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Abstract—Smooth and collision-free trajectory planning is
crucial to high speed and high precision machining, such as
3D laser cutting. However, it is difficult to further enhance
the kinematic performance of the primary translational axes
during the process. This paper presents a novel two-phase
planning strategy, which optimizes the tool orientation and
leverages a redundant standoff axis to significantly enhance the
smoothness of the translational movements in redundant 3D laser
cutting machines. In the first phase, collision-free configuration
spaces (C-spaces) are constructed along the tool path, utilizing a
graph-based search approach with Dijkstra’s algorithm for tool
orientation optimization. Subsequently, a secondary orientation
curve, namely the M path, is planned in the second phase with
a variable distance from the primary tool path curve, and the
motion of the redundant standoff axis is handled via a deep
reinforcement learning approach. The proposed methodology
provides an advancement in conventional five-axis machines lack-
ing of flexibility. Experimental validation confirms the potential
of the approach to substantially improve machining accuracy and
efficiency.

Index Terms—3D laser cutting, Redundancy, Collision avoid-
ance, Tool orientation optimization, Reinforcement learning

I. INTRODUCTION

The smoothness of trajectories is crucial in high speed
and high precision machining applications, such as 3D laser
cutting. However, planning a smooth and collision-free path
presents significant challenges when conventional five-axis
Numerical Control (NC) machines are used. Many efforts have
been made to optimize tool orientation, addressing challenges
related to collision avoidance and enhancing the smoothness
of rotary axis movements [1]. However, excessive acceleration
and inertia on translational axes during high speed machining
also stand as primary factors leading to machine vibrations
and lower machining accuracy [2].

This research introduces a novel approach that, while main-
taining optimized tool orientations at each Cutter Location
(CL) point, leverages a redundant standoff axis to enhance the
motion performance of non-rotational axes through strategic
trajectory planning. Such a methodology is adopted on a
3D laser cutting machine equipped with a redundant axis as
the research object in this paper. This redundant 3D laser
cutting machine is currently a prototype developed by EFORT
Intelligent Equipment Co., Ltd. The schematic of the machine
and axes directions are presented in Fig. 1.

The collision avoidance problem in five-axis machining
has been addressed through tool orientation adjustment; the
approaches available in literature can be distinguished in
two classes: (i) discrete tool orientations techniques, and (ii)
iterative processing based on Representative Tool Orientation
(RTO). The discrete methods focus on segmenting the path and
pinpointing collision-free trajectories at each CL point within
feasible domains, as characterized by inclination and tilt angles

in the Local Coordinate System (LCS). Early efforts by Jun et
al. [3] took the solution of smoothing tool orientation through
search methods, whereas subsequent studies, like Castagnetti
et al. [4], found the construction of feasible regions in the Ma-
chine Coordinate System (MCS) more efficient due to the In-
verse Kinematic Transformation (IKT)’s nonlinearity. This led
to the application of sequential quadratic programming meth-
ods, framing the Domain of Admissible Orientation (DAO)
within approximated linear inequality constraints directly with
rotary axes. Plakhotnik and Lauwers [5] introduced a graph-
based algorithm aimed at minimizing rotary axes movement,
incorporating admissible arcs. Mi et al. [6] further refined
this approach by including acceleration considerations for
rotary axes in the orientation optimization cost function by a
difference graph. The second class of methods employs RTOs
for iterative tool orientation adjustments to avoid collisions,
e.g., utilizing Quaternion Interpolation (QI) as in [7], to ensure
smooth transitions between collision-free RTOs. High-order
B-spline representations of orientation curves, followed by
interpolation to ascertain the corresponding orientations, were
utilized in subsequent refinements, by Xu et al. [8], enhancing
kinematic performance through smoothing interpolation tech-
niques within the RTO iterative process. Wu et al. [9] proposed
a jerk-optimal tool orientation piecewise planning method to
further improve the performance.

The research community is increasingly concentrating on
refining the movement of rotary axes to achieve smoother
trajectories: many advanced techniques dedicated to the op-
timization of the tool orientation were proposed recently.
The tool orientation optimization problem was solved by a
genetic algorithm in [10]. A computational efficiency was
demonstrated by converting the tool orientation planning prob-
lem into a reinforcement learning task [11]. It is noteworthy
that the dual-curves technique [8], [12], [13], employed for
optimizing tool orientation, has garnered increasing attention
among scholars. An equidistant double NURBS based on dual
quaternion trajectory generation algorithm was proposed to
reaching G2 continuity by Zhang et al [12]. The feedrate
fluctuations of rotary axes were reduced in [13], enhancing
the milling process efficiency by optimizing dual NURBS
curves. Regarding the dual NURBS technique, to the best of
our knowledge, there are still two main unsolved issues: first,
the fixed height [12] between curves can result in exaggerated
tool orientation changes for paths with acute angles, such as
corner etc, potentially causing the orientation curve to invert
and “knot”. Second, the influence of the secondary orientation
curve not only improves the smoothness of rotary axes motion,
but it also significantly affects the motion of the machine’s
translational axes, even if such an aspect has often been
underestimated [8], [13], [14].
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Numerous research efforts [2], [15]–[17] focus on inter-
polation scheduling, aiming at refining and smoothing the
trajectory. However, these approaches are limited by five-axis
machine’s inflexibility in the mechanical structure.

In the approach proposed in this paper, this issue is ad-
dressed in two phases: first, optimizing the tool orientation,
and subsequently, enhancing the performance of translational
axes through the exploitation of redundancy. The approach
starts with the construction of C-spaces at each CL point,
incorporating specific machining constraints. The tool ori-
entation optimization challenge is tackled by employing a
graph-based search across all C-spaces, utilizing Dijkstra’s
algorithm for efficient traversal. Furthermore, a novel method
is introduced for the planning of a secondary orientation curve,
termed the M path, which maintains a variable distance from
the primary tool path. This is accomplished by handling the
motion of the redundant standoff axis via a deep reinforcement
learning approach, which allows to significantly improve the
smoothness of translational axes movements. The proposed
strategy demonstrates notable gains in both efficiency and
precision during simulations, offering a breakthrough solution
to the lack of flexibility in five-axis machine tools, by utilizing
a redundant axis strategy.

The rest of the article is organized as follows: Section II
details the graph-based methodology for optimizing tool orien-
tation across permissible regions at each CL point. Section III
delves into a novel strategy for managing the redundant
standoff axis, utilizing a deep reinforcement learning approach
to achieve M path smoothing. Section IV showcases the
simulation outcomes and analyzes the results. Conclusively,
Section V summarizes the study and outlines directions for
future research.

Fig. 1: The schematic of EFORT 3D laser cutting machine.
(a) overview; (b) details on the laser head.

II. TOOL ORIENTATION OPTIMIZATION
A. Tool path representation

The tool path of a workpiece is described in workpiece coor-
dinate system (WCS) and it is represented through parametric
B-spline curves, denoted as

C(u) =

n∑
i=0

Bi,p(u)Pi, u ∈ [0, 1], (1)

where u is the normalized geometric parameter along the path
and Pi represents the collection of n control points dictating
the shape of the B-spline. Concurrently, Bi,p(u) denotes the
i-th B-spline basis function of order p in the variable u. The
values of u where the pieces of polynomial meet define the

sequence {u0, u1, . . . , un+p+1}, known as knot vector. Such
basis functions are derived recursively as Bi,0(u) =

{
1, ui ≤ u ≤ ui+1

0, else
,

Bi,p(u) =
u−ui

ui+p−ui
Bi,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

Bi+1,p−1(u).

(2)

The feedrate interpolation algorithm [16] facilitates the
planning of interpolated CL points along single or multiple
segments of the tool path. The N discrete geometric parame-
ters, denoted as ut, are derived from the interpolation process,
which incorporates tangential constraints, as

ut = f(t), t ∈ 1, 2, . . . , N, (3)

where f represents the feedrate interpolation function,
determining the CL position at index t as C(ut) =
[x(ut), y(ut), z(ut)].

Once the CL positions along the curve are defined, the
reference direction of tool orientation at each intermediate
point can be obtained through interpolation of the normal
vectors at the path’s start and end points. In this study, the
QI algorithm [7] is applied to compute the tool orientation
O(u), where O(ut) = [i(ut), j(ut), k(ut)] is the interpolated
unit direction of the tool, and its parameterized form can be
written as:

O(ut) =
sin ((1− ut)θQ)

sin θQ
O(0) +

sin (utθQ)

sin θQ
O(1), (4)

where θQ = arccos (O(0) ·O(1)), O(0),O(1) represent the
tool orientations at the start and end points, respectively, and
· is the dot product between two vectors. These directions are
determined by normal vectors perpendicular to the workpiece
surface.

B. C-space method
In this section, feasible C-spaces are computed to define the

collision-free zone for CL points on the workpiece. Similarly
to the approach in [1], the C-spaces are constructed in the
plane of two rotary axes in MCS, instead of using inclination
and tilt angles in LCS at CL points, as in other methods.
However, to ensure that the C-space retains the constraints
of machining tolerance in LCS, uniform sampling within the
constrained subspace at constant intervals is performed, and
the sampled candidates are mapped into MCS to construct
the C-space. Interference between the laser head components
and the workpiece is checked for collisions for each candidate
within the constructed C-space.

Firstly, the tool orientation must be constrained in a domain
for each CL point to ensure the quality of machining. A Frenet-
based LCS located on a CL point is shown in Fig. 2. The
classical machining constraints are simply represented in a
geometric shape, as in [4]. In laser machining applications, the
tool orientation is determined according to the direction of the
laser beam. Then, the constrained domain of tool orientation
variation is defined by the maximum allowable lead and tilt
variations of the laser beam angle with respect to O(u).
The tolerances are usually defined relating to the customized
manufacturing quality and the curvature of a reference tool
path.

Secondly, to facilitate the calculation of equivalent solutions
in MCS, the constrained region must undergo a transformation



from the local LCS to the global WCS. This is achieved
through a simple multiplication by the workpiece transforma-
tion matrix.

Fig. 2: Geometric representation of machining constraints
based on a local Frenet frame with zoomed view of gridded
coordinates on lead and tilt angles.

The transformation between WCS and MCS is detailed in
the previous work [18], and recalled here as[

i(u)
j(u)
k(u)

]
=

[
cos q4(u) sin q5(u)
sin q4(u) sin q5(u)

cos q5(u)

]
, (5)

where q4 and q5 are the joint variables of the laser head, as in
Fig. 1, i.e., they represent the coordinates of the rotary axes,
which can be obtained using classical IKT approach as{

q4(u) = arctan 2(j(u), i(u)) + aπ, a = 0,±1,
q5(u) = arccos(k(u)). (6)

Finally, all candidates computed in the subspace of MCS
must be checked for collision avoidance. While in milling
applications only checking for collisions between the tool and
the workpiece is typically sufficient, in the case of a 3D laser
cutting head the collision avoidance issue is more complex.
The volume body of the 3D laser head is larger than typical
milling tools, and its configuration is asymmetrical when
viewed around the q4 axis along the tool direction, implying
that also movements of the rotary axes can potentially lead
to collisions. In this paper, collision checking encompasses all
components on the head that may be close to the workpiece.
The C-space will then consist of feasible regions and forbidden
areas, as determined by collision checking.

Fig. 3 sketches the four main steps for the construction of
the entire C-space. Fig. 3(a) shows the initial step of establish-
ing machining constraints in the LCS, focusing on lead and
tilt angles. Subsequently, Fig. 3(b) depicts how the constrained
subspace is represented as a global orientation ij-plane in
the WCS. The third step, as shown in Fig. 3(c), involves
deriving the rotary axes subspace in the MCS following IKT.
Finally, Fig. 3(d) presents the completed C-space, in which
feasible (blue) and forbidden (red) regions are distinguished
after collision detection.

Once the C-space is established at each CL point along
the tool path, attention must turn to manage the transitions
between adjacent tool orientations. This step is crucial for
maintaining the smoothness outlined in Section I, setting the
stage for the transition into the optimization model discussion.

C. The optimization problem
The choice of candidates within the feasible region of C-

spaces for all CL points along the tool path plays a critical
role in ensuring the smooth motion of the rotary axes. It is
intuitive that finding the most suitable solution within each
C-space along a tool path, as illustrated in Fig. 4, is quite

Fig. 3: A detailed visualization of the four step process in
constructing the C-space.

similar to selecting vertices across each layer in a graph
to determine the shortest path. Many graph-based searching
methods for tool orientation optimization have been developed
in past contributions [5], [6], [19]. This section is devoted
to the construction of the graph representing the large-scale
discrete C-spaces, and to the definition of the weight between
each couple of vertices for the optimization model.

Fig. 4: A schematic diagram of discrete C-spaces and feasible
tool orientation candidates at CL points on the tool path

To demonstrate the concept with a simplified model, a
graph G = {V,E} is constructed, consisting of a sequence
of stages. Each stage contains vertices representing possible
states within the C-space. The graph begins at a start vertex
v0 and concludes at an end vertex v5. As depicted in Fig. 5(a),
each stage, except for the first and the last one, contains
multiple vertices. The graph consists of a vertex set V and
an edge set E. However, in this graph, the shortest path
calculation considers only directly connected states that are
adjacent to each another. The difference graph G∗ = {V ∗, E∗}
was presented in [6] for three states evaluation by considering
the difference of original edges. Each element of V ∗ represents



one edge, and elements in E∗ are vertices connecting incident
edges in G, as in Fig. 5(b).

Fig. 5: A simple example of graph for orientation optimization.
(a) original graph G; (b) difference graph G∗ [6]

In this study, to achieve a smooth change in tool orienta-
tions, the aim is to minimize not only the deviations of the
rotary axes but also the effects of accelerations.

Here, the model that defines the kinematic performance of
the angular deviation of rotary axes is presented. Let qR denote
the coordinate of one of the rotary axes (i.e., q4 or q5), as
given in (6). The angular velocities and accelerations can be
computed by using forward and central difference method as

q̇R(ut) =
qR(ut+1)− qR(ut)

ut+1 − ut
, (7)

q̈R(ut) =
2 (q̇R(ut)− q̇R(ut−1))

ut+1 − ut−1
, (8)

where ut−1 and ut+1 are the previous and the next interpolated
parameter, respectively. Notably, the continuity of the multi-
turn capability of the rotary axis q4 is achieved as

∆q4 =


∆q′4 − 2π, if ∆q′4 > π

∆q′4, if − π < ∆q′4 < π

∆q′4 + 2π, if ∆q′4 < −π

, (9)

where ∆q′4 = q4(ut+1)− q4(ut).
Velocities and accelerations in (7), (8) are bounded by the

drive limits of the rotary axes as

|q̇R(ut)| ≤ q̇R,max, |q̈R(ut)| ≤ q̈R,max, (10)

where q̇R,max and q̈R,max, indicate the limits of the corre-
sponding axis. It is worth to note that those vertices for
which the kinematic constraints in (10) are not satisfied, are
automatically removed while constructing the graph G to
enhance the computational efficiency.

In order to take into account also the effects of the accel-
erations, and achieve a smooth tool orientation trajectory, the
following optimization objective function is introduced as

min

N∑
t=1

√
q̇R(ut)2 + λq̈R(ut)2, (11)

subject to the constraints in (10). λ is a scalar used as penalty
parameter on the accelerations to tune the smoothness of the
tool orientation trajectory.

Overall, the optimized tool orientations O∗(ut) can be
found by searching the shortest path in G∗. Dijkstra’s al-
gorithm is adopted to efficiently solve the graph-based tool
orientation optimization problem.

III. PLANNING FOR REDUNDANT STANDOFF AXIS

The challenge of planning collision-free and smooth move-
ments for rotary axes was addressed in the previous section.
However, in many high speed machining applications, particu-
larly in 3D laser cutting, significant reductions in the feedrate
typically occur due to sharp angular changes within short
segments of the tool path, despite efforts to ensure smooth
angular transitions. This issue is attributed to the inherent
mechanical offsets present in the rotational mechanisms of
traditional five-axis machines, which result in unnecessary
displacements at the tool tip during rotary axes movements.
Consequently, the machine translational axes are responsible
for compensating these rotational offsets within short segments
to maintain the tool’s tip along the intended tool path.

The standoff axis, an external translational axis commonly
found in laser cutting machines, as illustrated in Fig. 1, usually
serves the single purpose of maintaining a constant distance
between the nozzle tip and the workpiece surface. In this paper,
for the first time, the standoff axis is proposed to be employed
as a further redundant sixth DOF q6 on five-axis machines,
denoted simply as the w axis for simplicity. The stroke of the
redundant standoff axis w axis is extended with respect to the
traditional 3D laser machines, as detailed in Table I.

TABLE I: Comparison of standoff axis stroke range between
the EFORT machine and traditional 3D laser cutting 5-axis
machine

Stroke wmin (mm) wmax (mm)

EFORT redundant 3D laser machine -100 20
Traditional 3D laser machine -12 12

A. Concept of M path

Many studies [12], [13], [15], [17] have demonstrated that
second orientation curve methods in five-axis machines can
effectively smooth angular movements. On the other hand,
the capability of dual curves methods to further smooth the
movement of translational axes is often underestimated.

Leveraging the characteristic of the standoff axis to move
along the tool axis direction, the optimization of the second
curve is proposed through the planning of the w axis value. A
novel curve is introduced from the tool curve, named M path
in this paper, having variable height. The concept of M path
is illustrated in Fig. 6.

Thanks to the zero-offset mechanical structure design of the
3D laser cutting head, as shown in Fig. 7(a), the discrete M
points on the M path can be represented by a crossing point
of rotary axis q4 and q5. The M points are denoted as M(ut),
the position of each point is calculated by moving from the
corresponding CL point C(ut) by the amount w(ut) along the
optimized tool orientation O∗(ut), as:

M(ut) = C(ut) + w(ut)O
∗(ut). (12)



Fig. 6: The M path concept

To maintain the generality of the M path concept, the
equation (12) for typical 3D laser cutting head structures is
then adapted by incorporating offset values as

M(ut) = C(ut) + (w(ut) + l2)O
∗(ut) + l1v⃗(ut), (13)

where l1 and l2 represent the mechanical offsets, as shown in
Fig. 7(b). The figure also compares the mechanical structure
of the EFORT 3D laser cutting head with the one of a
conventional head, to better highlight the differences with
the conventional approach used in 3D laser cutting machines.
The vector v⃗(ut) denotes the unit direction orthogonal to the
optimized tool orientation O∗(ut), calculated as

v⃗(ut) =
C(ut+1)−C(ut)

∥(C(ut+1)−C(ut))∥2
×O∗(ut). (14)

Fig. 7: Mechanical structure of 3D laser cutting heads. (a)
zero-offset head on EFORT machine; (b) conventional head
on traditional 3D laser cutting machines.

Given the discrete geometric parameter ut, the tangential
velocity and acceleration along the M path can be computed
as

vM(ut) =
∥M(ut+1)−M(ut)∥2

ut+1 − ut
, (15)

aM(ut) =
vM(ut+1)− vM(ut)

ut+1 − ut
, (16)

where ∥ · ∥2 represents the Euclidean norm.

B. Reinforcement learning framework
In automotive body-in-white industrial manufacturing, parts

within the same category, such as A-pillars, B-pillars, C-
pillars, door rings, etc., often exhibit slight variations due to
the customized designs specific to different car models and
brands. The diversity in shapes and paths complicates the
process, as different parts require tailored optimization models.
Reinforcement Learning (RL) offers significant advantages in

this context. It enables systems to adapt quickly to varying
conditions without the need for reprogramming or extensive
retraining. The proposed solution uses an RL-based approach
to achieve a smoother M path. The fundamental principle of
RL is to identify and execute the most appropriate action for
a given state, and then adjust subsequent actions based on
environmental feedback.

This section outlines the construction of the action space,
state space, and the formulation of the reward function, all of
which are crucial components of the RL framework.

Action Space Configuration: The action at, defined as
a one-dimensional axis value w, necessitates configuration
within a continuous space to accommodate the flexible plan
required for precise operations. Additionally, the action space
must conform to the stroke constraints outlined in Table I:

at ∈ [wmin, wmax]. (17)

State Space Design: It is essential to define a compre-
hensive set of state space observations for effective planning
and optimization. Firstly, our primary focus is on monitoring
potential collisions that may occur following adjustments to
the w axis; the episode terminates if a collision, denoted
by c(ut) = 1, is detected. Further observations include the
tangential velocity vM(ut) and acceleration aM(ut) at each
parameter ut, providing crucial insights into the dynamic
behavior necessary to achieve the optimization objectives.
Additionally, the state of the redundant axis value w is in-
cluded as a reference to inform and refine the action strategies.
These observations collectively constitute a rich state space
that facilitates the learning process. Consequently, the state st
is defined as

st = [c(ut), vM(ut), aM(ut), w(ut)]. (18)

Reward function: Another critical aspect of RL involves
the immediate reward function r(st, at−1), which serves as
feedback to the agent based on its present state st and the
preceding action at−1 that led to that state. To continuously
identify a smoother M-path, it is imperative to define a quanti-
tative indicator that can assess the improvement of prospective
solutions. To achieve this goal, a variable ΓM is then defined,
depending on the acceleration, to be used as a key indicator
for the reward function, to evaluate the progression towards
an optimized trajectory. The indicator is defined as

ΓM(t) =
N∑
t=1

∥aM(ut))∥2. (19)

If no collision occurs in the current state, a smooth transition
is desirable between the two adjacent points on M path
to ensure optimal kinematic performance. This requirement
guides the configuration of the correlated rewards based on
the extent of performance improvements. The final reward
function is thus defined as:

r(st, at−1) =

{
−1000 if c(ut) = 1,

−∆ΓM(t) if c(ut) = 0,
(20)

where ∆ΓM(t) = ΓM(t) − Γ†
M(t), being Γ†

M(t) the reference
indicator, computed as in (19) but using the acceleration values
obtained before the trajectory optimization. ∆ΓM(t) is crucial
for understanding how changes in the M path’s smoothness
impact the reward mechanism.



C. Deep deterministic policy gradient

The task requires a continuous action space, as the redun-
dant standoff axis w must vary smoothly within the work-
ing range to optimize M path effectively. In reinforcement
learning, Policy Gradient (PG) methods are widely used
for managing continuous action spaces, by determining the
optimal policy through action probabilities. Building on PG
methods, the Deterministic Policy Gradient (DPG) method
utilizes a deterministic policy function, µ, which directly spec-
ifies actions, thereby mitigating the computational intensity of
sampling across the action space. Deep Deterministic Policy
Gradient [20] (DDPG), an enhancement of DPG, incorporates
characteristics from Deep Q-Networks (DQN) to improve
performance and efficiency through deterministic policies.

In this study, DDPG is adopted to manage the redundant
standoff axis w for complex tool paths, driven by its efficacy
in continuous spaces and its robust adaptation capabilities
essential for precise M path adjustments. The architecture of
DDPG is illustrated in Fig. 8, and a brief overview of DDPG
algorithm is provided.

The actor-critic architecture of DDPG plays a central role,
where the actor network is µ(st|θµ) responsible for proposing
actions that the critic network Q(st, at|θQ) then evaluates,
where θµ and θQ are the actor and critic network parameters,
respectively. This interplay ensures that the policy developed
by the actor is not only feasible, but also optimized according
to the long-term expected rewards assessed by the critic.

Fig. 8: DDPG architecture

The critic’s role is to compute the Q-function Qµ(st, at),
which quantifies the expected rewards for a given state-action
pair as defined in (21). It is instrumental in evaluating the
performance of the actions suggested by the actor. Similarly to
DQN algorithm, function approximators are used to estimate
the policy and value function through network evaluations.
Throughout the learning process, the DDPG agent continu-
ously updates the properties of both the actor and critic at
each timestep. Additionally, the use of target networks helps
to provide stable learning targets during temporal difference

updates, which helps avoiding potential negative interferences
in the learning process. The Q-function is defined as:

Qµ (st, at) = E [r (st, at) + γQµ (st+1, µ (st+1))] , (21)

where the E symbol represents the expected value. γ is the
discount factor that weighs the importance of future rewards.

In each iteration, the experience (st, at, rt, st+1) is stored
in the experience buffer. Then, random mini-batches of m
experiences are sampled from the experience buffer to update
actor and critic.

The learning efficiency is assessed through the computation
of the critic’s target and online losses L. The equation of loss
is defined as:

L =
1

2m

m∑
t=1

(
yt −Q

(
st, at|θQ

))2
. (22)

By minimizing these losses, the critic network increasingly
refines its predictions of the Q-function, thereby directing the
actor network to select more beneficial actions, ultimately
leading to smooth control and optimization.

IV. EXPERIMENTAL VALIDATION
The primary goal of the experiments is to validate the

effectiveness of the proposed optimization algorithm for the in-
tricate and industry-relevant task of cutting the outer contours
of a B-pillar in an automotive body-in-white. This component
was selected due to its inclusion of bent sections or steps,
which pose a significant challenge in five-axis machining,
because of the extensive tool orientation changes required over
short path lengths. The object workpiece and tool path are
depicted in Fig. 9.

Fig. 9: Overview of B-pillar workpiece and the path focused
on the experiment

The methodologies outlined in Sections II and III were
executed on an i5-10210 CPU @ 1.6GHz (8 cores) equipped
with 32 GB of memory platform utilizing Python along with
several open-source packages including pythonocc, pybullet,
networkx, and gym.

The experimental simulation is conducted in several key
phases: 1) Target tool paths and normal vectors at the CL
points are generated from the CAD file of the B-pillar
workpiece; 2) Tool orientations are optimized for collision
avoidance and smoothness using a graph-based approach; 3)
The proposed RL model is trained to derive a smooth M path,
with the trained parameters saved in a zipped dataset. 4) The
tool path is executed using the loaded dataset to validate the
enhanced smoothness of the translational axes.

The results of the graph-based tool orientation optimization
are reported in Fig. 10. In the objective function (11), the



penalty parameter λ is set to 0.05 to account for angular
rotational accelerations, resulting in smoother rotary axes
movements compared to the case where λ = 0, which only
considers angular differences. These results demonstrate the
benefits of using difference graph [6] and the successful
achievement of collision-free tool orientations path.

Fig. 10: Collision-free rotation axes q4, q5 plots in axes
position and acceleration.

The learning process for the redundant w axis in the RL
model is depicted in Fig. 11. The first image (a) shows the non-
smooth M path when the w axis remains static, suggesting that
the three discontinuities observed may due to rapid angular
changes in the rotary axes. The second image (b) presents
the exploration process prior to the activation of the learning
algorithm. Subsequent images (c) and (d) display the exploita-
tion of the M path below or above the workpiece surface,
respectively. The final image (f) demonstrates a smoother M
path compared to image (e), achieved on the basis of the
application of learning from experience replay and rewards
obtained after 3,000 learning steps.

The learning model, including DDPG actor and critic net-
work weights, is stored in a database file. To evaluate if the
smoothed M path effectively optimizes acceleration on the
translational axes, the impacts of a fixed-length w axis (pre-
optimization) were compared with those of a flexibly moving
w axis (post-optimization). The results, reported in Fig. 12,
clearly show that the acceleration of the translational axes
at sharp peaks has been significantly reduced thanks to the
optimization applied, resulting in a noticeable smoothing of
the trajectory.

V. CONCLUSIONS AND FUTURE WORKS

Smooth and collision-free trajectory planning significantly
enhances the efficiency and precision of five-axis machines.
Abrupt changes in both translational and rotary axes can
induce vibrations in the machine, adversely affecting ma-
chining accuracy and necessitating reduced speeds. However,
enhancing the kinematic performance of primary translational
axes beyond that of rotary axes poses a challenge due to
the inherent inflexibility of five-axis machines. Consequently,
leveraging a redundant axis becomes essential to augment the

machine’s capabilities, thereby boosting its performance in
high-speed and high-precision machining tasks.

In this research, collision-free C-spaces are firstly con-
structed at each CL point along the tool path. Candidates of
feasible regions are sampled gridded subspaces, adhering to
the machining constraints from LCS to MCS. The optimal
rotary axes are determined by evaluating the deviation and
acceleration between two C-spaces in the shortest path from
the difference graph, through the application of the Dijkstra’s
algorithm. After the introduction of the M path concept, a
reinforcement learning task is then implemented to optimize
the M path by planning the redundant standoff axis using
DDPG. The simulation results validate the proposed approach,
showing smoother performance in the primary translational
axes, while maintaining optimal tool orientation. The pro-
posed methodology represents a significant advancement in
high-speed, high-precision machining, especially for 3D laser
cutting and other non-contact machining applications. By
leveraging the standoff as a redundant axis, the approach
introduces a new level of flexibility that improves the capabil-
ities of conventional five-axis machines. This innovation not
only enhances the adaptability and efficiency of machining
processes, but also represents a substantial step forward in the
evolution of machining technology.

The proposed two-phase solution is still in its initial stage,
but it shows potential improvement through the definition of a
single, multi-objective optimization problem. Moving forward,
the experiment will be extended to more paths with pretrained
RL dataset. Next, a more advanced strategy will be adopted,
integrating tool orientation optimization and redundant axis
planning within a unified reinforcement learning framework,
achieved by expanding the action space dimension. Further-
more, the applicability of this approach will be explored
beyond 3D laser cutting to include a wider range of practical
machining applications.
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