POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Ego-Based Approach to Planning and Control for Automated Valet Parking Applications

Original

An Ego-Based Approach to Planning and Control for Automated Valet Parking Applications / Canale, Massimo; Cerrito,
Francesco; Borodani, Pandeli. - (In corso di stampa). (Intervento presentato al convegno IEEE Conference on Decision
and Control tenutosi a Milan (ITA) nel December 16-19, 2024).

Availability:
This version is available at: 11583/2992642 since: 2024-09-20T07:30:38Z

Publisher:
IEEE

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 September 2024



An Ego-Based Approach to Planning and Control for
Automated Valet Parking Applications”

Massimo Canalef, Francesco Cerrito! and Pandeli Borodani®

Abstract— This paper introduces an ego-based approach to
automated valet parking in low-complexity scenarios. The
proposed solution aims at realizing the valet parking application
by exploiting a minimum amount of information provided by
the infrastructure and implementing all the required driving
functions based on proprioceptive sensor data. An encapsulated
hierarchical architecture is introduced to accomplish this aim.
The higher hierarchical level, i.e. the Global Planner, computes
a feasible and robust geometric path from the drop-off area to
the parking destination. At the lower level, the Local Planner
based on Model Predictive Control and Artificial Potential
fields, tracks the path and realizes the final parking maneuver.
Decision-making during vehicle maneuvering is implemented
by a suitable behavioral logic that, based on sensor-acquired
data, manages vehicle interaction in specific situations such
as, e.g., precedence in road intersections, and traffic jam
handling. Extensives simulation results performed in realistic
driving scenarios are introduced to show the effectiveness of
the proposed approach.

I. INTRODUCTION

In the near future vehicles will be electric, connected, and
autonomous. Many of the leading actors in the automotive
industry seek to claim leadership in automated vehicle tech-
nologies and all evidence suggests that automated driving [1]
will represent a key challenge in the evolution of smart cities
and a benchmark for innovation.

Parking is the most time-consuming maneuver during a
journey, taking up almost 4 days a year, and during this time
drivers experience anxiety and stress [2]. It is also estimated
that around 40% of car accidents involving personal injury
occur during parking or maneuvering [3]. Another problem is
the severe shortage of parking space caused by the increasing
number of private vehicles in urban areas [4]. Unfortunately,
due to its cost and high land use, the creation of additional
parking spaces is not an efficient, all-encompassing solu-
tion [5].

Automated Valet Parking (AVP), firstly introduced in [6],
has the potential to effectively address such challenges. One
of its benefits is the capability to reduce the time required
for parking. The inclusion of advanced sensor technologies,
effective control systems, and the use of infrastructure data
significantly reduces the likelihood of accidents. In addition,
AVP’s ability to perform precise and coordinated maneuvers
allows for optimal use of parking space, even in challenging
situations such as tight spaces or traffic congestion.

The operating principle of the AVP application [7] can be
summarised in the following points:

o the driver hands over control to the vehicle at the
drop-off area and activates through Human Machine
Interface (HMI) the AVP functionality;
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« the car is automatically driven to the parking location;

o to request the car back, the driver communicates with
the vehicle via an HMI, such as a smartphone;

o the vehicle will leave the parking spot and drive au-
tonomously back to the pick-up point.

The automotive industry has shown a keen interest in ad-
dressing AVP challenges. For example, Bosch, together with
Daimler, implemented an AVP pilot project in a mixed traffic
environment, which can be accessed via a smartphone app
and does not require a driver [8]. In a parallel development,
Audi integrated automated parking with additional services,
including the option to recharge and wash the vehicle,
creating a more comprehensive and convenient parking ex-
perience [9].
Banzhaf et al. [10] performed a thorough review of the
AVP literature. Such a study highlights that the intelligence
required for automated driving and parking can either be
located in the vehicles without changing the infrastructure,
or in the infrastructure by simply adding a remote control
unit to the car, or to both for mutual support.
The European Union’s research project, V-Charge [11], aims
to implement AVP using only sensors close to market
availability and offers a comprehensive review of the var-
ious subsystems demonstrating the feasibility of developing
such an application exclusively with close-to-market sensors.
In [12] the infrastructure is actively used in motion planning.
In particular, the vehicle trajectory is calculated by the server
of the infrastructure system and sent to the vehicle. The
vehicle controller uses the homotopic method to track the
reference trajectory and account for obstacle boundaries, and
Gauss pseudospectral method is implemented to discretize
this optimal control problem. Kneissl et al. [13] distribute
the control functionality between an infrastructure server and
the local autonomous vehicle control units. In particular, via
a V2I communication interface, the plant control variables
computed by the Model Predictive Control (MPC) are shared
with the coordination unit. Exploiting the V2I infrastructure
the proposed solution can detect and handle conflict zones,
for this purpose, the trajectory generation process is decom-
posed between the parking area management and the local
vehicle controller. This research illustrates the benefits of
implementing an intelligent infrastructure. In particular, it
enables efficient and effective management of interactions
among vehicles, such as managing conflict zones.
A different approach is proposed by [14] where the task of
AVP is executed by an external robot, which is responsible
for transporting and parking the vehicle. A fleet management
system is implemented to coordinate the movements of this
robot. This system is crucial to ensure efficient and effective
coordination of the robot’s operations.

In this study, we present a novel approach to AVP charac-
terized by minimal infrastructure dependency, flexibility, and
cost-effectiveness. In particular, the proposed solution

« operates efficiently with minimal infrastructure infor-



mation, providing a comprehensive and effective AVP
solution that adeptly manages a wide range of scenarios,
from traffic congestion to unregulated road intersec-
tions;

« employs an encapsulated architecture control that is
based on parameterized algorithms and is organized
into three different levels: the Global Planner, the Local
Planner, and the Parking Planner. Each level operates
hierarchically, performing specific tasks while maintain-
ing its independence. This modular structure enhances
the adaptability of the architecture: each module can
be replaced to meet different application requirements.
For instance, if an intelligent infrastructure is available,
the Global Planner can be adapted to work in synergy
with it, without any modification to the other levels. In
addition, the parameterization of each module allows a
tailor-made application for different car models.

Consequently, the proposed ego-based approach avoids the
need to employ intelligent infrastructure [10], [12], [13]
or specialized robots [14]. In addition, the adaptability of
the architecture minimizes the need for modifications to the
car park to accommodate the AVP service, improving cost
efficiency. The decision-making process during vehicle oper-
ation is implemented by a Finite-State Machine (FSM) [15]
based on the data acquired by the ego-vehicle propriocep-
tive sensors. In addition, Artificial Potential Fields (APFs)
are employed to obtain a mathematical and comprehen-
sive description of the surrounding environment [16]. As
demonstrated in [17] APFs can be combined to account for
the presence of different road actors that affect the vehicle
motion. An MPC controller [18] exploits the information
provided by the APFs to control the vehicle’s lateral and
longitudinal maneuvers. The combination of these two tech-
niques has already shown good results in the implementation
of automated driving solutions in a highway scenario [19].

II. THE EGO-BASED AVP ARCHITECTURE

According to the SAE J3016 [1] standard, every AD
application must be characterized by the operational design
domain (ODD) and the dynamic driving tasks (DDTs).

The ODD defined for the AVP service is bounded by the
following conditions:

o low-speed maneuvers for reverse and forward motion,

range between —7km/n and 15km/h;

o structured environment (vehicle reserved area);

« full sensor configuration available;

e V2I communication with the specialized infrastructure
available only in the drop-off zone and to notify the
infrastructure each time a given target parking bay has
been reached by a vehicle.

In the described scenario, the vehicle can perform the fol-
lowing DDTs:

« obstacle classification/identification
making functions;

« precedence system that allows to handle multi-vehicle
scenarios at road intersections;

o re-computation of the optimal destination and the op-
timal route in case of unforeseen events, such as the
presence of obstacles, blocking the vehicle’s current
path;

o implementation of an Adaptive Cruise Control (ACC)
and Lane Keeping (LK) mode.

We assume that the ego-vehicle is equipped with a complete
sensor configuration that includes: front and surround-view

and decision-
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Fig. 1: Motion Planner’s encapsulated architecture. Three distinct and in-
terrelated levels are introduced: Global Planner, Local Planner, and Parking
Planner.
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cameras, front long and short-range radar, inertial measure-
ment unit, and differential global positioning system.

As shown in Fig. 1 the proposed control architecture of the
AVP application is characterized by the interconnection of
three hierarchical levels:

o Global Planner: that computes an optimal path from
a starting point to a destination. Factors such as route
length, travel time, lane crossings, and kinematic con-
straints are accounted for.

o Local Planner: which performs the vehicle control to
track the path computed by the Global Planner. MPC
and APFs are used to obtain a feasible trajectory that
accounts for kinematic and dynamic constraints.

« Parking Planner: that aims at generating a collision-
free, feasible trajectory for the parking maneuver. The
design of these maneuvers is beyond the scope of this
article, possible solutions can be found in [20] and [21].

As highlighted in the introduction, a design choice of
paramount importance for AVP problem consists of defining
how to distribute the intelligence between the vehicle and
the infrastructure. The main objective of this paper is to
develop an ego-based control strategy where the intelligence
is allocated uniquely to the vehicle to minimize the amount of
information about the parking layout and aims at creating an
infrastructure-independent application. This approach makes
it possible to implement AVP in existing car parking areas
while maintaining the layout of the car parks and introducing
a simple infrastructure.

In particular, when the user hands out the vehicle at the
drop-off area, the AVP functionality takes over and a V2I
communication channel is temporarily established to provide
the ego-vehicle the data required for navigation in the parking
area and needed to perform correctly the parking tasks. The
adoption of a heavily ego-based AVP policy implies that
the amount of information given by the infrastructure is as
low as possible. The minimum information that still provides
the necessary support to enable all the AVP features and
functionalities includes:

o lane width and parking bay dimensions;

o position and orientation of all the assigned parking
places;

« waypoints map, including location and orientation;

« a list of the waypoints associated with 4-ways intersec-
tions;

« a precedence attribute (i.e., a flag) associated to each
node, to indicate the points on the map where a manda-
tory stop must be made.
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Fig. 2: Global planning path generation process. On the left, the nodes
provided by the infrastructure to the ego-vehicle and the optimal path. On
the right, the generated geometric path connecting the drop-off area and the
assigned parking bay.

III. GLOBAL PLANNER

The Global Planning module exploits the data provided by
the infrastructure and involves two main steps (Fig. 2). At
first, it finds an optimal path, taking into account environ-
mental constraints and static obstacles. This is done using the
Dijkstra algorithm. The procedure iteratively selects nodes
with lower costs, designates them as definitive, and updates
the costs of neighboring nodes (Fig. 2 left). Second, it
connects these nodes using an appropriate geometric path
that takes into account the kinematic constraints of the
vehicle. Linear segments are used for straight-line nodes,
while Dubins’ curves [22] are implemented for curved paths
(Fig. 2 right).

A. Optimal path computation

To implement the Dijkstra algorithm the data provided
by the infrastructure are exploited to create a mathematical
representation of the parking area through an adjacency
matrix. To this scope, the following criterion is adopted:
two nodes, j and k, with position (x;, y;) and (k, yx)
respectively, are connected by an arc directed towards £ (i.e.
k is consecutive to j) if and only if:

1) xp > 0 in the reference frame with origin (z;,y;) and

i-axis aligned along node’s j orientation;

2) there are no other nodes between j and k£ with the same

orientation of j.

The weight assigned to each graph’s arc is computed as:

ZW Z kiLi + k25;) (1)
i=1

where N is the number of arcs, L; is the length of the i-th
arc, k1 and ko are gain coefficients that require tuning. S; is
designed to penalize Left-Hand (LH) curves, as they require
crossing the opposite lane, except when on the external
perimeter.

B. Geometric path generation

It is then necessary to connect such nodes with a suitable
geometric path that keeps into account the kinematic con-
straints of the vehicle, stays within its lane, avoids invading
the opposite lane during turns, and does not cross continuous
lane markers.

Starting from the sequence of nodes provided by Dijkstra’s
algorithm, the interconnection path between two subsequent
nodes is chosen based on their orientation. If two consecutive
nodes have the same orientation, they are connected through
a straight line. If this is not the case, a RH or a LH turn is

generated by exploiting a combination of line segments and
circular arcs.

To generate the optimal combination of arcs and segments,
the Dubins and Reeds-Shepp curves [23] are used. This so-
lution allows to take directly into account vehicle kinematic
constraints as a function of the car wheelbase and its steering
angle [24], which is bounded between —24.5° and 24.5°.

C. Global-in-the-loop

The global-in-the-loop is the architecture’s module that
seeks alternative paths. When, e.g., a traffic jam is detected,
the ego-vehicle starts braking until it stops and evaluates two
key elements:

o the position of the jam, as (T am, Yjam)s

« the latest route node, based on the knowledge of its own

position at the current instant.
The adopted approach updates the adjacency matrix, finds the
closest node to the jam, and updates the connecting edge. It
uses Dijkstra’s algorithm to find a new route and designs
connection maneuvers. The global-in-the-loop improves ve-
hicle intelligence, providing flexibility and mimicking human
decision-making.

IV. LOCAL PLANNER

The Local Planner is the module that is in charge of
tracking the geometric path generated by the Global Plan-
ner. The Global Planner generates a geometric path that is
collision-free and feasible in terms of maximum speed and
curvature, but it does not take into account any constraints
on acceleration, jerk and derivative of steering angle, nor is
the path curvature continuous when changing from a straight
line to an arc of radius. For this reason, an MPC that uses
the APF function in its cost function is designed.

APFs are implemented to perform all the required driving
tasks through an organic solution. The Potential Fields (PFs)
presented in [19] are used to influence the vehicle behaviour
through repulsive and attractive forces. In particular, repul-
sive PFs are used for LK and obstacle avoidance, while
attractive PFs are used to implement ACC functionalities.
Since the MPC must solve an optimization problem to
compute the desired control action in real-time, the choice
of the prediction time 7} and the control time must be
consistent with the computational time needed to perform
these operations. These values in combination with the
sample time T determine two pivotal parameters of the
MPC: the prediction horizon H, and the control horizon
H.. As reported in [25], the reaction time for a human driver
typically is in the range of 0.5s to 1.2s. Hence, the following
values have been selected: Ts = 0.5s, H, = 6, H, = 2.

To account for the driving task execution, the APFs are
included in the MPC optimization problem as additional
terms in the cost function, along with the standard state
tracking error and control input rate effort. In the resulting
cost function, the APFs act as a virtual force exerted on the
vehicle at each step. The MPC minimizes at each time instant
k the cost function J acting on the plant inputs a and wy:

ket H,
J(U(k)) = Z [WLPE (i) + W, P2 (i)+
i—k
WACC((PACC) (4) + P (1)) + @)
Q1(2(i) — Tar)® + Q2(y (i) — Ytar)*+
Q3(0(i) — etar) + Qa(v() —Udes)2+
Q50(i)* + RiAv(i)® + RyAS(i)?]
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The terms of the optimal control problem (2) (3) take into
account the following aspects:

o f(x(@),u(q)) is the single-track kinematic model that
describes the vehicle behavior, see e.g. [26]. In the
kinematic model variables x, y, and 6 uniquely define
the position and the orientation of the vehicle in the
inertial frame. v, and J are the vehicle speed and the
wheel steering angle respectively, while a and wy are the
longitudinal acceleration and the wheel steering speed.

e P and P, are the path-keeping and obstacle avoidance
APFs respectively. P;‘CC and P,;,;. also include the
contribution of the ACC APFs, which becomes active
whenever the controller operates in the corresponding
mode.

o (x—Ztar), (Y—Ytar) and (0—0y,,.) define the target pose
error. These terms are used to ensure that the vehicle
stops and parks at the desired point with the correct
orientation.

o (v — vg4es) represents the error between the target and
actual vehicle speed.

e 0 introduces a cost that describes the steering angle
effort.

o Wi, Wo,Wacc, Q1, Q2, @3, Q4, @5, Ry and R, ,
are the weighting factors. These values strongly affect
the behavior of the controller, therefore their values are
a function of the behavioral logic state.

When generating the trajectory, along with the mentioned
constraints on the discretized plant model f(xz(7),u(7)), the
velocity v and steering angle §, the comfort constraints on
acceleration a, jerk j, and the derivative of the steering angle
wg are introduced as constraints (3).

V. BEHAVIORAL LOGIC

Based on the sensor data, the Behavioural Logic (BL) per-
forms obstacle detection, evaluates the most urgent driving
task, and performs a decision-making process to select the
most appropriate maneuver. The core element of the BL is a
FSM, that selects the appropriate controller mode depending
on the driving situation detected by the sensors. The FSM
may change its state in response to some inputs; the change
from one state to another is called a transition (Table I).
Fig. 3 shows a schematic of the designed FSM with the
different states and transitions. Each state of the FSM is
characterized by a specific control mode, defined as a set
of cost function (2) weights, defined in Table II. Hereafter,
we introduce a description of the considered driving modes.

A. Nominal mode

The vehicle follows its trajectory, and no obstacle that
requires immediate action is detected. Different weights (Ta-
ble II) of the cost function (2) and velocity references are set
during the path, depending on the ego-vehicle’s distance from
the proximity position to the parking bay. When the ego-
vehicle approaches the destination, the reference velocity is
set to zero to obtain a comfortable, and accurate stop phase.
Furthermore, the weights associated with the position error
with respect to the final destination are activated. Another

1 3
Precedence Nominal Stop & GO
Mode Mode ACC mode
2 4
5 6 8
Path

Stop —7>

re-computation

Fig. 3: Finite state machine representation

TABLE I: FSM transitions

Transition | Conditions

1 No further detection in the crossing area

2 1) A LH turn must be performed
2) The next route node is a precedence node

3 Leading vehicle detection

4 Absence of leading vehicle detection

5 1) Jam detection
2) Parking leading vehicle
3) Close-range obstacle on the path

6 No further on path detection

7 Jam detection confirmed AND Vehicle has
stopped
Connection maneuver have been tracked, if

oo}

present

situation that triggers a modification of the velocity reference
occurs when a standing obstacle is detected on the path at a
long range.

B. Stop&Go ACC mode

Stop&Go ACC mode is activated when a LV is detected
and the ego-vehicle must track a suitable distance from the
preceding vehicle. In addition, this driving mode is applied
when the ego-vehicle is near the target parking bay: the
reference velocity is set to zero and the weights associated
with the position error with respect to the final destination
are activated.

C. Stop mode

This state refers to stop maneuvers that must be activated
in the presence of the scenarios described below:

« a moving or still car has been suddenly detected on the
ego-vehicle’s path at close range. Prescribing a stop is a
precautionary measure to avoid collision while fulfilling
comfort requirements;

« a jam has been identified and the global-in-the-loop is
invoked to find an alternative path;

o in Stop&Go ACC mode, if the LV stops suddenly and
gets too close, the ego-vehicle will stop.

D. Precedence mode

In the presence of a road junction two different precedence
situations can occur and two different states must be designed
accordingly:

o Type 1: the ego-vehicle is approaching an intersection

with a compulsory stop. Entering this state:

1) the ego-vehicle evaluates the position and orienta-
tion that maximizes visibility at the intersection as
a function of the ego-vehicle characteristics (e.g.
dimensions, sensors) and stops exactly as described
above;



TABLE II: Cost function weights

Weight Nominal ACC Stop Precedence Tarffic
Coefficient Mode Mode Mode Mode Jam Retro
Wr, 1 5 12 10 2
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Fig. 4: Simulation environment overview

2) the ego-vehicle stands still until the intersection is
free from other vehicles;

3) when the road is free, the vehicle comes back in
Nominal Mode to resume its motion along the path.

o Type 2: the ego-vehicle is approaching a LH turn and
precedence must be given if necessary. Entering this
state:

1) the ego-vehicle slows down to be ready for a possible
stopping maneuver;

2) the crossing area and the opposite lane are scanned
while keeping low speed. If no other vehicles are
detected in this range, the ego-vehicle speeds up and
goes on its path, otherwise, it stops at a designated
point that does not invade the intersection;

3) when the road is free the vehicle can come back in
Nominal Mode and resume its motion along the path.

E. Path re-computation

This state is activated when a jam on the path is detected,
requiring a new path computation. First, the ego-vehicle
must stop, then the global-in-the-loop algorithm is invoked.
If no connection maneuver must be tracked, the vehicle
immediately returns to Nominal Mode. When tracking a
backward connection maneuver, the reference velocity is set
to —1m/s and to zero when the vehicle is close to the target.

VI. SIMULATION

A simplified simulation scenario is introduced in the
following to highlight the principal features of the pro-
posed approach. The ego-vehicles enter the parking area
one after the other and drive autonomously to the parking
bays assigned by the infrastructure. During the path to the
parking proximity point, the vehicle operates maneuvers
that highlight how functions like global-in-the-loop and stop
mode are effectively handled.

Fig. 4 provides a complete overview of each ego-vehicle’s
path and assigned bays. To provide a comprehensive simu-
lation environment, the test scenario is implemented in the
MATLAB Automated Driving Toolbox [27]. Furthermore, a
realistic 3D scenario has been created to conduct a com-
prehensive evaluation of the performance of our proposed

Fig. 5: The ego-vehicle, after a RH turn, detects a traffic jam caused by two
stationary vehicles
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Fig. 6: In the presence of a traffic jam, the ego-vehicle recompute the optimal
parking slot and updates its path

solution.

The global-in-the-loop operates when it is invoked, and
in general, to showcase the vehicle’s obstacle recognition
capabilities. As shown in Fig. 4 three different parking slots
are assigned to the Ego-vehicle 1 represented in blue. While
in the drop-off zone, the Global Planner is invoked and
computes the optimal parking bay and route. In this phase,
the target bay is the one that minimizes route length.

As shown in Fig. 5, left, the vehicle encountered a traffic
jam after the RH turn performed to reach the parking
bay 1. This situation cannot be detected in advance by the
sensors because of the presence of other parked vehicles.
In particular, the ego-vehicle detects two distinct obstacles
on the road, occupying both lanes, understands that they
are not moving, and decides to stop and identify them as
a jam (Fig. 5 right). This information is passed to the FSM
section of the behavioral logic, which invokes the global-
in-the-loop to evaluate possible alternative routes to another
assigned parking location. The grid of nodes is exploited for
the computation of the new path and a smooth connection
maneuver is generated to link the current vehicle’s position
to the new path. In this scenario, since the jam occupies both
lanes of the road, a backward-turn connection is performed
(Fig. 6, left image). While on its way during the backward
connection maneuver, the ego-vehicle can detect a group
of standing vehicles on the newly calculated path, that
prevents access to the parking bay 2. This time, thanks
to the clean line of sight, the ego-vehicle correctly detects
and identifies the obstacles as a jam (Fig. 6, center image),
invokes once again the global-in-the-loop, re-evaluates the
optimal destination and path, and decides to change parking
place, selecting the third and uppermost one as a destination
(Fig. 6, right image).

Fig. 7 reports the Ego vehicle I speed and steering angle
during the journey: it is possible to see that all the maneuvers
are performed obtaining a smooth behavior of the plots and
fulfilling the constraints identified during the design phase.

VII. CONCLUSION

This paper presented an ego-based AVP system that
avoids the need for intelligent infrastructure. In this ap-
proach, the infrastructure only provides essential data without
any decision-making responsibility. Simulations provide a
comprehensive understanding of the controller’s ability to
manage different scenarios. The introduction of APFs and
FSMs enables the ego-vehicle to safely perform tasks in
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all outlined contexts, effectively emulating human driver
behavior. This architecture is a promising solution for the
future, mainly due to two factors. Firstly, it eliminates the
need for expensive modifications to parking facilities or the
design and implementation of intelligent infrastructure. The
ego-based AVP can be seamlessly integrated into traditional
parking structures with minimal adjustments. Secondly, the
use of the ego-based approach is critical to maintaining
the reliability of the AVP application in the event of fail-
ures in the intelligent infrastructure. While it is undeniable
that intelligent infrastructure can significantly improve AVP
performance, it’s equally important to ensure uninterrupted
operation in the event of such infrastructure failures. This
goal can be achieved thanks to the flexibility of the proposed
ego-based approach, which is able to handle both situations
efficiently within a unified framework.
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