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ABSTRACT 
Situational awareness and decision support tools such as procedures and alarm systems are vital 
for effective interaction among control room operators, especially in safety-critical situations. In 
safety-critical environments such as process plants, there remains a gap in evaluating specific tools 
during actual operations, or ”work-as-done.” Additionally, the underlying factors that might impact 
operators’ cognitive states and performance concerning safety have not been thoroughly explored. 
The need for such an evaluation is further bolstered by current interaction configurations where 
operators are more passive than active, thus reducing their cognitive performance. Therefore, this 
experimental study addresses the highlighted evaluation gap by introducing and comparing three 
human system interfaces/decision support tools in four human-in-the-loop configurations. The sup-
ports include two alarm design formats (prioritized vs. non-prioritized) and three procedure repre-
sentation formats (paper, screen-based digitized, and an AI-based support system built with an 
integrated Bayesian network and reinforcement learning model). Ninety-two people (n¼ 92) partici-
pated voluntarily in the test. They were divided equally into four groups. Each group tested three 
safety-related events in a simulated formaldehyde production facility. Individuals belonging to the 
group with prioritized alarms and utilized paper procedures rated procedural support slightly 
higher on average than others in different groups. Unlike the other groups, their assessment of 
alarm prioritization support remained consistent across all scenarios. Further analysis of the impact 
of the setup on cognitive states and actual performance will be performed.

KEYWORDS 
Human–machine inter-
action; process control 
rooms; decision support; 
situational awareness; 
workload; stress; 
psychophysiological 
measures   

1. Introduction

Elements that comprise human system interfaces, such as 
mimics, alarms, and, in some cases, computerized or screen- 
based procedures, are of paramount importance for the effect-
ive performance of operators in both normal and abnormal 
plant states. The operator, responsible for stabilizing the state 
of the plant following feedback observable through alarms or 
different cues on the display, has to rely on experience, train-
ing, and intervention procedures to achieve this goal. 
Accidents such as the Buncefield oil storage depot in 
Hertfordshire (HSE, 2011) and the BP America Texas city 
refinery fires and explosions in 2005 (US Chemical Safety & 
Investigation Board, 2007) have highlighted the importance of 
these organizational elements. In the Buncefield case, it was 
noted that the display mimics overlapped each other, thereby 
obscuring the identification of some critical alarms. The oper-
ators had to make extra effort to navigate the different 
mimics. Furthermore, it was noted that the procedures for 
filling the storage tank were short of details (HSE, 2011). 
Similar reasons can be identified in the U.S. Chemical Safety 

and Hazards Investigation report for the BP Texas accident 
(US Chemical Safety & Investigation Board, 2007). The report 
noted issues such as the use of outdated and ineffective pro-
cedures, the prevalence of false alarms and control indica-
tions, and the failure of operators to follow standard 
operating procedures correctly. Similar recommendations 
regarding these accidents were given in the survey by Amazu, 
Abbas, et al. (2023), which investigates the state-of-the-art 
process industries on human-centered design and manage-
ment of these elements. This shows that much is yet to be 
done regarding these issues, especially in process industries.

These elements support operators’ cognitive state, particu-
larly their situational awareness, essential for accurate deci-
sion-making in alarm handling and process control. 
Specifically, interaction configurations characterized by inter-
mediate levels of automation help mitigate the risk of opera-
tors experiencing out-of-the-loop conditions. (Endsley & 
Kaber, 1999). Their importance has led to research attempting 
to perform human-in-the-loop studies, which involve a holis-
tic evaluation of the impact of several possible factors on oper-
ators’ cognitive state and performance. These experimental 
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studies have investigated factors such as displays as a stand-
alone performance shaping factor with varying levels and, in 
some cases, in combination with a few other factors, to under-
stand their impact on operators’ cognitive load and situational 
awareness, as summarized in a review by Amazu, Demichela, 
et al. (2023). Such studies have also motivated the exploration 
of novel monitoring techniques, such as eye tracking, electro-
encephalogram, heart rate monitoring, etc., for these evalua-
tions. In a few cases, these novel techniques have been used 
simultaneously with more traditional methods, such as the 
situational awareness rating technique (SART) or its varia-
tions for situational awareness, the NASA task load index 
(NASA-TLX) for workload, etc. (Braarud, 2021; Shi & 
Rothrock, 2022). The limited available literature suggests that 
much remains to be explored in combining traditional techni-
ques like SART with novel methods such as eye tracking for 
assessing human-in-the-loop situational awareness and the 
impact of decision support tools. Additionally, there are gaps 
in performing a deeper analysis of multiple vital performance- 
shaping factors combined. Emphatically, those that are key to 
decision-making and situational awareness.

This study introduces new situational awareness and deci-
sion support tools alongside an experiment design, which has 
the potential for adoption within the industry for human-in- 
the-loop evaluations during drills or training. The experimen-
tal study utilized the following support tools: alarm design, 
procedures, and a display interface, each with distinct levels of 
implementation. Notably, the study examined two levels of 
alarm designs: prioritized alarms versus non-prioritized 
alarms and three levels of procedures: conventional paper- 
based, digitized screen-based, and AI-based procedures. As a 
result, the combination of procedural variations and alarm 
design levels within different test groups determines the type 
of display interface to be utilized during the study. Using data 
from this study, the authors can further compare how these 
tools impact operators’ cognitive states of attention, situ-
ational awareness, workload, performance, and safety. The 
study uses subjective and objective questionnaire-based meth-
ods and novel monitoring tools for data collection.

For this article, the reviewed literature on the critical situ-
ational awareness and decision support tools to be studied, 
that is, the alarm systems and procedures, are discussed in 
(cf. Section 2) with a clear elaboration of the research gaps, 
contributions, and hypotheses. This section is followed by a 
presentation of the methods, specifically the design of the 
experiment, the case study, and the evaluation tools and 
measures implemented for this study (cf. Sections 3, 4 and 
5). After reporting the experiment’s results (cf. Section 6), 
the article concludes with an overall evaluation of the 
approach, a discussion (cf. Section 7) and finally a conclu-
sion section (cf. Section 8).

2. State of the art

2.1. Alarm systems

Alarm systems are essential in large industrial facilities. They 
are crucial to ensure operational efficiency, maintain safety 
standards, and avoid potential disasters. Historical incidents, 

such as the Piper Alpha accident and the BP Texas refinery 
explosions, underscore the critical link between effective alarm 
management and overall plant safety (Crompton, 2021). The 
emphasis has been placed on good alarm rationalization as a 
vital process in alarm management, recognizing that the 
design and functionality of alarm systems directly impact 
operator workload and response efficiency (Ghosh & 
Sivaprakasam, 2020). Despite advances and existing industry 
guidelines, challenges persist in achieving optimal alarm man-
agement practices within process industries. A few experimen-
tal investigations, such as in Simonson et al. (2022), have been 
carried out to analyze the impact of the alarm system design.

2.2. Paper vs. digitized screen-based intervention 
procedures

Operating or troubleshooting procedures are crucial to suc-
cessful human-machine interaction in process control 
rooms. They provide operators with information on “what 
to do” during normal and abnormal situations. The mode of 
reading interaction and the format in which the documents 
are presented can affect comprehension (Leroy et al., 2023) 
and the error rate (Xu et al., 2008), respectively. For 
example, paper-based procedures have been written in for-
mats that have been cumbersome to follow or difficult to 
update subsequently. Hence, there have been efforts towards 
computerized procedures and other procedural support sys-
tems (Kim et al., 2013). However, very little work has been 
done to investigate or validate these different representation 
formats and how they support operators. Xu et al. (2008), 
while comparing two different representation formats of 
emergency procedures, identified that representation formats 
can significantly influence high error rates during tasks. Gao 
et al. (2013) in their experimental study evaluated the 
impact of low- vs. high-complexity screen-based emergency 
operating procedures on operator workload. Their focus has 
been mainly on mental workload with no consideration of 
situational awareness yet. However, the few experimental 
studies on situational awareness in process plants have pri-
marily focused on assessing interface displays using eye 
tracking and EEG metrics for predicting human errors, 
employing a one-task step procedure in their scenarios 
(Bhavsar et al., 2017; Kodappully et al., 2015). In compari-
son, some simulated operator interventions were based on 
training and judgment (Iqbal & Srinivasan, 2018). Given the 
state-of-the-art procedure designs in process plants where 
bulky papers are used, no work has been done to empirically 
analyze the impact of procedures on operators’ performance, 
especially on operators’ situational awareness. Also, the 
effect of procedures on behavioral metrics and situational 
awareness is yet to be explored.

2.3. AI-based recommendation systems

Given the increasing complexity of control rooms, operators 
often face complex information streams. In critical scenarios, 
operators may be inundated with hundreds of alarms and 
pieces of information simultaneously. Such information 
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overload can be counterproductive, as the data presented in 
the control room might add to their confusion instead of 
aiding the operator. In these circumstances, the implementa-
tion of a decision support system becomes imperative. 
Unlike human operators, mathematical models can effi-
ciently process vast amounts of information and determine 
the optimal decision. The fusion of intelligent systems 
within manufacturing and operations management has trad-
itionally been seen as a beneficial confluence of operational 
research (OR) and artificial intelligence (AI). This collabora-
tive potential is underscored in studies by Proudlove et al. 
(1998) and Kobbacy and Vadera (2011). However, in safety- 
critical infrastructures like process plants, such systems are 
hardly used (Amazu, Demichela, et al., 2023).

Weidl et al. (2005) introduced a methodology for root 
cause analysis in industrial operations using object-oriented 
Bayesian networks (OOBNs), showcasing their ability to 
model industrial system uncertainties and dependencies for 
enhanced decision support. The study highlights OOBNs’ 
adaptability and advantages in predictive maintenance and 
operational efficiency despite challenges with data quality 
and model complexity. Horvitz and Barry (2013) further 
explored Bayesian networks in time-sensitive decision- 
making, proposing interface designs that display probabilis-
tic information for quicker, informed decisions. Both studies 
underscore the potential of Bayesian networks in improving 
decision-making processes. However, a notable limitation of 
both studies is the lack of participant-based testing to assess 
the impact on human performance, workload, and situ-
ational awareness empirically.

2.4. Contribution

� Unlike previous studies examining decision support tools 
in isolation, this work uniquely investigates the combined 
effects of alarms, procedures, and interface displays. 
Rather than focusing solely on alarm design or interface 
displays, we explore how these elements interact within 
process control room operations.

� A novel aspect of our research is the examination of 
actual procedures used in process control rooms, as 
opposed to some other studies where the tasks are pre-
sented as pop-ups on the display (Bhavsar et al., 2017; 
Iqbal & Srinivasan, 2018; Kodappully et al., 2015).

� Another distinctive feature of our study is using three 
different displays, which exceeds the norm in human-in- 
the-loop process control experiments. By incorporating 
multiple displays, the study offers a more comprehensive 
analysis of operator interactions within the control room 
environment.

� This study also introduces four human-in-the-loop con-
figurations, which vary based on the combination of sup-
port tools employed. These configurations include 
different types of procedures (paper-based, digitized 
screen-based, AI-based) and alarm systems (with or with-
out prioritization), each influencing the type of interface 
display utilized.

� Furthermore, our study introduces an AI-based decision 
support tool for comparison with traditional procedures.

� Methodologically, our evaluation employs a blend of 
qualitative and quantitative techniques. In addition to the 
use of questionnaires like NASA-TLX for workload 
assessment and SART, which are known for situational 
awareness evaluation, the authors also designed questions 
to further assess the situational awareness of the opera-
tors using the SPAM methodology. Additionally, eye 
tracking and health monitoring tools offer valuable 
insights into cognitive states such as mental workload, 
situational awareness, and stress levels.

� The data generated from this study enriches the fields of 
human factors and cognitive science as it can be explored to 
provide detailed insights into the factors that impact opera-
tors during safety-critical scenarios in different process con-
trol configurations. Beyond examining operator-system 
interactions and psycho-physiological states, we also gather 
training, experience, and demographic data. These can be 
explored further for human reliability analysis.

� Finally, given the recurrent role of procedures and alarm 
systems in accidents across various sectors, including 
nuclear operations (Gao et al., 2013), our experimental 
design and findings hold promise for enhancing safety 
practices in these domains.

3. Methods

3.1. Human system interfaces

Three key human system interfaces, considered decision- 
support tools, are designed for this study and varied to form 
different human-in-the-loop configurations. These are the 
Alarm systems prioritization, Support Procedures (Paper, 
Screen, and AI-Based Support), and the varying displays due 
to the alarm and procedure representation format (Table 1). 
They support the cognitive processes of the operators until 
the execution and evaluation of actions, as represented in 
Figure 1. The tools designed for this study are further 
described below.

3.1.1. Alarm systems
Eighty alarms were introduced in this plant for this study. 
Most importantly, these alarms were implemented to simu-
late nuisance and alarm floods. The alarm system design 
was divided into two parts, as seen in Figures 7–10. The first 
part is the alarm list, which refers to the layout of the alarm 
box and how it is displayed. This includes details on the 
acknowledgement box, sound, priority numbering, alarm 
state, activation time, tag, and plant section. Boxes are 

Table 1. Key independent variables in this study.

Decision support

Procedures AI recommendation
Paper-based procedures
Digitized screen-based procedures

Alarm design Prioritized alarms
Non-prioritized alarms

Interface configurations G1,G2,G3,G4

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3



provided for the operators to silence and acknowledge each 
Alarm. In this study, the critical alarm is expected to be 
acknowledged first so that the supervisors can assess their 
perception and ensure the most important task is done first. 
The second part is alarm prioritization, which refers to the 
priority assigned to the alarms using three key color 
schemes (yellow, orange, and red for low, medium, and high 
priorities, respectively). The non-prioritized alarms remain 
white for all levels (see Figure 7).

3.1.2. Intervention procedures
The intervention procedures in this study are written in a 
hierarchical rule-based task representation format, as shown 
in Figure 2. The paper- and screen-based procedures follow 
a similar writing format. However, the presentation on 
paper rather than on screen makes the difference.

The screen-based procedures are organized by alarms and 
plant sections to facilitate the operator’s search process, as 
seen in Figure 2. For example, in Figure 2, six Plant sections 
are visible: Tank, Methanol, Compressor, Heat Recovery, 
Reactor, and Absorber. When the operator is interested in 

an alarm within the Tank section and clicks on the word 
“Tank,” the alarm tags as shown below “Tank” in Figure 2
are displayed. Upon clicking, for example, PAL01, the task 
steps to be followed to resolve that alarm are further dis-
played on the right side of the box.

The paper procedure instead has a table of contents to 
ease navigation when using the booklet. This table of con-
tents is organized according to alarm numbers. For example, 
alarms ending with 01 come before those ending with 02. In 
addition, just like the screen-based procedures, the alarms 
are further grouped according to plant sections within the 
paper. For example, the alarms ending with 01 generally 
belong to the Tank section, which comes first in the paper, 
and so on. Yellow tags were also placed before the start of 
each plant section to ease the search process.

Each intervention procedure is written under three broad 
tasks: a) Troubleshooting, b) Control, and c) Evaluation. The 
first two task steps, as seen in Figure 2, represent the trouble-
shooting phase, 3 and 4 illustrate the control action phase, and 
5 and 6 represent the evaluation phase. These were written fol-
lowing HPOG guidelines for procedure, job list, and checklist 
design (HPOG Steering Committee, 2021). In addition to the 

Figure 1. Support tools and the cognitive processes involved.

Figure 2. Procedure on screen: first steps of intervention procedure for low-pressure alarm (PAL01).
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intervention procedure, an operating procedure was provided 
that contains a summary of the task expected of a control 
room operator and the nominal values and limits for each pro-
cess variable for additional support. The operating procedure 
summarizes the expectations during Process Monitoring, 
Alarm Handling, and Intervention Planning.

3.1.3. AI decision support systems
This study also evaluates a decision support system (DSS) 
enhanced by artificial intelligence, specifically designed to 
assist control room operators by providing timely procedural 
guidance. The core of the DSS is an integrated system utiliz-
ing influence diagrams and reinforcement learning to deliver 
actionable insights during operational scenarios. These 
methodologies are chosen for their proven efficacy in 
improving decision accuracy and operational safety through 
adaptive learning and predictive analytics.

The architecture of the reinforcement learning compo-
nent is adapted from the specialized reinforcement learning 
agent (SRLA) framework, tailored for use in safety-critical 
industries (Abbas et al., 2022), and specifically instantiated 
for the process control industry (Abbas et al., 2023). This 
adaptation ensures the DSS is robust and applicable to the 
specific challenges faced in process control environments.

While one of this manuscript’s primary focus is assessing 
the DSS’s impact on operator situational awareness and 
workload, a comprehensive outline of the AI system’s design 
is detailed in referenced sources (Mietkiewicz et al., 2023). 
These references provide an in-depth look at the construc-
tion and theoretical underpinnings of the influence dia-
grams, as well as the reinforcement learning models used. 
We encourage readers to consult these works for a thorough 
understanding of the system’s foundational elements.

Figures 2 and 3 of our paper depict the streamlined deci-
sion-support procedures implemented. During the experi-
ments, operators had the option to use either traditional 
procedures, the AI-enhanced DSS, or a combination, allow-
ing us to study the impact on trust and reliance on deci-
sion-support technologies.

3.2. Experimental design

The present study assesses the effect and impact of the 
above decision support tools on control room operators’ 

cognitive state, performance and behavior in safety-critical 
scenarios. A formaldehyde production facility case study is 
considered for the experimental study as explained below 
under Case Study.

A further description of the use case and experiment 
design is presented below. Four groups are set up to study 
these tools at different levels. Hence forming unique process 
control human-in-the-loop configurations. The participants 
are equally clustered within these groups, 20 per group, each 
performing the scenarios in order of assumed complexity, 
that is, scenarios 1–2–3. To counterbalance the possible 
effect of the time of day of participation, the participants 
per group were randomized based on the time of day.

3.2.1. Case study
The case study involves the production of formaldehyde 
from the partial oxidation of methanol and air and a sec-
ondary reaction, which completes the oxidation to carbon 
monoxide, reducing the yield of formaldehyde in the reac-
tion. This case study on formaldehyde production, initially 
utilized by Demichela et al. (2017) and later adapted by the 
authors, focuses on a plant comprising six main sections.

Illustrated in Figure 5, the plant’s layout begins with a 
Tank Section housing a methanol storage tank equipped 
with alarms to signal deviations from expected parameters 
(as shown in Figure 6). Following this is the Methanol 
Section, where liquid methanol transforms into a gas via a 
pump and heater before being combined with compressed 
gas from the Compressor Section. The resulting mixture 
then passes through a heat exchanger (REC2), raising its 
temperature to around 200 �C before entering the reactor. 
The Reactor Section houses the reactor, while the Heat 
Exchanger Section accommodates heat exchangers REC1, 
REC2 and REC3. REC1 and 3 cool the reactor product. The 
heat recovered from REC1 and 3 are then exploited for 
water boiling and cooling, respectively.

The Reactor is housed within the Reactor Section of the 
plant, while the heat exchangers are housed within the 
Heat Exchanger Section. The other heat exchangers, REC1 

Figure 4. Example operator with the AI configuration (G4) (Mietkiewicz et al., 
2024).

Figure 3. Simplified procedure recommended to the operator.
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and REC3, cool the product from the reactor, with the 
heat subsequently exploited for boiling and cooling water 
in the plant. REC3 aims to cool the product to an absorp-
tion temperature of around 67 �C before entering the 
absorber, where it is absorbed by water flowing in the 
opposite direction. This absorber resides in the Absorber 
Section. Navigation through these plant sections is facili-
tated by buttons at the interface display’s bottom (see 
Figure 5).

Several accident scenarios are likely in this type of plant. 
The reactor or absorber could be overheated if the tempera-
tures from the mixture or product are far above the 
expected. An interference to control this temperature by 
increasing the water input into the absorber can lead to los-
ing the target product volume.

Comparing this present work to the original design by 
Demichela et al. (2017), changes to the interface display are 
discussed in Section 3.2.2. Additionally, the safety-critical 

Figure 5. Main screen.

Figure 6. Tank section of the plant (Mietkiewicz et al., 2024).
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scenarios identified to be presented as task challenges to 
participants in this study are later discussed in this paper.

3.2.2. The interface displays
The following improvements have been made to the initial 
design: An increase in the number of alarms in all six sec-
tions of the plant (tank, methanol, compressor, heat recov-
ery, reactor and absorber), additional user interaction 
buttons on the overview display for the experiment (see 
Figure 5), redesign of buttons to switch from auto to man-
ual after a few usability tests (see example in Figure 6), add-
ition of an extra “close” button for easy visibility and design 
of a support interface display (see example in Figure 6). The 
simulator employs three displays. The central or overview 
display presents the process flow diagram of the plant with 
a central alarm notifier, buttons to navigate the different 
sections of the plant, and buttons to control scenario selec-
tion or start and end of scenarios (see Figure 5). The left 
interface shows the mimics of the plant sections when the 
operator clicks to open them (see the example tank mimic 
in Figure 6). The right interface is the support display (see 
Figures 7–10). A holistic view of the setup and interfaces 
can be seen in Figure 4.

Four distinct human-in-the-loop configurations, and 
effectively, the human-machine interfaces, were developed 
following a combination of the support tools:

� The first interface does not include alarm rationalization.
� The second interface incorporates alarm rationalization.

� The third interface displays procedures on-screen.
� The fourth interface, in addition to the features of the 

third, integrates an AI-based decision support system.

The difference between the groups appears more specific-
ally in the support display, as seen in Figures 7–10.

3.3. Procedure

This work involved human subjects and has received 
approval for all ethical and experimental procedures and 
protocols from the internal ethics committee of the collab-
orative Intelligence for Safety Critical (CISC) project in 
Dublin, Ireland, with a supporting letter from the 
Technological University Dublin.

Participants were selected based on the following crite-
ria: age limit of 18þ, proficiency in English, and normal 
or corrected-to-normal vision. The flyers were distributed 
among the university and student groups. The flyer con-
tained a link to register, which included information on 
the selection criteria. Participants were sent certificates 
of participation after the entire data collection phase was 
completed.

Upon arrival, participants were given a brief introduction 
to the experiment, after which they read a two-page docu-
ment containing more information on what to expect dur-
ing the test. This was followed by signing the consent form 
and questionnaire to collect demographic data on age, 
gender, and course or level of study. They then watched a 

Figure 7. Support display G1. The alarms are all in white without prioritization.
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5-min video as the introductory phase of training, which 
contained a brief intro on the different interface displays 
and rules to follow during the experiment. This was 

followed by a 30- to 45-min training on the process dynam-
ics, operating procedures, and the procedures that varied 
depending on the study group. After the training, the 

Figure 9. Support display G3. The procedure specific to an alarm can be found in the support display.

Figure 8. Support display G2. The alarms are color-coded based on priority.
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participants were allowed to take a 5- to 10-min break 
before setting up devices. The eye-tracker and health moni-
toring watch were then set up after the break. Each test 
lasted 15–18 min, followed by completing the NASA-TLX, 
SART and support rating questionnaire. The SPAM tech-
nique was applied during the test without interrupting the 
process. These subjective techniques are further described in 
Section 5.

3.3.1. Participants
A total of 92 participants (36 female, 56 male), comprising 
students and staff of the Politecnico di Torino and a few 
externals, voluntarily participated in this study. The partici-
pants were between 21 and 61 years of age (M¼ 25, SD ¼
5.4) and had different experience levels. Most of the partici-
pants were junior process engineers selected voluntarily 
from among the students of the master courses in chemical 
engineering at Politecnico di Torino. In addition, there were 
more experienced engineers, such as PhD candidates and 
some professors.

3.3.2. Groups
In the structured experiment, we delineated four groups tail-
ored to assess the incremental benefits of various support 
interfaces within a simulated control room environment. 
Comparative analysis was methodically planned to isolate 
the impact of each added feature by juxtaposing each group 

with its predecessor. Here is a more detailed exploration of 
the group design and comparative objectives.

� Alarm Rationalization Impact: The first group functioned 
as the baseline, operating without the benefit of alarm 
rationalization, digital procedure, or AI-based support 
system. The second group, in contrast, was equipped 
with an alarm rationalization system to compare its 
influence on the operator’s workload and decision-mak-
ing process. Alarm rationalization is expected to filter 
out noncritical alarms, thereby reducing the cognitive 
load on operators and enabling them to focus on the 
most pertinent issues.

� On-Screen vs. Paper Procedures: The third group was 
provided with on-screen procedures, a step up from the 
second group that relied on traditional paper-based 
methods. This comparison evaluated the operational effi-
ciency and response time between the two mediums. 
Screen procedures could offer quicker access to necessary 
information, reduce the time spent searching through 
physical documents, and streamline decision-making by 
seamlessly integrating with other digital tools in the con-
trol room.

� AI Decision Support System Evaluation: The fourth 
group was provided the largest level of support by inte-
grating an AI decision support system. This group was 
compared against the third group to gauge the incremen-
tal benefits of AI assistance. The AI decision support sys-
tem is designed to synthesize information and provide 
recommendations. This comparison sought to quantify 

Figure 10. Support display G4. A suggestion box presenting optimal actions to the operator (Mietkiewicz et al., 2024).
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the effectiveness of AI in improving operator perform-
ance, reducing errors, and improving overall system 
safety and efficiency.

Each group’s performance was recorded and analyzed to 
determine the efficacy of alarm rationalization, digitalization 
of procedures, and AI-driven decision support in a control 
room setting. The outcomes of these comparisons are antici-
pated to offer insights into the design of future control 
room interfaces and decision support systems, ultimately 
contributing to the advancement of safe and efficient indus-
trial operations. The characteristics of each group are sum-
marized in Table 2.

3.3.3. Scenarios
We selected three scenarios to evaluate our study’s different 
human-in-the-loop (HITL) configurations. Each scenario 
simulates a specific failure or challenge an operator might 
encounter in a plant environment. These scenarios test the 
robustness of the elements in the setups and the operator’s 
ability to respond effectively under varying conditions. The 
details of each scenario are as follows:

1. Pressure indicator control failure. In this scenario, the 
automatic pressure management system in the tank 
ceases to function. Consequently, the operator must 
manually modulate the nitrogen inflow into the tank to 
preserve the pressure. During this scenario, the cessa-
tion of nitrogen flow into the tank results in a pressure 
drop as the pump continues to channel methanol into 
the plant.

2. Nitrogen valve primary source failure. This scenario is 
an alternative version of the first. In this case, the pri-
mary source of nitrogen in the tank fails. The operator 
has to switch to a backup system. While the backup sys-
tem starts slowly, the operator has to regulate the pump 
power to maintain the pressure inside the tank.

3. Temperature indicator control failure in the Heat 
Recovery section. In this scenario, there’s a risk of the 
reactor overheating, with subsequent pressure increase. 
The primary objective is to prevent the activation of the 
pressure switch (PSL01) within 18 min following the ini-
tial Alarm.

4. Data collection and plan for analysis

Data was collected using the devices shown in Figure 11. 
These tools are further explained in this section.

4.1. Surveys

To assess workload and situational awareness as perceived 
by the participant, including gaining insight into the per-
ceived level of support of the different support systems, the 
demographics, training, and experiences of the participants, 
we administered questionnaires, which were completed at 
various points in the test as described in the protocol. For 
situational awareness assessment, the questionnaires used 
include the situational awareness rating technique (SART) 
and situation present assessment technique (SPAM). For 
workload, NASA-TLX was used. The other questions for 
demographics, etc., were designed into questionnaires by the 
researchers. A detailed description of the measures is pre-
sented in Section 5. These are to be analyzed and compared 
between groups to address the research hypothesis and 
understand the key organizational and individual factors 
that impact the operators the most in the different configu-
rations and given certain safety-related initiating events. The 
comparison of the variables, especially those based on 

Table 2. Characteristics of the groups.

Alarm rationalization Procedure on screen AI support

G1 No No No
G2 Yes No No
G3 Yes Yes No
G4 Yes Yes Yes

Figure 11. Data collection tools during the human interface interactions including subjective and objective measures obtained.
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operators’ perception, with more objective measures can 
benefit from a wholesome analysis of workload, situational 
awareness and stress.

4.2. Simulator

The simulator data from the plant for each scenario were 
recorded per participant. This included data from the plant 
systems and the operators’ interactions with the plant 
through the displays, such as manipulating valves, acknowl-
edging alarms, and more. By collecting such data, the 
authors plan to derive performance and behavioral metrics 
that can further be used to compare the different HITL con-
figurations. Also, future studies in related industries can 
identify key metrics to predict performance and outcomes in 
safety-related scenarios.

4.3. Eye-tracker

The eye-tracking technique was deployed for data collection 
to gain in-depth insight into operators’ cognitive states and 
understand their mental workload, situational awareness, 
and fatigue states. The glasses used were Tobii Glasses 3, 
50 Hz. It records various eye-related gaze and pupillometry- 
related metrics, such as pupil diameter, average fixation dur-
ation, etc. The goal is to gain insight into the differences 
between group cognitive states given the varying configura-
tions and during each scenario. The raw recordings are to 
be analyzed in-depth using Tobii Pro Lab software.

4.4. Watch

In this study, we utilized the EmbracePlus smartwatch to 
monitor vital physiological parameters: heart rate, tempera-
ture, and electrodermal activity. These metrics facilitate the 
comparison of physiological responses across different 
groups. Our analysis focuses primarily on discerning any 
significant differences in these measurements between the 
study groups.

5. Measures

Participants assessed the effectiveness with which decision 
support tools facilitated their performance at the end of 
each scenario. The outcomes of the alarm system and pro-
cedural aspects are presented in Section 6.

The questions asked for the alarm and procedure support 
assessment, including task load assessment, are as shown 
below, with participants scoring them on a scale of 1 to 5 
(1: Low, 5: High):

� Task load: How complex did you perceive the task to be?
� Alarm list support: How clear was the information 

received on the interface for the list of alarms, and how 
do you acknowledge, silence, or follow up on them?

� Alarm prioritization support: How helpful was the sup-
port received in differentiating the alarm priorities?

� Procedure support: How helpful was the support of the 
consulting procedures during the scenario?

� AI support: More questions were collected to assess the 
operators’ level of trust in the AI, quality, level of the 
help of suggestion, and explainability, complexity, and 
validity of the support. Some sample questions are shown 
below:
1. How would you rate the suggestion of AI support?
2. How would you rate the level of explainability of the 

AI support?
3. How high is your trust in the decisions suggested by 

the recommendation system?

5.1. Subjective measures

For the subjective measures, NASA TLX was used to assess 
workload, while SPAM and SART were used to assess situ-
ational awareness.

1. NASA-TLX: the NASA Task Load Index used in this 
study is the same as described in Braarud (2021). It fol-
lows the standard TLX question format with little word 
changes for easy comprehension and alignment with the 
type of task. The NASA TLX index is calculated using 
the formula: 

fða1, :::, a6Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1
6
P6

i¼1
ai

s

The ai represents the NASA TLX dimensions. That is, 
a) perceived mental, physical and temporal demands 
from tasks, b) effort and perceived performance on task, 
c) perceived effort utilized and frustration level.

2. SART: the standard questions used in the situational 
awareness rating technique were used for this study. 
The SART index is a composite measure of situational 
awareness comprising three dimensions: SART 
Understanding, Demand, and Supply Braarud (2021), 
and is calculated with the formula: 

U − ðD − SÞ

Situation Understanding (U) comprises Information 
Quantity, Information Quality, and Familiarity. 
Situation demand (D) includes the situation’s 
Instability, Complexity, and Variability. At the same 
time, the Supply of attentional resources (S) comprises 
Arousal, Concentration, Division of Attention, and 
Spare Capacity.

3. SPAM: Questions were developed and asked the partici-
pants at three points during each scenario: during alarm 
handling, while planning to intervene/first part of read-
ing the procedures, and finally, after the intervention. In 
most cases, these questions were asked in the scenario’s 
6th, 8th, and 12th min. This is based on a non-freeze 
approach as applicable in SPAM, with each question 
assessing the perception, understanding and projection 
levels of situational awareness, respectively, as defined 
by Endsley. A concurrent think-aloud approach was 
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used for the participants’ response assessment. The 
SPAM Index is calculated as: 

fða1, :::, a3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1
3
P3

i¼1
ai

s

The ai represents the SPAM dimensions of Perception, 
Understanding and Projection as further explained by 
the questions asked to the participants. The responses 
were recorded by the supervisors/researchers and scored 
on a scale of 1–5. 1 means ‘very low’ situational aware-
ness, and 5 means high situational awareness. The same 
questions used in scenario 1 to assess perception, under-
standing, and projection were used in scenario 2. The 
questions are detailed below:

Scenarios 1 and 2:

� Perception (Question 1): Which of these alarms, in your 
opinion, requires to be verified first ½FAL01, PAL01�? and 
why? (AI system: What is the AI decision support system 
about?)

� Understanding (Question 2): Why do you think the 
PAL01 alarm is activated? And what do you intend to 
do? (AI system: What was the suggestion on? Was it 
clear what you were expected to do and why?) (1: SA 
level Low, 5: SA level High)

� Projection (Question 3): Now that you have done this, 
what do you think will change in the system? Why?

For scenario 3, the questions assessing “perception” and 
“understanding” differed from those in scenarios 1 and 2 
due to the type of alarms annunciated. However, the ques-
tion on “projection” is similar across all scenarios, as shown 
below: 

Scenario 3:

� Perception (Question 1): Which of these alarms, in your 
opinion, must be verified first [FAL11, TAH17]? and 
why? (AI system: What is the AI decision support system 
about?)

� Understanding (Question 2): Why do you think the 
TAH17 alarm is activated? And what do you intend to 
do? (AI system: What was the suggestion on? Was it 
clear what you were expected to do and why?)

� Projection (Question 3): Now that you have done this, 
what do you think will change in the system? Why?

5.2. Objective measures

1. Performance:
Performance and behavior data were derived from the oper-
ational logs/simulator. Below are some of the selected 
metrics.

� Overall performance: this considers the time it takes to 
recover the low-pressure Alarm or, in some cases, those 
who fixed the fault even before an alarm. Those who fall 

below or equal to the 25th percentile are grouped as 
“optimal performance,” those who fall below or equal to 
the 50th percentile are classified as “good,” and the rest 
as “poor performance.”

� Reaction Time: this is the time it takes to switch the 
Nitrogen valve button from Auto to Manual depending 
on the scenario and initial task as written in the 
procedures.

� Response Time: the time it takes to act. For example, 
scenario 1 means the time it takes to adjust the nitrogen 
valve scale to the correct value.

2. Eye-tracking Metrics
Our study used Tobii Pro Glasses 3 for eye tracking and 
Tobii Pro Lab for robust data analysis. Combining these 
technologies allowed us to investigate various eye-tracking 
metrics, providing valuable insights into participants’ visual 
behaviors. The metrics considered in our analysis are 
enhanced by identifying areas of interest (AOI) for data 
mapping onto the snapshot and Time of Interest (TOI) 
delineations. Specifically, we categorized TOIs into baseline 
(pre-alarm occurrence), critical alarm regions, and the alarm 
flood, allowing for a more granular examination of visual 
attention dynamics. The following metrics were considered 
in our analysis:

� Heat Map: The heat map generated from the eye-track-
ing data visually represents the areas that captured the 
participants’ visual attention. Brighter regions on the 
heat map indicate higher fixation density, offering 
insights into the focal points within the visual stimuli. 
When overlaid with AOIs, the heat map offers a detailed 
spatial representation of visual attention within specific 
regions of interest. This insight becomes particularly 
valuable when correlating the heat map with TOIs, 
revealing how visual attention evolves across different 
experiment phases.

� Number of visits: This metric quantifies the frequency 
with which participants revisit specific AOIs. It provides 
valuable information about the temporal patterns of 
attention, indicating whether certain areas are consist-
ently revisited or if attention shifts over time.

� Visit Duration: Visit duration measures participants’ time 
on each visit to specific AOIs. This metric complements 
the “Number of Visits” by offering insights into the tem-
poral persistence and engagement within these areas.

� Number of Fixations: The number of fixations highlights 
the frequency with which participants shift their gaze 
between different points of interest. This metric aids in 
discerning patterns of visual exploration and identifying 
areas that consistently capture attention. By associating 
the number of fixations with AOIs and TOIs, we gain 
insights into the frequency of gaze shifts between differ-
ent points of interest across different experimental 
phases. This spatial-temporal correlation allows us to 
identify consistent attention patterns throughout the 
study.
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� Fixation Duration: Fixation duration represents when 
participants focus on a specific point of interest. This 
metric helps to identify elements that attract prolonged 
attention, contributing to our understanding of informa-
tion processing and cognitive engagement. When aligned 
with AOIs and TOIs, fixation duration helps pinpoint 
elements that elicit long attention during baseline, 
critical alarm scenarios, and the subsequent alarm flood. 
This temporal alignment facilitates a nuanced exploration 
of cognitive engagement and information processing 
dynamics.

� Saccade Duration: Saccades are rapid eye movements 
between fixations. Analyzing the duration of these move-
ments provides insights into the efficiency and fluidity of 
participants’ visual scanning patterns. It can reveal infor-
mation about the decision-making process, contributing 
to our understanding of cognitive processing speed. By 
analyzing saccade duration with Areas of Interest (AOIs) 
and Times of Interest (TOIs), we can study how effi-
ciently and smoothly participants scan visually under dif-
ferent conditions: baseline settings, critical alarms, and 
alarm floods. This approach contributes to understanding 
how cognitive processing speed evolves in response to 
changing stimuli.

� Pupil Diameter: Pupil diameter is a metric that reflects 
changes in cognitive load and emotional arousal. By 
measuring pupil size variations, we understand the men-
tal effort and emotional responses associated with specific 
visual stimuli. The variations in pupil diameter, observed 
with AOI and TOI, provide an understanding of cogni-
tive load and emotional responses related to specific 
points of interest. This approach allows us to discern 
how visual stimuli affect participants’ cognitive processes 
over time intervals.

By leveraging these eye-tracking metrics, we aim to 
unravel the intricacies of participants’ visual attention and 
cognitive processes in response to the stimuli presented, 
shedding light on the underlying mechanisms that shape 
human perception. Incorporating AOIs and TOIs into our 
analysis framework enhances eye-tracking metrics’ precision 
and contextual relevance, ensuring a comprehensive explor-
ation of visual behavior. Leveraging Tobii Pro Glasses 3 and 
Tobii Pro Lab, we aim to unravel our study’s complex inter-
play between visual attention, cognitive processes, and emo-
tional responses.

3. Smart Watch
The following are some key measures collected during the 
test using the EmbracePlus smartwatch.

� Heart Rate: Heart rate is the number of heartbeats per 
unit of time, usually expressed as beats per minute 
(bpm). It is a vital physiological parameter that reflects 
the cardiovascular system’s activity. It is often used to 
indicate arousal, stress, or emotional responses. In cogni-
tive and health studies, monitoring changes in heart rate 

can provide insights into the autonomic nervous system’s 
activity and overall cardiovascular health.

� Temperature: Temperature refers to a body or environ-
ment’s degree of hotness or coldness, usually measured 
in degrees Celsius (�C) or Fahrenheit (�F). Body tem-
perature is a fundamental physiological parameter. In 
cognitive science, changes in body temperature may be 
linked to stress responses, mental workload, or emotional 
states.

� 3. Electrodermal activity (EDA): Electrodermal activity, 
or galvanic skin response, measures the skin’s electrical 
conductance. It is influenced by sweat gland activity. 
EDA often indicates sympathetic nervous system activity 
associated with emotional responses and arousal. In cog-
nitive science, monitoring electrodermal activity can pro-
vide information on stress levels, emotional engagement, 
and the overall response of the autonomic nervous sys-
tem during various cognitive tasks or stimuli.

5.3. Control variables

Data is also collected on the participants’ demographics, 
including their age and gender, their course, year of study, 
familiarity with the process industry and control rooms, and 
their training assessment.

6. Result

Two participants per group were omitted to analyze the over-
all questionnaire data, given the number of missing data from 
them. The missing data left were further filled up using the 
mean of the data samples. Hence, 21 participants per group 
were used for the survey-data-related analysis below.

Table 3 shows the mean of the perceived support of the 
alarm system and procedure as rated by the participants on 
a scale of 1–7. 7 means excellent support, and 1 means poor 
support.

A Shapiro-Wilk L1 Test, Shapiro and Wilk (1965), was 
first used to assess the normality of the data for each group. 
The group data were not normally distributed for each scen-
ario in all cases, as seen in Table 4. Therefore, the Mann- 
Whitney U Test, Mann and Whitney (1947), was used to 
evaluate further the statistical significance of our mean data 
in the group-scenario comparison, as shown in Table 5.

6.1. Perceived support

6.1.1. Alarm list support
� Scenario 1:

Although Group 4, which used AI, had procedures dis-
played on the screen and employed alarm prioritization, 
it reported the highest average score for alarm list sup-
port (M¼ 4.38). This did not significantly differ from the 
scores of Group 2 (M¼ 4.33), which used procedures on 
paper with alarm prioritization, nor from Group 1 
(M¼ 4.33), which used procedures on paper without 
alarm prioritization, or from Group 3 (M¼ 4.14), which 
used procedures on-screen with alarm prioritization. 
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Notably, Group 4 had a median score (Med ¼ 4) lower 
than Group 2 (Med ¼ 5), indicating that despite having 
a higher mean, the central tendency of the ratings for 
Group 4 was lower. The absence of statistically signifi-
cant differences, as shown in the Mann-Whitney U Test 
results, suggests a homogeneous perception of alarm list 
support across all groups in this scenario.

� Scenario 2:
The perception patterns in Scenario 2 mirrored those of 
Scenario 1, with no group displaying a statistically sig-
nificant difference from the others in their perception of 
alarm list support. Group 4 again reported a marginally 
higher mean score (M¼ 4.25). Still, this slight variation 
did not reflect a significant difference in the actual sup-
port experience, evidenced by the consistent median 
scores across groups and the non-significant p-values 
from the statistical tests.

� Scenario 3:
Scenario 3 presented a shift in the pattern, with Group 4 
reporting a notably lower average rating (M¼ 3.38) for 
their experience of alarm list support. Despite this lower 
mean score for Group 4, all groups maintained a similar 
perception of alarm list support. Group 4’s mean score 

was affected by lower ratings, but the consistent median 
across the groups indicates a shared central experience. 
The differences were not statistically significant according 
to the Mann-Whitney U Test

6.1.2. Alarm priority support
� Scenario 1 (S1):

In Scenario 1, the reported median scores for alarm pri-
oritization support show Group 1, which lacked alarm 
prioritization, at a clear disadvantage with a median of 3, 
compared to Groups 2, 3, and 4, which had higher 
medians of 5, 4.5, and 4, respectively. This is reinforced 
by the mean scores, where Group 1’s mean of 2.81 is sig-
nificantly lower than those of Groups 2 (4.38), 3 (4.27), 
and 4 (4.43). The Mann-Whitney U Test results indicate 
a statistically significant impact of alarm prioritization on 
perceived support, placing Group 1 at a marked shortfall.

� Scenario 2 (S2):
Maintaining the pattern observed in Scenario 1, Group 1 
showed the lowest median score for alarm prioritization 
support (Med ¼ 3) in Scenario 2, underlining a persistent 
perception of inadequate support, with this finding being 

Table 4. Shapiro-Wilk Test results for procedure support, alarm list support, and alarm priority support across three scenarios (S1, S2, and S3). p¼ 0.00 shows 
non-parametric distribution.

S1 S2 S3

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

Procedure support 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.06 0.01 0.06
Alarm list support 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
Alarm priority support 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Table 5. Mann-Whitney U Test results for Group-wise comparison across the three scenarios. p< 0.05 shows statistical significance.

S1 S2 S3

G1 vs. G2 G2 vs. G3 G3 vs. G4 G1 vs. G2 G2 vs. G3 G3 vs. G4 G1 vs. G2 G2 vs. G3 G3 vs. G4

Procedure support 0.51 0.51 0.89 0.04� 0.06 0.50 0.61 0.88 0.58
Alarm list support 0.84 0.19 0.25 0.71 0.61 0.86 0.50 0.64 0.25
Alarm priority support 0.00�� 0.72 0.67 0.00�� 0.72 0.51 0.00�� 0.24 0.71
�also for G4, �� also for G3 & G4

Table 3. Comparison of operator perceived support while using the support tools of alarm list, alarm prioritization, and procedures (paper for 
Group (G) 1 and 2, screen for Group 3 and 4). Note that not all participants in Group 4 used the procedures on screen since they had the 
AI. M ¼ mean, SD ¼ Standarddeviation, Med ¼ Median:

Alarm list support Alarm prioritization support Procedure support (paper and screen)

Scenario Group M SD Med M SD Med M SD Med

S1
G1 4.33 0.80 5 2.81 1.54 3 4.14 1.15 5
G2 4.33 0.97 5 4.38 0.74 5 4.33 1.11 5
G3 4.14 0.71 4 4.27 0.83 4.5 4.23 0.97 4.5
G4 4.38 0.67 4 4.43 0.60 4 4.26 1.02 5

S2
G1 4.14 1.01 4 2.67 1.35 3 4.05 1.12 4
G2 4.24 1.04 5 4.33 0.73 4 4.57 0.98 5
G3 4.15 0.93 4 4.40 0.75 4.5 4.15 0.99 4
G4 4.25 0.79 4 4.18 0.94 4.25 3.98 0.98 4

S3
G1 3.57 1.25 4 2.19 1.50 1 3.62 1.36 4
G2 3.86 1.06 4 4.14 1.15 5 3.48 1.12 4
G3 3.64 1.26 4 3.68 1.36 4 3.32 1.52 3.5
G4 3.38 0.86 3 3.62 1.16 4 3.10 1.34 3
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statistically significant as indicated by the Mann-Whitney 
U test. Conversely, Groups 2, 3, and 4 reported higher 
median scores (Med ¼ 4, 4.5, and 4.25, respectively), fur-
ther substantiating the hypothesis that the provision of 
alarm prioritization is linked to an enhanced perception 
of support. The absence of this feature in Group 1’s 
workflow leads to a continuous perceived support gap 
compared to the other groups.

� Scenario 3 (S3):
In Scenario 3, Group 1’s median support for alarm pri-
oritization remained the lowest (Med ¼ 1), indicating a 
persistently lower perceived support. The other groups— 
Group 2 (Med ¼ 5), Group 3 (Med ¼ 4), and Group 4 
(Med ¼ 4)—again reported higher median scores. The 
Mann-Whitney U Test results illustrate the significant 
difference in perceived support between Group 1 and 
Group 2, underlining the critical role of alarm prioritiza-
tion in shaping operators’ support perceptions.

6.1.3. Procedure support
� Scenario 1 (S1):

Groups 1,2, 3, and 4 had mean scores of 4.14, 4.33, 4.23, 
and 4.26, respectively. No statistically significant differen-
ces were found between groups based on the Mann- 
Whitney U test in Scenario 1.

In Scenario 1, the median scores for procedure support 
were consistent across Groups 1, 2, and 4 (all with Med 
¼ 5), while Group 3 had a slightly lower median of 4.5. 
These median scores, alongside mean scores of 4.14 for 
Group 1, 4.33 for Group 2, 4.23 for Group 3, and 4.26 
for Group 4, suggest an overall similar perception of sup-
port across all groups, a finding supported by non-signifi-
cant results from the Mann-Whitney U test, indicating 
no substantial differences in procedure support 
experience.

� Scenario 2 (S2):
In Scenario 2, Group 2 stood out with the highest mean 
(4.57) and median (5) scores for procedure support, indi-
cating a positive perception of paper-based procedures. 
Group 1 followed closely with a median of 4 despite a 
slightly lower mean (4.05). Group 3 also held a median 
of 4, with a mean of 4.15, and Group 4, even with AI 
support, had the lowest mean (3.98) and a median that 
matched Group 3 (4). The Mann-Whitney U test results 
suggest significant differences between Groups 1 and 2, 
which could indicate a more difficult use of the proced-
ure without alarm rationalization.

� Scenario 3 (S3):
Scenario 3 showed a general decline in mean scores for 
procedure support across all groups, with Group 1 at 
3.62, Group 2 at 3.48, Group 3 at 3.32, and Group 4 at 
the lowest with 3.10. However, the median scores were 
closer, with Group 1 at 4, Group 2 at 4, Group 3 at 3.5, 
and Group 4 at 3. Despite the observable drop in mean 

scores, the lack of statistically significant differences per 
the Mann-Whitney U test underscores a shared percep-
tion of procedure support across all conditions.

7. Discussion

7.1. Support systems: Groups per scenario

Alarm list support: The lack of statistically significant differ-
ences between the groups implies that, despite numerical 
discrepancies in mean, all groups in the first scenario have a 
consistent baseline experience of alarm list support. This is 
expected because they all have the same alarm list support 
format.

Alarm priority support: The pattern observed as we move 
from S1 to S2 indicates a trend where participants in Group 
1 consistently perceived lower levels of alarm priority sup-
port compared to Groups 2, 3, and 4 across all scenarios. 
While Groups 2, 3, and 4 had varying mean scores across 
scenarios, the absence of statistically significant differences 
between these groups suggests a relatively stable perception 
of alarm priority support within each group across the scen-
arios. The consistently lower perception of alarm priority 
support in Group 1 across all scenarios suggests alternative 
support is needed. Insight on the importance of this factor 
when predicting performance would be required to weigh 
the actual impact given such configurations. These results 
from group 1 with non-prioritized alarms align with the lit-
erature indicating the downsides of non-prioritization or 
rationalization of alarms (EnergyInstitute, 2010; Meshkati, 
2006).

Procedure Support: The significant differences observed 
between Groups 1 and 2 in S2 and between Groups 2 and 4 
highlight variations in participants’ perceptions of procedure 
support. Group 2 consistently rated higher, indicating a 
more robust perception of support than Group 3 or 4 with 
AI assistance. Interestingly, no statistical difference was 
found between Group 3 (using procedures on screen) and 
the other groups, suggesting similarities between these repre-
sentation formats. Further investigations may provide add-
itional insights, including questions assessing the different 
formats’ effectiveness.

Surprisingly, Group 4, despite AI support, initially exhib-
ited higher ratings than Group 3 in S1. This result, including 
the close nature of the mean values with that of other 
groups, shows a reliance on the procedures despite the AI 
suggestion. This behavior contrasts with literature suggesting 
more concise forms of representation (Park & Jung, 2003). 
Seeing that the concise format was not sufficient enough, 
the digitized procedures had to be consulted. Therefore, this 
might be ascribed to cases with new technology designs for 
procedures, such as using AI, as trust in AI can be an initial 
issue.

However, as observed in other groups, Group 4’s ratings 
also declined as scenarios progressed, indicating an 
increased reliance on AI over procedural support. The 
decline in ratings across all groups in S3 may be linked to 
the escalating difficulty of the scenarios, especially scenario 
three. These inexplicable observations underscore the 
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importance of exploring the contextual factors influencing 
participants’ perceptions during each scenario.

Significantly, Group 4’s ratings were found to be similar 
to those of Group 3, underscoring that incorporating an AI 
decision support system does not negatively affect other sup-
port components within the interface. This observation rein-
forces that introducing AI-based decision support systems in 
control rooms can be advantageous without disrupting the 
established support frameworks.

7.2. Limitations

It is essential to recognize the study’s limitations, including 
its reliance on self-reported measures and lack of more 
detailed questions for evaluating the procedure format. The 
study can also be improved with more complex scenarios 
and alarm conditions and the use of actual control room 
operators.

Furthermore, the controlled nature of the study might 
not adequately reflect the dynamic and unpredictable aspects 
of real-world safety-critical situations. The results of the self- 
perceived ratings by the operators might also be influenced 
by the controlled nature of the study, given that they are 
more tensed to perform accurately and within the available 
time.

The focus on specific human system interfaces, and deci-
sion support tools may overlook other contextual factors 
and individual differences influencing operators in control 
room environments. This limitation can impact the out-
comes in adequately capturing some underlying factors 
needed to predict error, situational awareness, or workload.

Additionally, the study’s reliance on a single simulated 
formaldehyde production facility may limit the generalizabil-
ity of findings to different industrial processes and control 
room settings. Moreover, the study does not consider the 
potential long-term effects of various interfaces and tools on 
operators’ cognitive states and performance, as it only 
assessed immediate impacts without exploring fatigue, burn-
out, or other lasting effects over time. Thus, it is probable 
that the long test duration, especially for the last scenario, 
might influence the participants’ subjective ratings on their 
perception of the support of the systems, workload and situ-
ational awareness. Addressing these limitations is suggested 
for future research.

Although we tried to include experienced operators, most 
participants were engineering master’s students, with a few 
being more experienced engineers, such as PhD candidates 
and professors. This disparity in practical experience may 
compromise the transferability of our findings, as real-world 
operators could face distinct challenges and respond differ-
ently to decision support systems.

Also, implementing AI decision support systems presents 
challenges. First, modelling an entire industrial process in a 
DSS is highly complex, and the decision to focus it on a spe-
cific segment of the system or to try to broaden it could 
affect its efficacy. Further, deploying a DSS in an existing 
control room might present compatibility and safety prob-
lems. The trust of the operators in DSS could be achieved 

by specific training and instructions, and the allocation of 
responsibilities should be clearly defined to ensure that the 
human role in the control room is supported rather than 
replaced.

8. Conclusion

This research discussed state-of-the-art alarm systems, inter-
vention procedures, and AI-based recommendation systems, 
highlighting gaps in holistic human-in-the-loop configura-
tions for process control rooms. We also present a set of 
decision support tools evaluated through an experimental 
study of a simulated formaldehyde production facility. 
Through this study, different data collection techniques were 
used to gain insight into the level of support of supporting 
tools and the impact of the support tools on the situational 
awareness, workload and performance of process control 
room operators.

This study has shown that the Comparison between 
Group 1 (with paper procedureþ no-alarm prioritization) 
and other groups on alarm list support suggests a notable 
consistency in the perception of alarm list support across 
scenarios, which was quite the opposite for alarm priority 
support. Instead, as expected, there was a statistically signifi-
cant difference between Group 1 and the other groups in 
alarm priority. Based on the subjective procedure support 
ratings, there were no significant differences between Group 
3 (the group with the procedure on screen) and Group 4 
(the group with AI support). Furthermore, there was no sig-
nificant difference based on this subjective rating between 
Groups 3 and 2 (with the Procedure on paperþ alarm 
rationalization). However, the differences between Groups 1 
and 2 and Groups 2 with 4 were statistically significant. The 
almost statistically significant difference between groups 2 
and 3 on the support of the procedure suggests the benefit 
of a more in-depth analysis. Therefore, incorporating the 
information obtained from eye tracking or EEG analysis of 
the procedures as an area of interest during the study could 
provide a more nuanced understanding of the configuration 
differences.

As the first experimental investigation on this topic and 
recognizing the constraints associated with assessing a larger 
control room environment and distributed control panels, 
our study focused on an academic setting. The scenarios 
devised for this study were tailored to match task levels that 
could be tackled by the profiles included in our research— 
namely, master’s and PhD level students and certain profes-
sors. The prospect of incorporating a larger panel, control 
room operators, and more complex scenarios remains a con-
sideration for future research efforts by the authors.

Furthermore, future research could investigate quantita-
tive and qualitative aspects to explore the factors influencing 
participants’ perceptions of alarm lists, alarm priorities, and 
procedure support in greater detail. More work is needed to 
analyze the data collected for AI support and the combined 
impact of the different HITL configurations on situational 
awareness, workload, and performance assessment. This 
includes analyzing the data to understand vital performance- 
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shaping factors that stood out in each configuration, which 
decision-makers can potentially pay closer attention to.
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