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Abstract—Several standard integral equations in the time
domain suffer from at least one of the following limitations:
1) conditioning breakdowns, 2) internal resonances, or 3) DC-
instabilities. The standard time domain combined field integral
equation (CFIE) being no exception, is plagued by the large time
step and dense discretization breakdowns. Calderón precondi-
tioning strategies are commonly proposed to address these issues
in the frequency domain but, to this day, they were not available
for convolution quadrature CFIEs. This work will fill this gap
proposing a new Calderón approach leading to a well-conditioned
and resonant-free convolution quadrature discretized equation.

I. INTRODUCTION

Integral formulations are widely used for the simulation
of electromagnetic scattering from a perfectly electrically
conducting object. Among them, the time domain combined
field integral equation (CFIE) is particularly attractive be-
ing free from spurious internal resonances. Its effectiveness
notwithstanding however, this equations is plagued by severe
ill-conditioning for increasingly refined meshes and/or when
large time steps are used. In the frequency domain, Calderón
preconditioning approaches are used to cure some conditioning
issues, but they are known to require special care not to
introduce spurious resonances, something well mastered in the
frequency domain, but not available for convolution quadrature
time domain schemes. This work fills this gap by proposing
the first available Calderón CFIE formulation for convolution
quadrature methods [1]. One of the challenges to be solved
was a suitable counterpart of the frequency domain localization
to suppress Calderón resonances. In our time domain context
we have achieved this by introducing a lossy term in the
Laplace parameter and obtaining the resulting electric operator
with a suitable choice of discretization strategies. Theoretical
developments are complemented by numerical experiments
showing the practical relevance of the new formulation.

II. BACKGROUND AND NOTATIONS

This work addresses the problem of the time-domain scat-
tering by a perfectly electrically conducting object in free
space. The current jΓ induced by the incident electromagnetic
fields (einc,hinc)(r, t) at the surface of the scatterer Γ can
be evaluated by solving the combined field integral equation
(CFIE), the linear combination of the electric field integral
equation and the magnetic field integral equation,

CjΓ (r, t) =
α

η0
n̂×einc (r, t) + (1− α) n̂×n̂×hinc (r, t) , (1)

C = −αT + (1− α) n̂×M, (2)

where T is the electric field integral operator (EFIO), M is
the magnetic field integral operator (MFIO), η0 is the char-
acteristic impedance of the background, n̂ is the outpointing
normal of Γ and α ∈ [0; 1] [2].

In this work, the Rao-Wilton-Glisson (RWG) basis func-
tions (f rwg

n )Ns
discretized the current whereas rotated RWG

(n̂ × f rwg
n )Ns

test the EFIO and rotated Buffa-Christiansen
(BC) ones (n̂ × f bc

n )Ns
test the MFIO. By denoting L the

Laplace transform and δ the time Dirac delta, the Laplace
semi-discretized operators are defined as [2]

[T̃(s)]m,n =

∫
Γ

n̂× f rwg
m L (T (f rwg

n δ)) (s)dΓ, (3)

[M̃(s)]m,n =

∫
Γ

n̂× f bc
mL (M (f rwg

n δ)) (s)dΓ. (4)

The convolution quadrature method applied to (1) generates
the following Marching-On-in-Time scheme

C0Jn = (1− α)NG−1
m Hn +

α

η0
En −

n−1∑
q=0

Cn−qJq, (5)

where the gram matrix N and the mixed gram matrix Gm are
inserted in the combined operator to match the discretization
and to rotate the magnetic contributions, (Jn) is the array
sequence expansion of the surface current on (f rwg

n )Ns
at any

time step, Hn and En are the array sequences of n̂×hinc and
n̂× einc tested with their respective test basis functions and

Ci=Z−1
(
z 7→−αT̃ (scq (z))+(1− α)NG−1

m M̃ (scq (z))
)
i
,

(6)
where Z−1 is the inverse Z-transform and scq (z) is fully
determined by the implicit sheme used and the time step ∆t.

III. CALDERÓN STRATEGIES FOR THE CFIE

The ill-conditioning of the time domain combined field
integral equation is inherited from the electric field integral op-
erator T , which can be addressed by leveraging the Calderón
identity

T 2 = −I
4
+K2, (7)

where the operator K is compact. The new operator T 2 is
therefore a second-kind integral operator similarly to the as
the MFIO (M = I

2 − K). As a consequence, provided that
an appropriate discretization scheme is used, both operator



generate a well-conditioned MOT. A naive idea would be to
consider their linear combination

−αT 2 + (1− α)M, (8)

which is a second-kind integral operator too. However T 2

shares some of the resonances of M and so does their linear
combination. This is a well-known limitation that has been
overcome in the frequency domain by complexifying the wave
number of the operators used as preconditioner [3] . In this
work we propose and investigate the convolution quadrature
counterpart of such an approach where the Laplace parameter
of the left electric operator scq(z) is replaced by a parameter
sm(z) corresponding to a lossy medium. The new parameter,
however, should satisfy the following conditions

∀z ∈ C , sm(z) = sm(z), (9)
∀z ∈ C , (sm(z)x = λx) ⇒ λ ∈ C+, (10)

where C is the integration contour of the Z−1-transform. In
this study, we choose

sm(z) = scq(z)

√
1 +

σ

scq(z)
, (11)

where σ ∈ R+. The new regularized operator proposed is

−αT σT + (1− α)M. (12)

The space discretization of the lossy EFIO employs the BC
basis functions and the rotated BC basis functions as source
and test functions, respectively,

[T̃(s)]m,n =

∫
Γ

n̂× f bc
mL

(
T
(
f bc
n δ

))
(s)dΓ,

Tσ
i = Z−1

(
z 7→ T̃ (sm (z))

)
i
,

(13)

leading to the following MOT

Z0Ji =
α

η0

i∑
j=0

Tσ
jG

−1
m Ei−j−(1−α)Hi−

i∑
j=1

ZjJi−j , (14)

where

Zi = Z−1

(
− α

η0
T̃(sm)G

−1
m T̃(scq)+(1− α)M̃(scq)

)
i

. (15)

IV. NUMERICAL RESULTS

The newly proposed formulation (14) is tested on a sphere
of radius 1m illuminated by a Gaussian pulse plane wave

einc(r, t) = A0 exp
(
−

(
t− k̂·r

c

)2
2σ2

bw

)
p̂ , (16)

hinc(r, t) =
1

η0
k̂× einc(r, t) , (17)

where σbw = 6/(2πfbw), p̂ = x̂, k̂ = −ẑ, A0 = 1Vm−1

and fbw = 250MHz is the frequency bandwidth, which is
chosen to be larger than the first resonant mode of the sphere
131MHz, this insuring that the resonance-free property of the
scheme is verified. Since scq(z) is inversely proportional to
∆t, the lossy parameter σ in (11) is chosen equal to 0.1/∆t.
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Fig. 1. Condition number with re-
spects to the time step (Ns = 270).
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Fig. 2. Condition number with respects
to the mesh density (∆t=127 ns).
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Fig. 3. Evolution in time of the current intensity at a specific point of the
sphere with parameters Ns = 750 and ∆t = 1.15 ns.

The conditioning studies over the sphere Fig. 1 and
Fig. 2 show that the proposed formulation shares the same
well-conditioning properties than that of a naive Calderón-
preconditioned formulation (8), while the standard CFIE for-
mulation (1) suffers from the dense discretization breakdown
and the large time step breakdown. However, as expected, the
naive Calderón CFIE (8) suffers from non-physical resonances
illustrated in Fig. 3. This instability does not affect the CFIE
and the proposed formulation. However, the proposed formu-
lation (14) is affected by a semi-DC-instability, the amplitude
of which is directly linked to the accuracy of the space
discretization. Its analysis and resolution is object of current
research and falls outside of the scope of this contribution.
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