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Abstract
Highly concentrated patterns have been observed in a spatially heterogeneous,
nonlocal, kinetic model with BGK type operators implementing a velocity-
jump process for cell migration, directed by the nonlocal sensing of either an
external signal or the cell population density itself. We describe, in an asymp-
totic regime, the precise profile of these concentrations which, at the mac-
roscale, are Dirac masses. Because Dirac concentrations look like Gaussian
potentials, we use the Hopf–Cole transform to calculate the potential adap-
ted to the problem. This potential, as in other similar situations, is obtained
through the viscosity solutions of a Hamilton–Jacobi equation. We begin with
the linear case, when the heterogeneous external signal is given, and we show
that the concentration profile obtained after the diffusion approximation is not
correct and is a simple eikonal approximation of the true H–J equation. Its het-
erogeneous nature leads us to develop a new analysis of the implicit equation
defining the Hamiltonian and a new condition to circumvent the ‘dimensional-
ity problem’. In the nonlinear case, when the signal occurs from the cell density
itself, it is shown that the already observed linear instability (pattern formation)
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occurs when the Hamiltonian is convex-concave, a striking new feature of our
approach.

Keywords: Hopf–Cole transform, BGK equation, Hamilton–Jacobi equation,
aggregation solution, nonlocal kinetic equation

Mathematics Subject Classification numbers: 35Q20, 35Q92, 45K05

Introduction

Kinetic equations have proved to be an effective mathematical framework for modeling cell
migration, both for bacteria [11, 13, 21, 22, 25, 38, 39] and for cells in a tissue [14, 24, 33–35].
In fact, the typical migration mode of a cell is the run and tumble, consisting in alternating runs
over straight lines and reorientations, that may be biased by the presence of external signals
affecting the choice of the direction, such as, for example, chemicals or the cell population
density itself. At the population, or aggregate, level, the latter process may give rise to a tac-
tic dynamics such as chemotaxis and cell-cell adhesion, respectively. Specifically, chemotaxis
is the migration of cells towards an increasing gradient or concentration of a fixed chemical,
while cell-cell adhesion is the tendency of cells to establish junctions in order to adhere and
form tissues or cells aggregates. The run and tumble process may bemodelled as a microscopic
stochastic process named velocity-jump process [41]. It is a Markovian process that prescribes
a transition probability T of choosing a new velocity and a frequency of reorientation µ. In
particular, the transition probability T= T[S]may be influenced by the presence of an external
signal S, that may embody the presence of a chemoattractant or of the cell population dens-
ity. The kinetic equation that implements a velocity-jump process of intensity µ> 0, that is
a piecewise deterministic Markov process in which we consider a transition probability T[S],
may be written as

∂tf(t,x,v, v̂)+ v ·∇x f(t,x,v, v̂) = µ(ρ(t,x)T [S] (v, v̂)− f(t,x,v, v̂)) , (1)

where f = f(t,x,v, v̂) is a probability density function describing the distribution of the cell
located at position x ∈ Ω ∈ Rd, moving with speed v ∈ [0,U] along direction v̂ ∈ Sd−1, for each
time t> 0. We also use the notation v for the microscopic velocity of the cells that is given by
the vector v= vv̂. As (v, v̂) ∈ V := [0,U]×Sd−1, then v ∈ B(0,U), that is compact in Rd and
symmetric. The function ρ(t,x) denotes the number density of cells in position x at time t:

ρ(t,x) =
ˆ
V
f(t,x,v, v̂) dvdv̂, (t,x) ∈ R+ ×Ω.

Formally, (1) is a kinetic equation with linear relaxation operator of BGK type.
Another important issue in modeling cell migration is the nonvanishing size of the cell

that gives rise to nonlocality in the physical space (see e.g. [1, 15] and references therein).
Specifically at the kinetic level, a nonlocal gradient of the chemoattractant S sensed with a
sampling radius has been introduced in [26, 38]. In [16, 17, 34, 35, 37] the authors propose
some models in which T depends on a fixed external signal S and also consider the case in
which S is the cell density ρ, thus mimicking adhesion. In [34, 35] the authors derive the
so called macroscopic models for the aggregate quantities defined as averaged quantities (the
statistical moments of f), showing that keeping the nonlocality at the aggregate description
implies a strong nonvanishing advection term. In such models, aggregation and concentrations
have been observed in the cell density ρ, both in the case of linear models (i.e. T depends on S),
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and nonlinear ones (i.e. T depends on ρ). In particular, in [36] a linear stability analysis of a
nonlocal kinetic model with adhesion (i.e. (1) with S = ρ) is performed and pattern formation
is shown.

Pattern formation may be seen in this context as a formation of small concentrations, typ-
ically persisting in time, being a concentration a maximum of the macroscopic density ρ. As
a matter of fact, this kind of solution may be represented, at the macroscopic scale, as the sum
of Dirac masses

ρ0 (t,x)≈
∑

ρ̄i (t)δ (x− x̄i (t)) , (2)

where x̄i is the location of a concentration point and ρ̄i is the weight of each concentration. A
more precise description of such concentration profiles is the real phaseWKB ansatz -or Hopf–
Cole transform- as introduced in [3, 23] for studying traveling fronts, when a better accuracy
is kept introducing a microscale ε. The leading idea is similar to the Dirac mass approximating
the Gaussian

δ (x− x̄)≈ 1√
2πε

exp

−|x− x̄|2

2ε = exp

−|x− x̄|2 − ε2π ln(ε)
2ε .

Therefore, the method relies on the Hopf–Cole transform

ρε (t,x) = exp
−
ϕε (t,x)
ε , lim

ε→0
ϕε ⩾ 0,

where ε is a small positive parameter determining a specific regime, typically of high frequen-
cies, in which there may be formation of concentrations and patterns, where the concentration
points are understood as the minima of the phase ϕε. This kind of analysis typically leads, in
the limit ε→ 0, to a constrained Hamilton–Jacobi equation for the phase ϕ0 ⩾ 0, to be under-
stood by viscosity solutions [18]. Such a Hamilton–Jacobi equation enables to determine the
correct concentration profile ϕε. It has been developed in the framework of adaptive dynam-
ics, [4, 19, 29, 31, 32], where it also allows to derive the so-called canonical equation for the
evolution of the maxima of ϕ0 which here represents the fittest trait in a structured population
rather than the concentration points of a population density. Specifically, on the maxima points
x̄i we have that ϕ0 = 0, and in the limit ε→ 0 the macroscopic density ρ0 can be written as (2).

In the context of kinetic equations, the major difficulty is to find the Hamiltonian, and
this has been first achieved by Bouin and Calvez in [7]. They study a kinetic model with
a BGK relaxation operator with a homogeneous kernel, leading to a homogeneous constant
steady equilibrium ρ∞. In a high frequency regime, they use the Hopf–Cole transform of the
distribution

fε (t,x,v, v̂) = exp
−
φε (t,x,v, v̂)

ε (3)

and also, following celebrated paper [20], use the perturbed test function φε(t,x,v, v̂) =
φ(t,x)+ εη(t,x,v, v̂), i.e. the leading order in ε only depends on (t, x). In order to state a
large deviation principle, the authors in [7] built the Hamiltonian and in the limit ε→ 0+ a
Hamilton–Jacobi equation to which the phase φ0 is a viscosity solution. This has been exten-
ded in higher space dimensions in [10] where new difficulties may occur as the ‘dimension-
ality problem’ and lack of C1 regularity for the Hamiltonian. In [5, 6, 9] the authors study
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front propagation in transport-reaction kinetic equations. In [8] the authors study a BGK type
equation in a high frequency regime and with a spatially homogeneous Maxwellian with van-
ishing variance and derive a new constrained nonlocal Hamilton–Jacobi equation.

In the present work, we analyse the concentration profile for the solutions of kinetic
equations of the class (1) as introduced in [34, 36]. These use a BGK-like kernel T with the spe-
cificity to be spatially nonhomogenous and nonlocal. Following, [7], we build the Hamiltonian
in the real phase WKB method and present a new method to deal with inhomogeneity and cir-
cumvent the ‘dimensionality problem’ in this context. Differently with respect to [7], our aim
is to study the concentration profiles by means of an appropriate Hamilton–Jacobi equation,
in the same spirit as in adaptive dynamics models. Specifically, we want to prove that the
distribution f converges to a concentration solution that is in the form

f0 (t,x,v, v̂) =
∑

ωi δ (x− x̄i) , (4)

with weights ωi(v, v̂) and x̄i being the minimum points of the phase, corresponding to
φ(x̄i) = 0, as in (3). Interestingly enough, the classical diffusion approximation of (1) does
not characterise correctly the concentration profile and just generates the eikonal equation,
i.e. a second order approximation of the true Hamiltonian.

In the first section, we present the nonlocal kinetic equation under study along with the local
and nonlocal rescalings that we consider in order to derive evolution equations for the aggreg-
ate quantities -the so-called macroscopic or hydrodynamic equations- that we revise in the
appendix A. As a preparation before studying the nonlinear case, we study in section 2 a linear
case in which the kernel T depends on an assigned external signal S . Specifically, we perform
the real phase WKB analysis of the linear nonlocal equation and present the concentration res-
ult as well as the canonical equation for the evolution of the maxima and some examples along
with numerical tests. The analysis of the linear case allows to connect the results obtained by
means of the analysis performed with the WKB ansatz to a more classical hydrodynamic ana-
lysis of the kinetic equation, but shows that it also allows to explain concentration profiles and
to locate the maximum points. section 3 is devoted to the nonlinear case, when the nonhomo-
geneous nonlocal kernel T depends on ρ. Here the classical hydrodynamic is far from allowing
to understand the full portrait of the concentration profiles. We extend formally the WKB ana-
lysis and a striking novel feature is a convex-concave Hamiltonian which takes into account
low density instability, in accordance with the linear instability criteria derived in previous
works [36]. It allows us to explain the saw tooth profile of the concentrations. In section 4, we
draw some conclusions.

1. Preliminaries

1.1. A nonlocal kinetic equation

In the same spirit as [34], we consider the kinetic equation (1) with transition probability that
depends on the external signal S : Ω→ R+, that is measured nonlocally in the physical space
and that affects the choice of the direction of the cells. The turning operator T[S](v, v̂) is a
probability on V , depending on x through S . It is defined by

T [S] (v, v̂) = c(x)ψ (v|v̂)b(S (x+Rv̂)) , c(x)−1
:=

ˆ
Sd−1

b(S (x+Rv̂)) dv̂, (5)

where b(·) is a function that weights the external field S, while the quantity R is the sens-
ing radius defining the neighborhood where the cell measures the field S. The function
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ψ : [0,U]→ R+ is the distribution of the possible speeds v ∈ [0,U] on a given direction v̂,
satisfying

ˆ U

0
ψ (v|v̂) dv= 1 ∀v̂ ∈ Sd−1.

We denote its average speed (along direction v̂) Vψ and second statistical momentD2
ψ (that we

assume to be independent of the direction), i.e. they are defined by

Vψ (v̂) :=
ˆ U

0
ψ (v|v̂)vdv, D2

ψ :=

ˆ U

0
ψ (v|v̂)v2 dv. (6)

These properties ensure that T[S](v, v̂) is a probability density function on V = [0,U]× Sd−1

as
ˆ
V
T [S] (v, v̂) dv̂dv= 1,

in such away that the number density is conserved at (t,x). In other words, the balance equation
holds

∂tρ(t,x)+∇x ·
ˆ
V
f(t,x,v, v̂)vv̂dv̂dv= 0. (7)

Then, we can also define the average velocity of the transition probability T[S] as

US (x) =
ˆ
V
T [S] (v, v̂)vdv̂dv, (8)

and its variance-covariance matrix

DS (x) =
ˆ
V
T [S] (v, v̂)(v−US)⊗ (v−US) dv̂dv. (9)

We remark that, when Ω is bounded, in order to deal with the boundary, we must restrict the
sensing radius using the formula

R(x, v̂) :=min{λ ∈ [0,R] : x+λv̂ ∈ Ω}. (10)

Equation (1) needs to be coupled with initial and boundary conditions, defined by, respectively

f(0,x,v, v̂) = f 0 (x,v, v̂) , (x,v, v̂) ∈ Ω× [0,U]× Sd−1, (11)

f(t,x,v, v̂) =R
[
f|Γ+

]
(t,x,v, v̂) x ∈ ∂Ω, v ∈ [0,U] , v̂ ∈ Γ− (x) , (12)

where

Γ± (x) := {v̂ ∈ Sd−1 : v̂ ·n(x)≷ 0},

with n(x) the outward normal to the boundary ∂Ω in the point x. As boundary conditions
for the kinetic equation, we assume a standard diffusive boundary condition [30, 40] called
Maxwellian boundary conditions, defined as

5
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R [f+] (t,x,v, v̂) = α(x) f(t,x,v,W (v̂))+ (1−α(x))M(x,v, v̂)

×
ˆ U

0

ˆ
v̂∗·n⩾0

f(t,x,v∗, v̂∗) |v̂∗ ·n|dv̂∗dv∗, (13)

where W(v̂) =−v̂ for the bounce back reflection condition and W(v̂) = v̂− 2(v̂ ·n)n for the
specular reflection. Diffusive boundary conditions are no-flux boundary conditions at the mac-
roscopic level [40], in the sense that the total population density is conserved in Ω, and we
normalise it as

ˆ
Ω

ρ(t,x)dx=
ˆ
Ω

ˆ
V
f(t,x,v, v̂)dv̂dvdx= 1, ∀t⩾ 0. (14)

In fact, it may be proved, see [40], that a solution f to (1)-(11)-(12)-(13) satisfies the no-flux
condition

ˆ
V
f(t,x,v, v̂)v ·n(x)dv̂dv= 0, ∀x ∈ ∂Ω, t> 0. (15)

The equilibrium distribution of (1) is given by

f∞ (x,v, v̂) = ρ∞ (x)T [S] (v, v̂) .

As T[S] depends on x through S , in order for f∞ to be a stationary equilibrium, then the
following must be satisfied

−v ·∇xρ
∞

ρ∞
=

v ·∇xT [S]
T [S]

, (16)

showing that ρ∞ is not always the constant homogeneous solution, being T[S] space dependent
because of the spatial heterogeneity of S and of the nonlocality. With classical arguments
(Jensen’s inequality) and assuming Maxwellian boundary conditions (that are nonabsorbing
boundary conditions [12]) it is easy to see that given a convex function Φ, then

d
dt

ˆ
Ω

ˆ
V
Φ( f(t,x,v, v̂)) dvdv̂dx⩽ 0,

and the equality holds if and only if f = f∞. This equilibrium is asymptotically stable and does
not depend on the initial condition.

1.2. Rescaling

We now consider a regime in which reorientations occur at random exponential times with rate

µ=
1
ε
, i.e. the dynamics is ruled by

∂tfε (t,x,v, v̂)+ v ·∇xfε (t,x,v, v̂) =
1
ε
(ρε (t,x)T [S]ε (v, v̂)− fε (t,x,v, v̂)) , (17)

where the limit ε→ 0 defines a high frequency regime, i.e. many reorientations are happening
in the time unit, in such a way the system reaches the equilibrium quickly. In (17), T[S]ε(v, v̂)
is to be understood as a rescaled transition probability in the regime defined by ε. We now
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explain that this regime can be interpreted in (at least) two opposite ways due to the presence
of the nonlocality.

A first possible interpretation is to see equation (17) as the result of a hyperbolic scaling of
equation (1) defined by

(t,v,x)→
( t
ε
,v,

x
ε

)
. (18)

The latter, in the same spirit of geometric optics, defines a macroscopic (or large) space scale
and a long time scale that is needed for observing significant phenomena in order to com-
pensate for the macroscopic space scale. The long time scale is actually needed in order to
reach the equilibrium defined by interactions happening with a frequency 1 in the time unit.
In this macroscopic space scale interactions are localised, as one needs to consider a scaling
of the sensing radius R, i.e.

R→ εR,

that naturally leads to a localisation of the interactions of the cells with the background S. In
this sense the large scale limit of (17) for ε→ 0 leads to the hydrodynamic (fluid) behavior of
the system on a macroscopic space scale that must be observed on a long time scale.
However, a priori we can consider the perspective of the following classical nondimensional-
isation

x→ x
L
, t→ t

t0
, v→ v

V
, ρ→ ρ

ρ̄
, f → f

ρ̄/Vd
, T [S]→ T [S]

Vd
, (19)

where t0 and L are characteristic time and length scales of the system, V is the typical speed,
while ρ̄ is a reference density. Plugging (19) in (1) we obtain

St∂tf(t,x,v, v̂)+ v ·∇xf(t,x,v, v̂) =
1
Kn

(ρ(t,x)T [S] (v, v̂)− f(t,x,v, v̂)) , (20)

where the kinetic Strouhal number St and Knudsen number Kn are defined as

St :=
L
Vt0

, Kn :=
V
Lµ
.

The regime under consideration in (17) corresponds to having parameters satisfying

St∼O (1) , Kn∼O (ε)≪ 1. (21)

By looking at (20) we observe that the parameters regime (21) corresponds to a large time
horizon t0 satisfying

t0 ∼
ε−1

µ
, (22)

where ∼ is, here and in the following, to be meant as a quantitative statement, regardless of
the units. This may be rephrased saying that we choose ε such that

V
L
∼O (ε) , (23)

7
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and we choose a drift long time scale as

t0 =
L
V
,

that satisfies (22) because of (23).We remark that ifV=O(1), then
1
L
∼ ε, that amounts to (18)

(where we use again R→ εR).
Conversely, a second possible interpretation is L=O(1), i.e. we observe the dynamics on

the microscopic space scale, then (23) amounts to a regime of very small speeds V∼ ε that
must be observed, in order to balance the smallness of the speed, on a long time scale. This
can be seen as a scaling in the form

(t,v,x)→
( t
ε
,εv,x

)
. (24)

The latter may also be seen as a nonlocal regime as the sensing radius R is not rescaled.

2. Concentration profile and the Hamilton–Jacobi equation

We want to study the concentration profile of the solution fε of equation (17) by studying
the equation for a phase φε obtained through the Hopf–Cole transform (3). We expect that
φε(t,x,v, v̂) behaves quadratically, and thus that fε(t,x,v, v̂) behaves like a Dirac mass near
each concentration point, giving rise in the limit ε→ 0 to a concentration profile in the form (4).
For this reason, we study the limit of φε.

2.1. Derivation of the Hamilton–Jacobi equation

At first we remark that, from equation (17), φε satisfies the equation

∂tφε+ v ·∇xφε = 1−T [S]ε (v, v̂)
ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε dwdŵ. (25)

From this we get

(1− ∂tφε− v ·∇xφε) = T [S]ε (v, v̂)
ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε dwdŵ. (26)

Following [7, 29], we may also look for fε under the form

fε (t,x,v, v̂) = Qε (t,x,v, v̂)exp
−
φ̃ε (t,x)

ε , φε (t,x,v, v̂) = φ̃ε (t,x)− ε lnQε (t,x,v, v̂) ,
(27)

with φ̃ε and Qε to be determined. Furthermore, we may normalise them as

ˆ
V
Qε (t,x,v, v̂)dv̂dv= 1, ∀t⩾ 0, x ∈ Ω,

8
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which, thanks to (7), implies

ˆ
Ω

exp
−
φ̃ε (t,x)

ε dx= 1, ∀t⩾ 0.

Setting

pε :=∇xφ̃ε, Hε :=−∂tφ̃ε, (28)

we can write equation (26) as

ε [∂tQε (t,x,v, v̂)+ v ·∇xQε (t,x,v, v̂)]+ (1+Hε− vv̂ · pε)Qε (t,x,v, v̂)

= T [S]ε (v, v̂)
ˆ
V
Qε (t,x,w, ŵ)dŵdw. (29)

Considering the (formal at this stage) common limit of φε or φ̃ε

φ := lim
ε→0+

φ̃ε,

the (formal) limit as ε→ 0 gives us Qε(t,x,w, ŵ)→Q(x,∇xφ(t,x),v, v̂), with(1+H− vv̂ · p)Q(x,p,v, v̂) = T [S]0 (v, v̂)
´
V Q(x,p,w, ŵ)dŵdw,

Q(x,p,v, v̂)⩾ 0,
´
V Q(x,p,v, v̂)dv̂dv= 1 ∀p, x ∈ Ω.

(30)

This is an eigenvalue-eigenfunction problem in (v, v̂), with parameters (t, x). Thanks to the
Krein–Rutman theory, see [28], with good properties of T[S]0 to be discussed later, this eigen-
problem has a unique solution. The eigenvalueH is solely determined by the parameters p and
S(x) and we can write H= H(x,p) which provides us with the Hamilton–Jacobi equation for
the dominant term in (28)

∂tφ +H(x,∇xφ) = 0. (31)

Notice that we can expect that the problem (29) itself has a particular solution Qε(t,x,v, v̂)
similar to the principal bundle, see [28, 29], for parabolic equations. It is similar to a time
dependent eigenvalue problem. Up to our knowledge this notion has never been studied for
kinetic equations.

These formal conclusions rely on the possibility to define a smooth Hamiltonian H(x,p), a
question we analyse now.

2.2. The effective Hamiltonian

As in [7], one can characterise the eigenvalue H(x,p) arising in equation (30), rewriting it as

Q(x,p,v, v̂) =
T [S]0 (v, v̂)

´
V Q(x,p,w, ŵ)dŵdw

1+H(x,p)− vv̂ · p
> 0. (32)

We remind that H(x,p) also depends explicitly on x as T[S]0 depends on x. Integrating with
respect to v, v̂ and using the normalisation in equation (30), we obtain the problem

find H such that: 1=
ˆ
V

T [S]0 (v, v̂)
1+H(x,p)− vv̂ · p

dvdv̂. (33)

9
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In particular we obviously have

1=
ˆ
V

T [S]0 (v, v̂)
1+H(x,0)

dvdv̂, H(x,0) = 0.

Equation (33) can be uniquely solved by strict monotonicity in H and also gives that

−U|p|< H(x,p)< U|p|,

because |v|⩽ U and when H= U|p| the denominator is larger than 1 for all (v, v̂) and when
H=−U|p| the denominator is smaller than 1.

However these bounds are not enough to compute from this Hamiltonian a positive eigen-
function Q. As observed in [10], it is necessary to introduce some further assumption; this is
the so-called ‘dimensionality problem’, because the difficulty only occurs when d⩾ 2. The
values of H for which the denominator in (33) vanishes are given by:

H(p) =−1+max
V

[vv̂ · p] .

We then introduce a new assumption, which simplifies and generalises to heterogeneous
Hamiltonians that of [10], that is

inf
x

ˆ
V

T [S]0 (v, v̂)
1+H(p)− vv̂ · p

dvdv̂> 1. (34)

The latter ensures that H(x,p)> H(p), and thus that the denominator, and therefore Q, are
positive for the solution of equation (33). In dimension d= 1, the integral in (33) would blow
up if the denominator vanishes, therefore the condition is always satisfied. In higher dimension
this restriction is needed.

Additionally, differentiating (33) in p, we find

0=
ˆ
V

T [S]0 (v, v̂)(∇pH(x,p)− vv̂)

(1+H(x,p)− vv̂ · p)2
dvdv̂.

We now look for the extremal values of the Hamiltonian, as we want to study the long time
equilibria of the system. Specifically, we want to see when the uniform steady state (corres-
ponding to p=∇xφ ≡ 0) is a possible equilibrium or, conversely, when formation of concen-
tration solutions occurs for large times. Concentration solutions are related to a macroscopic
density ρ that displays maxima, that correspond to minima points of φ. It means, therefore,
points x̄i such that∇xφ(x̄i) = 0. In general, when p=∇xφ = 0 we have that, using the defin-
ition (8), we get

∇pH(x,0) = U0
S (x) , (35)

which, in general, does not vanish, as already argued, as T[S]0 is not in principle symmetric
as a function of v̂, as instead assumed in [7]. Moreover, differentiating twice, we find

ˆ
V

T [S]0 (v, v̂)D2
pH(p)

(1+H(p)− vv̂ · p)2
dvdv̂= 2

ˆ
V

T [S]0 (v, v̂)(∇pH(p)− vv̂)⊗ (∇pH(p)− vv̂)

(1+H(p)− vv̂ · p)3
dvdv̂,

and then we have that D2
pH is positive definite as (34) holds. We may also compute

D2
pH(x,0) = 2DS (x) , (36)

10
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that is positive definite being the variance-covariancematrix of a positive transition probability.
Then, in order to characterise the configuration p= 0 and to discriminate between constant
solutions and concentrations, the dependency of H on x and p is crucial. If US(x)≡ 0, then
∇pH(x,0)≡ 0, and the constant solution is a minimum point ofH and no concentration occurs.
Else, when US(x) =∇pH(x,0) is not identically 0, there may be concentration solutions that,
at the stationary state for large times tf, possibly with tf =∞, display aggregations in the points
x̄i such that p(x̄i) =∇xφ(x̄i) = 0 and∇pH(x̄i,0) = U0

S(x̄i) = 0. In conclusion, the points (x̄i,0)
that are stationary points of the average of the transition probability T[S]0, are the minima
points of H and concentration solutions around those points are stable equilibria for large
times.

2.3. The concentration result

To simplify, we work in the full space,Ω= Rd. We assume that the initial condition φ0
ε defined

on Ω×V satisfies uniformly in ε

|∇xφ
0
ε| ∈ L∞ (Ω×V), φ0

ε (x,v, v̂) = φ̃0 (x)+O(ε) ,

∂tφε (t= 0) :=−v ·∇xφ
0
ε+ 1

−T [S]ε (v, v̂)
ˆ
V
exp

−φ0
ε (x,w, ŵ)+φ0

ε (x,v, v̂)
ε dwdŵ ∈ L∞ (Ω×V) ,

(37)

ˆ
Rd×V

f 0ε (x,v, v̂)dxdvdv̂= 1,
ˆ
Rd×V

|x|f 0ε (x,v, v̂)dxdvdv̂ is bounded, (38)

and for some constants T− > 0, LM > 0T [S]ε ⩾ T− > 0, T [S]ε+ |∇xT [S]ε |+ |∇vT [S]ε |⩽ LM,

T [S]ε → T [S]0 uniformly.
(39)

Then we can prove the

Theorem 1. We make the assumptions (34) and (37)–(39). Then, after extractions,

(i) φε is uniformly (in ε) bounded and Lipschitz (locally in time),
(ii) φε converges locally uniformly on R+ ×Rd×V toward φ ⩾ 0 where φ does not depend

on v, v̂. Moreover, φ is the viscosity solution of the Hamilton–Jacobi equation (31) with
initial condition φ0(x) and with a convex in p for each fixed x Hamiltonian H(x,p)
uniquely implicitly determined by the formula (33),

(iii) fε converges weakly to a measure f supported by the non-empty set {φ = 0}.

Remark. 1. The set {φ = 0} is included in the {x ∈ Ω : H(x,0) = 0} and therefore is typic-
ally discrete.

2. Compared to [7], the kernel T[S]ε depends on x, which is an additional major technical
difficulty. Also a difference here is the ε dependency in T[S]ε which we circumvent with
our assumptions.

3. The author in [10] faces the difficulty of gradient estimates as here. He argues by limsup-
liminf arguments which optimises the assumptions. Here we do not go to this elaborate
method and use simpler arguments based on Lipschitz estimates.

11
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4. The corrector satisfies, according to the Hopf–Cole transform (27), approximately Qε =
fε
ρε

. However, we also have that
fε
ρε

→ T[S]0 andQε →Q when ε tends to zero. Actually,

thanks to (30), we find

Q(x,0,v, v̂) = T [S]0 (v, v̂) . (40)

5. When Ω is bounded, we impose no-flux boundary conditions (15). Therefore, consider-
ing (27), we have

exp
−
φ̃ε
ε

ˆ
V
Qε (t,x,v, v̂)vv̂ ·ndvdv̂= 0, x ∈ ∂Ω,

and thus ˆ
V
Qε (t,x,v, v̂)vv̂ ·ndvdv̂= 0, x ∈ ∂Ω,

and, in the limit ε→ 0+, we complete the eigenproblem (30) with the no-flux condition
ˆ
V
Q(x,p,v, v̂)vv̂ ·ndvdv̂= 0, x ∈ ∂Ω. (41)

It would be interesting to investigate if this relation can be interpreted as aNeumann bound-
ary condition on p=∇xφ. Remark that for small p, Taylor expandingQ defined in (32) as
a function of p about p= 0, remembering (40) and plugging the expression into (41), we
find

[U0
S +D0

S∇xφ] ·n= 0. (42)

Proof. When the proof uses standard arguments, see for instance [2, 18], we only sketch them.
We begin with a priori estimates (i) for the solution of equation (25). From assumption (37),
we infer

|∂tφε (t,x,v, v̂) |⩽ |∂tφ0
ε (x,v, v̂) |⩽ C,

(we do not prove it because we detail the case of space derivatives which are more involved),
therefore

|φε (t,x,v, v̂) |⩽ |φ0
ε (x,v, v̂) |+Ct.

Also, still using the maximum principle for derivatives and the already proved bounds (here
equation (25) is used again for x-derivative of T[S]), we have that

d∑
i=1

|∂iφε (t,x,v, v̂) |⩽
d∑

i=1

|∂iφ0
ε (x,v, v̂) |eCt+Ct.

Since this estimate is more elaborate, we prove it. Differentiating equation (25) in xi and setting
ψi = ∂iφε(t,x,v, v̂), we find

∂tψi+ v ·∇ψi =−T [S]ε

ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε

ψi (v, v̂)−ψi (w, ŵ)
ε

dwdŵ+RHS

12
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where the RHS term is

RHS= ∂iT [S]ε (v, v̂)
ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε dwdŵ.

Using again equation (25), it can be estimated as

|RHS|⩽ |∂iT [S]ε (v, v̂) |
T [S]ε (v, v̂)

T [S]ε (v, v̂)
ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε dwdŵ

=
|∂iT [S]ε (v, v̂) |
T [S]ε (v, v̂)

[1− ∂tφε− v ·∇φε] ,

and, using the assumption (39) and the time derivative estimate, we conclude that

|RHS|⩽ C+C
d∑

j=1

|ψj|.

With this observation, we can use the maximum principle for ψi e−Ct+C and conclude the
bounds on the x derivatives.

With these estimates, we conclude that for t⩽ T̃, we have

ˆ
V
exp

−φε (t,x,w, ŵ)+φε (t,x,v, v̂)
ε dwdŵ⩽ C

(
T̃
)
,

which can be written

φε (t,x,v, v̂) = ε ln
ˆ
V
exp

−φε (t,x,w, ŵ)
ε dwdŵ+O(ε) .

This tells us that a limit of φε depends only on (t,x). As in [7], it also gives directly the last
estimate of (i), that is

|∂vφε (t,x,v, v̂) |⩽
[
|∂xφ0

ε (x,v, v̂) |+ |∂vφ0
ε (x,v, v̂) |

]
eCt+Ct.

We are now in the same situation as [7] and the rest of the argument follows in a similar
way. Using the perturbed test function method, [20], we obtain the statement (ii) thanks to the
assumption (34) which allows us to define Q and avoid the ‘dimensionality problem’.

Finally, for the statement (iii), we notice that the mass conservation is immediate which
implies that φ(t,x)⩽ 0. Then, we observe that

d
dt

ˆ
Rd×V

|x|fε (t,x,v, v̂)dxdvdv̂⩽
ˆ
Rd×V

|v|fε (t,x,v, v̂)dxdvdv̂⩽ U.

Therefore fε is a tight probability measure and, after extraction, it converges weakly to a prob-
ability measure which implies that minx∈Ωφ(t,x) = 0 for all t⩾ 0. The only possible concen-
tration points are when φ(t,x) is zero (see [4, 19, 32] for details and consequences).

13
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2.4. The Hamilton–Jacobi formalism and hydrodynamics

The Hamilton–Jacobi equation (31) also arises in the more classical hydrodynamic limits (see
appendix A), and also allows to describe the concentration profiles. We investigate the relation
with respect to the characterisation of concentration solutions in the two regimes, kinetic one
and hydrodynamic one.

2.4.1. An eikonal equation. Given the hydrodynamic expansion (76), where we keep a small
diffusion term, the phase ϕε =−ε logρε satisfies, in the limit ε→ 0+, the Hamilton–Jacobi
equation

∂tϕ+U0
S ·∇ϕ+∇xϕ

TD0
S∇xϕ= 0. (43)

Whenworking in a bounded domain, from (77), we additionally obtain the boundary condition[
U0

S +D0
S∇xϕ

]
·n= 0. (44)

As φ satisfies (31) and ϕ satisfies (43), we conclude, as observed in [7], that the two pro-
cedures (aggregate quantities limit and WKB analysis) do not commute in general as far as
concentration profiles are concerned. This is because the Hilbert or Chapman–Enskog expan-
sions leading to the hydrodynamic limits are additive, while the Hopf–Cole transform that
leads to (31) is multiplicative. However, equation (43) corresponds to the quadratic expansion
of the Hamiltonian H from (31) in a neighborhood of ∇xϕ = 0 remembering (35)–(36), and
thus describes the same concentration effects but not the correct kinetic profiles. Actually, the
boundary conditions (44) for the eikonal equation (43) are the same as (42) that were obtained
for (31) in the limit of small p.

It is also possible to detect a regime in which the kinetic Hamiltonian will converge to the
eikonal one. Consider the regime (81) or (83), corresponding to (82) or (84), and the assump-

tion of small diffusivity (85). Then, considering ρν = exp
−
ϕ

ν and letting ν→ 0, Equation (82)
becomes

∂tϕ+US ·∇xϕ+∇xϕ
TD̄S∇xϕ = 0, (45)

while equation (84) becomes

∂tϕ++U1
S ·∇xϕ +∇xϕ

TD̄0
S∇xϕ = 0. (46)

We now consider

ε→ εν,

and plug (3) in (80); in the limit ε→ 0, we obtain

∂t

([φ
ν

])
+Hν

(
∇x

[φ
ν

])
= 0, (47)

where Hν is implicitly defined by

1= ν

ˆ
V

T [S]0 (v, v̂)
ν+Hν (x,p)− vv̂ · p

dvdv̂, p=∇x

[φ
ν

]
.

14
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Then, as D2H(0) =
2
ν2

D0
S , considering ν small and assuming the small diffusivity (85), we

obtain

H(x,∇xφ) = H(x,0)+∇xφ ·∇pH(x,0)+
1
2
∇xφ

TD2
pH(x,0)∇xφ =U0

S ·∇xφ +∇xφ
TD̄0

S∇xφ.

Plugging the latter in (47) allows to obtain the equivalent form of equation (43).
Let us now consider a spatially homogeneous T such that

ˆ
V
Tdvdv̂= 1,

ˆ
V
Tvdvdv̂= 0,

ˆ
V
Tv2v̂⊗ v̂dvdv̂= ν2I.

It is the case for example, in one-dimension, where V = [−U,U], and we choose T= exp
−
v2

2 ,

T=
1
U
, or T=

1
2
(δ(v−U)+ δ(v+U)), see [7]. Then, performing the WKB analysis leads to

(47) and, then, to ∂tφ + |∇2
xφ|= 0, while, starting from (87) we obtain ∂tϕ + |∇2

xϕ|= 0, that
is (46) with U1

S = 0. We highlight, in fact, that in these cases there is no correction term T[S]1
(and then no U1

S ). In conclusion, the two procedures commute in the regime of small ν.
Interestingly, in the case

T [S] = c(x)S (x+Rv̂) ,

considering (24) or (81) and a large R, the two procedures lead to (45) and (82), respectively.
Conversely, if we consider a small R and T[S]0,T[S]1 as defined as a consequence of a loc-

alised scaling (83), we obtain (84) with D0
S = I, U1

S = R
∇xS
S

. If in the WKB analysis we

consider (18), we obtain the eikonal equation ∂tφ + |∇2
xφ|= 0 and the higher order effect is

naturally lost in the localised hyperbolic scaling.

2.4.2. Dynamics of the concentration points. We now want to recover the dynamics of the
concentration points. For this we look for the trajectory x̄i(t) of the maximum (or concentra-
tion) points of ρ. In the context of adaptive dynamics, this is interpreted as the ‘fittest trait’, [4,
19, 29, 32]. In the Hopf–Cole transform in the limit ε→ 0, the concentration points are defined
by the minimum points x̄i of φ ⩾ 0, i.e.

φ (t, x̄i (t)) = 0, ∇xφ (t, x̄i (t)) = 0, ∂tφ (t, x̄i (t)) = 0= H(x̄i (t) ,0) , (48)

and

D2
xφ (t, x̄i (t))⩾ 0.

First of all, we remark that in the regime (17) for ε→ 0, the hydrodynamics allow us to
state that each trajectory in the physical space (see (78)) follows the differential equation

ẋ(t) = U0
S (x(t)) . (49)

If T[S]0 is space homogeneous (e.g. b(S) = S in the regime (18)), then we know from the
kinetic equation (1) that the homogeneous configuration ρ∞ is the asymptotic stationary equi-
librium. Then, the Hamilton–Jacobi formalism allows to state that if U0

S(x(t)) = 0∀x then

15
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∇xφ ≡ 0 being a minimum of H, and, thus, the constant solution is the asymptotic equilib-
rium configuration. Conversely, in the regime (24) in generalU0

S(x(t)) does not vanish and the
maxima points of ρ (the concentration points) are the minima points of φ that are defined as
x̄i(t) : US(x̄i(t)) = 0. Therefore, from (49) ˙̄xi(t) = 0 and this tells us that the maxima points
x̄i of ρ do not evolve in time. We now want to verify how the Hamilton–Jacobi equation can
be exploited in order to describe the time evolution of the concentration points. In order to do
this, we derive a canonical equation in the same spirit as in [4, 19, 29, 32]. Differentiating with
respect to time the second equality on (48) (that is along the trajectories), we find

0=
d
dt
∇xφ(t, x̄i (t)) = ∂t∇xφ(t, x̄i (t))+ ˙̄xiD

2
xφ(t, x̄i (t)) .

Also, differentiating (31) with respect to x, we get

∂t∇xφ(t, x̄i) =−∇xH(x,∇xφ(t,x))−∇pH(x,∇xφ(t,x)) .D
2
xφ(t,x) ,

and, specialising it in x̄i(t), and remembering (35) and H(x,0) = 0, we get

∂t∇xφ(t, x̄i (t)) =−∇pH(x,∇xφ(t, x̄i)) ·D2
xφ(t, x̄i) =−U0

S (x̄i (t)) ·D2
xφ(t, x̄i) .

Therefore we obtain

˙̄xi (t) = U0
S (x̄i (t)) ,

that is the same as (49), specialised on the concentration points. In particular the long term
limit is solely determined by U0

S and does not depend on the initial condition of ρ as it is usual
in adaptive dynamics, and as it follows from the H-Theorem in kinetic theory, that establishes
in this linear case that the equilibrium is asymptotically stable and does not depend on the
initial condition.

Therefore, the steady state concentration points occur and are defined by the set

ΩM := {x̄i, i = 1, . . .,n : φ(x̄i) = 0} ⊂ {x̄i, i = 1, . . .,m : U0
S (x̄i) = 0}. (50)

As a consequence of theorem 1, concentration solutions have support in ΩM and specifically
are in the form (4) with

ωi (x,v, v̂) = ρ(x̄i)Q(x̄i,p(x̄i) ,v, v̂) , (51)

where

Q(x̄i,p(x̄i) ,v, v̂) = T [S]0 (v, v̂)|x=x̄i , (52)

remembering p(x̄i) = 0 and (40). From the eikonal equation we may expect that

ρ0 (t,x) =
∑ ρ∞

detD0
S (x̄i)

δ (x− x̄i) ,

so that ρ(x̄i) =
ρ∞

detD0
S(x̄i)

.

In conclusion, in the linear case the hydrodynamics and the Hamilton–Jacobi equations give
the same amount of information regarding the evolution of the concentration points, but the
Hamilton–Jacobi formalism allows to characterise the concentration points and profiles. When
the zeroes ofU0

S are discrete, the generic situation, the long term solution must be concentrated
as Dirac masses on these points. Else if U0

S is identically zero, then no concentrations are
observed in the long run.
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2.5. Examples

We illustrate the results with two examples in one dimension. We first choose the signal

S (x) = S0 exp
−
(x− x̄)2

2σ2 , (53)

with x̄ a given point in Ω. When b(S) = S, it generates a transition probability given by

T [S] (v, v̂) = ψ (v|v̂) exp
−
R(x− x̄) · v̂

2σ2

´
Sd−1 exp

−
R(x− x̄) · v̂

2σ2 dv̂

.

Firstly, we remark that the characteristic length of variation of S , that can be defined as in (86),
is given by

lS =
σ2

max |x− x̄|
.

In the regime (24), we expect that the maximum point U0
S(x(t)) = 0 only occurs when x(t) =

x̄. Moreover, we expect a unique nonhomogeneous stationary state whose profile needs to
satisfy (16). In the regime (18), conversely, as the limiting T[S]0 does not depend on x, we
expect that the homogeneous configuration is the stationary equilibrium, as ∂tρ= 0. We now
consider the Hopf–Cole analysis. In 1D we have that v̂=±1 and choosing ψ(v|v̂) = δ(v−V)
with V,R=O(1) we get

H(x,p) =
1
2

V2p2 +VpDS (x)

1+
√
1+ 4V2p2−4VpDS (x)

, DS (x) =
exp

R(x− x̄)
2σ2 −exp

−
R(x− x̄)
2σ2

exp

R(x− x̄)
2σ2 +exp

−
R(x− x̄)
2σ2

.

(54)

We remark that in the regime (18), in (3) (and, then, in (54)) R is to be replaced with
εR, and, hence, the Hamiltonian vanishes only in p= 0 and every concentration disappears
as ∇pH(x,0)≡ 0. Conversely, in the regime (24), the Hamiltonian has two different zeros

p(x) = 0,
DS(x)
V

. Specifically, now the minimum point of H is (x̄,
DS(x̄)
V

). As a consequence,

the concentration solution of the Hamilton–Jacobi equation is

φ(x) =
1
V

ˆ
DS (z) dz=

σ2

RV
log

∣∣∣∣cosh( R
σ2

(x− x̄)

)∣∣∣∣ (55)

that is depicted in figure 1(first line, second panel).
We numerically solve equation (1). The numerical method adopted here is the same used

in the works [34–36]. A first order splitting is performed: the space transport is numerically
solved by means of an explicit finite-difference Van-Leer scheme, while the relaxation step
is performed implicitly, thanks to the BGK-like structure. We consider Ω= [0,1], µ= 1 and

V= 5 · 10−5 and ψ(v) =
1
2V

. In all simulations the space grid has a uniform mesh defined by
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Figure 1. First line. First panel: S (red curve) given by (53) and two different initial
conditions ρ0: the constant one (blue) and an asymmetric Gaussian (green). Second
panel: solution (55) of the Hamilton–Jacobi equation. Third panel: temporal evolution
of ρ(t,x) in the case of an asymmetric ρ0. Second line. First panel: H(x,p) (54) in the
local regime (18), second and third panel:H(x,p) (54) in the nonlocal regime (24). In the
third panel the red dashed lines correspond to±U|p|, while the black horizontal dashed
line indicates the level zero.

dx= 10−3. In figure 1 we use S given by (53) with σ= 0.05 and x̄= 1, R= 0.01. Therefore
lS = 5 · 10−3. Let us consider L= 1. We are then in regime (24) with ε= 10−5. We consider
two different initial conditions ρ0 = 0.1 and ρ0 Gaussian centered in 1.5. As alreadymentioned
the stationary state is unique and does not depend on the initial condition. In the second line of
Fig 1, second and third panel, we plot the Hamiltonian (54). We remark that the Hamiltonian
is not always positive and there is a concentration profile. Specifically, the Hamiltonian is not
uniformly convex with respect to x as a function of p. Conversely, in a regime defined by
V= 5 · 10−5, L= lS (i.e. regime (18) with ε= 10−2) the stationary state ρ∞ is the stationary
homogeneous configuration even for a nonhomogeneous initial condition (not shown), and this
is true in both regimes R≶ lS . The corresponding Hamiltonian is plotted in figure 1, second
line, first panel, and it is a convex function with respect to p forall x.

Second, we choose a bimodal signal

S (x) = S1 exp
−
(x− x̃1)

2

2σ2
1 +S2 exp

−
(x− x̃2)

2

2σ2
2 . (56)

Then the number of singular points x̄i satisfying US(x̄i) = 0 depends on R, x̃1 − x̃2 and on σ2.
In figure 2 we consider the bimodal signal S given by (56) with σ1 = σ2 = 0.03 and three
different couples of x̃1, x̃2 according to the value of their distance with respect to R= 0.4. Here
again ε= 10−5 (same values of V,L,µ). We remark that, when x̃2 − x̃1 ⩽ R (see figure 2(b)
for the case x̃2 − x̃1 = R), then there is a single peak as ∃! x̄1(= 0) such that US(x̄1) = 0. The
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Figure 2. Temporal evolution of ρ(t,x) in case of S given by (56). Here R= 0.4, the
initial condition ρ0 is constant. In (a): three different S as given by (56) with σ1 = σ2 =
0.03 and three different couples of x̃2, x̃1. In (b)–(c) temporal evolution of ρ(t,x) for the
two differentS: in (b) x̃2 − x̃1 = R, in (c) x̃2 − x̃1 > R. In (d)–(f) we plot the Hamiltonian
for the three different cases.

case x̃2 − x̃1 < R behaves like x̃2 − x̃1 = R (not shown). When x̃2 − x̃1 > R (see figure 2(c))
then ∃ x̄1, x̄2 such that US(x̄i) = 0, i = 1,2. In figure 2(d) we plot the Hamiltonian in the case
x̃2 − x̃1 > R.

In figure 3 we consider S given by (56) with σ1 = 2σ2,σ2 = 0.03 while for the sens-
ing radius we have again R= 0.4. We consider two different couples of x̃1, x̃2 as shown in
figure 3(a). We remark that the peaks of ρ do not coincide with the peaks of S and this is due
to the nonlocality (R> 0). In particular, in the first case (b) the distance between the maxima of
S is larger than the sensing radius and, thus, the stationary solution has two peaks even though
with different convexity due to the configuration of S . In the second case (c), the distance
between the peaks of S is exactly R/2, so that the peak of the stationary solution is unique,
even though it is asymmetric, because of the asymmetry of S .

In conclusion, in this linear case the analysis of the kinetic equations and of the aggregate
limits by means of the hydrodynamics give almost a complete set of information concerning
the dynamics of the maxima, except the concentration result and the location of the maxima,
for which the WKB analysis is needed. Therefore, we now consider a nonlinear case in which
the study of the kinetic and hydrodynamic equations may not be able to convey all the neces-
sary information regarding the dynamics of the maxima points, while the Hamilton–Jacobi
formalism offers promising tools in order to describe the concentration profiles.
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Figure 3. Temporal evolution of ρ(t,x) in case of S given by (56). Here R= 0.4 and
σ1 = 0.06,σ2 = 0.03. In (a): two different S given by (56) with two different couples
x̃2, x̃1. In (b) and (c) the corresponding time evolution of the densities ρ.

3. A nonlinear case

When the external field affecting the reorientation choice is the cell density itself, i.e. S = ρ,
then the kinetic equation (1) becomes nonlinear

∂tf(t,x,v, v̂)+ v ·∇xf(t,x,v, v̂) = µ(ρ(t,x)T [ρ] (v, v̂)− f(t,x,v, v̂)) , (57)

where, given the specific choice b(ρ) = ρ, the tumbling operator is defined as

T [ρ] =
ρ(t,x+Rv̂)´

Sd−1 ρ(t,x+Rv̂) dv̂
ψ (v|v̂) . (58)

The latter describes the tendency of cells, that is typical in cell-cell adhesion, of migrating
towards regions x+Rv̂ -and therefore of reorienting along direction v̂- in which the cell density
is higher. Other cell-cell adhesion mechanisms may be taken into account, by modulating the
choice of b [36]. In [36] the authors perform a linear stability analysis of the kinetic model (57)
and (58). In the one dimensional case d= 1 and with the choice ψ(v|v̂) = δ(v−Vψ(v̂)), they
show that the uniform homogeneous configuration is stable if, using the notation (6),

V
Rµ

> 1, V :=
Vψ (+1)+Vψ (−1)

2
. (59)

We now consider regime (18), and in this nondimensionalised regime V,R,µ=O(1), then
equation (57) reads

∂fε
∂t

(t,x,v, v̂)+ v ·∇xfε (t,x,v, v̂) =
µ

ε
(ρεT [ρ]ε− fε (t,x,v, v̂)) , (60)

where

T [ρ]ε =
ρε (t,x+ εRv̂)´

Sd−1 ρε (t,x+ εRv̂) dv̂
ψ (v|v̂) .

In particular, in the rescaled regime (18), relation (59) is unchanged since

εV
Rεµ

=
V
Rµ

.
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With Uερ and Dερ defined thanks to (8) and (9), the hydrodynamic expansion is given by

∂tρε+∇x ·
(
Uερρε

)
=
ε

µ
∇x ·∇x ·

(
Dερρε+ ρεU

ε
ρ∇x ·Uερ

)
. (61)

When ρε is smooth enough, the limiting transition probability becomes

lim
ε→0

T [ρ]ε = T [ρ]0 :=
1

|Sd−1|
ψ (v|v̂) .

3.1. Derivation of the Hamilton–Jacobi equation

When ρε undergoes concentration, we may consider (3), and write

T [ρ]ε = ψ (v|v̂)
´
V exp

−
φε (t,x+ εRv̂,w, ŵ)

ε dwdŵ

´
Sd−1

´
V exp

−
φε (t,x+ εRv̂,w, ŵ)

ε dwdŵdv̂

≈ ψ (v|v̂)
´
V exp

−φε (t,x,w, ŵ)− εRv̂ ·∇xφε (t,x,w, ŵ)
ε dwdŵ

´
V
´
Sd−1 exp

−
φε (t,x,w, ŵ)+ εRv̂ ·∇xφε (t,x,w, ŵ)

ε dwdŵdv̂

,

where we have used the expansion

φε (t,x+ εRv̂,w, ŵ) = φε (t,x,w, ŵ)+ εRv̂ ·∇xφε (t,x,w, ŵ) .

Then, assuming (27), and remembering that φ̃ε does not depend on v, v̂, we have

T [ρ]ε ≈ ψ (v|v̂)
exp

−φ̃ε (t,x)
ε exp−Rv̂·∇xφ̃ε(t,x)

´
V Qε dwdŵ

exp

−φ̃ε (t,x)
ε

´
Sd−1

´
V Qεdwdŵexp−Rv̂·∇xφ̃ε dv̂

,

thanks to the Fubini–Tonelli theorem. Then, letting ε→ 0+, we obtain

T [ρ]ε → GR (v, v̂,∇xφ) = ψ (v|v̂) exp−Rv̂·∇xφˆ
Sd−1

exp−Rv̂·∇xφ dv̂
, (62)

that is the approximation of the transition probability defined by the Hopf–Cole transform in
the regime (18).

Plugging (3) in (60) we obtain

µ− ∂tφε− v ·∇xφε =exp

φε (t,x,v, v̂)
ε

µ

ε

ˆ
V
exp

−
φε (t,x,w, ŵ)

ε dwdŵ T [ρ]ε

 .
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Furthermore, considering the expansion (27), and by letting (formally) ε go to 0+, we obtain

µ− ∂tφ − v ·∇xφ = µ

[
Q−1 (x,v, v̂)

ˆ
V
Q(x,w, ŵ) dwdŵGR (v, v̂,∇xφ)

]
. (63)

Again, we assume that Q(x,w, ŵ) is positive according to assumption (34). Then, like in the
previous section, we define an eigenvalue-eigenvector problem

(µ+H(p)− vv̂ · p)Q(p,v, v̂) = µGR (v, v̂,p)
ˆ
V
Q(p,w, ŵ) dwdŵ.

We remark that the termGR results from the interaction kernel T and arises due to the nonlocal
sensing of ρ. As such, its role is to drive the dynamics of f toward the equilibrium in v, v̂. We
remark that it satisfies:

∇pGR (v, v̂,p) = ψ (v|v̂)

 −Rv̂exp−Rv̂·pˆ
Sd−1

exp−Rŵ·p dŵ
+

exp−Rv̂·pR
ˆ
Sd−1

exp−Rŵ·p ŵdŵ(ˆ
Sd−1

exp−Rŵ·p dŵ

)2

 ,
and, then

GR (v, v̂,0) =
ψ (v|v̂)
|Sd−1|

, ∇pGR (v, v̂,0) =−ψ (v|v̂) R
|Sd−1|

v̂.

From (63), we find that the (formal) limit φ is the solution of

∂tφ +H(∇xφ) = 0, (64)

where the Hamiltonian is implicitly defined by

1= µ

ˆ
V

GR (v, v̂,p)
µ+H(p)− vv̂ · p

dvdv̂. (65)

We remark that now H only depends on p and not on x, and this is because we are considering
the localised regime (18). It is easy to see that H(0) = 0. Then, by differentiating (65) with
respect to p we obtain

0= µ

ˆ
V

∇pGR (v, v̂,p)
(µ+H(p)− vv̂ · p)

dvdv̂−µ

ˆ
V

GR (v, v̂,p)(∇pH(p)− vv̂)

(µ+H(p)− vv̂ · p)2
dvdv̂.

Therefore∇pH(p) = UG
R (p), where U

G
R is the average of GR, i.e.

UG
R (p)=

ˆ
V
GR (v, v̂,p) vv̂dvdv̂=

´
Sd−1 Vψ (v̂)exp−Rv̂·p v̂dv̂´
Sd−1 Vψ (v̂)exp−Rv̂·p dv̂

, (66)

so that

∇pH(0) = UG
R (0) =

ˆ
Sd−1

Vψ (v̂) v̂dv̂. (67)

We remark that∇pH(0) vanishes in the case in which Vψ is even.
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Differentiating further, the Hessian of H satisfies

ˆ
V

GR (v, v̂,p)D2H(p)

(µ+H− vv̂p)2
dvdv̂= 2

ˆ
V

GR (∇pH− vv̂)⊗ (∇pH− vv̂)

(µ+H− vv̂p)3
dvdv̂

+

ˆ
V

D2
pGR

µ+H− vv̂p
dvdv̂− 2

ˆ
V

∇pGR (∇pH− vv̂)

(µ+H− vv̂p)2
dvdv̂.

We have D2
pGR(v, v̂,0) = 0 because

D2
pGR (v, v̂,p) = ψ (v|v̂)R2 exp−Rv̂·p

[
v̂⊗ v̂´

Sd−1 exp−Rv̂·p dv̂
− 2

v̂⊗
´
Sd−1 exp−Rv̂·p v̂dv̂(´

Sd−1 exp−Rv̂·p dv̂
)2

−
´
Sd−1 exp−Rv̂·p v̂⊗ v̂dv̂(´

Sd−1 exp−Rv̂·p dv̂
)2 + 2

´
Sd−1 exp−Rv̂·p v̂dv̂⊗

´
Sd−1 exp−Rv̂·p v̂dv̂(´

Sd−1 exp−Rv̂·p dv̂
)3

]
.

Then, in the case in which ψ does not depend on v̂, we have V= Vψ and

D2
pH(0) =

2dD2
ψ

µ
I− 2dvRI= 2d

(
D2
ψ

µ
−VR

)
I (68)

that is positive definite when

D2
ψ

V
> Rµ. (69)

If the latter holds, then the homogeneous steady state p≡ 0 is a minimum of the Hamiltonian,
and it is, thus, the asymptotic equilibrium. Conversely, p= 0 is a (possibly local) maximum
point of the Hamiltonian. As for p→±∞, H→∞, and if H is C1, we then expect nonvanish-
ing minima points p̄ of the Hamiltonian that correspond to asymptotic equilibria that are not
homogeneous in the physical space. We then expect concentration solutions in the nonlinear
case when

D2
ψ

V
< Rµ. (70)

Notice that D2
ψ = V2 when ψ is a Dirac delta and we recover, here in any dimension d, the

linear stability region determined in the one-dimensional case in [36]. For any other choice of
ψ, we have that D2

ψ = V2 + e, where e⩾ 0 is the variance of ψ. Then, when (59) is satisfied,
the condition (69) with D2

ψ = V2 + e is automatically satisfied. In conclusion, the choice of ψ
being a Dirac delta is the most unstable one, and, therefore, this choice makes computations
feasible and allows to predict a wider instability region.

3.2. The Hamilton–Jacobi formalism and hydrodynamics

In this section, we investigate how the Hamilton–Jacobi formalism allows to characterise con-
centration solutions in the nonlinear case, in which the hydrodynamic equations do not allow
to depict the concentration scenarios in all regimes. However, we expect that in a linearised
regime the two approaches may give the same amount of information, like in the linear case
(see section 2.4). As a consequence, we first consider the regime of small sensing radius R.
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3.2.1. The regime R small. Let us now consider R small in the sense of (86) with S = ρ, i.e.

0< R≪ lρ :=
1

max
|∇xρ|
ρ

. (71)

Then, we may expand ρ as

ρ(t,x+Rv̂)≈ ρ(t,x)+Rv̂ ·∇xρ(t,x) ,

so that the normalisation function of (58) is

c(t,x)≈ ρ(t,x) |Sd−1|.

Therefore equation (57) becomes

∂f
∂t

(t,x,v, v̂)+ v ·∇xf(t,x,v, v̂) = µ

(
ρ(t,x)

1
|Sd−1|

[
1+Rv̂ · ∇xρ(t,x)

ρ(t,x)

]
− f(t,x,v, v̂)

)
.

(72)

The latter is a linearised kinetic equation in which T[ρ] is evaluated in a small perturbation of a

nondimensionalised homogeneous configuration ρ∞ = 1, as
R∇xρ

ρ
is small being R≪ lρ (see

the expression in the square brackets in (72)). This is exactly the regime in which the linear
stability analysis is performed in [36]. When considering the rescaling (18) with the smallness
regime (71), we have that

Uερ = εRV
∇xρ

ρ
, Dερ = D2

ψ I.

Therefore the hydrodynamics (61), that is obtained by the rescaling (18), becomes

∂tρε = ε∇x ·∇x ·

((
D2
ψ

µ
−RV

)
Iρε

)
+O

(
ε2
)
.

In the latter, the first order correction features a diffusion tensor whose positivity corresponds
to the stability condition of the homogeneous configuration (69): specifically a positive diffu-
sion corresponds to stability of the homogeneous configuration, while the negative diffusion
corresponds to the emergence of patterns. The Hopf–Cole assumption in (72) with (18) leads
to GR(p,v, v̂) = ψ(v|v̂)(1−Rv̂ · p).

3.2.2. An eikonal equation. Like in the linear case studied in section 2.4, we may also use
the phase ϕε =−ε logρε in the aggregate equation (61). Letting ε→ 0 and assuming ϕε → ϕ,
we formally obtain

∂tϕ+UG
R ·∇xϕ+∇xϕ

TDG
R∇xϕ = 0, (73)

because Uερ → UG
R (∇xϕ) (defined in (66) and Dερ → DG

R (∇xϕ), which is the variance covari-
ance matrix of (62). Therefore, equation (73), in opposition to the linear case, is not the quad-
ratic expansion near ∇xϕ = 0 of equation (64) except in the regime R small. In fact, in the
linearised case (72) with (18), we have that

∂tρ
0 +∇x ·

(
ρ0U0

ρ

)
= 0. (74)
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Moreover, asGR(p,v, v̂) = ψ(v|v̂)(1−Rv̂ · p), thenU0
ρ = UG

R (0) andD0
ρ = D2

pH(0), so that like
in the linear case, in this linearised regime obtained for R small, the eikonal equation (73) is a
quadratic expansion of (64).

3.2.3. Dynamics of the concentration points. Concerning the concentration points dynam-
ics, we remark that the hydrodynamics tell us that x ∈ Ω obeys

ẋ(t) = U0
ρ (x) ,

conversely, by repeating the same procedure as in section 2.4.2, we have that the Hamilton–
Jacobi equation allows to conclude that a maximum point x̄i satisfies

˙̄xi (t) = UG
R (p) .

The hydrodynamics and theWKB analysis give the same information concerning the dynamics
of the maxima in the linearised case (71) as U0

ρ = UG
R (0).

Conversely, for any R, the hydrodynamics do not allow to conclude anything in general
about the maxima points, while the Hamilton–Jacobi equation allows to state that when p=
∇xφ(x̄i) = 0, then, as a consequence of (67)

˙̄xi (t) =
ˆ
Sd−1

Vψ (v̂) v̂dv̂.

The latter is a nonvanishing quantity in the case where Vψ(v̂) is not even as a function of v̂. In
such a case it is possible to observe moving patterns, as showed in [36].

Moreover, the Hamilton–Jacobi equation (64) also gives the microscopic concentration
profile, that is not given by the hydrodynamics, not even in the linearised case. In the sta-
bility regime, i.e. when (59) is satisfied, we actually have that p= 0 is a minimum of H as
H(0) = 0, ∇pH(0) = 0 when Vψ is even and D2

pH(0) is positive definite. Therefore, we have
H(p)> 0∀p ̸= 0 which implies that φ(t,x) decreases and possible initial concentrations will
disappear. In the instability regime (70), the situation is more interesting and the prototype of
the shape of the Hamiltonian is depicted in figure 4. In fact, being D2

pH(0) negative definite,
then p= 0 is a maximum point of H. Therefore, there will be a range of values of p where
the Hamiltonian is negative. As for p→±∞, H→∞, and if H is C1, there will be a value
p̄> 0 where H(±p̄) is minimum (and negative). This explains the profile of the Hamiltonian
obtained in figure 4. When ∇xφ is small (which is the case near concentration points), then
H(∇xφ)< 0, meaning that φ will increase and the concentration will get stronger. Then, the
slopes±p̃whereH(±p̃) = 0 determine a saw tooth stationary state. This is independent of the
initial condition, and in fact concentrations may arise also from initial homogeneous config-
urations (see figure 5).

3.3. An example

As an example, we consider the one dimensional eigenproblem (65) (when d= 1 and v̂=±1).
Then H is defined by

1=
µ

(exp−Rp+expRp)

ˆ U

0
ψ (v|v̂)

(
exp−Rp

µ+H− vp
+

expRp

µ+H+ vp

)
dv,
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Figure 4. The convex-concave HamiltonianH in the one-dimensional case as computed
explicitly in formula (75). The values of µ,V,R are those corresponding to the example
in section 3.3. The red dashed lines correspond to the asymptotes±U|p|, the black hori-
zontal dashed line is the zero-level. The values ±p̃ ̸= 0 with H(p̃) = 0 determine the
slopes of the saw tooth solutions in figure 5.

which is also written

1=
µ

2(exp−Rp+expRp)

ˆ U

0
ψ (v|v̂)

(
exp−Rp (µ+H+ vp)+ expRp (µ+H− vp)

(µ+H)2 − v2p2

)
dv.

When ψ(v|v̂) = δ(v−V), the latter reduces to

1=
µ

exp−Rp+expRp

(
exp−Rp (µ+H+Vp)+ expRp (µ+H−Vp)

(µ+H)2 −V2p2

)
,

and, therefore

H2 +Hµ−V2p2 +µVpDR (p) = 0, DR (p) =
expRp−exp−Rp

exp−Rp+expRp
= tanh(Rp) ,

in such a way that

H(p) =
−µ+

√
µ2 + 4V2p2 − 4µVpDR (p)

2
. (75)
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Figure 5. One dimensional example with parameters V= 1,µ= 100,R= 5 · 10−2. In
(a) the initial condition is the perturbation of the homogeneous configuration, in (b) the
initial condition is a bimodal Gaussian centered in x̃1 = 2.3, x̃2 = 2.7, in (c) the initial
condition is a bimodal Gaussian (i.e. ρ0 as in (56)) centered in x̃1 = 2.4, x̃2 = 2.6. In the
second line we report the corresponding profiles of −ε log(ρ(t,x)), ε= 10−2. These
saw tooth curves result from the convex-concave Hamiltonian in figure 4.

Consequently, the sign of H is determined by the sign of V|p| −µ|DR(p)| and we obtain

H(p)> 0 iff
V
µ
>
DR (p)
p

.

For |p| small this is in accordance with the sign of the second derivative in formula (68). In the

regime when R|p| is small then
DR(p)
p

=
tanh(Rp)

p
∼ R and the latter condition becomes (59).

As p=∇xφ and |∇xφ| ≈
|∇xρ|
ρ

, then it coherently corresponds to the analysis performed in

the regime of R small. In general, the Hamiltonian (75) will have several (three if R is large
enough) zeros, that are given by

p= 0, p̃= DR (p̃) .

We now show some numerical tests. We solve numerically the kinetic equation (57) in
the regime (18). In particular we choose the following parameter values: V= 1,µ= 100,R=

5 · 10−2. Therefore ε= 10−2 and we are in the regime of linear instability as
V
µR

= 0.2. We

consider three different initial conditions: (a) a perturbation of the homogeneous configuration,
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(b) a bimodal Gaussian (i.e. ρ0 as in (56)) centered in x̃1 = 2.3, x̃2 = 2.7, (c) a bimodal Gaussian
(i.e. ρ0 as in (56)) with x̃1 = 2.4, x̃2 = 2.6.

As we are in a regime of linear instability, in figure 5(a) we observe pattern formation,
while in figure (b), as the two initial peaks are far enough, they stay so along the dynamics. In
figure 5(c) we have that the two peaks merge, because the sensing radius is large enough. In
the second line (figures 5(d)–(f), respectively), we plot the corresponding −ε log(ρε).

4. Conclusion

We have considered a kinetic equation with a BGK relaxation operator in which the transition
probability is nonlocal in the physical space, and thus space-dependent. The transition kernel
can be linear or nonlinear. For high frequencies, both in the localised (18) and nonlocalised (24)
regime, we have explained the formation of concentration solutions by means of the real WKB
ansatz, following [7], that leads in the limit to a Hamilton–Jacobi equation. This method, in the
spirit of adaptive dynamics, provides us with the position evolution of the concentration points
and with the concentration profiles. We have studied preliminarly the linear case, in order to
be able to study the nonlinear one, in which the classical hydrodynamics does not allow to
characterise completely the aggregation solutions. We can conclude that

• In the linear case at the leading order, the kinetic equation and corresponding aggregate limit
(hydrodynamics) almost give a complete information that coincides with the one obtained
by means of the WKB method through the Hamilton–Jacobi equation and the canonical
equation for the concentration points toward the local maxima of the signal. As a plus, the
WKB analysis allows also to determine the set of maximum points ΩM and the correct con-
centration profile (4), (51) and (52). This leads to one of the main messages of the present
paper that is to use the Hamilton–Jacobi formalism in order to study concentration solutions
in more complex scenarios, such as the nonlinear one.

• In the nonlinear case, the same link holds between the aggregate limit analysis and theWKB
analysis in the linearised regime (R small in the sense of (71)). When R is not small (and ρ is
not smooth) and we expect concentrations, then stating (even formally) the hydrodynamic
limit is not banal. Then, theWKBmethod gives more information with respect to the aggreg-
ate equation through the canonical equation for the maxima. A difference with respect to the
linear case lies in the fact that it is not possible to find a condition for the location of the con-
centration points. However, the Hamilton–Jacobi formalism allows to determine the stability
of the the homogeneous configuration or of concentration solutions. The latter case corres-
ponds to an unusual convex-concave Hamiltonian, explaining saw tooth patterns which are
obtained numerically. In particular, it is possible to recover the linear stability condition for
the homogeneous configuration found in [36] in the special case of one dimension and ψ
a Dirac delta in the limit of R small, where ψ being the Dirac delta was chosen in order
to determine explicitly the instability condition. Furthermore, the present analysis actually
shows that it is possible to extend the results of [36] to other distributionsψ that have a larger
second moment with respect to the Dirac delta, that is the most unstable one, in the sense
that it prescribes a larger parameters region where there is linear instability. Moreover, the
Hamilton–Jacobi formalism allows to perform explicitly the analysis in any dimension and
the study of the positivity of the Hessian matrix of the Hamiltonian allows to state the same
stability result in any dimension.
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Both in the linear and nonlinear cases the hydrodynamics and the WKB analysis give compat-
ible eikonal equations in the suitable limit. While in the linear case concentrations have been
characterised fully in both regimes (18)–(24), in the nonlinear case only the rescaling (18)
could be considered and the location of the concentration points cannot be explicitly determ-
ined. Anyway, theWKB analysis, as a further contribution, allows to determine a concentration
profile also in the fully nonlinear case (R not small), when the analysis of the aggregate limits
is not banal and as it goes beyond the regime of the linear stability analysis. These consider-
ations suggest that the WKB analysis could be used in order to extend the results of a linear
stability analysis to other transition probabilities and in any dimension d. In fact, concerning
the dimension d, the typical and complete dimension for studying, in general, cell migration,
and specifically chemotaxis and cell-cell adhesion, in-vivo, is, of course, d= 3. However cell
migration in-vitro, is typically studied with d= 2, and, also cell-cell adhesion, specifically
when it leads to tissue formation. Nevertheless, the one-dimensional case d= 1 is interesting
and has been considered extensively in order to study aggregation phenomena in presence of
chemotaxis and cell sorting due to cell-cell adhesion when in presence of two different popula-
tions of cells, especially in nonlocal models ( see e.g. [1]). Here we have presented numerical
tests when d= 1 mainly for a matter of practicality on displaying the theoretical results.

In the context of the study of kinetic eikonal equations in the same spirit as [7], this work has
allowed to make some steps further as (i) the Markovian probability in the relaxation operator
depends on the spatial variable as it is nonlocal in the physical space, (ii) it was applied in order
to study the space dependent equilibrium in a regime in which concentrations are shown, (iii)
a regime in which the WKB and hydrodynamic limit procedure may commute was detected.
Moreover, our condition (34) for the eigenproblem is new. Not only it generalises but it also
simplifies that in [10].

Moreover, as T depends on x and on the small parameter ε, in the linear case H depends
on both x and ∇xφ, then we obtain from (29) an evolution equation for Hε, and, then, a time
dependent eigenvalue problem similar to the principal bundle for parabolic equations. Another
open problem is to determine the boundary conditions for the Hamilton–Jacobi equations.
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Appendix A. Aggregate behaviour (hydrodynamics)

A.1. Hyperbolic limit

In the regime defined by (17), we may find limiting equations for the averaged population
quantities. The single conservation law induces that the aggregate quantity is the mass and we
obtain an evolution equation for the number density ρ. Taking into account the equilibrium
T[S]ε, the formal expansion of (17) at order O(ε) is a diffusion-advection equation with a
dominating drift term and small diffusivity

∂tρε+∇x · (ρεUεS) = ε∇x · (∇x ·DεSρε+ ρεU
ε
S∇x ·UεS) , (76)

where UεS is the average of T[S]ε and DεS its variance-covariance matrix as defined by (8)
and (9). The first-order correction in (76) can be derived by determining the corrector f1 in a
Chapman-Enskog expansion of fε = f0 + εf1; the appearance of the divergence of U

ε
S is due to

the fact that T[S], and thus US is space-dependent [16, 24]. The boundary conditions can be
found by imposing (15) to fε [40] and this gains

(ρεU
ε
S − ε

(
DεS∇xρε+ ρε(∇x ·DεS +UεS∇x ·UεS)

)
·n= 0 on ∂Ω. (77)

In the asymptotic limit ε→ 0+, the dynamics is ruled by the equilibrium of (17) at order
zero in ε, that is defined by

f0 = ρT [S]0 , T [S]0 := lim
ε→0+

T [S]ε ,

in such a way that the evolution equation for ρ= ρ0 is

∂tρ+∇x ·
(
ρU0

S
)
= 0. (78)

For this conservation law, the no-flux boundary conditions that can be derived from (15) are
given by

ρU0
S (x) ·n(x) = 0, for x ∈ ∂Ω, (79)

As explained in appendix B, the latter are actually only to be imposed on the entering region,
but this can be in fact derived by the underlying kinetic boundary conditions that are imposed
on the entering zone Γ−(x).

In conclusion, both rescalings, the local macroscopic one (18) or the nonlocal microscopic
one (24), are possible and lead to the same equation (78), but the scales of the sensing radius
differ and, as a consequence, U0

S differs. For example, in the case b(S) = S, when the rescal-
ing (18) is performed (assuming S smooth), then T[S]ε(v, v̂) = c(x)ψ(v|v̂)S(x+ εRv̂), so that

T [S]0 (v, v̂) = ψ (v|v̂) 1
|Sd−1|

, U0
S =

ˆ
Sd−1

Vψ (v̂) v̂dv̂, D0
S = D2

ψI,

where Vψ(v̂),D2
ψ are defined in (6). If Vψ(v̂) is even (e.g. Vψ constant), then U0

S = 0, so that
from (76) ∂tρ0 = 0. Anyway, localisation does not imply a vanishing drift in all cases. Let us,
for example, assume a comparative sensing [34], which means that the turning rate depends
on what is measured in x+Rv̂ and x−Rv̂, i.e.

b(S (x+λv̂) ,S (x−λv̂)) = α+β
S (x−λv̂)−S (x+λv̂)

2k+S (x+λv̂)+S (x−λv̂)
.
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Then, in the fast adaptation regime β→ β
ε , we find

T [S]0 (v, v̂) =
ψ (v|v̂)
α|Sd−1|

(
α+β

R∇xS (x) · v̂
k+S (x)

)
,

which means that, even in the localised interactions regime, if T[S] is given by a comparative
sensing, the equilibrium depends on the directional derivative of the external field S along
each microscopic direction v̂. Conversely, in the regime (24) we have,

T [S]0 = T [S] , and thus, U0
S = c(x)

ˆ
Sd−1

Vψ (v̂)S (x+Rv̂) v̂dv̂,

that is in general a nonvanishing quantity at the microscopic space scale. In fact, we can remark
that even in the case Vψ(v̂) = Vψ, then

U0
S = Vψ c(x)

ˆ
Sd−1

S (x+Rv̂) v̂dv̂

is a nonvanishing quantity unless S is spatially homogeneous. Therefore, the dominating drift
term is due to the spatial heterogeneity that is sensed nonlocally.

In conclusion, equation (78), if derived as a large scale limit in the regime (18), has to be
meant as a hydrodynamic limit on amacroscopic space scale in which interactions are localised
and the (now local) equilibrium is reached fast as a longtime scale is observed. Conversely,
regime (24) implies a high frequency and small speeds regime on the microscopic space scale
and slow time scale that is the same as the one of the original kinetic equation (1). Therefore,
when derived in this regime, equation (78) describes the evolution of the average number
density on the original (microscopic) phase space.

A.2. Diffusive limit

When dealing with cell migration modeling, the diffusive rescaling is usual. In the present
framework, it corresponds to choosing in the nondimensionalisation a diffusive long time scale

t0 =
L2

V2
that actually satisfies t0 =

ε−2

µ
, in such a way that St= ε. Therefore, the rescaled

kinetic equation is in the form

∂tfε+
1
ε
v ·∇xfε =

1
ε2

(ρεT [S]ε− fε) . (80)

When we consider a nonlocal diffusive rescaling, i.e.

(t,v,x)→
( t
ε2
,εv,x

)
(81)

and T[S] depends on x and on (v, v̂), then typically US is not a vanishing quantity and the
aggregate equation for ρ is

∂tρ+∇x · (USρ) =∇x ·∇x · (ρDS) . (82)

Conversely, when we consider a localised diffusive scaling, i.e.

(t,v,x)→
( t
ε2
,v,

x
ε

)
(83)
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we can typically consider a Hilbert expansion for fε and T[S]ε, i.e.

fε = f0 + εf1 +O
(
ε2
) ˆ

V
f0dvdv̂= ρ,

ˆ
V
f1dvdv̂= 0,

and

T [S]ε = T [S]0 + εT [S]1 +O
(
ε2
)
,

ˆ
V
T [S]0 dvdv̂= 1,

ˆ
V
T [S]1 dvdv̂= 0.

Comparing equal orders of ε we get p0 = ρT[S]0 at the leading order, at the first order the
solvability condition U0

S = 0 allows to determine the first order correction p1 and integrating
the second order, one gets the macroscopic equation for ρ= ρ0

∂tρ+∇x ·
(
U1

Sρ
)
=∇x ·∇x ·

(
ρD0

S
)
, (84)

where U1
S is the first moment of T[S]1 and D0

S is the variance-covariance matrix of T[S]0
(see [34] for details). Then, supposing that

D0
S = ν2D̄0

S , (85)

when ν2 = ε, i.e. for a small diffusivity, we essentially recover (76) in the macroscopic limit.

A.3. Limit for small R

Let us define the characteristic length of variation of S and its ratio to the sensing radius as

lS :=
1

max
|∇xS|
S

, ηS :=
R
lS
. (86)

We remark that when R≪ lS , then we may consider the Taylor expansion of S at first order

S (x+Rv̂) = S (x)+Rv̂ ·∇xS (x)+O
(
R2
)
,

that is a positive quantity. Then, for example, in the case b(S) = S, we may approximate the
probability density function T[S] as

T [S] (v, v̂) = T [S]0 (v, v̂)+ T [S]1 (v, v̂) ,

T [S]0 (v, v̂) =
ψ (v|v̂)
|Sd−1|

, T [S]1 (v, v̂) =
ψ (v|v̂)
|Sd−1|

Rv̂ · ∇xS (x)
S (x)

.

Then, choosing L= lS the nondimensionalisation of (1) leads to

St∂tfε (t,x,v, v̂)+ v ·∇xfε (t,x,v, v̂) =
1
Kn

(
ρε (t,x)

ψ (v|v̂)
|Sd−1|

(
1+ ηS v̂ ·

∇xS (x)
S (x)

)
− fε (t,x,v, v̂)

)
.

With the choice
1
L
∼ ε, that amounts to (18), then we obtain ηS = Rε and equation (1)

becomes

∂tfε (t,x,v, v̂)+ v ·∇xfε (t,x,v, v̂) =
1
ε

(
ρε (t,x)

(
T [S]0 + εT [S]1

)
− fε (t,x,v, v̂)

)
.
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The leading order term is local while the role of the sensing radius enters the dynamics as a
higher order term. In this case the evolution equations for ρε correspond in the macroscopic
point of view (18) and in the high frequency (microscopic) one (24), i.e.

∂tρε = ε∆ρε. (87)

When choosing the diffusive scaling (choosing Vψ constant for simplicity) we obtain (84) with

D0
S = I and U1

S = R
∇xS
S

, that is the Keller-Segel model [27, 34].

Appendix B. Boundary conditions

In section 1.2 we have shown the boundary conditions for the hyperbolic limit (78) of the
kinetic equation (1) that are given by (79). In particular, both (78) and (79) are derived from the
kinetic equation: (78) is derived from (17) and (79) are derived from (15) that is satisfied by any
f that obeys kinetic boundary conditions in the form (13). The kinetic boundary conditions (13)
are actually imposed on the entering boundary, i.e. on Γ−(x). The derived aggregate boundary
conditions are noflux boundary conditions for the conservation law (78). Actually, we want
to verify that those boundary conditions are to be imposed on the entering zone only, i.e. for
x ∈ ∂Ω such thatU0

S(x) ·n(x)< 0 as in the outgoing region, i.e. for x ∈ ∂Ω such thatU0
S ·n> 0

they are granted by the underlying kinetic boundary conditions.
Therefore, we need to compute the averageU0

S(x) for x ∈ ∂Ω that we denote asU0
S|∂Ω

. First
of all we need to define T[S]0|∂Ω

. Working in the regime (24), we define it as

T [S]0|∂Ω
(v, v̂) = c(x)b(S (x+R(x, v̂) v̂))ψ|∂Ω (v|v̂) ,

where R(x, v̂) is defined in (10) and ψ|∂Ω(v|v̂) is to be dependent on x ∈ ∂Ω, as for v̂ ·n(x)> 0,
then we should set Vψ = 0. Therefore, we have that

T [S]0|∂Ω
(v, v̂) =


ψ|∂Ω (v|v̂)
|Sd−1|

if v̂ ·n> 0,

c(x)b(S (x+Rv̂))ψ|∂Ω (v|v̂) if v̂ ·n< 0,

as when v̂ ·n(x)> 0 then R(x, v̂) = 0, while when v̂ ·n< 0, x+Rv̂ ∈ Ω if, for example Ω is
convex.

Now, as T[S]0 is in fact the equilibrium, it must satisfy the boundary conditions (13). We
analyse the two cases α= 0 (purely Maxwellian) and α= 1 (pure reflection), any case in
between follows as a convex combination. If we consider the Maxwellian boundary condi-
tions, then we have

M(x,v, v̂) = c(x)b(S(x+R(x, v̂)v̂)ψ|∂Ω(v|v̂), v̂ ∈ Γ−(x),

and

U0
S∂Ω

=

[ˆ U

0
v

(ˆ
v̂·n<0

M(x,v, v̂) v̂dv̂+
ˆ
v̂·n>0

1
|Sd−1|

ψ (v|v̂) v̂dv̂
)
dv

]
=

ˆ U

0
v
ˆ
v̂·n<0

M(x,v, v̂) v̂dv̂dv.
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Therefore

U0
S∂Ω

·n=

ˆ U

0
v
ˆ
v̂·n<0

M(x,v, v̂) v̂ ·ndv̂dv< 0.

In conclusion the whole boundary is an entering zone and then we need to impose (77). If
α= 1, then T[S]0 must satisfy the following boundary conditions, if v̂ ∈ Γ−(x)

T [S] (v, v̂)Γ−
= T [S] (v,W (v̂)) ,

and here W(v̂) ·n> 0. Therefore T[S]|Γ− =
ψ|∂Ω(v|v̂)
|Sd−1|

. In conclusion, following the same

computations as for the case α= 0, we find U0
S = 0, i.e. the velocity vector vanishes on the

whole boundary and (77) is satisfied.
Conversely, in the regime (18), we have that if T[S]0 does not depend on v̂ (and on x) because

of the localisation, then U0
S = 0 on ∂Ω.
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