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Abstract— Global Navigation Satellite Systems (GNSS) are one
of the most important infrastructures in the modern world for
positioning and timing, also enabling many critical applications
that require the reliability of the received signals. However, it is well
known that the power of the GNSS signals at the receiver’s antenna
is extremely weak, and radio-frequency interference affecting the
GNSS bandwidths might lead to reduced positioning and timing
accuracy or even a complete lack of the navigation solution.
Therefore, in order to mitigate interference in the GNSS receivers
and guarantee reliable solutions, interference classification becomes
of paramount importance. This paper proposes an approach for
the automatic and accurate classification of the most common
interference and jammers based on the use of Convolutional Neural
Networks (CNN). The input for the network is the time-frequency
representation of the received signal, together with features in the
time and frequency domains. The time-frequency representation is
obtained using both the Wigner-Ville and the short-time Fourier
transforms. Moreover, the performance of the proposed method
is compared using two different CNN architectures, AlexNet and
ResNet. The effectiveness of the method is shown in two case
studies: Monitoring and classification by a terrestrial station and
from a Low Earth Orbit (LEO) satellite. The results reveal that
the proposed method achieves a high accuracy of 99.69% in
classifying interference, even with low interference power, and can
be implemented as a real-time tool for monitoring jammers.

Index Terms— GNSS, Interference, Jammer, classification, De-
tection, Machine Learning, Deep Learning, Convolutional Neural
Networks, AlexNet, ResNet
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I. INTRODUCTION

The number of Global Navigation Satellite Systems
(GNSS) users is increasing enormously due to the
high accuracy and precision of position determination
and timing. Additionally, the widespread availability
and free access to most GNSS signals have further
fueled this surge in users. The widespread use of
GNSS-based positioning and timing services includes
several applications for which the availability and
continuity of such services are of paramount importance.
However, it is well known that the received power
of GNSS signals at the receiver antenna is very
weak, thus they are vulnerable to Radio Frequency
Interference (RFI) [1]. RFI can be unintentionally caused
by signals broadcasted from other telecommunications
infrastructures with carrier frequencies within the GNSS
band like Distance Measuring Equipment (DME) and
Tactical Air Navigation (TACAN) or by higher-order
harmonics and intermodulation outside the GNSS band,
such as digital TV channels [2]. Intentional RFI is instead
based on signals transmitted by Personal Privacy Devices
(PPD) to disrupt GNSS receivers by purpose. This
type of interference can take various forms, including
spoofing, meaconing or jamming, with spoofing aiming
at transmitting counterfeit yet plausible GNSS signals
to induce false Position, Velocity, and Time (PVT)
estimations at targeted victim receiver [3]. Meaconing
typically involves acquiring genuine navigation signals
by capturing and retransmitting them, leading receivers to
inaccurately determine PVT [4] [5]. On the other hand,
jamming refers to transmitting Radio Frequency (RF)
signals to disturb the receiver’s RF chain. GNSS jammers
can be implemented by transmitting frequency-modulated
tones of a proper power level, spanning the entire GNSS
band in a specific area [6].

The intense power of interference or jamming signals
might completely saturate the initial stages of a GNSS
receiver front-end, in which the receiver can be blinded
and stop functioning, often due to intentional jammers.
While in many cases, intermediate or low power
interferences degrade the PVT estimation performed by a
GNSS receiver, thus threatening the applications relying
on it. These power levels are particularly dangerous,
as they sometimes go undetected by the receiver [2].
The potential impact of RFI includes being a source of
error for the signal processing stages of receivers and
increasing the error of code and phase measurements.
Consequently, this can lead to biases and additional
noise for the constructed pseudoranges [7]. Therefore,
in order to achieve high reliability and prevent a
complete lack of positioning, GNSS applications need
to detect interferences and further classify the types of
interference for mitigation. Early detection and detailed
RFI characteristics analysis are crucial to implementing
effective mitigation strategies. For instance, techniques
such as pulse blanking for narrow sweep chirps [8] and
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pulsed interference [9], adaptive notch filtering (ANF)
for continuous wave and sawtooth chirps [10] [11], and
robust filtering for tick chirps have proven effective [12].
The ANF has demonstrated effective performance
against continuous wave and chirp signals. However, its
effectiveness heavily relies on its configuration, which
needs adjustment based on the type of interference
encountered, highlighting the importance of accurate
interference classification [6].

In recent years, there has been considerable interest
in the use of Machine Learning (ML) methods in the
GNSS context, and [13] [14] present some applications in
GNSS that use ML to provide a new solution or service.
Generally speaking, any ML method builds a model based
on an appropriate set of features that can be used to
achieve the desired classification goal [15]. Limiting our
interest to RFI detection and classification, ML introduces
a new paradigm for detecting and classifying GNSS
threats, such as the presence of interference, spoofing,
scintillation events, and multipath. This study aims to
introduce an effective method that utilizes a Convolu-
tional Neural Network (CNN) to classify RFI signals
in an automatic way, improving accuracy with respect
to other similar methods presented in the literature. The
proposed method works at the pre-correlation stage, and
the input is the stream of raw samples from a radio
front-end. This pipeline enables real-time interference
monitoring and classification for the GNSS monitoring
station [16], which provides Intermediate-Frequency (IF),
In-phase/Quadrature (IQ) raw sample. The inputs to the
CNN are the visual representation of the raw sample in
the time-frequency domain, together with the statistical
parameters and metrics derived from the raw samples in
the time and frequency domain. The preliminary work
[17] focused on the time-frequency representation of raw
samples only. While in this paper, the CNN model is aided
by the extracted features to improve the performance,
particularly in classifying low-power interference. This
article investigates the classification and characteriza-
tion of 16 different types of RFI, namely the 11 most
common chirp signals found in [18] [19], Frequency
Hopping (FH) jammers, Continuous Wave Interference
(CWI) (or Amplitude Modulation (AM) jammer), nar-
rowband jammers, Frequency Modulation (FM) jammers
and Pulsed interference (DME-like). Moreover, the Short-
Time Fourier Transform (STFT) and the Wigner-Ville
Transform (WVT) are the two studied transformations
to analyze the signal in the time-frequency domain. In
addition, the performance of two different CNN architec-
tures, AlexNet and ResNet, is evaluated and discussed in
terms of accuracy, F1-score, inference time, and the size
of each model on disk. The effectiveness of the proposed
method is demonstrated in two case-study scenarios: the
monitoring and classification by a terrestrial station and
from a Low-Earth-Orbit (LEO) satellite. To summarize,
the key contributions of this paper are:

• The classification of a wider variety of interference
signals, specifically covering 16 different types by
means of an efficient CNN in terms of performance.

• Demonstrating the effectiveness at identifying low-
power RFI signals that might still affect positioning
performance.

The remainder of this paper is organized as follows.
Section II reviews the related works, section III describes
the proposed methodology, Section IV introduces the
two case-study scenarios, training phase and evaluation
metrics, while Section V reports the simulation result,
and conclusions are provided in Section VI. Moreover,
Appendix A provides detailed mathematical models and
descriptions of the GNSS interferences studied in this
article. Appendix B offers a summary and background
on how CNNs operate on input images.

II. RELATED WORKS

Given that the presence of interferences disrupts
GNSS receiver operation, successful threat detection is
relatively easy to achieve. However, if an effective coun-
termeasure has to be applied for interference mitigation,
their characteristics must be assessed in terms of time and
frequency behavior, not just as an on-off presence. This is
a typical classification task that can be performed using
traditional techniques or ML-based methods thanks to
the increased computational capabilities of GNSS receiver
processors.

A. Traditional Techniques

In general, traditional interference classification
requires multiple techniques and an ”interference alert”
mechanism to integrate and unify the input from different
methods for a confirmed decision on the presence and
harmfulness of detected interference. This is because
traditional detection techniques are tailored to specific
interference characteristics, balancing sensitivity to a
particular type against generality for all types. Typically,
the RFI detection techniques are based on recognizing
the deviations from normal conditions (distortions)
caused by interference affecting the GNSS antenna [2].
These techniques can be performed using measurements
from different stages of receivers, which can generally
be categorized into two groups: precorrelation and
post-correlation techniques. Several techniques have
been proposed in the literature such as, Automatic Gain
Control (AGC) monitoring [20], time-domain statistical
analysis [21], as well as signal monitoring using
transformed domain techniques (spectral monitoring [22]
or time-frequency analysis [23] [24]) that work in the
front-end stage of the GNSS receiver (precorrelation
techniques). Monitoring the power density ratio between
carrier and noise (C/N0) [25], statistical analysis
of the correlation result [26], pseudorange and PVT
accuracy monitoring [2] are other approaches to detect
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RFI in the post-correlation stage. The post-correlation
techniques may be less effective in situations with
significant interference power because they depend
on the precondition of typical signal acquisition and
tracking [2]. Furthermore, some of the mentioned
techniques, such as AGC or C/N0 monitoring, raise an
alarm for detected power in every case of interference.
For example, with no differentiation between a chirp
signal or a continuous wave as interference; therefore,
they may not be useful for classification tasks.

The traditional techniques utilize maximum likelihood
for classification [27] [28] and demand significant human
involvement in design, requiring the development and
fine-tuning of multiple classification stages for each type
of interference [29]. However, traditional techniques may
be limited when it comes to automatically classifying
interference types, especially when dealing with chirp
signals due to their diversity. For example, as noted in
[18], characterizing chirp signals may show similarities
in the time or frequency domains, but the distinctive
swept-frequency nature of chirp signals can be identified
only through time-frequency analysis. Classifying differ-
ent types of chirps typically necessitates post-processing
and human-driven analysis, integrating multiple facts
from various domains [19]. In addition, as software-
defined radio techniques advance, there is a concern about
more complex jamming attacks emerging, such as smart
jamming, which can dynamically change jammer type
during attacks [30]. Hence, automated classification of
different kind of interferences, specially chirp signals,
using traditional techniques is challenging due to their
diversity.

B. Machine Learning Techniques

Leveraging ML algorithms can facilitate the
development of a unified model capable of learning
intricate patterns of interference signals and adapting to
dynamic interference scenarios. ML-based methods have
been recently proposed for the classification of different
kinds of threats to GNSS signals such as jamming,
spoofing, and multipath, with a unified model [31]–
[36]. Since our proposed methodology focuses solely
on jamming and unintentional interference, excluding
spoofing and multipath, we do not delve into the details
of these studies. Several studies have addressed the use of
ML for RFI detection and classification, processing the
time series of digital samples at the output of the receiver
front-end. Qin and Dovis [19] investigated K-nearest
neighbor algorithms for classifying chirp jamming
signals as reported in [18] using the features extracted
from the received signal at the precorrelation stage as
input of the model, with an overall accuracy of 92.6%.
Xu et al. [37] extract the combined entropy feature
of three types of interference, namely FM, AM, and
Phase Modulation (PM). They then implemented Support
Vector Machine (SVM) and Random Forest (RF) for

the classification task and achieved an average accuracy
of 90%. There have been similar studies that focus on
extracting features from the raw samples of received
signals or raw observation (feature-based approaches)
and utilizing ML models for classification tasks [38],
[39]. Different from previous mentioned studies, Ferre
et al. [40] proposed a method for classification by
analyzing spectrogram images from five different types
of jammers (AM jammers, FM jammers, linear chirp
jammers, pulse jammers, and narrowband jammers). They
performed SVM and CNN to do the classification task
with an accuracy of 94.90 % and 91.36 %, respectively.
Similarly, Swinney and Woods [41] performed a CNN
for feature extraction from a concatenation image of the
spectrogram, Power Spectral Density (PSD), histogram,
and raw IQ constellation of jamming signals (the same
types of jammers as [40]). Next, SVM, RF, and logistic
regression are evaluated for classification, with SVM
having the best accuracy of 98%. Peng Wu et al.
investigated the use of federated learning for training the
CNN model proposed by [40], achieving an accuracy
of 93%. Recently, Brieger et al. [42] [43] proposed a
multi-stage framework processing time series (C/N0,
number of satellites and etc.) and spectrogram data
separately. They performed a late and intermediate fusion
of the features extracted from the spectrogram by a
CNN architecture (ResNet18) and the time series by the
TS-Transformer. With an accuracy rate of 95.32 %, they
classified six different types of interferences.

The higher power interfering signals are relatively
easy to detect by the methods of ML, but the performance
of the GNSS receiver might be degraded even if the
interfering signal has low power and is hidden under the
noise. However, in such a case, it is not easy to detect
and classify it. The mentioned studies do not specifically
address low power of interference, being of course more
concerned with more disruptive signals. Nevertheless,
robust algorithms with higher sensitivity are essential in
identifying low power RFI for critical and high-end GNSS
applications. Furthermore, the other key question is the
computational complexity of such algorithms in terms
of resources (CPU and RAM) and the time-to-detect for
identifying the threat, which depends on the preprocessing
of raw samples and the time required by the model to
make a classification decision. Moreover, the works in
[40] [41] [42] used two different ML models, one for
feature extraction and the other for classification, which
means higher complexity of the algorithm since each
model requires separate tuning for optimal performance.
From the mentioned research, it can be seen that the
algorithms of ML, including the traditional ML and deep
neural networks or their concatenation, have introduced
novel approaches for detecting and classifying interfer-
ence. It is also shown that neural network methods provide
the best results among all ML methods, thus justifying
their investigation in the framework of this work.
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III. METHODOLOGY

Intentional interference by jammers or unintentional
interference can adversely affect GNSS receivers in a
given operational area, and may make them inoperable.
Chirp signals commonly used by jammers behave differ-
ently in terms of time and frequency characteristics, and
proper time-frequency analysis of the signals allows the
detection and classification of different kinds of jamming
signals. An appropriate Time-Frequency Representation
(TFR) can provide temporal and spectral information
simultaneously [44]. Since the TFR of signals can be
stored as images, the proposed method for categorizing
different types of interference relies on techniques used in
the field of ML-based image classification. Accordingly,
the interference classification task is transformed into an
image classification, where a model is trained to recognize
the target classes of pixels or vectors within an image.
The image classification task can be addressed using ML
models such as decision trees, RF, and SVM, where hand-
crafted features are manually derived from the images
and subsequently utilized as input for the classification
model. The challenge with this type of model lies in
selecting the most important features for each specific
image, and as the number of classes to classify grows,
feature extraction becomes increasingly cumbersome [45].
In response to these challenges, deep learning algorithms,
especially CNN, automatically extract the most salient
and informative features for each specific class [46].
Therefore, in this work, a CNN-based method is chosen
as the model classifier, which is the most popular deep
learning method. The CNN models are widely used in the
domain of image classification and have achieved state-
of-the-art results in computer vision tasks [47] [48] [49].
Nevertheless, when dealing with low-power interference,
the signal might be masked by the noise, and it is not
easy to find a pattern in TFR as an image by ML methods.
To overcome this limitation, other relevant signal features
in the time and frequency domains are derived to aid
classification. This paper discusses the effectiveness of the
proposed method named as Feature-Aided CNN classifier.

A. Feature-Aided CNN Classifier

As explained earlier, the method is performed at
the pre-correlation stage, and its concept block diagram
depicted in Fig. 1. The input data comprises digitized ver-
sion of the received GNSS signal with possible interfer-
ence that the explanation of its simulation will be provided
in Section IV. The following step involves preprocessing
and consists of two distinct phases, aimed at extracting
pertinent information for the model classifier through
the analysis of the input signal across time, frequency
and time-frequency domains. Firstly, the input signal is
examined within the time-frequency domain, resulting in
the creation of a TFR that is preserved as an image. This
transformation help capture the dynamic spectral content
of the signal over time, providing a detailed view of
both the GNSS signal and potential interference. Within
this framework, two distinct transformations are employed
and investigated, and their specifics will be explained
further in Section B. Secondly, acting with the identical
time series of input signals, some statistics and metrics,
called aiding features, are derived from both the time
and frequency domains. In the time domain, common
statistical values such as the mean, median, standard
deviation, mean absolute deviation, root mean square,
25th percentile, 75th percentile, and inter-percentile range
are used to measure the dispersion and central tendency
of the raw samples. These features offer insights into the
overall behavior and variability of the received signal.
Additionally, higher-order statistics like skewness and
kurtosis [50] are employed to measure the asymmetry and
outlier-prone nature of the probability distribution, respec-
tively. Entropy is included to quantify the uncertainty and
randomness of the samples, providing information about
the signal’s complexity. In the frequency domain, the
features focus on the power characteristics of the signal,
since the received power of GNSS signals is typically
below the noise floor, it is not expected to have high
power spectral components in the frequency domain in
presence of GNSS signals only. Therefore, any spectral
component with significant power levels in the frequency
domain is likely due to interference signals. The PSD then
provides information about the location and bandwidth
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TABLE I: List of features in time and frequency domains [19]

Domain Features Description

Time Domain

Mean value

Common statistical values of raw sample to measure the dispersion of the samples

Median value

Standard deviation

Mean absolute deviation

Root Mean Square

25th percentile

75th percentile

Inter Percentile Range

Skewness Measure the asymmetry of the probability distribution.

Kurtosis Measure the outlier-prone of the probability distribution.

Entropy Measure the uncertainty and randomness of the samples.

Frequency Domain

Frequency of max power Frequency of the maximum power located.

Maximum Power Maximum power obtained in frequency domain.

Mean Power Mean power obtained in frequency domain.

in the frequency of the RFI and its relative power level
with respect to the GNSS signals. Mean power provides
an average measure of the signal’s power across all
frequencies. These frequency domain features help dif-
ferentiate different kinds of interference. To capture these
frequency domain features, the PSD is computed using
Welch’s method [51] with the following parameters: the
segment length (nfft) is set to 512, a boxcar window with
the same length of nfft, zero overlap between segments,
and the PSD is computed for both positive and negative
frequencies. Additionally, the raw signal is mean-centered
before the calculation to remove any DC offset. Table
I presents selected features in the time and frequency
domains that are employed to describe the characteristics
of interferences. These features are widely and commonly
used as for example in [19], [43], [52]. The subsequent
step after preprocessing involves feeding the TFR image
to the CNN for feature extraction. The CNN processes
the TFR image to learn and extract high-level features
that represent the signal characteristics. Following this,
the extracted features from the CNN model are first
flattened, which converts the 2D feature maps into a 1D
feature vector. These flattened CNN features are then
concatenated with aiding features derived from the time
and frequency domains as illustrated in Figure 2. This
fusion of heterogeneous features generates a combined
feature vector, which captures the temporal, spectral,
and learned representations in time-frequency domain of
the signal. The fully connected layers perform the final
classification by processing the combined features and
making predictions about the interference types. Finally,
the raw output scores (logits) from the last fully connected
layer go to a softmax layer [53], which provides the
probabilities associated with each interference type as the
output of methodology. Further details regarding CNN

models and their architectures explained in Section C of
this chapter.

3 Fully connected layers
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Output

Fig. 2: Features fusion of proposed methodology

B. Time-Frequency Representation as Image

Most of the effective jammers exhibit dynamic fre-
quency behavior, where their instantaneous frequency
changes over time such as chirp signals. Despite chirp
signals possess a periodic pattern, their frequency content
varies, requiring a time-frequency representation to cap-
ture their characteristics. For the time-frequency analysis,
STFT and WVT are investigated. Both of these transforms
allow for finding a pattern of interference. For example,
the linear chirp jammer, widely used in PPD jamming,
can get various forms characterized by frequency sweeps
across different bandwidths. These linear chirp signals
can have either wide or narrow bandwidths and differ in
sweep rate, categorized into four groups: slow, medium,
fast, and rapid. Each type exhibits progressively faster
and more pronounced frequency changes, with steeper
slopes reflecting the increased transition rate that can be
visualized in TFR.
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1. STFT:
It considers a window function of fixed length for seg-

menting the non-stationary signal into shorter segments
(frames), and the Fourier transform of each frame is
separately assessed [54]. The formula for STFT can be
written as [55]:

STFTx[n, k] =

M−1∑
m=0

x[n+m]w[m]e−j2πmk/N (1)

where n and k respectively denote time frame and the
frequency bin indices, M is the length of each window
segment, and w[m] represents the window function. The
spectrogram is a representation of the signal’s power spec-
tral density, which is derived from the squared magnitude
of the STFT [56].
The STFT employs 128 FFT points in each analysis win-
dow, providing detailed frequency resolution. To ensure
smooth transitions and continuity between consecutive
analysis windows, the windows overlap by 99% of the
FFT points, resulting in an overlap of approximately 127
samples. This high degree of overlap enhances the time
resolution of the spectrogram by providing more frequent
updates to the time-frequency representation, reducing
artifacts, and ensuring a smoother and more continuous
spectrogram. Fig. 3 provides an example of spectrogram
from each interference where C/N0 of the GNSS signal
is 40 dBHz and the interference’s power is -120 dBW.

2. WVT:
There are several presentations in literature for the

Discrete WVT, the general form [57] for a signal x[t]
considering a window of M samples, can be written as :

WVx[n, k] =

M∑
m=−M

x
[
n+

m

2

]
x∗

[
n− m

2

]
e−j2πmk/N

(2)
where x∗ denotes the conjugate of x, n and k denote

the index numbers for the time and frequency vectors,
respectively. In order to avoid the cross-term effect in
quadratic form, Smoothed Pseudo WVT (SPWVT) [58]
[59] is used to analyze the signal, which uses independent
window functions to smooth in time and frequency as :

SPWVx[n, k] =
∑M

m=−M h[m]
∑P

p=−P g[p− n]x
[
p+ m

2

]
x∗ [p− m

2

]
e−j2πmk/N

(3)
where h[.] and g[.] are arbitrary windows, and their

shape and width will affect the smoothing performed in
both frequency and time on WVT. The WVT provides a
high-resolution representation in both time and frequency
for non-stationary signals. Furthermore, it has the special
properties of satisfying the time and frequency marginals
in terms of the instantaneous power in time, energy
spectrum in frequency, and total energy of the signal in
the time and frequency plane [60].

C. Convolutional Neural Networks

This paper evaluates the performance of two CNN
architectures for classifying GNSS interferences: AlexNet
(a classical architecture) and ResNet (a modern architec-
ture) [61] [62]. The selection of these models is informed
by their performance on the ImageNet dataset [63].
AlexNet is chosen for its superior inference time, while
ResNet is preferred for its higher accuracy in classification
tasks. The general architecture of both models remains
largely unchanged, with a minor modification that adds
aiding features to the architecture and replaces the fully
connected layers with newly designed ones. Specifically,
this modification involves combining the aiding features
with the output of the final convolutional layer. These con-
catenated features are then fed into three fully connected
layers for classification. Each of these layers maintains
the same input and output dimensions, except for the
final layer, which matches the number of interference
classes. The parameters of each model, such as weights
and biases, undergo random initialization. The details
regarding how CNN operates is provided in Appendix
B and the main characteristics of both chosen networks
are briefly summarised in the following.

1. AlexNet:
AlexNet is one of the most studied and famous archi-

tectures designed by Alex Krizhevsky and achieved high
accuracies in image classification. The input to AlexNet
can be an image of size 227 × 227 × 3, and the last
dimension refers to the depth or channel of input [61].
AlexNet has eight layers of depth and 60 million pa-
rameters. It comprises five convolutional layers in which
the activation function is ReLU, and max-pooling layers
follow the first, second, and last one. AlexNet also utilizes
dropout regularisation in the fully connected layers to
reduce overfitting. Dropout is a technique that randomly
drops a fraction of neurons in a layer from the neural
network during training [64].

2. ResNet:
Recently, CNN achieved state-of-the-art results in

solving complex tasks in computer vision by increasing
the network’s depth (layers’ number) or the size and num-
ber of the kernel. Nevertheless, it has been observed that
as the network goes deeper, accuracy gets saturated, the
training is more complicated, and then the network tends
to degrade [65]. ResNet, short for Residual Network,
was presented by He et al. [62] in 2015 to overcome
these problems. The idea is to directly connect the input
of a layer to further layers by skipping some layers of
models, known as skip connection, shown in Fig. 2 of
[62]. There are variant versions of ResNet that follow
the same concept but with different numbers of layers.
Among them, ResNet-50 reported being suitable in terms
of depth, training time, and accuracy. The ResNet-50 has
23 million parameters and 49 convolution layers, where
the last one connects to average pooling layers.
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Fig. 3: Spectrogram of common interferences used in this context

IV. SCENARIOS, TRAINING PHASE AND
PERFORMANCE METRICS

A. Scenarios and datasets

As previously introduced, the proposed technique is
intended for the digitized version of received signals, at
the output of a GNSS receiver’s front-end. The front-
end typically amplifies and filters the GNSS analog sig-
nal coming from the antenna to minimize out-of-band
contributions. Then GNSS signal is downconverted to IF
and passed to the Analog to Digital (A/D) conversion.
Assuming a situation where the interference signal exists,
the discrete-time signal at the IF after the front-end stage
can be written as [2]:

y
IF

[n] = y
IF

(nTs) =
∑L−1

i=0 s
IF,i

(nTs) + i
IF

(nTs) + w(nTs)

(4)
where s

IF,i
(nTs) is the received GNSS signal of

interest from lth satellite, i
IF

(nTs) is the additive inter-
ference, w(nTs) are the samples of the complex additive
white Gaussian noise (thermal noise), Ts is the sampling
interval and n is the discrete time index. The suggested
methodology is being evaluated in two different scenarios:

detecting and classifying interference on the ground and
from space. These two scenarios are simulated in realistic
conditions of signal-to-noise ratio for a set of possible
interference (i

IF
[n]).

1. Interference Classification on the Ground
Fig. 4 depicts the scenario of terrestrial interference

monitoring, where the receiver remains static and receives
both GNSS and interference signals at its antenna. The
process of simulating GNSS and interference signals and
the generation of datasets are described in the following.

GNSS 
Receiver

Interference 
source

GNSS Satellites

Fig. 4: Terrestrial interference monitoring scenario
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GNSS Signals: The GNSS signals in this scenario
are from the GPS constellation and belong to the L1
band, with a central frequency of 1575.42MHz. The
C/N0 for these signals is between 25 and 50 dBHz
at the step of 1 dB where N0 = −202 dBW/Hz (The
signal power ranges from -177 to -152 dBW). The
25 to 50 dBHz range indicates that the quality of the
signals ranges from bad reception to good one and may
be susceptible to interference in different ways. The
GPS signals are simulated utilizing N-FUELS (FULL
Educational Library of Signals for Navigation) [66], a
signal/disturbances generator. N-FUELS is implemented
as a series of non-real-time MATLAB scripts that can
simulate samples of a GNSS signal as seen by the
receiver after the ADC (front-end output). N-FUELS
indeed take into account the effect of the front-end filter.
However, possible in-band harmonics generated by the
saturation effects that might be induced by the jammers’
strong received power, are not modeled. The GPS signal
is processed through an 8th-order Butterworth filter
with a bandwidth of 20.46 MHz. These signals are
subsequently sampled at a rate of fs = 40MHz in the
I/Q components, with a 64-bit floating point precision
(double type: simulated floating-point signal with no
ADC limitations).

Interference Signals: GNSS signals are combined
with interference signals to simulate a realistic scenario
where disruption is present. This is achieved mathe-
matically by adding the GNSS and interference signals
together, as stated in Equation 4. The models and char-
acteristic of the simulated interference are reported in
Appendix A of this paper. In this scenario, the interference
power ranges from -142 dBW to -107 dBW at the
step of 1 dB, resulting in an Interference to Noise Ratio
(INR) [67] of -13 dB to 22 dB. In this work, the term
low power interference refers to the negative values of
the INR. Considering the combination of C/N0 for the
GNSS signals between 25 and 50 dBHz (26 cases), and
interference signal power varying between -142 dBW and
-107 dBW (36 cases), different conditions of interference-
to-signal ratios (also knows as Jamming-to-signal ratio
J/S) ranging from 10 to 70 dB are considered in this
scenario. Furthermore, in the Monte Carlo analysis, at
each step of the interference-to-signal ratio, two other
factors are considered for interferences as follows:

• Considering real-world scenarios where the center
frequency of interference may vary with respect
to the center frequency of GNSS bands, we have
analyzed different interference center frequencies,
randomly chosen from -9 to 9 MHz relative to the
center frequency of GPS L1 (5 cases).

• Different cases (7 cases) of the initial relative phase
between the interference and GNSS signal are sim-
ulated.

Datasets: Two datasets are generated for this scenario,
each representing a different time-frequency analysis

(STFT and WVT). These datasets are generated using a
Monte Carlo analysis, combining various GNSS signals in
terms of C/N0 with interference signals at various power
levels, center frequencies, and initial relative phase. This
provides a realistic classification scenario and ensures that
all possible cases where the GNSS signal is at high power
and interference power is low and vice versa are included.
Each dataset consists of 17 classes, of which one refers to
the GNSS signal with no interference, while the other 16
classes represent GNSS signals in the presence of various
types of interference. Each class of dataset comprises
NMC = 32,760 elements that determined by combining
different parameter values as:

NMC = α× β × γ × δ (5)

where α represents the number of GNSS signal
power cases, with 26 different power levels considered.
β is the number of interference power cases, which is 36.
γ is the number of randomly chosen center frequencies,
with five different values used. Lastly δ is the number
of cases to have different initial relative phase, set to
7. Each element in the dataset corresponds to a unique
combination of these four parameters, which comprises
a TFR calculated over a 100µs snapshot of raw signal
samples (IQ) and statistical features extracted over a
window of 200µs.

Additionally, within the scenario of terrestrial interfer-
ence monitoring, a lower number of bits quantization has
been investigated. These scenarios are simulated under
identical parameters explained so far using STFT as the
TFR technique and taking into account the impact of ADC
quantization employing 8-bit and 4-bit for both the in-
phase and quadrature components of the signal.

2. Interference Classification from the Space
Recent works address the idea of monitoring the

presence of GNSS interference from space [68] [69]
[70], as a promising way to cover large areas. It refers
to the process of detecting and monitoring disruptive
signals that can impact the performance of GNSS from
a space-based perspective. Moreover, the classification of
detected interference is needed for further investigation
and provides more details related to their frequency and
time domain.

Interference 
source

Monitoring Satellite

R = 600 Km (LEO)

Ground 
Station

Fig. 5: Space-based interference monitoring scenario
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Figure 5 illustrates the simulation of this scenario,
and the main distinction of this scenario from the prior
scenario is that the antenna on-board of satellite is solely
receiving the interference signal and background noise.
The architecture of this monitoring system consists
essentially of a NADIR antenna, a Radio Front-End
(RFE), and a software processing unit. The NADIR
antenna is pointed toward the earth’s surface to grab
potential interference generated on the ground. The RFE
is responsible for converting the signal from analog to
digital. It first amplifies and filters the analog signal
and then downconverts to an intermediate frequency to
allow digital conversion. Further details regarding the
architecture can be found in [70].

Relying on the limitations and a scarcity of resources
on-board of satellite, the raw samples of the received
interfering signals may be either processed on-board or
transmitted to a ground station for implementation of the
classification algorithms. Depending also on the storage
resources and the downlink channel capacity in case
of remote processing, the RFE bandwidths (BIF ) and
the number of bits of the ADC might be constrained.
Therefore, three possible BIF of 5, 10, and 20 MHz
are evaluated in this scenario. To simulate the received
signal on-board of the satellite, the interference signals are
generated with a sampling frequency of fs = 2.2 × BIF

to have some margin against the Nyquist frequency. In
addition, the interference signal is embedded in complex
Additive White Gaussian Noise (AWGN). The variance
of the thermal noise over the bandwidth BIF has been
accounted in the margin as well: σ2

IF = N0 × BIF

where N0 is the power spectral density of the noise,
estimated to be N0 = −205 dBW/Hz. In this specific
scenario, the minimum target power that can be detected
for an interfering signal received by the LEO satellite
has been set to -142 dBW. Within this context, three
distinct datasets are generated by varying the chosen RFE
bandwidth (5, 10, and 20 MHz). The interference power
levels within each dataset range from -142 dBW to -
125 dBW, incrementing by one dB (18 different cases).
Similar to the previous scenario, we have also considered
the variation of interference center frequency in this
scenario. Specifically, the interference center frequency
has been randomly chosen (5 cases) between −BIF /2 and
BIF /2, ensuring a comprehensive exploration of different
interference conditions. For the Monte Carlo analysis,
various combinations of initial relative phase (7 cases) and
additional random AWGN (15 cases) with the same noise
floor are simulated. Consequently, each dataset comprises
151,200 elements, evenly distributed among the different
interference types (18× 7× 15× 5 = 9, 450 elements for
each class).

B. Training phase

Since the training process of ML methods requires a
lot of computational power, memory, and data storage, the

training process is performed in the Google Colaboratory
(Colab) environment [71]. The available resources for
the training process include a single GPU core of Tesla
T4 (Intel(R) Xeon(R) @ 2.00GHz) and 13GB of RAM
memory. Further details of the training are as follows:

• Framework: CNN models are developed using the
TensorFlow library in the Python language. Tensor-
Flow was released by Google in 2015 and is an open-
source framework for building and deploying various
types of ML and artificial intelligence.

• Splitting Dataset: The image datasets are divided into
three subsets, and the training process uses 50% of
the dataset. 15% of the dataset is utilized for tuning
the parameters and finding the best model (validation
dataset), while 35% is used for unbiased evaluation
of the best model. For partitioning the dataset, the
random state function controls the shuffle process,
ensuring that all samples in the training, validation
and test datasets are the same for both CNN models.

• Optimization: The training process uses the Adam
optimization algorithm [72] to update the neural net-
work parameters with a batch size of 64 examples,
and the initial learning rate is 0.001. The adaptive
learning rate is even considered, and if the perfor-
mance does not improve with the current learning
rate after two epochs, the learning rate is divided
into two. The used loss function to quantify the
dissimilarity or error between the predicted output
and the actual ground truth is the categorical cross
entropy (softmax loss) [73].

• Training cycles: The epoch number for training is 25,
and all samples in the training dataset pass through
the model 25 times. In addition, the early stopping
technique [74] is utilized (set at 3 epochs), which
involves terminating the training process when there
is no further improvement in performance on the
validation dataset.

C. Evaluation Metrics

The following evaluation metrics are used to measure
the performance of the proposed methodology with dif-
ferent architecture of CNN:

• Confusion matrix: It shows the number of correct and
incorrect predictions for each class which is counted
to provide a summary of the results of a classification
task. The confusion matrix demonstrates how the
classification model makes predictions while it is
confused. Table III shows a confusion matrix for
binary classification.

TABLE III: Confusion matrix for binary classification

True label
True Positive (TP) False negative (FN)

False positive (FP) True negative (TN)

Predicted label
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True Positive (TP) is a correct positive prediction
where the model correctly identifies a positive class.
False Negative (FN) is an incorrect negative predic-
tion where the model fails to identify a positive class.
False Positive (FP) is a wrong positive prediction,
where the model identifies a positive class, but it’s
actually negative. True Negative (TN) is a correct
negative prediction where the model correctly iden-
tifies a negative class.

• Overall accuracy: Overall accuracy is determined
by counting the total number of correctly classified
samples and dividing by the total number of samples.
It can be expressed as follows:

Acc =

nc∑
i=1

TPi + TNi

ns
(6)

where nc is the number of classes, ns is the total
number of samples, and TPi and TNi denotes true
positive and true negative for class i, respectively.

• F1-score: The F1-score’s objective is to create a
single metric by combining the precision (p) and
recall (r) criteria and is defined as the harmonic mean
of precision and recall:

F1 =
2× p× r

p+ r
(7)

where precision measures the proportion of cor-
rectly predicted samples out of the total num-
ber of predicted samples in a positive class
(p = TP/(TP +FP )) and recall measures the frac-
tion of positive samples that are correctly classified
(r = TP/(TP + TN)) [75].

• Inference time: The time that a trained model takes
to make a decision based on input data is called
the inference time or network latency. It is a critical
metric for deploying a deep network in a real-world
application.

• Task completion time: Here, task completion time
(also known in the literature as job completion time)
refers to the time required by the entire methodology
(shown in Fig. 1) to complete the task (from the
beginning to the end). It is basically the sum of
preprocessing and inference time.

V. SIMULATION RESULTS

The findings from the experiments, conducted follow-
ing the methodology detailed in Section III and using
the datasets described in Section IV, are presented in
this section. To enable comparability between the vari-
ous methodologies and the CNN architectures fairly and
consistently, the same training dataset and test samples
are used for all experiments. As remarked in Section III,
a snapshot of 200µs is used to get the inputs for the
model (spectrograms and features), and inference and task
completion time reported in Tables II and IV are based
on one single input. The evaluation of these time metrics
occurs on a local system equipped with an Intel Core i5
CPU running at 3 GHz and 4 GB of memory.

1. Classification Result on the Ground
Table II summarises the results of the feature-aided

CNN classifier and the CNN classifier presented in [17]
for the two produced image datasets using STFT and
WVT analyses. The accuracy results state that the use of
statistical features of raw samples improves classification
performance. For instance, within the STFT dataset, the
accuracy of feature-aided CNN classifiers in both the
AlexNet and ResNet models has seen improvements of
5% and 3%, respectively. In fact, the interference signals
with low power are buried under the noise floor, and it
is difficult for the model to detect them using only the
time-frequency representation. However, the extracted
features aid the model in predicting the correct class.

The accuracy of the challenging dataset in Table II
refers to the methodology’s performance for a dataset
including only the low-power of interferences from
-142 dBHz to -130 dBHz (negative values of INR) which
picked up from test and validation dataset. These datasets
are fed to the algorithm to better evaluate the models
at lower power of interferences. From the results, the
ResNet architecture utilizing the extracted features and
STFT achieves the best performance with 99.46%. As
an example of challenging dataset, Fig. 6 illustrates a
tick interference with the power of -142 dBHz where the
ResNet model predicts the suitable class.

TABLE II: Classification Result of interference on the ground

Dataset Methodology
CNN

Architecture
Accuracy [%]
(Test dataset)

F1-score [%]
(Test dataset)

Accuracy [%]
(challenging dataset)

Inference time
[ms]

Task Completion
time [ms]

STFT
CNN

AlexNet 91.69 91.35 77.67 11.85 98.13
ResNet 96.85 96.30 91.02 69.71 155.99

Feature-aided CNN
AlexNet 96.41 96.12 90.19 13.11 99.39
ResNet 99.69 99.57 99.46 71.39 157.67

WVT
CNN

AlexNet 95.20 94.80 88.15 12.47 2088.55
ResNet 98.84 98.43 96.74 73.18 2149.26

Feature-aided CNN
AlexNet 95.82 95.67 89.71 13.43 2089.51
ResNet 98.87 98.49 96.85 73.39 2149.47
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Fig. 6: Sample of tick interference where the model
predicts appropriate class

From the results in Table II, the feature-aided CNN
classifier with ResNet architecture and STFT gains
the best result in terms of accuracy for the test and
challenging set. Fig. 7 shows the confusion matrix of
this model for the test dataset. The confusion matrix
shows that the model is able to detect the presence of
interference signals with 99.99%, although there are some
cases where the type of interference is misclassified.
For instance, the model’s accuracy for the Triangular
chirp signal is 98.4%, but in 183 cases (1.5%), the
model misclassified with Linear wide rapid chirp signal.
Furthermore, the confusion matrix in Figure 7 shows
consistently high accuracy across all classes, with
values exceeding 99%. This demonstrates the model’s
effectiveness in accurately classifying each type of
interference.

Regarding the inference time of each CNN model,
it is clear that more convolutional layers in the ResNet
architecture lead to a longer inference time (71.39 ms)
compared to the AlexNet architecture (11.85 ms).
Nevertheless, on the other hand, ResNet has better
performance, and finding the best model is a trade-off
between the inference time and accuracy. A comparative
assessment of inference time is vital for understanding
the computational complexity and resource utilization
of our proposed method in various environments,
particularly in resource-constrained scenarios such as
satellite vehicles. We conducted measurements across
various hardware architectures, on both CPU and GPU
platforms. Specifically, the inference time for the ResNet
model was recorded as 3.99 ms on the GPU and 71.39
ms on the CPU. What’s more, the model of each
architecture with the trained weights, parameters, and
model configuration is stored in a singular file format
(.h5) designed for structured data storage. The size on
disk of the AlexNet model is 227 MB, while the ResNet

model occupies 127 MB.

Moreover, the current study confirms the findings
of our previous work [17] that the two transformations
STFT and WVT have almost the same accuracy in
classification. However, the task completion time shows
that the computation of WVT takes more time compared
to STFT. The preprocessing time with WVT and STFT
is 2076.08 and 86.28 ms, respectively, in which feature
extraction takes 0.08 ms. In addition, the findings
pertaining to task completion time revealed that the
proposed methodology using STFT could be suitable for
real-time classification.

Table V provides a comparison of how the suggested
approach based on STFT and ResNet architecture per-
forms with different numbers of bits for ADC quanti-
zation. The results indicate that the overall accuracy in
the case of 8-bit still performs well, with only a modest
reduction of 1%, while in 4-bit quantization the perfor-
mance is decreased by 5%. Furthermore, when employing
4-bit quantization, we observed an 8% decrease in the
model’s accuracy for challenging dataset, highlighting the
influence of reduced bit quantization on the classification
of low-power interference signals.

TABLE V: Performance evaluation with bit-quantization
in interference classification

ADC

quantization

Accuracy [%]

(Test dataset)

F1-score [%]

(Test dataset)

Accuracy [%]

(challenging dataset)

64-bit 99.69 99.57 99.46

8-bit 98.88 98.57 97.29

4-bit 94.47 94.20 90.92

In addition, as mentioned in Section B, we used
various techniques, such as early stopping and adaptive
learning rates, which helped decrease the number of
epochs needed for training, resulting in a much shorter
training time. Additionally, performing the training pro-
cess on the cloud using a GPU significantly decreased the
training time by 17 times compared to using a CPU.

2. Classification Result from Space
Due to the superior performance observed in

the previous scenario when employing the proposed
methodology with STFT, our focus in this scenario is
solely on evaluating the performance of the feature-aided
CNN classifier using STFT. Consequently, we train and
validate a total of six distinct ML models, with three
datasets assigned to each bandwidth: 5, 10, and 20 MHz.

Considering that the inference time of the AlexNet
(13.11 ms) and ResNet (71.39 ms) models remains
nearly unchanged from the previous scenario, Table
IV shows just preprocessing and task completion time.
The results reveal that as the bandwidth increases, the

EBRAHIMI MEHR AND DOVIS: Deep Neural Network Approach for Classification of GNSS Interference and Jammer 11

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2024.3462662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE IV: Performance of feature-aided CNN classifier for the space-based classification

RFE Bandwidth

[MHz]
CNN Architecture

Accuracy [%]

(Test dataset)

F1-score [%]

(Test dataset)

Accuracy [%]

(challenging dataset)

Preprocessing time

[ms]

Task Completion time

[ms]

5
AlexNet 91.33 90.65 80.25 65.11 78.22

ResNet 94.70 94.43 89.32 65.11 136.5

10
AlexNet 93.07 92.82 83.55 77.6 90.71

ResNet 97.76 97.43 93.07 77.6 148.99

20
AlexNet 98.47 97.99 96.32 89.05 102.16

ResNet 99.21 98.89 98.44 89.05 160.44

sampling frequency also increases, leading to a rise in
the preprocessing time. On the other hand, high accuracy
is obtained when the selected RFE bandwidth is higher
since the entire bandwidth of the interfering signal enters
into the RFE.

Interestingly, the feature-aided CNN classifier still has
good accuracy in the case of lower bandwidth. For in-
stance, AlexNet architecture using the statistical features
has an accuracy of 91.33% in the 5MHz case, which is
a significant improvement over the previous study, which
was 80.18% [17].

VI. CONCLUSION

In this study, a comprehensive analysis method was
employed to assess the time-frequency representation and
the temporal and spectral characteristics of the GNSS
signal. This analysis was utilized to identify and classify
potential interference using a CNN model. ResNet as a
CNN model has shown promising results with accuracy
of 99.69% and thus could be a powerful tool in the field
of interference classification. The main achievement of
this study may be the effectiveness of the feature-aided
CNN classifier methodology for classifying lower power
of interference. These findings could provide new insights
into real-time monitoring interference. As mentioned in
the related work section, traditional interference classifi-
cation methods rely on predefined rules and thresholds,
and mostly require ad hoc algorithms for each type of RFI
signal structure. On the other hand, ML-based approaches
offer a model to be trained for the accurate and automatic
classification of interferences. A further advantage is that
in the case of new scenarios or types of interference,
the same model by retraining, can be adapted to these
changes. One drawback of ML is that implementing it in
mass-market devices can be challenging, often requiring
more computational power or even changes to hardware
design. It’s worth noting that in GNSS interference de-
tection and classification, where the output of the front-
end can be used as the input data for the ML approach,
variations in the output of each front-end architecture can
occur despite consistency in factors such as bandwidth,
sampling frequency, and bit quantization. Consequently,
it can be inferred that for real-world implementation

and deployment, ML algorithms should be trained with
consideration for the specific front-end hardware, utilizing
signal instances originating from that particular front-
end. Additionally, the proposed methodology involves
extensive preprocessing, particularly the calculation of
STFT and conversion to images, which accounts for
approximately 98% of the preprocessing time. This du-
ration is significantly longer than that of models using
only statistical features and metrics from raw sample of
signals. Adding to the earlier discussion of drawbacks, the
training process of CNN architecture requires substantial
computational resources and can be cumbersome, as is
typical with deep learning models. Nevertheless, there are
aspects to be addressed when implementing the algorithm
in a system, such as a GNSS monitoring station, in order
to tune the algorithm to cope with the constraints of
the specific hardware (e.g., number of quantization bits,
filtering effects of the front-end, etc..). The model itself
can be evolved and extended to more interference classes
as well as to deal with multiple interferences.
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Fig. 7: Confusion matrix of feature-aided CNN classifer using Resnet architecture

APPENDIX

A. GNSS Interferences

Various types of interference can arise from differ-
ent sources, in this study, a comprehensive examina-
tion is conducted to determine their presence within the
GNSS frequency band and classify them. The types of
interference targeted by our method have been exten-
sively researched and selected based on their prevalence
and characteristics. Specifically, as documented in the
STRIKE3 project [18], the commonly detected chirps can
be classified into 11 distinct types, each characterized by
unique features in the spectrum and spectrogram. These
types of signals are widely used as jammer devices in
the market, making them a primary focus for interference
classification. In addition to these common chirps, we
have identified and included other types of interference
based on a comprehensive literature review of previous
work in the field of interference classification using ma-
chine learning. These additional interference types have
been chosen to ensure that our model can detect a diverse
range of interference scenarios encountered in real-world
GNSS applications. The following sections describe each
interference and jamming signal. Note that the amplitude
remains constant for all simulated interferences in this
study.

1. Chirp Signals
Chirp signals are among the most common disrup-

tive or interfering signals, capable of disassembling or
blocking a specific portion of the GNSS signal band
and disrupting receiver operation. Chirp, also known as a
swept-frequency signal, is a signal in which the frequency
changes as a function of time; therefore, the frequency
increase or decrease is referred to as up-chirp or low-
chirp, respectively. In general, a chirp signal can be
expressed as [76]:

i(t) = A · exp
{
j(2π

∫ t

0

f(t) dt+ ϕ)

}
(8)

where A is the chirp amplitude and ϕ is the initial
phase of the signal. f(t) is the instantaneous frequency,
and in the case of the linear chirp model, f(t) = f0 + kt
where the frequency variation is linear over time. Swept-
frequency jammers are characterized by their ability to
generate overwhelming signals with carrier frequencies
that vary over GNSS signal bands [77]. According to the
survey in [18], the characteristics of chirp signals can be
classified by shape, sweep range, sweep rate, and power.
Table VI shows the characteristics of each chirp signal
analyzed in this study. Fig. 3 includes the spectrogram of
11 common chirp types, and most likely, the receiver will
encounter them.

EBRAHIMI MEHR AND DOVIS: Deep Neural Network Approach for Classification of GNSS Interference and Jammer 13

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2024.3462662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE VI: Characteristics of chirp signals

Chirp Name
Sweep Rate
(per 100 µs)

Sweep Range
(Bandwidth MHz)

Wide sweep/slow 2 16
Wide sweep/medium 5 16
Wide sweep/fast 10 16
Wide sweep/rapid 15 16
Narrow sweep 10 5
Triangular 15 14
Triangular wave 5 16
Sawtooth 11 12
Hooked sawtooth 3 14
Tick 3 16
Multi tone 40 3

2. Continuous Wave Interference
The term Continuous Wave Interference (CWI) refers

to one of the main forms of interference and is made
up of pure sine waves of constant amplitude and fre-
quency and appears as a single tone in the frequency
domain. Jamming devices or wireless telecommunications
infrastructure such as VHF and UHF TV, Instrument
Landing Systems (ILS), and Very High-Frequency Omni-
Directional Range (VOR) systems can be the source of
common CWI [78] [79]. The components of complex
CWI can be expressed as:

i(t) = A · exp{j(2πfit+ ϕi)} (9)

where A is the amplitude, fi and ϕi are the interfer-
ence frequency and phase.

3. DME (Pulsed) Interference
Pulsed interference refers to an interference signal

consisting of multiple short pulses repeated over a period
of time. This type of interference can occur in the L5/E5
bands, which are also occupied by Aeronautical Radio
Navigation Services (ARNS) such as Distance Measuring
Equipment (DME) and Tactical Air Navigation (TACAN)
[80]. DME interference is composed of a pair of Gaussian
pulses modulated by a cosine, which can be modeled
as [81]:

i(t) = A ·
∑k

n=1

(
e−

α(t−tk)2

2 + e−
α(t−tk−∆t)2

2

)
exp{j(2πfit+ θi)}

(10)
where A is the interference power, α determines

the pulse width, ∆t is the interpulse interval, tk is the
emission time of the kth pulse pair [81]. For example,
the radiated signal of an individual DME station has
α = 4.5 ∗ 10−11s−2, ∆t = 12µs and a maximum
repetition of 3600 pulses per second [2]. Simplified DME
signals assumed for this study consist of a single pulse
pair occurring inside the observation window (image)
without collisions. This assumption is made to showcase
the baseline performance of the ML approach. Advanced

DME studies, such as signal collisions and detections, are
suggested for future research.

4. Frequency Hopped (FH) Jamming Signal
Frequency hopping jamming introduces discontinu-

ities in instantaneous frequencies by repeatedly switching
the carrier frequency. According to [82], FH jamming has
been observed on the island of Lampedusa (Italy), and
Pica et al. provide a signal model for this interference as:

i(t) = A ·
W∑

m=1

exp{j2πfm(t)t} (11)

where fm(t) is a function to create a set of m sub-
tones randomly that occupy a specific frequency range,
A is the amplitude and W is the number of random
generation trials. Table VII shows the parameters used
to simulate FH jamming in this context.

TABLE VII: Simulation parameters of FH jamming
Parameters Value Remark
Ti 100 µs Signal duration
m 10 number of subcarriers
Bi ±3 MHz Subcarriers range
Ts 5 µs duration of hopping
W 20 Random generation trials (Ti/Ts)

5. Frequency Modulated Interference
Frequency modulation is a form of angular modulation

in which the instantaneous frequency of a carrier wave
is varied linearly, and it can be used by jammers. FM
Interference with a sinusoidal modulation signal can be
represented as:

i(t) = A · exp {j(2πfit+ βsin(2πfmt))} (12)

where A is the amplitude of the carrier, fi is the inter-
ference frequency, fm is the frequency of the modulated
signal, and β denotes the modulation index [83] [37]. In
this article, the frequency of the modulated signal and β
are assumed to be in the range of [1:5] MHz and [0.3:0.9],
respectively.

6. Narrowband Interference
Narrowband interference (NBI) or jammers are in-

terferences whose spectral occupation is smaller than
the GNSS signal bandwidth. NBI can be referred to
narrowband Gaussian, narrowband phase and frequency
modulation, and narrowband swept-frequency interfer-
ence [84]. In this context, a narrowband Gaussian jammer
is utilized, which essentially comprises a White Gaussian
Noise (WGN) filtered through a rectangular pulse shape
with a bandwidth of 2 MHz. The formulation for this
jammer is as:

i(t) = A · (g(t) ⋆ h(t))exp{j(2πfit+ θi)} (13)

where g(t) is a complex Gaussian process, and h(t)
is a narrow band filter function.
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B. Convolutional Neural Networks

Deep learning constitutes a subset of machine learn-
ing techniques that leverage artificial neural networks to
emulate the neural network of the human brain, enabling
analysis and learning processes [47]. The artificial neural
network consists of multiple nodes distributed in various
layers, and each node implements an instruction called
algorithms that guides the machine in recognizing patterns
in the dataset and solving common problems [85]. Convo-
lutional neural networks have significantly impacted the
field of image classification, and the name comes from
the convolutional operator used in the filtering domain. A
CNN is a multilayer neural network proposed to identify
patterns from images represented by pixels with the least
preprocessing. It comprises several layers: convolution,
pooling, and Fully Connected (FC), briefly described in
the following together with the role of the activation
function. Fig. 8 demonstrates a simple CNN architecture.

Input Image
Convolution + ReLU Pooling Fully connected

Output

Weights/biasKernel (Filter)

Forward 
Propagation

Loss

Back 
Propagation

Update

Fig. 8: Simple architecture of CNN

• Convolutional layer: The convolution layer is the
fundamental component of CNN and takes most of
the computations. The convolution operation is used
for feature extraction by performing an element-wise
product between a small matrix called kernel (filter)
and a subset of input, then summing up the result.
This operation slides across the whole input (known
as a sliding window) to find a specific type of feature
in the input, and the outputs produce a matrix of new
features called a feature map [46]. Two parameters
can define convolutions, the size and the number of
the kernel that apply to the input.

• Activation function: The activation function is the
core of each neural network, deciding which neuron
of the layer should fire to the next layer. It increases
the expression’s ability of the network to learn the
complex pattern of data by adding non-linearity
into the network. Generally, non-linear activation
layers come after each learnable layer, such as the
convolution layer [86]. The Rectified Linear Unit
(ReLU), softmax, hyperbolic tangent, and sigmoid
functions are commonly used that can be chosen
with respect to classification task. ReLU, as the most
common activation functions applies to the feature
map and replaces all the negative values with zero,
avoiding the values from summing up to zero.

• Pooling layer: A pooling layer is essentially a
downsampling layer and reduces the dimensions of
created feature map from the previous layer into a
new one. The pooling operation aggregates values
of a given matrix. The most typical one is max
pooling, where it selects the maximum value from
each of the windows of the feature map. Therefore,
the output values of the pooling layer are the most
critical features of the previous feature map.

• Fully connected layers: Commonly, the last lay-
ers of CNN architecture are fully connected layers
(dense layers) that perform the classification task.
Each neuron of this layer is connected to the output
of previous layers. The feature map created by the
last convolution or pooling layer is flattened into a
vector and will feed to the fully connected layer
[87]. Typically, the last fully connected layer has
the same number of nodes as the number of classes
in the task. Furthermore, it incorporates a softmax
activation function which applies to the multi-label
classification task, where provides a probability dis-
tribution over the different classes valued from 0 to
1, indicating the likelihood of the input belonging to
each class (all values sum to 1) [53].

Fig. 9 illustrates a one-layer CNN that consists of
a convolution layer with a filter of size 2 × 2, ReLU
activation function, and max-pooling layer.

Input 

Kernel (2x2) 

Convolutional layer  Activation Function Pooling Layer

Feature Map Max pooling

Output 

Fig. 9: Numerical example of one-layer CNN

CNN becomes a valuable solution for different
problems by performing local receptive fields (the
way the convolutional layer work), pooling layer, and
shared weights/biases, which implies that all weights
and biases in each window of neurons are the same.
It is evident that using these concepts in CNN causes
the number of parameters to be extremely decreased [87].
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