yu et al., 2023) were used to extract features for
classification tasks (Choras, 2007; Guido, 2018; He et al., 1987).
Three machine learning techniques, namely, SVM, KNN (K =

9), and naïve Bayes (Kumar et al., 2019; Zheng and Ding, 2020;
Kaur and Oberoi, 2020) classifiers, were applied to these extracted
features and achieved accuracies of 77, 70, and 68%, respectively.

Yao et al. (2011) proposed an automated intelligent system
that identifies five different chest diseases, including pneumonia.
They used 40 CXR images and applied machine learning to texture
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FIGURE 2

Basic concept of traditional learning where brain tumor images are taken from Chakrabarty (2019).

analysis. Their extracted feature vector contains 25 texture features
(mean and variance features from histogram statistics, energy and
correlation features from a co-occurrence matrix, etc.) for every
image in the dataset. These extracted features were further passed
to train and test the SVMmodel, which yielded 85% accuracy in the
pneumonia detection task.

5.2 Deep learning models

DL has pushed research work in all fields by limiting the use
of standard handcrafted mechanisms of detection and classification
(Bhandary et al., 2020). Deep learning models are composed of
many layers connected to each other and have designated functions.
All these layers are used for their designated function in the
respective successions. Deep learning works best on a large number
of training sets that are not easy to obtain in the biomedical field
because it is supervised (Suzuki, 2017; Khan et al., 2021).

The dependence on human operators for the diagnosis of
pneumonia is not suitable because it requires expertise and
experience. Therefore, the domain of deep learning is currently
being adopted to make systems fully self-driven. This approach
provides better results, fewer miscalculations and fewer chances of
failure (Sun et al., 2018). Deep methodology is the latest innovation
inside the domain of machine learning. It is constantly being
pruned and enhanced daily, so much research is being conducted
on this topic. We can expect more work in the field of cell
diagnosis and disease classification soon, which will involve the use
of deep networks.

CNNs have been widely used to improve classification and
segmentation tasks. In CNN, the convolutional layer helps to
extract multidimensional features from the input image. The
applied weighted distributed technique helps to reduce the
complexity of the network (Albawi et al., 2017). Architecturally,

CNNs are simply feedforward artificial neural networks. The
general structure of the CNN model based on several blocks
is shown in Figure 3. This strategy is widely employed in
various studies, such as those of Yamashita et al. (2018) and
Acharya et al. (2017), who adopted a similar approach to provide
a comprehensive overview. In addition to classification tasks,
explainable-AI (XAI) techniques are proposed for revealing black
boxes, such as the following:

• Local Interpretable Model-Agnostic Explanations (LIME):

Ribeiro et al. (2016) works by developing local interpretable
models around a specific target, and the developed model is
used to explain why that prediction was made.

• Shapley Additive exPlanations (SHAP): This technique
(Lundberg and Lee, 2017) explains the black box model by
assigning a shap value to each feature that tells the feature’s
contribution to the model prediction.

• Saliency maps: This technique (Zeiler and Fergus, 2014)
unveils black boxes on images by highlighting the most
important features in an input image.

• Gradient-weighted Class ActivationMapping (Grad-CAM):

Grad-CAM (Selvaraju et al., 2016) works on the saliency map
technique for CNNs. The gradient of the model’s output is
computed with respect to the input image, and gradient maps
are developed.

• Activation maps: This technique (Zeiler and Fergus, 2014)
produces images that possess the activations of neurons in a
CNN. This technique is helpful for understanding the internal
operation of CNNs.

In the upcoming subsections, we have mentioned custom-
designed deep models and transfer learning-based models that
researchers have employed in their work regarding imaging-based
pneumonia disease detection.
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FIGURE 3

Convolutional neural network (CNN) model with XAI techniques.

5.2.1 Customized CNN models
Stephen et al. (2019) proposed a CNN with four convolutional

layers and two dense layers. They proposed a model trained on the
OCT-CXR dataset. They split the dataset for training and testing
on their own dividing threshold from the original dataset and used
data augmentation techniques to increase the performance of the
model up to 93.7% testing accuracy, as reported in their work.

Jain et al. (2020) worked to classify pneumonia and non-
pneumonia chest X-ray images. The author used six models in this
research to compare the performances of these models. The first 2
models were constructed by using several convolutional layers, and
the other four models were pretrained (VGG-16, VGG-19, ResNet-
50 and Inception-V3). All the models were trained and tested on
the CXR dataset. The best classification result of the second model,
which was based on three convolutional layers, achieved 92.31%
accuracy compared to the other models.

Siddiqi (2019) proposed a CNN model that used an 18-layer
convolutional neural network and trained it using the OCT-CXR
dataset following a dataset with 80% disturbance in the training
set and 20% disturbance in the testing set. The proposed technique
achieved accuracy, specificity, and sensitivity of 94.3, 86, and 99%,
respectively. This study showed that these methods improved the
classification accuracy by 1.6%, but on the other hand, they had
lower specificity than did the state-of-the-art methods.

In addition to the research in the same domain, Labhane et al.
(2020) obtained better results from different neural networkmodels
using custom-CNN and transfer learning techniques on three
renowned models, namely, Inception-V3, VGG-19, and VGG-16.
In addition to the results of other studies in the same domain,
better results were obtained from different neural network models

trained with custom-CNNs and transfer learning techniques on
three renowned models, namely, Inception-V3, VGG-19, and
VGG-16. The dataset (OCT-CXR) used in these models included
2,992 pneumonia images and 2,972 chest X-ray images. Using
augmentation techniques, the training data increased, which helped
in obtaining the most promising performances, ∼97% accuracy,
for customized and all the renowned deep networks trained in
this work.

Similarly, Liang and Zheng (2020) proposed a custom 49
convolutional layer residual model and renowned the VGG-16,
DenseNet-121, Inception-V3, and Xception models for transfer
learning. In this work, the OCT-CXR dataset was used to
classify patients into binary response groups, such as normal vs.
pneumonia. This work achieved 90.5, 74.2, 81.9, 85.3, and 87.8%
accuracy, respectively, as mentioned previously. Liang and Zheng
also concluded that their customized model performed better in
classification than did transfer learning.

Saraiva et al. (2019) shows comparative research between
conventional (multilayer perceptron) and custom-designed deep
learning models on the OCT-CXR dataset considering binary
classification. The experimental data had two classes consisting of
5,840 images with infected and non-infected traits. During training,
a cross-validation technique was used to validate the models. Based
on the performance, the deep learning models performed very
well, with 94% accuracy, whereas the conventional neural network
model achieved 92% accuracy.

Yi et al. (2023) designed an intelligent system for the detection
of normal and pneumonia diseases using chest X-ray images.
The main objective of this study was to illustrate the strength
of deep neural models on image-based data. In the first step,
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they acquired a publicly available OCT-CXR dataset. In the next
step, they applied data augmentation and preprocessing steps
such as rescaling, rotation, width-height shift, shearing, zooming,
horizontal-flipping, and filling to prevent bias in the data sample
class. For feature learning and extraction, they designed a proposed
DCNN model with 42 conv layers and 2 dense layers. After the
training step, they utilized the trained deep model as a feature
extractor to extract robust features from the training and validation
datasets and then applied a supervised machine learning classifier
for pneumonia classification. For the performance evaluation of
machine learning models, standard parameters such as accuracy,
specificity, sensitivity, and the F1-measure were acquired. The
proposed methodology achieved 98.02% training accuracy and
96.09% test accuracy scores.

Akbulut (2023) introduced an innovative and robust algorithm,
the ACL model, which was designed as a customized deep
learning architecture. This model was purposefully combined
with attention and LSTM models and CNN frameworks to
accurately classify patients into distinct categories: healthy,
COVID-19, and pneumonia. To enhance the performance of
this approach, crucial features and patterns present within chest
X-ray images were emphasized. This was achieved through
the application of the marker-controlled watershed (MCW)
segmentation algorithm, which highlights essential stains and
traces vital for accurate classification. Throughout the experimental
phase, the ACL model underwent training across varying
training–test ratios—specifically, 90–10, 80–20, and 70–30%. The
attained accuracy scores demonstrated exceptional performance,
recording a perfect accuracy of 100% for the 90–10% ratio
while achieving an impressive 96% accuracy for both the 80–20
and 70–30% ratios. These outcomes underscore the adaptability
and reliability of the ACL model across different training-
test distributions, demonstrating its potential as an effective
diagnostic tool for classifying health conditions based on CXR
imaging data.

In another work, Kiliçarslan et al. (2023) developed a novel
deep learning methodology aimed at pneumonia classification.
This study introduced an innovative activation function termed
Superior Exponential (SupEx) and conducted comparative
evaluations against established activation functions such as ReLU,
LReLU, Mish, Sigmoid, Swish, Logish, and Softplus. The study
integrated the MNIST and CIFAR-10 datasets to substantiate
the efficacy of the proposed SupEx activation function. The
findings were subsequently applied to the CNN, which trained
and tested pneumonia identification via chest X-ray images.
Notably, classification accuracies were achieved, reaching 95.37%
for pneumonia detection. This research signifies the introduction
of a promising activation function for pneumonia detection,
demonstrating its efficacy across both emerging and established
benchmark datasets.

5.2.2 Transfer learning models
Transfer learning is the concept of overcoming individual

learning complexities and reusing the knowledge that is obtained
from any similar pretrained model. Figure 4 illustrates the
fundamental principles of transfer learning, and numerous

investigations have explored its application in the classification of
lung diseases, as demonstrated in Raghu et al. (2019).

Rajaraman et al. (2019) proposed a customized CNN model
and compared their results with those of a VGG-16 retrained
model on the OCT-CXR dataset. In this research, an atlas-based
detection algorithm was used to detect lung tissue, and a DCNN
model was used for classification. In comparison, VGG-16 achieved
better performance than did the customized CNN. The author
performed two experiments in terms of class distribution in this
research. In these experiments, 96.2% accuracy for normal and
pneumonia classes and 93.6% accuracy for viral and bacterial
classes were the best performances. Finally, they utilized Grad-
CAM to visualize the regions of the images that contributed most
to the model’s predictions.

Rahman et al. (2020) performed a transfer learning technique
using four different pretrained convolutional neural network
(CNN) models, such as AlexNet, ResNet-18, DenseNet-201, and
SqueezeNet. All these trained models used an OCT-CXR dataset
that included 5,237 chest X-ray images. In this research, the
authors reported three different experiments in terms of dataset
class combinations: case-1: normal and pneumonia; case-2: normal,
bacterial pneumonia and viral pneumonia; and case-3: bacterial
and viral pneumonia. The accuracies of these experiments were
98% (case-1: DenseNet), 95% (case-2: DenseNet), and 93.3% (case-
3: DenseNet). Moreover, they also incorporated LIME to better
explain the predictions of the model.

Hashmi et al. (2020) applied a transfer learning approach
to classify binary classes as normal or pneumonia. Several data
augmentation techniques simulate the regeneration of data images.
The OCT-CXR dataset was utilized to retrain several experimental
deep models (basic ResNet-18, Xception, Inception-V3, DenseNet-
121, and MobileNet-V3 models and weighted mentioned renown
models). This research concludes that renowned basic deep models
with weightage perform better (accuracy: 98%) than other normal
deep learning models (accuracy: 96–97%) by employing a data
augmentation technique that reduces data overfitting. Additionally,
they unveiled the model’s reasoning by incorporating a technique
called SHAP to explain the predictions of the model.

Ayan and Ünver (2019) performed an addition to this research
to diagnose pneumonia by applying two CNN models, namely,
VGG-16 and Xception, on the OCT-CXR dataset. The VGG-16
model achieved 87% accuracy, which was better than that of the
Xception model (82%), and the confusion matrix showed that both
models had their own significance against the data. The Xception
network is more efficient at detecting pneumonia cases than is
the normal network, while the Vgg-16 network focuses on normal
patients. In addition, they elaborated upon the model and features
by employing the saliency map technique to visualize the regions of
the images that contributed most to the model’s predictions.

Alshmrani et al. (2023) proposed a deep learning architecture
for the identification and classification of multiple classes of
lung diseases, such as pneumonia, lung cancer, and COVID-
19. For multiclassification, they utilized large amounts of data
for deep learning classification, including the OCT-CXR dataset.
The proposed technique uses the ensembled methodology of the
VGG-19 and custom-CNN models. This ensembled technique
achieved the best performances−96.48, 97.56, and 93.75%—for
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FIGURE 4

Concept of transfer learning where brain tumor images are taken from Chakrabarty (2019).

accuracy, precision and sensitivity, respectively. They also provided
explanations by utilizing a technique called attention maps to
visualize the regions of the images that the model is paying
attention to.

5.2.3 Ensemble features/models
The ensemble approach is a technique used to ensemble

multiple features from various trained models or deep models
on the same dataset and provides better results than other
techniques. In this domain, Chouhan et al. (2020) proposed
a technique in which two or more deep learning algorithm
models (AlexNet, ResNet-18, Inception-V3, DenseNet-121 and
GoogleNet) were used for classification of images in the OCT-
CXR dataset. After embedding, a voting classifier is employed to
predict the best relevance class. The ensembled models outperform
other state-of-the-art methods and achieve a 96% accuracy score.
For explainability, they also employed a technique called integrated
gradients to explain the predictions of the model.

Togaçar et al. (2020) applied three different pretrained
deep models (AlexNet, VGG-16, and VGG-19). In the training
process, every model obtained 1,000 features from every image
in the dataset. Furthermore, the minimum redundancy maximum
relevance algorithm was used to reduce the feature space to
100. On the basis of the combination of these features, a linear
discriminant analysis classifier was trained and tested on a 99%
binary classification accuracy on the OCT-CXR dataset. The
authors also used a feature importance technique to explain the
importance of different features in the model’s predictions.

Ukwuoma et al. (2023) presented a hybrid workflow based on
fused capabilities of convolutional networks and the transformer

encoder (TE) mechanism. This ensembled learning technique
employed to extract meaningful features from the dataset X-
ray input images in two different ways: ensemble-A (i.e.,
GoogleNet, DenseNet201, and VGG16) and ensemble-B (i.e.,
Xception, DenseNet201, and InceptionResNetV2). Whereas, the
TE is built following the scheme of self-attention structure
considering multilayer perceptron (MLP) for accurate disease
identification. The proposed whole designed pipeline underwent
training in two fashions binary and multi-class classification.
On test, end-to-end hybrid learning model resulted in 99.21%
classification performance for both overall accuracy and F1-
score in the binary classification task, while 98.19 and 97.29%
scores for overall-accuracy and F1-score respectively have been
expressed in the multi-classification task. In addition, they
also showed the visual results by employing XAI, LIME
and attention maps algorithms, to explain the predictions of
the model.

6 Comparative analysis

In comparative analysis, we have evaluated the performance of
various conventional machine learning and deep learning models,
including customized CNN, transfer learning, and embedded
models, utilizing different feature extraction techniques. For amore
enhanced overview, different research works have been clustered
into meaningful groups.

The performance metrics listed in this review are
recommended methods for determining each model’s
performance. However, we have provided all the relevant
measurements as shown in Table 3. To facilitate comparison,
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TABLE 3 Summarizing related studies that employ machine and deep learning methods where metrics are accuracy (Acc), specificity (Spe), precision (Pre), and recall (Rec), all presented as percentages;

additionally, “N” denotes not present, respectively.

References Method Features extractor Classifier Acc Spe Pre Rec XAI

Oliveira et al. (2008) Haar Wavelet Transforms KNN 97 90 N 100 N

Sousa et al. (2013)

Machine Learning

Coefficient of Variation, Correlation,
Entropy, Standard Deviation, etc., based
on Haar wavelet

SVM, KNN, and
Naïve Bayes

77, 70, and 68 N N N N

Yao et al. (2011) Techniques Mean, variance, energy and correlation
from correlation matrix, etc.

SVM 80 N N N N

Stephen et al. (2019) 4-layers CNN 94 N N N N

Jain et al. (2020) CNNModel 92 N N 98 N

Labhane et al. (2020) Inception-V3, VGG-19, VGG-16,
Customized-CNN

97 N 98 97 N

Siddiqi (2019)

Customized CNN

18-layers Convolutional

SoftMax Layer

94 86 92 99 N

Liang and Zheng (2020) Custom 49- layers CNN, VGG-16,
DenseNet-121, Inception-V3, and
Xception

91, 74, 82, 85, and
88

N 89, 72, 79, 92, and
86

97, 95, 96, 84, and
97

N

Saraiva et al. (2019) Custom CNN and MLP 92 and 94 92 and 94 92 and 94 92 and 94 N

Yi et al. (2023) Custom CNN 96 99 N 94 N

Akbulut (2023) LSTM+ Attention-CNN in one model 96 98 94 94 N

Kiliçarslan et al. (2023) Custom CNN 95 N N N N

Rajaraman et al. (2019) VGG-16 96 96 98 96 Grad-CAM

Rahman et al. (2020) AlexNet, ResNet-18, DenseNet-201, and
SqueezeNet

98, 95, and 93 97, 94, and 97 97, 95, and 93 99,96, and 93 LIME

Hashmi et al. (2020)
Transfer Learning

Original and Weighted (ResNet-18,
Xception, Inception-V3, DenseNet-121,
and MobileNet-V3)

96-97 and
98

N 98 99 SHAP

Ayan and Ünver (2019) VGG-16 and Xception 87 and 82 91 and 76 87 and 84 82 and 85 Saliency maps

Alshmrani et al. (2023) VGG-19 and Custom CNN 97 N 98 94 Attention maps

Chouhan et al. (2020) AlexNet, ResNet-18, Inception-V3,
DenseNet-121 and GoogleNet

Voting Classifier 96 N 93 100 Integrated gradients

Togaçar et al. (2020)
Ensemble Model

AlexNet, VGG-16 and VGG-19 Linear Discriminant
Analysis
Classification
(Merged features)

99 99 99 100 Feature importance by
model’s predictions

Ukwuoma et al. (2023) DenseNet201, VGG16, and GoogleNet Multilayer Perceptron 97 97 97 97 LIME and attention
maps
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all the studies previously described were evaluated based
on accuracy, with additional performance measures noted
where available.

In the groups, ML group depicts that Oliveira et al. (2008)
achieved the best 97% accuracy by employing the k-NN classifier
on numerous extracted features. With respect to customized neural
networks, Labhane et al. (2020) achieved ∼97% accuracy, with
the best results obtained with all the customized and pretrained
models. Using the pretrained transfer learning technique, Rahman
et al. (2020) and Hashmi et al. (2020) achieved 98% accuracy
by employing numerous pretrained models by comparing among
them. In the last group, Togaçar et al. (2020) achieved 99%
accuracy by employing transfer learning and the ensemble
feature technique. Overall, we found that Togaçar et al. (2020)
performed very well, with 99% accuracy, by using transfer learning
and the ensemble feature technique. This shows that transfer
learning with an ensemble method is an efficient and effective
technique for learning and representing better visual features
of images.

7 Progress and challenges in chest
research applications

As AI continues to advance over time, it has become
increasingly convenient to develop improved algorithms, reducing
the reliance on manually crafted features for radiographic images.
Researchers have made significant strides in creating numerous
algorithms designed to automatically extract features and employ
machine/deep learning techniques. The primary benefit of these
methods lies in their enhanced performance, particularly in
the detection and classification of various chest diseases using
deep learning algorithms. Many recent studies have harnessed
convolutional neural networks (CNNs) to augment early-stage
detection by learning intricate patterns, thereby helping doctors
comprehend these complex situations.

However, a notable challenge is the lack of practical
applicability, which hinders the widespread use of these highly
efficient algorithms. There is a pressing need to bridge the
gap between related research and wider public and medical
communities by creating user-friendly interfaces on well-
performing models. Moreover, there is a deficiency in training
resources because of the limited tools available, leaving many users
uncertain about how to effectively utilize these tools in middle- and
low-income regions for early diagnosis and mitigation of chest and
related diseases.

In addition, while the number of studies on the detection of
pneumonia using machine learning/deep learning is growing, the
number of works that focus on explainability is still relatively
limited. This is a significant gap in the literature, as explainability
is crucial for understanding how models make decisions and for
building trust in their results.

8 Conclusion

The detection of lung diseases from medical images poses
significant challenges for radiologists, even for experienced

professionals, due to the intricacies of these diseases and the
time-intensive nature of the diagnostic process. However, artificial
intelligence (AI) has emerged as a promising solution for
addressing these challenges. Artificial intelligence (AI), particularly
through machine learning and deep learning techniques, has
revolutionized the field of medical research, replaced traditional
handcrafted methods and significantly improved diagnostic
accuracy. In this review, we have presented a vast amount of
research on chest disease classification using four different standard
radio imaging datasets of lungs. Among the datasets considered,
the CXR dataset is the most commonly used dataset among
the reviewed works compared to the ChestX-ray14, JSRT, and
MC datasets. For classification, different image preprocessing and
feature extraction techniques have been employed to train different
machines and deep learning algorithms. Overall, it has been found
that transfer learning techniques with ensemble models/features
result very well-compared to machine learning, custom-designed
deep models, and transfer learning models. Additionally, our
work highlights the importance of XAI, and its usage in limited
works can unveil hidden reasoning. Ultimately, this comprehensive
review will not only benefit researchers related to lung diseases
but also increase the interest of researchers working on images,
machine learning, machine vision, deep learning, and other
related areas.
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