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Cosmology of Metric-Affine R + 𝜷R2 Gravity with Pure Shear
Hypermomentum

Damianos Iosifidis, Ratbay Myrzakulov, and Lucrezia Ravera*

In this paper, cosmological aspects of metric-affine f (R) gravity with
hyperfluid are studied. The equations of motion of the theory are obtained by
varying the action with respect to the metric and the independent connection.
Subsequently, considering a Friedmann-Lemaître-Robertson-Walker
background, the modified Friedmann equations in the presence of a perfect
cosmological hyperfluid is derived. Especially, a particular case in which
f (R) = R + 𝜷R2 is focused, considering purely shear hypermomentum and
finding exact solutions in the weak coupling limit.

1. Introduction

In past and recent years there has been a widely shared interest in
gravitational theories beyond general relativity, especially under
the cosmological perspective. Many alternative theories of gravity
embrace a geometrical description of spacetime and are there-
fore based on modified geometrical scenarios, in particular on
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non-Riemannian geometry (see, e.g.,
refs. [1] and [2] for a concise review).
In this context, there emerges the rather
general framework of metric-affine grav-
ity (MAG),[3–21] in which the metric and
the connection are treated, a priori, as in-
dependent objects, without any assump-
tions on the general affine connection
from the very beginning. The explicit
form of the affine connection is even-
tually obtained from the study of the
field equations derived in the first order

(i.e., Palatini) formalism. As a result, torsion and non-metricity
are typically involved in MAG. Moreover, couplings of matter
to the general affine connection are expressed by means of the
so-called hypermomentum tensor,[22–24] which describes dilation,
spin, and shear, encompassing the microstructure of matter.
Several studies on cosmological aspects have been performed,

especially in the last years, by considering the large class of MAG
theories (see, e.g., refs. [25–44]).1 Here we shall consider f (R)
gravity in the metric-affine setup. It is known that Palatini f (R)
theories with matter (where both torsion and non-metricity can
be involved, but thematter fields do not couple to the connection)
are equivalent to a Brans-Dicke theory with Brans-Dicke param-
eter 𝜔0 = −3∕2 (see refs. [45, 60, 61, 62]). On the other hand, in
metric-affine f (R) theories, where the matter part of the action
is allowed to contain couplings with the affine connection, there
appear, in general, hypermomentum contributions to the con-
nection field equations, which typically makes the study of such
theories more involved under the computational perspective and
no correspondence with Brans-Dicke theory exists under such
conditions. However, the inclusion of hypermomentum is cru-
cial to understand the interrelation between the microstructure
of matter and extended geometry.
Modified gravity theories may also include curvature-squared

corrections to the Einstein-Hilbert action. In particular, when the
curvature is large, solving the Einstein’s equations in the pres-
ence of curvature squared terms leads to an effective cosmolog-
ical constant. In this context, in 1979 it was proposed that the
early Universe went through an inflationary de Sitter era,[46,47]

originally using the semi-classical Einstein’s equations with free
matter fields. Subsequently, it was realized that inflation can be
controlled by a contribution from a squared Ricci scalar term in
the effective action,[48] that is, in other words, by considering an
f (R) gravity theory such that f (R) = R + 𝛽R2, where 𝛽 has dimen-
sion of inverse mass squared. Correspondingly, the inflationary

1 The literature on the subject is quite extended; here we reported the
works that most inspired the analysis contained in the present paper.
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scenario associated to the emerging potential is commonly re-
ferred to as Starobinsky inflation.
In the present work we extend the analysis of this cosmolog-

ical model to the metric-affine framework, in the presence of a
perfect hyperfluid (which is a classical continuous medium car-
rying hypermomentum, see, e.g., refs. [49–51]). In particular, we
start from the study of metric-affine f (R) gravity, deriving the
field equations of the theory and the modified Friedmann equa-
tions in a Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground, in the presence of a perfect cosmological hyperfluid.
Then, we focus on the specific f (R) = R + 𝛽R2 theory, which we
analyze thoroughly.
The paper is organized as follows: In Section 2 we give the ge-

ometrical and theoretical background. In Section 3 we derive the
field equations and the modified Friedmann equations of metric-
affine f (R) gravity considering a FLRW background in the pres-
ence of a perfect cosmological hyperfluid. Consequently, in Sec-
tion 4 we focus on the cosmology of the R + 𝛽R2 metric-affine
theory, obtaining exact solutions in the weak coupling limit (i.e.,
𝛽R << 1) in the case of purely shear hypermomentum. Section 5
is devoted to some final remarks.

2. Theoretical Background

Let us now start by briefly introducing the basic geometrical as-
pects along with the necessary theoretical background needed for
the rest of our analysis.

2.1. Geometric Setup

We work in the framework of non-Riemannian geometry, where
we have a metric tensor g𝜇𝜈 (we will consider four spacetime di-
mensions, that is 𝜇, 𝜈,… = 0, 1, 2, 3 and a mostly plus signature)
and a general affine connection Γ𝜆𝜇𝜈 ,2 whose generic decompo-
sition is

Γ𝜆𝜇𝜈 = Γ̃𝜆
𝜇𝜈

+ N𝜆
𝜇𝜈 , (2.1)

where

Γ̃𝜆
𝜇𝜈

= 1
2
g𝜌𝜆

(
𝜕𝜇g𝜈𝜌 + 𝜕𝜈g𝜌𝜇 − 𝜕𝜌g𝜇𝜈

)
(2.2)

is the Levi-Civita connection and the tensorN𝜆
𝜇𝜈 is given in terms

of torsion

S𝜇𝜈
𝜆 := Γ𝜆 [𝜇𝜈] , S𝜇𝜈𝛼 = N𝛼[𝜇𝜈] (2.3)

and non-metricity

Q𝜆𝜇𝜈 := −∇𝜆g𝜇𝜈 = −𝜕𝜆g𝜇𝜈 + Γ𝜌𝜇𝜆g𝜌𝜈 + Γ𝜌𝜈𝜆g𝜇𝜌 , Q𝜈𝛼𝜇 = 2N(𝛼𝜇)𝜈

(2.4)

as follows:

N𝜆
𝜇𝜈 =

1
2
g𝜌𝜆

(
Q𝜇𝜈𝜌 +Q𝜈𝜌𝜇 −Q𝜌𝜇𝜈

)
− g𝜌𝜆

(
S𝜌𝜇𝜈 + S𝜌𝜈𝜇 − S𝜇𝜈𝜌

)
.

(2.5)

2 These two objects will be considered, a priori, as independent.

We can write the following trace decomposition for the torsion
and non-metricity tensors, respectively (holding in four space-
time dimensions)[3,11]:

S𝜆𝜇
𝜈 = 2

3
𝛿[𝜇

𝜈S𝜆] +
1
6
𝜀𝜆𝜇𝜅𝜌g

𝜅𝜈 t𝜌 + Z𝜆𝜇
𝜈 ,

Q𝜆𝜇𝜈 =
5
18

Q𝜆g𝜇𝜈 −
1
9
q𝜆g𝜇𝜈 +

4
9
g𝜆(𝜈q𝜇) −

1
9
g𝜆(𝜈Q𝜇) + Ω𝜆𝜇𝜈 ,

(2.6)

where Q𝜆 := Q𝜆𝜇
𝜇 and q𝜈 := Q𝜇

𝜇𝜈 are the non-metricity vectors,
S𝜆 := S𝜆𝜎

𝜎 is the torsion vector, t𝜌 := 𝜀𝜌𝜆𝜇𝜈S𝜆𝜇𝜈 is the torsion
pseudo-vector, Z𝜆𝜇

𝜈 is the traceless part of torion, and Ω𝜆𝜇𝜈 is the
traceless part of non-metricity.
We define the curvature (Riemann) tensor as

R𝜇𝜈𝛼𝛽 := 2𝜕[𝛼Γ𝜇 |𝜈|𝛽] + 2Γ𝜇𝜌[𝛼Γ𝜌|𝜈|𝛽] = R̃𝜇
𝜈𝛼𝛽

+ 2∇̃[𝛼N
𝜇 |𝜈|𝛽]

+ 2N𝜇
𝜆|𝛼N𝜆|𝜈|𝛽] , (2.7)

where ∇̃ denotes the Levi-Civita covariant derivative and R̃𝜇
𝜈𝛼𝛽

is
the associated Riemann tensor. The Ricci tensor of Γ is R𝜈𝛽 :=
R𝜇𝜈𝜇𝛽 and the associated curvature scalar is R := R𝜇𝜈g

𝜇𝜈 .

2.2. Energy-Momentum Tensors and Hypermomentum

Let us now recall the concepts of energy-momentum and hyper-
momentum tensors, following.[52] We assume the full action to
be a functional of the metric (and its derivatives), the general
affine connection, and the matter fields (denoted by 𝜑), that is

S[g,Γ,𝜑] = SG[g,Γ] + SM[g,Γ,𝜑] , (2.8)

where the gravitational and matter part of the action can be re-
spectively written as

SG[g,Γ] =
1
2𝜅 ∫ dnx

√
−gG(g,Γ) , SM[g,Γ,𝜑]

= ∫ dnx
√
−gM(g,Γ,𝜑) , (2.9)

with 𝜅 = 8𝜋G the gravitational constant. One can then define the
metric energy-momentum tensor (MEMT),

T𝜇𝜈 := − 2√
−g

𝛿SM
𝛿g𝜇𝜈

= − 2√
−g

𝛿(
√
−gM)

𝛿g𝜇𝜈
, (2.10)

and the hypermomentum tensor,[3,22,23]

Δ𝜆
𝜇𝜈 := − 2√

−g
𝛿SM
𝛿Γ𝜆𝜇𝜈

= − 2√
−g

𝛿(
√
−gM)

𝛿Γ𝜆𝜇𝜈
. (2.11)

Working in the equivalent formalism based on the vielbein e𝜇
c

and spin connection 𝜔𝜇|ab, where a, b,… are Lorentz (i.e., tan-
gent space) indices, one may also introduce the so-called canon-
ical energy-momentum tensor (CEMT),

t𝜇 c :=
1√
−g

𝛿SM
𝛿e𝜇 c

. (2.12)
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The following relation holds[3,52]:

t𝜇𝜆 := T𝜇𝜆 −
1

2
√
−g

∇̂𝜈

(√
−gΔ𝜆

𝜇𝜈
)
, (2.13)

where

∇̂𝜈 := 2S𝜈 − ∇𝜈 , (2.14)

which implies

t = T + 1
2
√
−g
𝜕𝜈
(√

−gΔ𝜈
)
, (2.15)

with

t := t𝜇𝜇 , T := T𝜇𝜇 , Δ𝜈 := Δ𝜆
𝜆𝜈 . (2.16)

Let us conclude by saying that, in four spacetime dimensions, the
hypermomentum tensor can be decomposed as follows[53]:

Δ𝛼𝜇𝜈 = Δ̃𝛼𝜇𝜈 +
1
4
g𝛼𝜇D𝜈 + Δ̊𝛼𝜇𝜈 , (2.17)

where Δ̃𝛼𝜇𝜈 := Δ[𝛼𝜇]𝜈 is the spin part, D𝜈 := Δ𝜇
𝜇𝜈 is the dilation,

and Δ̊𝛼𝜇𝜈 := Δ(𝛼𝜇)0𝜈
the shear, that is traceless and symmetric in

the indices 𝛼,𝜇.

2.3. Non-Riemannian FLRW Cosmology

In the following we recall key cosmological aspects in the frame-
work of non-Riemannian geometry, which will be useful in the
reminder of the paper.
First of all, we will consider a homogeneous and isotropic, flat

FLRW spacetime with the usual Robertson-Walker line element

ds2 = −dt2 + a2𝛿ijdx
idxj , (2.18)

where a(t) is the scale factor of the Universe and i, j = 1, 2, 3. We
then define the projector tensor

h𝜇𝜈 := g𝜇𝜈 + u𝜇u𝜈 , (2.19)

where u𝜇 is the normalized n-velocity field of a given fluid which,
in co-moving coordinates, is expressed as u𝜇 = 𝛿

𝜇

0 = (1, 0, 0, 0),
u𝜇u

𝜇 = −1. Accordingly, we introduce the temporal derivative

̇ = u𝛼∇𝛼 . (2.20)

The above constitutes a 1 + 3 spacetime split.
In a non-Riemannian FLRW spacetime in 1 + 3 dimensions

the general affine connection can be written as ref. [52]

Γ𝜆𝜇𝜈 = Γ̃𝜆
𝜇𝜈

+ X(t)u𝜆h𝜇𝜈 + Y(t)u𝜇h
𝜆
𝜈 + Z(t)u𝜈h

𝜆
𝜇 + V(t)u𝜆u𝜇u𝜈

+ 𝜀𝜆𝜇𝜈𝜌u𝜌W(t) , (2.21)

while the torsion and non-metricity tensors can be written, re-
spectively, in the following way[52]:3

S(n)
𝜇𝜈𝛼

= 2u[𝜇h𝜈]𝛼Φ(t) + 𝜀𝜇𝜈𝛼𝜌u𝜌P(t) ,

Q𝛼𝜇𝜈 = A(t)u𝛼h𝜇𝜈 + B(t)h𝛼(𝜇u𝜈) + C(t)u𝛼u𝜇u𝜈 .
(2.22)

The functions X(t), Y(t), Z(t), V(t), W(t) in (2.21) and Φ(t), P(t),
A(t), B(t), C(t) in (2.22) describe non-Riemannian cosmologi-
cal effects.
Using the decomposition of Γ, one can then prove that

W = P , V = C
2
, Z = A

2
, Y = 2Φ + A

2
,

X = B
2
− 2Φ − A

2
. (2.23)

These are key ingredients to derive the modified Fried-
mann equations.

2.4. Perfect Cosmological Hyperfluid

The general formulation of perfect cosmological hyperfluid gen-
eralizing the classical perfect fluid notion can be found in refs.
[52, 56]. We will consider a perfect cosmological hyperfluid in a
homogeneous cosmological setting, demanding also isotropy.
The perfect hyperfluid is described in terms of the following

MEMT and CEMT tensors[52]:

T𝜇𝜈 = 𝜌u𝜇u𝜈 + ph𝜇𝜈 , (2.24)

t𝜇𝜈 = 𝜌cu𝜇u𝜈 + pch𝜇𝜈 , (2.25)

where 𝜌 and p are the usual density and pressure of the perfect
fluid component of the hyperfluid, while 𝜌c and pc are, respec-
tively, the canonical (net) density and canonical pressure of the
hyperfluid. Besides, the hypermomentum tensor associated with
the perfect hyperfluid is

Δ(n)
𝛼𝜇𝜈

= 𝜙(t)h𝜇𝛼u𝜈 + 𝜒(t)h𝜈𝛼u𝜇 + 𝜓(t)u𝛼h𝜇𝜈 + 𝜔(t)u𝛼u𝜇u𝜈

+ 𝛿n4𝜀𝛼𝜇𝜈𝜌u
𝜌𝜁 (t) . (2.26)

In general, one has the following conservation laws[52] (see also
ref. [57]:

1√
−g

∇̂𝜇

(√
−gt𝜇𝛼

)
= 1
2
Δ𝜆𝜇𝜈R𝜆𝜇𝜈𝛼 +

1
2
Q𝛼𝜇𝜈T

𝜇𝜈 + 2S𝛼𝜇𝜈 t
𝜇𝜈 ,

(2.27)

t𝜇𝜆 = T𝜇𝜆 −
1

2
√
−g

∇̂𝜈

(√
−gΔ𝜆

𝜇𝜈
)
. (2.28)

3 The fact that isotropic and homogeneous torsion has two components
was proven in ref. [54] and that non-metricity has three respectively was
shown in ref. [55].
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Observe that (2.28) coincides with (2.13). One can then use the
latter of the above equations in order to eliminate t𝜇𝜈 from the
former, yielding a variant conservation law√
−g(2∇̃𝜇T

𝜇
𝛼
− Δ𝜆𝜇𝜈R𝜆𝜇𝜈𝛼) + ∇̂𝜇∇̂𝜈(

√
−gΔ 𝜇𝜈

𝛼
)

+ 2S 𝜆
𝜇𝛼

∇̂𝜈(
√
−gΔ 𝜇𝜈

𝜆
) = 0 . (2.29)

Let us conclude by mentioning that, given the most general
form (2.26) of hypermomentum compatible with the cosmologi-
cal principle, its spin, dilation, and shear parts read, respectively,

Δ̃𝛼𝜇𝜈 = (𝜓 − 𝜒)u[𝛼h𝜇]𝜈 + 𝜖𝛼𝜇𝜈𝜌u𝜌𝜁 , (2.30)

D𝜈 := Δ𝛼𝜇𝜈g
𝛼𝜇 = (3𝜙 − 𝜔)u𝜈 , (2.31)

Δ̊𝛼𝜇𝜈 = Δ(𝛼𝜇)𝜈 −
1
4
g𝛼𝜇D𝜈 =

(𝜙 + 𝜔)
4

(
h𝛼𝜇 + 3u𝛼u𝜇

)
u𝜈

+ (𝜓 + 𝜒)u(𝜇h𝛼)𝜈 , (2.32)

in terms of the cosmological variables previously introduced.

3. Metric-Affine f (R) Gravity Theory with
Hyperfluid

Let us now consider the action

S = 1
2𝜅 ∫ d4x

√
−gf (R) + Shyp. , (3.1)

where f (R) is an arbitrary function of the scalar curvature R :=
g𝜇𝜈R𝜇𝜈(Γ), with Γ a general affine connection, and Shyp. the hy-
perfluid action. Varying this action with respect to g𝜇𝜈 we get

f ′(R)R(𝜇𝜈) −
f (R)
2

g𝜇𝜈 = 𝜅T𝜇𝜈 . (3.2)

Taking the trace of this equation we obtain

f ′(R)R − 2f (R) = 𝜅T , (3.3)
that is

f
f ′

= R
2
− 𝜅

2f ′
T , (3.4)

where f ′ = f ′(R). Plugging this expression back into (3.2), the lat-
ter becomes

R(𝜇𝜈) −
1
4
g𝜇𝜈R = 𝜅

f ′
T̊𝜇𝜈 , (3.5)

where T̊𝜇𝜈 is the traceless part of the energy-momentum tensor,
and it is defined as

T̊𝜇𝜈 := T𝜇𝜈 −
1
4
g𝜇𝜈T . (3.6)

On the other hand, varying the action with respect to the general
affine connection Γ𝜆𝜇𝜈 we get the field equations

P𝜆
𝜇𝜈 + 𝛿𝜆𝜈g𝜇𝜎

𝜕𝜎 f
′

f ′
− g𝜇𝜈

𝜕𝜆f
′

f ′
= 𝜅

f ′
Δ𝜆

𝜇𝜈 , (3.7)

where P𝜆
𝜇𝜈 is the Palatini tensor (which is traceless in the indices

𝜇, 𝜆), defined as

P𝜆
𝜇𝜈 := −

∇𝜆(
√
−gg𝜇𝜈)√
−g

+
∇𝜎(

√
−gg𝜇𝜎)𝛿𝜈

𝜆√
−g

+ 2(S𝜆g
𝜇𝜈 − S𝜇𝛿𝜈

𝜆
+ g𝜇𝜎S𝜎𝜆

𝜈) . (3.8)

Taking the different traces of (3.7), along with other manipula-
tions, the field equations of the connection yield the following
set of equations:

Δ𝜌
𝜌𝜇 = D𝜇 = 0 , (3.9)

S𝜇 = 3
4

(
𝜕𝜇 ln f

′ − q𝜇
)
+ 𝜅

8f ′
(
Δ𝜌

𝜇𝜌 + 3Δ𝜇𝜌
𝜌
)
, (3.10)

Q𝜇 = 4q𝜇 −
𝜅

f ′
(
Δ𝜌

𝜇𝜌 + Δ𝜇𝜌
𝜌
)
, (3.11)

t𝜇 = − 𝜅

2f ′
𝜀𝜇𝜈𝜌𝜎Δ𝜈𝜌𝜎 , (3.12)

together with the fact thatΩ𝜆𝜇𝜈 andZ𝜆𝜇𝜈 result to be completely
expressed in terms of the hypermomentum tensor (and f ′). No-
tice that, in particular, (3.9) means that the dilation part of the
hypermomentum tensor vanishes. The final form of the affine
connection results to be

Γ𝜆𝜇𝜈 = Γ̃𝜆
𝜇𝜈

+ 𝜅

f ′
g𝜆𝛼

2

(
Δ𝛼𝜇𝜈 − Δ𝜈𝛼𝜇 − Δ𝜇𝜈𝛼

)
+ 𝜅

f ′
g𝛼𝜆

2
g𝜈[𝜇

(
Δ𝛼] − Δ̃𝛼]

)
+ 1
2f ′

(
𝛿𝜆
𝜈
𝜕𝜇f

′ − g𝜇𝜈𝛿
𝜆f ′

)
,

(3.13)

where we have defined Δ𝛼 := Δ𝜆𝛼
𝜆 and Δ̃𝛼 := g𝜆𝜇Δ𝛼

𝜆𝜇 = Δ𝛼𝜆
𝜆,

and exploited the projective invariance (see, e.g., ref. [58]) to re-
move the contribution in q𝜈 (that is,

1
2
𝛿𝜆
𝜇
q𝜈). Of course the vanish-

ing of the dilation component is expected since the gravitational
part of the action (i.e., f (R)) is invariant under projective trans-
formations of the connection. Now, the trace equation (3.3) im-
plicitly defines the function R = R(T) which, then, implies that
f (R) = f (R(T)) = f (T).

3.1. Cosmology of Metric-Affine f (R) Gravity with Hyperfluid

With this in mind, and using the cosmological ansatz, from the
connection field equations (3.7) we easily extract the relations

A
2
+ 4Φ − C

2
= 1

F

(
𝜅𝜓 − Ḟ

)
, (3.14)

B − 3
2
A − 4Φ − C

2
= 1

F

(
𝜅𝜒 + Ḟ

)
, (3.15)

B = −2𝜅𝜙
F

, (3.16)

B = −2
3
𝜅𝜔

F
, (3.17)

P = −1
2
𝜅𝜁

F
, (3.18)
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where we have set F = f ′. Notice that, due to the vanishing of
dilation, we have

𝜔 = 3𝜙 (3.19)

and, therefore, the two expressions for B above are basically a
single relation.
Next, since we have projective invariance, we can always set

the gauge in such a way to ensure that one vectorial degree of
freedom vanishes. Picking the gauge for which q𝜇 = 0, we get the
extra relation

C = 3
2
B . (3.20)

With this we can then solve the system above for torsion and non-
metricity in terms of the sources, obtaining

B = −2𝜅𝜙
F

, (3.21)

C = −3𝜅𝜙
F

, (3.22)

P = −1
2
𝜅𝜁

F
, (3.23)

A = 𝜅

F

[
𝜙 − (𝜒 + 𝜓)

]
, (3.24)

Φ = 𝜅

4F

[
(𝜒 + 3𝜓)

2
− 2𝜙

]
− Ḟ
4F

. (3.25)

In addition, we see that the torsion function Φ contains also
derivative terms of the energy-momentum trace, as they appear
in Ḟ∕F. This means that torsion is excited even in the absence of
hypermomentum, while non-metricity vanishes. This is clearly
a consequence of the gauge choice we made. We could just as
well have made a gauge choice of zero torsion vector, which then
would imply a non-vanishing non-metricity even when the hy-
permomentum sources were switched-off.
Let us now write down the Friedmann equations for the gen-

eral metric-affine f (R) case. Firstly, we start with the acceleration
equation. Its generic form for metric-affine spaces has been ob-
tained in ref. [59] and reads

ä
a
= −1

3
R𝜇𝜈u

𝜇u𝜈 + 2
( ȧ
a

)
Φ + 2Φ̇

+
( ȧ
a

)(
A + C

2

)
+ Ȧ
2
− A2

4
− 1
4
AC − AΦ − CΦ . (3.26)

Then, contracting themetric field equations with u𝜇u𝜈 , using also
the above expressions of A, B, C, Φ, and P in terms of the hyper-
momentum sources, and recalling that the energy-momentum
tensor has the usual perfect fluid form, we finally arrive at

ä
a
= −𝜅𝜌

3F
+

f
6F

− 1
2
F̈
F
+ 1
2

(
Ḟ
F

)2

− 𝜅Ḟ
2F2

𝜓 + 𝜅

4F
(�̇� − �̇� − 2�̇�)

− 𝜅

4F
ȧ
a
(6𝜙 + 3𝜒 + 𝜓) − 1

2
Ḟ
F
ȧ
a
+ 𝜅2

8F2
[
𝜓2 − (2𝜙 + 𝜒)2

]
, (3.27)

where F and f are understood as functions of T once the trace
equation (3.3) is solved. It is also worth noting the apparent sim-
ilarity of the derivative terms for a and F.
On the other hand, to derive the (modified) first Friedmann

equation, let us notice that Equation (3.3) can be rewritten as

R = 1
f ′
(
2f + 𝜅T

)
. (3.28)

Expanding the left-hand side of the latter by using the FLRW de-
composition of the general affine connection and the fact that,
from (2.24), we have T = −𝜌 + 3p, we get

3
[
(Ẋ − Ẏ) + 3H(X − Y) + (X + Y)(Z + V) − 2XY − 2W2 + 2Ḣ

+4H2
]
= 1

F

[
2f − 𝜅(𝜌 − 3p)

]
, (3.29)

where we recall that H := ȧ
a
. The final form of the modified first

Friedmann equation is then simply obtained by using the accel-
eration equation to eliminate the term Ḣ = ä

a
−H2 from Equa-

tion (3.29) and by plugging (3.21)–(3.25) into (2.23). It reads as
follows:

H2 = − 𝜅

6F
(𝜌 − 3p) + 𝜅𝜌

3F
+

f
6F

− 1
4

(
Ḟ
F

)2

+ 𝜅Ḟ
2F2

𝜓

+ 𝜅

2F

(
�̇� + 3H𝜙

)
+H

(
𝜅

4F
𝜓 − Ḟ

F

)

+ 𝜅2

8F2

[1
2
𝜒2 + 2𝜒𝜙 + 2𝜙2 + 𝜒𝜓 − 2𝜙𝜓 − 3

2
𝜓2 − 4𝜁2

]
,

(3.30)

where, as we will discuss below, the expression of �̇� is then given
by a conservation law of the perfect cosmological hyperfluid. No-
tice that (3.30) can also be rewritten as(
H + 1

2
Ḟ
F

)2

= − 𝜅

6F
(𝜌 − 3p) + 𝜅𝜌

3F
+

f
6F

+ 𝜅Ḟ
2F2

𝜓

+ 𝜅

2F

(
�̇� + 3H𝜙

)
+H 𝜅

4F
𝜓 + 𝜅2

8F2

×
[1
2
𝜒2+2𝜒𝜙+2𝜙2+𝜒𝜓 − 2𝜙𝜓 − 3

2
𝜓2 − 4𝜁2

]
,

(3.31)

with a perfect square on the left-hand side. It is worth stressing
out that the double derivative terms F̈ have canceled out and are
absent from the 1st Friedmann equation.
The above were derived for T ≠ 0. For conformally invariant

matter (i.e., T = 0) on-shell the trace equation (3.3) would have a
number of solutions R = R0 = constant and subsequently f (R) =

Fortschr. Phys. 2024, 72, 2300003 2300003 (5 of 11) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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f (R0) = f0 = constant as well as F(R) = F(R0) = F0 = constant. In
this instance the Friedmann equations become

H2 = 𝜅𝜌

3F0
+

f0
6F0

+ 𝜅

2F0
(�̇� + 3H𝜙) + 𝜅

4F0
H𝜓

+ 𝜅2

16F20

(
(𝜒 + 2𝜙)2 + 2𝜒𝜓 − 4𝜙𝜓 − 3𝜓2 − 8𝜁2

)
(3.32)

and

ä
a
= − 𝜅𝜌

3F0
+

f0
6F0

+ 𝜅

4F0
(�̇� − �̇� − 2�̇�)

− 𝜅

4F0

ȧ
a
(6𝜙 + 3𝜒 + 𝜓) + 𝜅2

8F20

[
𝜓2 − (𝜒 + 2𝜙)2

]
. (3.33)

It is worth stressing out that in this case there are no coupling
terms between the hypermomentum current and the perfect
fluid contributions. In addition, themodifications comenow only
from hypermomentum compared to the classical case. Further-
more, if there exists the R = 0 solution and given that f (R) is an-
alytic on an open disk around R = 0, namely the Taylor series4

f (R) =
∞∑
n=1

CnR
n (3.34)

exists and converges for all R in this disk, then on-shell

f0 = f (0) = 0 , F0 = F(0) = 1 , (3.35)

where the value C1 = 1 has been assumed to guarantee the
proper general relativity limit. Under such circumstances we get
further simplifications and the above Friedmann equations be-
come

H2 = 𝜅𝜌

3
+ 𝜅

2
(�̇� + 3H𝜙) + 𝜅

4
H𝜓

+𝜅
2

16

(
(𝜒 + 2𝜙)2 + 2𝜒𝜓 − 4𝜙𝜓 − 3𝜓2 − 8𝜁2

)
(3.36)

and

ä
a
= −𝜅𝜌

3
+ 𝜅

4
(�̇� − �̇� − 2�̇�) − 𝜅

4
ȧ
a
(6𝜙 + 3𝜒 + 𝜓)

+ 𝜅2

8

[
𝜓2 − (𝜒 + 2𝜙)2

]
. (3.37)

We shall now proceed with an in-depth analysis of the particular
case in which f (R) = R + 𝛽R2.

4. Special Case f (R) = R + 𝜷R2

Let us now consider the special case in which

f (R) = R + 𝛽R2 , (4.1)

4 Note that here we are considering the sum starting from n = 1, namely
we do not include the constant term C0 since this would correspond
to a cosmological constant. Of course this inclusion is by all means
possible but outside of the scope of the current study.

where 𝛽 is a constant parameter with dimensions of inversemass
squared (or, equivalently, squared length). We have

f ′(R) = 1 + 2𝛽R , (4.2)

and the trace of the metric field equations (3.2) yield

R = −𝜅T . (4.3)

Expanding the left-hand side of the latter by exploiting the FLRW
decomposition of the general affine connection and also recall-
ing, from (2.24), that T = −𝜌 + 3p, we find

3
[
(Ẋ − Ẏ) + 3H(X − Y) + (X + Y)(Z + V) − 2XY − 2W2 + 2Ḣ

+4H2
]
= 𝜅(𝜌 − 3p) . (4.4)

Furthermore, we know that the acceleration (also known as Ray-
chaudhuri) equation for non-Riemannian geometries in its gen-
eral form is (3.26). Then, contracting the metric field equa-
tions with u𝜇u𝜈 , we find

R𝜇𝜈u
𝜇u𝜈 = 𝜅

f ′

(
T𝜇𝜈u

𝜇u𝜈 + T
4

)
+ 𝜅T

4
. (4.5)

The above if fairly general.
Given that the energy-momentum tensor has the usual perfect

fluid form, we get

R𝜇𝜈u
𝜇u𝜈 = 𝜅

4

[
3

(1 − 2𝛽𝜅T)
(𝜌 + p) + (−𝜌 + 3p)

]
(4.6)

and, substituting the latter into the above acceleration equation,
it follows that

ä
a
= − 𝜅

12

[
3

(1 − 2𝛽𝜅T)
(𝜌 + p) + (−𝜌 + 3p)

]

+ 2
( ȧ
a

)
Φ + 2Φ̇ +

( ȧ
a

)(
A + C

2

)
+ Ȧ
2
− A2

4
− 1
4
AC

− AΦ − CΦ . (4.7)

In the above, the terms on the first line of the right-hand side
represent the effect of the energy-momentumpart to the accelera-
tion. Of course we see that for 𝛽 = 0 we get the usual contribution
−𝜅∕[6(𝜌 + 3p)], which always decelerates the expansion. Here,
however, we see that this part could just as well speed up the ex-
pansion as long as 1 − 2𝛽𝜅T < 0 and −𝜌 + 3p < 0. The terms on
the second line of the above acceleration equation are the contri-
butions of the hypermomentum part of the hyperfluid. This can
be seen in a clearer way by employing the relations (3.21)–(3.25).
Now, using the acceleration equation, we may eliminate the

term Ḣ = ä
a
−H2 from the trace equation (4.4) and derive the

modified first Friedmann equation, which reads

H2 = 𝜅

6
(𝜌 − 3p)

− 1
2

[
(Ẋ−Ẏ) + 3H(X − Y) + (X + Y)(Z + V) − 2XY − 2W2

]
Fortschr. Phys. 2024, 72, 2300003 2300003 (6 of 11) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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+ 𝜅

12

[
3

(1 − 2𝛽𝜅T)
(𝜌 + p) + (−𝜌 + 3p)

]

− 2
( ȧ
a

)
Φ − 2Φ̇ −

( ȧ
a

)(
A + C

2

)
− Ȧ
2
+ A2

4
+ 1
4
AC

+ AΦ + CΦ. (4.8)

In order to better understand the cosmological aspects of the
model, let us nowmake the following assumptions on the hyper-
momentum variables (recall that we have already derived 𝜔 = 3𝜙
and the vanishing of the dilation hypermomentum):

𝜙 ≠ 0 , 𝜓 = 𝜒 = 𝜁 = 0 , (4.9)

that is we are considering

Δ𝛼𝜇𝜈 = 𝜙
(
h𝜇𝛼u𝜈 + 3u𝛼u𝜇u𝜈

)
. (4.10)

Therefore, we are left with

A = 𝜅𝜙

F
, B = −2𝜅𝜙

F
, C = −3𝜅𝜙

F
, Φ = −𝜅𝜙

2F
− Ḟ
4F

,

P = 0 . (4.11)

Moreover, from (2.23) we have

W = 0 , V = −3
2
𝜅𝜙

F
, Z = 𝜅𝜙

2F
, Y = −𝜅𝜙

2F
− Ḟ
2F

,

X = −𝜅𝜙
2F

+ Ḟ
2F

. (4.12)

Besides, let us consider a hypermomentum preserving hyper-
fluid, that is

𝜌c = 𝜌 , pc = p . (4.13)

The latter imply that the canonical and the metric energy-
momentum tensor coincide, namely

t𝜇𝜈 = T𝜇𝜈 = 𝜌u𝜇u𝜈 + ph𝜇𝜈 , t = T = −𝜌 + 3p . (4.14)

Under this assumption, the conservation laws of the cosmologi-
cal hyperfluid become

∇̂𝜈

(√
−gΔ𝜆

𝜇𝜈
)
= 0 , (4.15)

∇̃𝜇T
𝜇
𝛼 =

1
2
Δ𝜆𝜇𝜈R𝜆𝜇𝜈𝛼 . (4.16)

Additionally, we assume that the perfect fluid variables are related
through a barotropic equation of state of the usual type, namely

p = w𝜌 , (4.17)

where w is a barotropic index. Consequently, one can prove that
the conservation laws above, once considered in the FLRW setup,
yield

�̇� + 3H(1 + w)𝜌 = 0 , (4.18)

�̇� + 3H𝜙 = 0 , (4.19)

which describe the evolution of 𝜌 and 𝜙, respectively. Equa-
tion (4.19) can be immediately integrated to get

𝜙 = 𝜙0

(a0
a

)3
, (4.20)

where we have considered that for some fixed time t = t0 we have
a(t0) = a0 and 𝜙(t0) = 𝜙0.
We will now proceed by focusing on the weak coupling limit|𝛽𝜅T| << 1.

4.1. The Weak Coupling Limit |𝜷𝜿T| << 1

It is interesting to study what happens when the quantity |𝛽𝜅T|
is small compared to the unit. In this case, we can ignore terms
that are of quadratic and higher order in |𝛽𝜅T|. We will consider
matter components that are different from radiation (i.e., T ≠ 0).
In the weak coupling limit, with the previously introduced as-

sumptions, the modified first Friedmann equation becomes

H2 = 𝜅𝜌

3
+

(1 + w)
2(−1 + 3w)

𝛽𝜅2T2 − 1
2
(Ẋ + Ẏ)

− 1
2
H(3X − Y + 2Z + 2V) − 1

2
(X − Y)(Z + V) + XY,

(4.21)

that is, using the relations in (4.12) in order to express the right-
hand side entirely in terms of the sources,

H2 = 𝜅𝜌

3
+ 1
2
𝛽𝜅2(1 + w)(−1 + 3w)𝜌2 −HḞ

F
− 1
4

(
Ḟ
F

)2

+ 1
4

(
𝜅𝜙

F

)2

+ 𝜅

2F

(
�̇� + 3H𝜙

)
. (4.22)

Note that, remarkably, the terms containing the double deriva-
tive of F have cancelled out and only first order derivatives (of
all quantities) appear. Furthermore, using the conservation law
(4.19) to eliminate �̇� in (4.22), we get

H2 = 𝜅𝜌

3
+ 1
2
𝛽𝜅2(1 + w)(−1 + 3w)𝜌2 −HḞ

F
− 1
4

(
Ḟ
F

)2

+ 1
4

(
𝜅𝜙

F

)2

. (4.23)

Finally, by moving the third and fourth terms of the right-hand
side to the left, we observe the formation of a perfect square and
we are left with(
H + 1

2
Ḟ
F

)2

= 𝜅𝜌

3
+ 1
2
𝛽𝜅2(1 + w)(−1 + 3w)𝜌2 + 1

4

(
𝜅𝜙

F

)2

.

(4.24)

We will now look for exact solutions of this cosmological model.
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4.1.1. Exact Solutions

To first order in 𝛽𝜅T we have

Ḟ
2F

≈ −𝛽𝜅Ṫ . (4.25)

If we assume p and 𝜌 to be related by Equation (4.17), we have
Ṫ = −3H(1 + w)T and the left-hand side of (4.24) boils down to(
H + 1

2
Ḟ
F

)2

≈ H2[1 + 3𝛽𝜅T(1 + w)]2 ≈ H2
(
1 + 6𝛽𝜅(1 + w)T

)
.

(4.26)

Thus, to first order in 𝛽𝜅T we get

H2 = 𝜅𝜌

3
+ 3
2
𝛽𝜅2𝜌2(1 + w)(1 − 3w) + 𝜅2𝜙2

4

+ 1
2
𝛽𝜅3𝜌𝜙2(1 − 9w2) . (4.27)

Note the interesting coupling between 𝜌 and 𝜙2 appearing on the
right-hand side of the above modified Friedmann equation. This
term ties together the classical perfect fluid contribution with
that of the fluid microstructure (i.e., hypermomentum). Besides,
from Equation (4.18) we have

𝜌 =
c0

a(t)3(1+w)
(4.28)

and, using also Equation (4.20), the above Friedmann equa-
tion can be rewritten as

H2 =
𝛾21

a3(1+w)
+ 𝛽(1 − 3w)

𝛾22

a6(1+w)
+
𝛾23

a6
+ 𝛽(1 − 9w2)

𝛾24

a3(3+w)
,

(4.29)

where

𝛾21 :=
𝜅c0
3

, 𝛾22 :=
3
2
𝜅2c20(1 + w) , 𝛾23 :=

𝜅2

4
𝜙20a

6
0 ,

𝛾24 :=
1
2
𝜅3c0𝜙

2
0a

6
0 . (4.30)

Now, on the logical assumption that w ∈ (−1, 1), for early times
the last term on the right-hand side of the latter is dominant over
every other term in the same equation and we may approximate

H2 ≈ 𝛽(1 − 9w2)
𝛾24

a3(3+w)
. (4.31)

This is then integrated straightforwardly to give

a(t) =
[
3(3 + w)

2
𝛾4

√
𝛽(1 − 9w2)t + C

] 2
3(3+w)

(4.32)

for 𝛽(1 − 9w2) > 0, while for 𝛽(1 − 9w2) < 0 there is no real solu-
tion.

Wemay now distinguish three particular cases, which differ in
the value of w: w = 0, w = 1∕3, and w = −1.5
Case w = 0: This is the case of a dust (i.e., non-relativistic

pressureless matter) dominated Universe, that is

p = 0 , w = 0 . (4.33)

Here we have that Ṫ = −3HT and, upon using the above, the left-
hand side of (4.24) becomes

(
H + 1

2
Ḟ
F

)2

= H2(1 + 3𝛽𝜅T)2 . (4.34)

Thus, to first order in 𝛽𝜅T we find

H2 = 𝜅𝜌

3
+ 3
2
𝛽𝜅2𝜌2 + 𝜅2𝜙2

4
+ 1
2
𝛽𝜅3𝜌𝜙2 . (4.35)

One may then consider the early stages of the Universe, that
is early times, in which a is relatively small. In this case, taking
into account (4.20) and the fact that from (4.18) we have

𝜌 =
c0
a(t)3

, (4.36)

with c0 constant, the term along 𝜌𝜙2 on the right-hand side of
(4.35), which goes as 1∕a9, is dominant with respect to the others,
which, in turn, can be neglected. Thus, we are left with

H2 = 1
2
𝛽𝜅3𝜌𝜙2 . (4.37)

Solving the latter forH we find

H = ±𝜅
3∕2𝛽1∕2√

2
𝜌1∕2𝜙 (4.38)

and, plugging (4.20) for 𝜙 and (4.36) for 𝜌 into this last equation,
which yields

H =
𝛽1𝜙0a

3
0

a9∕2
, 𝛽1 := ±

𝜅3∕2(𝛽c0)
1∕2√

2
(4.39)

after integration we obtain

a(t) = 34∕9

22∕9
[
𝛽1𝜙0a

3
0(t − t0) + c1

]2∕9
, (4.40)

where c1 is a constant.
On the other hand, for late times, a >> 1 and the contribution

1∕a9 can be ignored compared to the ones that go with 1∕a3 and
1∕a6. In this case, we are left with

H2 = 𝜅𝜌

3
+ 3
2
𝛽𝜅2𝜌2 + 𝜅2𝜙2

4
, (4.41)

5 In the following we will directly select only real solutions.
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which can be solved forH, yielding

H = ±
√
𝜅

2
√
3

(
3𝜅𝜙2 + 4𝜌 + 18𝛽𝜅𝜌2

)1∕2
. (4.42)

Using (4.20) and (4.36) in this last equation, that is considering

H = ±
√
𝜅

2
√
3

[
(18𝛽c20𝜅 + 3a60𝜅𝜙

2
0)

a6
+ 4

c0
a3

]1∕2

, (4.43)

after integration we get

a(t) = 1
22∕3

[
3

(
−6𝛽c0𝜅 −

a60𝜅𝜙
2
0

c0

+
(√

c0𝜅(t − t0) ± 2
√
3
√
c0c2

)2)]1∕3

= 1
22∕3

[
3

(
−6𝛽c0𝜅 −

a60𝜅𝜙
2
0

c0
+ c0𝜅(t − t0)

2

±4
√
3c0

√
𝜅(t − t0)c2 + 12c0c

2
2

)]1∕3
,

(4.44)

with c2 constant.
Finally, in the case in which the perfect fluid characteristic 𝜌 is

dominating with respect to shear hypermomentum, one might
ignore all 𝜙 contributions. In this case, we have

H2 =
𝜅c0
3a3

+ 3
2
𝛽𝜅2

c20
a6
. (4.45)

Solving the latter equation, we get

a(t) = 1
22∕3

[
3
(
−6𝛽c0𝜅 +

(√
c0𝜅(t − t0) ±

√
6c2

)2)]1∕3
= 1
22∕3

[
3
(
−6𝛽c0𝜅 + c0𝜅(t − t0)

2

±2
√
6c0𝜅(t − t0)c2 + 6c22

)]1∕3
,

(4.46)

where c2 is a constant.
Note that, in all the sub-cases in which w = 0 discussed above,

we have non-trivial contributions to a(t) depending on the cou-
pling constant 𝛽, as expected of course.
Case w = 1∕3: This case should be considered separately

since now we have that T = 0, which means also that f = 0,
F = 1, and Ḟ = F̈ = 0. In addition, now

𝜌 =
c0
a(t)4

. (4.47)

and the acceleration equation takes the form (using also the evo-
lution equation of 𝜙)

ä
a
= −𝜅𝜌

3
− 𝜅2𝜙2

2
. (4.48)

In addition, we immediately see that Equation (4.27) boils down
to

H2 = 𝜅𝜌

3
+ 𝜅2𝜙2

4
, (4.49)

that is, in the case at hand,

H2 =
𝜅c0
3a4

+
𝜅2𝜙20a

6
0

4a6
. (4.50)

Observe that there is no term along the coupling constant 𝛽,
meaning that the cosmology in this case is not affected by the
𝛽R2 term in the action. However, we still have a non-trivial hy-
permomentum contribution.
Then, if we consider early times, the second term on the right-

hand side of the above equation is dominant with respect to the
first one and we are left with

H2 =
𝜅2𝜙20a

6
0

4a6
, (4.51)

which is solved by

a(t) = ±
√
3
[
𝜅a30𝜙0(t − t0) + c3

]1∕3
, (4.52)

where c3 is an integration constant. This is also the case of a shear-
dominated Universe (recall that, here, the purely dilation part
of hypermomentum vanishes), as the 𝜙 contribution to (4.50) is
dominant with respect to the one of 𝜌.
On the other hand, for late times the 𝜌 contribution is domi-

nant with respect to the one by 𝜙 and we get

H2 =
𝜅c0
3a4

, (4.53)

which yields

a(t) ∝ t1∕2 . (4.54)

Thus, in this case the usual result of general relativity for a
radiation-dominated Universe is recovered.
It is also possible to find exact parametric solutions to Equa-

tion (4.50). Indeed, introducing a parameter 𝜃 > 0, through

a(𝜃) =
√
𝛾1

𝛾2
sinh 𝜃 (4.55)

we can then integrate (4.50) trivially, to find

t(𝜃) = −
𝛾22

2𝛾31

(
𝜃 − 1

2
sinh 2𝜃

)
+ C , (4.56)

where we have abbreviated 𝛾21 = 𝜅c0∕3 and 𝛾22 = 𝜅2𝜙20a
6
0∕4 and

the sign in (4.56) is chosen appropriately to ensure that we are
in the branch t > 0. The latter two equations describe parametri-
cally the evolution of the scale factor and, as expected, for early
and late times reproduce the solutions (4.52) and (4.54), respec-
tively.

Fortschr. Phys. 2024, 72, 2300003 2300003 (9 of 11) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300003 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Case w = −1: We are in the presence of cosmic inflation with

𝜌 = c0 = constant . (4.57)

Then, Equation (4.27) yields

H2 =
𝜅c0
3

+
𝜅2(1 − 16𝛽𝜅c0)

4
𝜙2 . (4.58)

Using (4.20) and integrating, in the case at hand we get

a(t) = 1
(2c0𝜅)1∕3

[
e
√
c0𝜅

(
±
√
3(t−t0)+3c4

)

−3
4
𝜅2a60c0(1 − 16𝛽𝜅c0)e

√
c0𝜅

(
∓
√
3(t−t0)−3c4

)
𝜅𝜙20

]1∕3
, (4.59)

with c4 an integration constant. Here we have a non-trivial con-
tribution to a(t) depending on the coupling constant 𝛽.

5. Conclusions

In this work we have analyzed the cosmological aspects ofmetric-
affine f (R) gravity with hyperfluid.We have first derived the equa-
tions of motion of the theory by varying the action with respect to
the metric and the independent connection. Then, considering
a FLRW background, we have derived the modified Friedmann
equations of the model in the presence of a perfect cosmologi-
cal hyperfluid. Consequently, we have studied the f (R) = R + 𝛽R2

case, considering purely shear hypermomentum. By analyzing
the weak coupling limit in the case of hypermomentum preserv-
ing hyperfluid (pc = p, 𝜌c = 0), we have found exact solutions.
More specifically, we have obtained a general solution for the

case in which the usual barotropic equation p = w𝜌 holds for the
fluid, finding that the evolution of the scale factor a(t) depends
on the value of the barotropic parameter w (and of the coupling
constant 𝛽). Hence, we have then focused on the particular cases
w = 0 (dust), w = 1∕3 (radiation), and w = −1 (cosmic inflation
with 𝜌 constant), always considering first order in 𝛽𝜅T , where T
is the trace of the energy-momentum tensor. Exact solutions for
the casesw = 0 andw = 1∕3 have been obtained for early and late
times, taking into account the respective dominating terms in the
modified first Friedmann equation. In particular, in the w = 1∕3
case, we have T = 0 (conformally invariant matter), which can be
interpreted as yielding f = 0, f ′ = F = 1, and Ḟ = F̈ = 0. We have
found that, in this case, the cosmology is not affected by the 𝛽R2

term in the action. However, for early times the evolution of the
scale factor is driven by the non-trivial shear hypermomentum
variable 𝜙, while for late times the usual result of general relativ-
ity for a radiation-dominated Universe is recovered. For w = 1∕3
we have also provided an exact parametric solution, which, con-
sidered at early and late times, reproduces the respective early
and late times solutions. On the other hand, in both the w = 0
and the w = −1 cases we have contributions to a(t) depending
on the coupling constant 𝛽. Let us finally remark that, regarding
the general solution depending on 𝛽 and w, we have found that
𝛽(1 − 9w2) > 0 is required in order to have real solution, while for
𝛽(1 − 9w2) < 0 there is no real solution.

A future investigation may be devoted to the full cosmological
analysis of f (R) models involving higher powers of R, including
the derivation of exact solutions. Moreover, it would be interest-
ing to study the possible effects induced by the presence of spin
hypermomentum, which is typically associated with spacetime
torsion and couplings with fermions.
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