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Abstract—This study presents a novel approach for EEG-
based seizure detection leveraging a BERT-based model. The
model, BENDR, undergoes a two-phase training process. Initially,
it is pre-trained on the extensive Temple University Hospital
EEG Corpus (TUEG), a 1.5 TB dataset comprising over 10,000
subjects, to extract common EEG data patterns. Subsequently,
the model is fine-tuned on the CHB-MIT Scalp EEG Database,
consisting of 664 EEG recordings from 24 pediatric patients,
of which 198 contain seizure events. Key contributions include
optimizing fine-tuning on the CHB-MIT dataset, where the
impact of model architecture, pre-processing, and post-processing
techniques are thoroughly examined to enhance sensitivity and
reduce false positives per hour (FP/h). We also explored custom
training strategies to ascertain the most effective setup. The
model undergoes a novel second pre-training phase before subject-
specific fine-tuning, enhancing its generalization capabilities. The
optimized model demonstrates substantial performance enhance-
ments, achieving as low as 0.23 FP/h, 2.5× lower than the
baseline model, with a lower but still acceptable sensitivity rate,
showcasing the effectiveness of applying a BERT-based approach
on EEG-based seizure detection.

Clinical relevance— The model enhances clinical seizure detec-
tion, offering personalized treatments and better generalization
to new patients, akin to successes with transformer-based models,
thus significantly improving patient safety and care.

Index Terms—Healthcare, EEG, Time Series Classification,
Deep learning

I. INTRODUCTION & RELATED WORKS

Epilepsy is a neurological disorder that affects over 50
million individuals in the world [1] and is characterized by
abnormal electrical activity of the brain that causes recurrent
seizures. While medication management is the cornerstone of
treatment, drug-resistant cases often require more advanced
interventions, including surgery or neurostimulation. In this
context, noninvasive Electroencephalography (EEG) data plays
a crucial role in seizure detection and monitoring to trigger
closed-loop actions such as neurostimulation.

Current methods of classifying raw EEG mostly rely on
deep neural networks (DNNs), which demonstrated higher
accuracy than classical machine learning algorithms [2]. On
the other hand, DNNss often face challenges when extracting
features from relatively long time windows because of the lack
of exploring the global correlation of all the input samples [3],
[4]. Recent approaches [5], [6], [7] showed promising results
when working on a reduced number of EEG channels for the
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deployment of seizure detection approaches on wearable low-
power devices. However, most of the works mentioned above
fail to reach a False Positive per hour (FP/h) ratio that can
enable the clinical implementation of such methods. Although
they can correctly detect almost all seizure events, they show a
FP/h ratio that jeopardizes their real-world deployment, where
wrongly reported seizures will alert the patient and reduce
the detection device reliability. Furthermore, another key open
challenge in all DNN models is the unavailability of very large
high-quality labelled datasets [8], as collecting and labelling
seizure data is expensive and requires complex, human labour-
intensive protocols, as well as patient hospitalization.

Our work investigates whether a model based on the Trans-
former architecture, which has recently gained widespread
adoption in numerous deep learning applications, coupled with
self-supervision and pre-training on large unlabeled datasets,
can overcome the data labelling bottleneck and improve the
state-of-the-art EEG-based seizure detection for long-term
epilepsy monitoring. Our work focuses on the reduction of
the FP/h ratio, even at the expense of a reduced sensitiv-
ity, working towards the objective of clinical deployment of
seizure detection methods: we want a model that predicts a
sufficient number of seizure events, with the least number of
false alarms, thus reducing stress and anxiety of the monitored
patients. The state-of-the-art in this domain is dominated
by CNN-based methods [9], [10], [11], [12], with the best
approach achieving 100% sensitivity and 0.58 FP/h on CHB-
MIT dataset [13]. We take inspiration from a recent study [14]
that applied Transformers and self-supervised sequence learn-
ing in Brain–Computer Interface (BCI) with EEG data. Our
contributions are:

• The adaptation for a seizure detection task on CHB-MIT
of BERT-inspired Neural Data Representations (BENDR)
[14], an approach inspired by wav2vec 2.0 [15] and
Bidirectional Encoder Representations from Transformers
(BERT) [16] which allows to exploit massive amounts of
unlabeled EEG data.

• An extensive task-specific optimization of the base
BENDR model, including i) custom training strategies to
improve seizure-detection fine-tuning on CHB-MIT; ii)
the evaluation of the impact of architectural choices; iii)
the application of pre- and post-processing techniques.

• A promising application of a transformer-based approach,
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pre-trained on a large amount of unlabelled data, for the
seizure detection task.

Thanks to our optimizations, our best model can reduce the
FP/h to as low as 0.23, outperforming the best SoA model by
2.5×, with a lower yet acceptable sensitivity of 72.58% [17].

II. MATERIALS & METHODS

A. Model training and base architectures

1) Self-supervised pre-training: The first model training
step considered in this work consists in the same self-
supervised pre-training scheme of BENDR, which in turn
closely mirrors wav2vec 2.0 [15]. Namely, the model is pre-
trained on a large unlabelled EEG dataset (TUEG) [18] to
learn intrinsic patterns in EEG data. This initial phase then
lays the groundwork for subsequent fine-tuning on our smaller
and task-specific labelled dataset for seizure detection (CHB-
MIT). Fig. 1a illustrates the model architecture used in the
self-supervised pre-training phase. The encoder’s objective is
to reconstruct the original sequence elements. This is achieved
thanks to a contrastive loss function, which aims to align
each element of the transformer’s output sequence ci with the
corresponding input bi, notwithstanding the masking. In our
work, we do not re-implement this phase, and directly leverage
the pre-trained weights of the original BENDR paper [14].

2) Fine-tuning: The masking component is omitted in the
fine-tuning phase, and BENDR vectors are fed directly to the
Transformer. A classification block composed of one or more
linear layers with a final Softmax activation is then employed
to predict seizure occurrences based on the first element of the
transformer output sequence. Notably, during pre-training, this
first input token was assigned a special value of −5 (selected
to be out-of-distribution), and excluded from the contrastive
loss. This step is crucial to ease downstream specialization
to identify seizures accurately. Fig. 1b shows the architecture
used in this phase.

A significant modification of the fine-tuning task with
respect to BENDR is the use of the Sensitivity-Specificity
Weighted Cross-Entropy (SSWCE) loss, introduced by [7].

Building upon the insights from prior research [19], this
study employs a subject-specific approach for fine-tuning the
seizure detection model. Such a tailored approach is pivotal in
capturing the unique EEG patterns and seizure characteristics
inherent to each individual, enhancing sensitivity and speci-
ficity. Precisely, we employ a Leave-One-Out Cross-Validation
(LOOCV) strategy, which involves training the model on
all seizure-containing records of a patient except one. The
excluded record is then used as test set, to assess the model’s
efficacy. A further 20% of the training records is extracted to
obtain a validation set, used for early stopping, learning rate
scheduling, etc. The whole procedure is repeated cyclically,
considering different records as test set.

3) Second Supervised Pre-training: A novel aspect of this
work is the implementation of a second pre-training phase
on CHB-MIT, prior to the subject-specific LOOCV. In this
phase, the model is trained in a supervised way (as described
in Sec. II-A2 and with the architecture of Fig. 1b), to predict
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Fig. 1. Model architecture used during (a) self-supervised pretraining (b) the
second supervised pre-training and subject-specific fine-tuning.

seizures on all subjects except the target one. This step aims to
imbue the model with a broader understanding of EEG patterns
associated with seizures across different subjects, before hon-
ing in on the specific characteristics of a single patient. Figure
2 illustrates the comprehensive training approach employed in
the study.
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Fig. 2. The model training scheme considering the pre-training, the second
pre-training and the subject-specific LOOCV fine-tuning step

B. Task-specific optimizations

In order to maximize seizure detection accuracy, we explore
with varying the model architecture, and apply several pre- and
post-processing optimizations.

Keeping the fundamental architecture of Fig. 1, we explored
different classification block architectures, finally converging
to a sequence of 4 fully connected layers with decreasing
dimensions, progressively reducing the feature space {(512,
256), (256, 128), (128, 64), (64, 2)} and improving the
discriminative power of the model. We then vary the number
of blocks in the Convolutional stage in {3, 6}, and the number
of layers and heads in the Transformer Encoder in {2, 4, 6, 8,
12} to maximize seizure detection accuracy. Additionally, we
evaluate different weights initialization policies [20], in order
to apply weights pre-trained on TUEG to models of different
sizes (e.g., with a smaller/larger number of layers). Namely, to
initialize the additional layers of a bigger model with respect



to the original one, we tested both the duplication of the pre-
trained weights and random initialization. On the other hand,
when testing a smaller model, we initialize its weights only
with the layers shared with the original model.

Based on the hypothesis that early layers may capture
the underlying, task-independent structure of EEG data, we
consider freezing the weights of convolutional layers and
fine-tuning only the Transformer encoder. For completeness,
we also test how the model behaves when the Transformer
encoder is frozen as well.

As pre-processing, we consider applying a 5th-order But-
terworth bandpass filter within a 0.5–50 Hz frequency range to
the input, to smooth the signal and reduce ripple effects, fol-
lowed by either MinMax or MeanStd normalization. Moreover,
to address the challenge posed by the highly unbalanced nature
of EEG data, we tested two oversampling methods during
supervised training phases, Synthetic Minority Oversampling
TEchnique (SMOTE) and Weighted Random Sampler.

Lastly, we apply post-processing on the model’s output to
further reduce FP/h. Specifically, we go through the predicted
labels with a sliding window and replace the central element
with an aggregate prediction over the window. We consider
two aggregation criteria: majority voting and minPooling. In
the latter, we select the smallest predicted value in the window
as the output. Windows of lengths 3, 5, 7 were considered.

C. Training Protocol

We train our models using an Adam optimizer with a learn-
ing rate of 1e−4 and 0.01 weight decay, reducing the learning
rate of factor 0.1 when the validation loss stops improving
for 5 consecutive epochs. We apply early stopping on the
validation loss with a patience of 15 epochs. Dropout layers
with 50% probability are added both in the Convolutional stage
(between 1D convolutions and Group Normalization layers)
and in the Transformer encoder to reduce overfitting.

D. Datasets

1) Self-supervised Pre-training Data: For the self-
supervised pre-training phase, the Temple University Hospital
EEG Corpus (TUEG) [18] was utilized, encompassing 1.5 TB
of clinical EEG recordings. This dataset includes over 10,000
individuals, with diverse demographics, including 51% fe-
males and a wide age range. Pre-existing pre-training weights
were employed as the starting point for model initialization.

2) Supervised Fine-tuning Data: The supervised fine-
tuning phase utilized the CHB-MIT Scalp EEG Database [13],
comprising EEG recordings from 24 pediatric subjects with
intractable seizures at Boston Children’s Hospital. The dataset,
collected using the International 10-20 system, includes 664
EDF files, with 198 containing seizure events. For this study,
only files with seizure occurrences were considered. Addition-
ally, only 20 out of 23 channels were considered to match the
channels used in the pre-training task on TUEG. All signals
were sampled at 256 samples per second with 16-bit resolution
and a window length of 8s was considered, without overlap.

III. EXPERIMENTAL RESULTS

All results that are presented were obtained considering the
LOOCV setup described in II-A3, oversampling training data
with a Weighted Random sampler. In terms of metrics, we
focus on sensitivity and FP/h: sensitivity represents the ratio
of correctly identified seizure events, i.e., an event for which at
least one of the segments that compose it is assigned a positive
label; FP/h are the number of false alarms in an hour, which
is inversely proportional to the specificity. After an extensive
hyperparameters search for the SSWCE loss, we found α =
0.8 and β = 0.2 to be the best trade-off to maximize sensitivity
and reduce FP/h.

A. Model Performance

Table I details our seizure detection results on the CHB-
MIT dataset. First, we report the baseline models, i.e., the
ones obtained fine-tuning on CHB-MIT the original BENDR
architecture [14] without any of our optimizations. This
serves as a starting reference to demonstrate the improve-
ments achieved by more refined solutions. Baseline results
are reported both with pre-trained weights from TUEG and
without any pre-training. Without pre-training, the baseline
achieves a 50.15% sensitivity and an extremely high FP/h of
132.24. This is reduced to 10.38 FP/h when using pre-trained
weights, demonstrating the crucial role of self-supervised pre-
training for this kind of model. In subsequent table rows,
we report our successive refinements of the model obtained
with optimizations described in the previous section, applied
incrementally to the baseline. Results in bold represent the
configurations that are used after each optimization step as a
starting point for the next one.

First, we explore freezing the weights of the two main parts
of the architecture: as expected, freezing the encoder weights
worsens the results, while freezing the initial convolutional
blocks leads to good generalization capabilities. We impute
this to the fact that initial convolutional layers extract generic
enough (i.e., not-task-specific) features from EEG signals
during the pre-training. This model reaches better sensitivity
(54.93%) and FP/h (12.44). On top of this, by applying our
second (supervised) pre-training and filtering pre-processing,
we obtain a model with an improved sensitivity of 69.11%
and a reduced FP/h of 6.95. The last steps are the exploration
of the model architecture and the application of pre- and post-
processing. Firstly, MeanStd normalization behaves better than
the MinMax one. From what concerns model architecture,
we notice that a more complex classifier, can learn more
discriminative EEG patterns and make more accurate pre-
dictions, reaching 81.87% sensitivity and 2.75 FP/h. Then,
we tune the number of convolutional layers and transformer
block, obtaining the best generalization capabilities with 6
convolutional blocks and 4 attention layers in the encoder,
with 4 heads each. Our best post-processing pipeline applies
minPooling on the output, using a sliding window of length
3. This leads to 72.58% of seizures detected, with 0.23 FP/h.



TABLE I
RESULTS OBTAINED ON OPTIMIZATION DIMENSIONS ON CHB-MIT

Optimization
Dimension Setup Detected

Seizures [%] FP/h

Baseline w/o pre-trained weights 50.15 132.24
w pre-trained weights 43.24 10.38

Weight
Initialization

freeze conv. layers 54.93 12.44
freeze transf. encoder 57.96 91.56

Pre-training w second-pretraining 69.11 6.95

Pre-processing MeanStd + Filtering 82.44 4.01
MinMax + Filtering 79.12 11.32

Model
Architecture

new classifier 81.87 2.75

Dimension
(conv., transf.)

6, 12 86.55 4.59
6, 4 83.57 2.81
6, 2 85.91 5.35
3, 4 82.01 3.88

Post-processing
Majority voting 78.16 0.60

minPooling 72.58 0.23
Majority + minPooling 73.28 0.26

TABLE II
COMPARISON WITH SOA SEIZURE DETECTION ON CHB-MIT

Type Work Detected
Seizures [%] FP/h

CNN-based

Qui et al. [23] 97.1 7.51
Wang et al. [9] 97.52 3.42
Zhao et al. [10] 97.79 1.25

Li et al. [11] 98.47 0.63
Sahani et al. [12] 100 0.58

Transformer-based
Yan et al. [24] 96.01 27.14

Hussein et al. [21] 99.8 1.08
Our work 72.58 0.23

B. Comparison with State-of-the-Art

Table II shows a comparative analysis with the latest state-
of-the-art works that address seizure detection on CHB-MIT
considering all patients and using from 18 up to 23 EEG chan-
nels. We distinguish between CNN-based and Transformer-
based approaches. Our approach outperforms all of them in
terms of FP/h, at the cost of lower sensitivity, demonstrat-
ing the capability of modern transformer models to capture
complex epileptic patterns in EEG. Our approach reduces
FP/h of the best performing CNN-based model [12] by
2.5×, while simplifying the heavy pre-processing and feature
extraction steps, typical of CNN-based approaches, at the
expense of reduced sensitivity of the model (27.42% decrease).
Our approach significantly improves upon other transformer-
based models, with a 4.7× lower FP/h with respect to [21].
Noteworthy, this is crucial for a real-life closed-loop system,
given that a high number of FP/h per hour would cause many
warnings in patients, which in turn increase their stress, as
discussed in [22]. Moreover, a sensitivity over 50% has already
been showed to be an acceptable requirement for a seizure
detection method [17].

IV. CONCLUSION

This work proposes a BERT-based approach for seizure
detection on the CHB-MIT dataset, demonstrating the potential
of transfer learning from general EEG data to seizure detection
task. We also validate the effectiveness of a Transformer-based
architecture which, once pre-trained on a large amount of un-

labelled data, can partially overcome data labelling bottleneck
and improve the state-of-the-art results. We then extensively
explore hyper-parameters and pre-/post-processing techniques
to improve the model performance. The best model found
obtains 0.23 FP/h, detecting 72.58% of seizures. Our future
work will include compressing the model and reducing the
EEG channels to explore the possibility of its deployment on
a wearable device, as well as implementing artefacts detection
and removal algorithms [25] to further improve performances
towards the clinical implementation of such methods.
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