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1 Introduction

The kinematical or space-time symmetry algebras play an important role in the construction
of physical theories. Based on reasonable general assumptions, Bacry and Lévy-Leblond
(1968) presented a classification of all kinematical algebras that establish connections between
distinct inertial frames of reference [1]. The Lie kinematical generators are interpreted as time
translations, space translations, rotations and boosts. The kinematical Lie algebras contain,
in addition to the relativistic AdS and Poincaré algebras, non-Lorentzian algebras which
have received a renewed interest due to their diverse physical applications. In particular,
non-relativistic algebras manifest within holography [2–13], Hořava-Lifshitz gravity [14–
19], effective field theory description of the quantum Hall effect [20–24], among others.
Conversely, the ultra-relativistic symmetries have garnered contemporary attention due
to their applications in tachyon condensation [25], warped conformal field theories [26],
tensionless strings [27–31], holography in asymptotically flat space-times [32–41], asymptotic
symmetries [42–44] and in the context of black hole solutions [45–51].

On the other hand, the three-dimensional Chern-Simons (CS) gravity formalism provides
a fertile testing ground for studying different aspects of higher-dimensional gravitational
models as well their black hole solutions along with their thermodynamics [52]. In particular,
Einstein-Hilbert action with or without cosmological constant can be written as a CS action
considering the kinematical Lie algebras so (2, 2) or the iso (2, 1) [53–55]. The asymptotic
symmetries of such models, appearing after imposing suitable boundary conditions [56], result
to be described by the conformal or the bms3 algebra [57–59]. The asymptotic analysis of
three-dimensional CS gravity theories showcases one of the most highly investigated examples
of the well-celebrated AdS/CFT duality [60–62].

One may then ask if a three-dimensional CS action can be constructed for all the
kinematical Lie algebra of Bacry and Lévy-Leblond [1]. An answer to such question was
presented in [63] by considering that not all kinematical Lie algebras allow to obtain a
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well-defined CS action due to the degeneracy appearing in the non-relativistic regime. The
question about which Lie algebra admits a non-degenerate invariant tensor is not new and
diverse strategies have been adopted to overcome such difficulty. In the non-relativistic
context, two central charges have to be added to the Newton-Hooke and Galilei algebra
to construct a proper CS action in three spacetime dimensions. The new symmetries are
known as extended Newton-Hooke [64–70] and extended Bargmann [71, 72], the latter being
a central extension of the Bargmann algebra. Such algebras can be alternatively be obtained
as a contraction of the so (2, 2) ⊕ u (1)2 and the iso (2, 1) ⊕ u (1)2, respectively. Hence, the
original cube of [1] is extended to a tesseract starting from AdS with two trivial central
charges whose non-relativistic limit admits now a non-degenerate bilinear form [63].

Given the recent applications of the kinematical algebras and the advantages of the three-
dimensional CS gravity formalism, there are at least two questions that one could explore.
First, one may ask if it is possible to extend the cube of Bacry and Lévy-leblond to kinematical
superalgebras analogously to the spin-3 generalization presented in [73]. Secondly, one may ask
whether kinematical superalgebras can be used to construct three-dimensional CS supergravity
actions. Although supersymmetric extensions of different kinematical algebras are known in
the literature [72, 74–85], it is not trivial to obtain them as sequential contraction of a relativis-
tic AdS superalgebra. Moreover, the question whether they can be used to construct a well-
defined CS supergravity is conditioned to a non-degenerate bilinear trace. On the other hand,
the extension to supersymmetry of the tesseract presented in [63] cannot be trivially applied.

In this work, motivated by our questions, we present an alternative approach to solve the
degeneracy problem appearing in the original cube of [1]. Here, we only focus on the bosonic
case hoping that the method employed and the results will be useful to answer our two original
questions in a future work. Given that the non-degeneracy requires to consider extended non-
relativistic kinematical algebras, they cannot be obtained as contractions of the original so (2, 2)
algebra. It is well known that the contraction process maintains the dimension of the Lie
algebra. Then, an expansion procedure [86–89] is required to get higher-dimensional algebras.
In particular, we shall use the so-called semigroup expansion (S-expansion) method [88] given
its recent applications in the non-Lorentzian regime [90–97]. Hence, we extend the cube
of [1] to extended kinematical algebras which can be obtained as sequential expansions of
the AdS algebra considering a particular semigroup and resonant conditions. Remarkably,
unlike [63], the method employed here does not require central extensions of the original
relativistic algebras to avoid degeneracy in the non-relativistic counterpart. Such a feature
would be useful for generalizing our results in the presence of supersymmetry.

Then, we generalize our result to new cubes with generalized kinematical algebras which
contain, as particular sub-cases, the Newtonian symmetry algebras, post-Newtonian extensions
along with their ultra-relativistic versions. Finally, we construct the three-dimensional CS
gravity actions based on the extended kinematical algebras equipped with non-degenerate
invariant bilinear form. To this end, the S-expansion procedure provides us with the expanded
invariant tensor required to construct CS actions in terms of the original ones, which is
an additional motivation for considering this method. In this direction, it is important to
emphasize that the S-expansion procedure does not guarantee the non-degeneracy of the
expanded invariant tensor. For an arbitrary semigroup, the non-degeneracy of the invariant
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trace for a given expanded (super)algebra requires to be checked case-by-case. Nonetheless,
the semigroups considered here to obtain the corresponding non-relativistic regime of the
kinematical algebras along with the corresponding resonant conditions allow us to elucidate
which generalized kinematical algebras admit a non-degenerate invariant tensor.

The paper is organized as follows. In section 2 we present a brief review of the kinematical
algebras introduced in [1]. Sections 3 and 4 contain our main results. Section 3 is devoted
to the generalization of the kinematical algebras by considering the semigroup expansion
method. We first present extended kinematical Lie algebra characterized by a non-degenerate
invariant tensor. In section 4 we present the construction of the CS gravity actions based
on the extended kinematical algebras. We conclude our work with some comments about
future developments in section 5.

2 Kinematical algebras

In this section we briefly review the kinematical Lie algebras defined in three spacetime
dimensions following the cube introduced by Bacry and Lévy-Leblond in [1]. Starting
from the so (2, 2) Lie algebra, one can derive different Lie algebras by applying successive
Inönü-Wigner contractions which can be seen as particular limits leading to diverse physical
regimes (see figure 1).

The well-known Poincaré algebra, given by the iso (2, 1) Lie algebra, appears as a van-
ishing cosmological constant limit ℓ → 0 where the AdS radius ℓ parameter is related to the
cosmological constant through Λ = − 1

ℓ2 . Two inequivalent limits can be applied on the speed
of light c. On one hand, the non-relativistic limit c → ∞ of the relativistic AdS algebra defined
in three spacetime dimensions reproduces the Newton-Hooke algebra, which in turn leads to
the Galilean symmetry in the flat limit ℓ → ∞. On the other hand, the so-called para-Poincaré
symmetry1 appears as an ultra-relativistic limit c → 0 of the so (2, 2) Lie algebra. In the
vanishing cosmological constant limit ℓ → ∞, the ultra-relativistic limit c → 0 of the Poincaré
algebra reproduces the Carroll one. Interestingly, we obtain the so-called static algebra apply-
ing three successive contractions from the AdS Lie algebra. In summary, there are four differ-
ent contraction processes starting from the so (2, 2) which have been denoted as space-time
(ℓ → ∞), speed-space (c → ∞), speed-time (c → 0) and general contraction. In particular,
the general contraction can be seen as a sequential of the other three contractions [1].

In order to visualize the diverse contractions, let us start with the so (2, 2) algebra whose
commutation relations are given by[

ĴA, ĴB

]
= ϵABC ĴC ,

[
ĴA, P̂B

]
= ϵABC P̂ C ,

[
P̂A, P̂B

]
= ϵABC ĴC . (2.1)

Here, ĴA corresponds to the Lorentz generators and P̂A are the spacetime translations. Let
us note that the AdS algebra can be written, in three spacetime dimensions, as two copies
of the so (2, 1) or sl (2,R) algebra. Before applying the diverse limits, it is convenient to
decompose the relativistic Lorentz indices A = 0, 1, 2 by considering a time-space splitting

1Also called AdS-Carroll. Let us note that the de Sitter Carroll algebra, also denoted as the Lie algebra of
the inhomogeneous SO (4) group, is obtained when we consider the ultra-relativistic limit to so (3, 1) rather
than so (2, 2).
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Figure 1. This cube summarizes the different limits starting from the AdS Lie algebra.

Generators Space-time Speed-space Speed-time General
J J J J J

Ga Ga c Ga τ Ga cτ Ga

H ℓ H H τ H ℓτ H

Pa ℓ Pa c Pa Pa ℓc Pa

Table 1. Rescaling of the generators for different contractions. Here τ = 1/c reproduces the ultra-
relativistic limit when τ → ∞.

such that A = {0, a} with a = 1, 2. Then, the AdS algebra is spanned by the set of generators
{J, Ga, H, Pa} where we have relabeled the AdS generators as follow

J = Ĵ0 , Ga = Ĵa , H = P̂0 , Pa = P̂a . (2.2)

The rescaling of the relativistic AdS generators has to be considered as in table 1 in order
to reproduce the different contractions. Then, the contracted algebra is obtained after
performing the limit of the rescaling parameter going to infinity.

The explicit commutation relations of the kinematical Lie algebras that can be obtained
via sequential contraction procedures are listed in tables 2 and 3. We have intentionally
separated our results in two tables in order to manifest which algebras are good algebras
to construct three-dimensional CS actions. Indeed, the kinematical algebras of table 2
admit a non-degenerate bilinear invariant trace allowing to construct well-defined CS actions.
The non-degeneracy of the action ensures a kinetic term for each gauge field and the field
equations are given by the vanishing of the curvatures.
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Commutators AdS Poincaré Para-Poincaré Carroll
[J, Ga] ϵabGb ϵabGb ϵabGb ϵabGb

[J, Pa] ϵabPb ϵabPb ϵabPb ϵabPb

[Ga, Gb] −ϵabJ −ϵabJ 0 0
[H, Ga] ϵabPb ϵabPb 0 0
[Ga, Pb] −ϵabH −ϵabH −ϵabH −ϵabH

[H, Pa] ϵabGb 0 ϵabGb 0
[Pa, Pb] −ϵabJ 0 −ϵabJ 0

Table 2. Commutation relations of the AdS, Poincaré, Para-Poincaré and Carroll algebra.

Commutators Newton-Hooke Galilei Para-Galilei Static
[J, Ga] ϵabGb ϵabGb ϵabGb ϵabGb

[J, Pa] ϵabPb ϵabPb ϵabPb ϵabPb

[Ga, Gb] 0 0 0 0
[H, Ga] ϵabPb ϵabPb 0 0
[Ga, Pb] 0 0 0 0
[H, Pa] ϵabGb 0 ϵabGb 0
[Pa, Pb] 0 0 0 0

Table 3. Commutation relations of the Newton-Hooke, Galilei, Para-Galilei and Static algebra.

On the other hand, the kinematical algebras listed in table 3, which are obtained through a
speed-space contraction, suffer from degeneracy. Different strategies have been implemented to
avoid degeneracy. In the next section we will show how this problem can be overcome using the
Lie algebra expansion method based on semigroups [88]. Such procedure provides us not only
with the desired non-relativistic symmetries but also with the non-vanishing components of a
non-degenerate invariant tensor which are required to construct an action in the CS formalism.

3 Generalized kinematical algebras and S-expansion method

It is well known that, in three spacetime dimensions, the addition of two central charges in
the non-relativistic Newton-Hooke and Galilei algebras allows for a non-degenerate invariant
tensor. Here, we first present the minimal setup required to extend the cube to kinematical
Lie algebras admitting a non-degenerate invariant metric. We show that the space-time
and speed-time contractions can be seen as particular S-expansions, in the sense that the
expanded algebras have the same dimension of the original one. In other words, these
particular expansions reproduce Inönü-Wigner contractions. The same holds for the speed-
space case. However, in order to obtain algebras endowed with a non-degenerate invariant
tensor, the speed-space contraction has to be replaced by a different expansion yielding
higher-dimensional Lie algebras. This is achieved by considering a larger semigroup S. We
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Subspaces Space-time Speed-space Speed-time General
V0 J, Ga J, H J, Pa J

V1 H, Pa Ga, Pa H, Ga H, Ga, Pa

Table 4. Subspaces decomposition of the AdS algebra.

then present generalized kinematical algebras as sequential S-expansions starting from the
so (2, 2) algebra.

The S-expansion method basically consists in obtaining a new Lie algebra G from a
given one g by combining the generators and structure constants of the original Lie algebra
with the elements of a semigroup S. The expanded Lie algebra is then related to the original
one as G = S × g. A smaller subalgebra can be extracted from the S-expanded one by
considering a resonant expansion or a 0S-reduction [88]. Here, we shall show that considering
a particular family of semigroups we are able not only to reproduce the cube of Bacry
and Levy-Leblond [1] but also to extend it to generalized kinematical algebras admitting
a non-degenerate invariant bilinear trace.

3.1 Kinematical Lie algebras

A particular semigroup S
(1)
E reproduces the Inönü-Wigner contraction. In particular, we

shall see that the space-time, speed-space, speed-time and even the general contraction can
be substituted by a S

(1)
E -expansion but considering different subspace decompositions of

the original algebra. Before applying the S-expansion, let us consider first the so (2, 2) Lie
algebra (2.1) with the relabeled generators as in (2.2). Let V0 and V1 be two subspaces of
the AdS algebra which, depending on the desired contraction, are given by table 4.
One can check that the subspaces V0 and V1 satify a Z2-graded Lie algebra,

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (3.1)

Let us consider now S
(1)
E = {λ0, λ1, λ2} as the relevant semigroup whose elements satisfy

the following multiplication law

λ2 λ2 λ2 λ2

λ1 λ1 λ2 λ2

λ0 λ0 λ1 λ2

λ0 λ1 λ2

(3.2)

Here λ2 = 0S is the zero element of the semigroup which satisfies 0Sλi = λi0S = 0S . Then,
let S

(1)
E = S0 ∪ S1 be a subset decomposition with

S0 = {λ0, λ2} , S1 = {λ1, λ2} , (3.3)

which is said to be resonant since it satifies the same algebraic structure than the subspaces
decomposition of table 4, namely

S0 · S0 ⊂ S0 , S0 · S1 ⊂ S1 , S1 · S1 ⊂ S0 . (3.4)
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Space-time Speed-space Speed-time General

λ2

λ1 H, Pa Ga, Pa H, Ga H, Ga, Pa

λ0 J, Ga J, H J, Pa J

J , Ga H, Pa J , H Ga, Pa J , Pa H, Ga J H, Ga, Pa

Table 5. Expanded generators in terms of the AdS ones and the semigroup elements. The AdS
generators have been organized according to the subspaces decomposition of table 4.

Then, each type of contraction can be recovered as a S
(1)
E -resonant expansion of the relativistic

so (2, 2) algebra,

G = (S0 × V0) ⊕ (S1 × V1) , (3.5)

followed by a 0S-reduction, namely 0SJ = 0SGa = 0SH = 0SPa = 0. The expanded
generators are related to the AdS one through the semigroup elements as in table 5.

The commutation relations for the expanded generators are obtained by considering
the commutation relations of the AdS algebra and the multiplication law of the semigroup
S

(1)
E . Then, one can easily check that the expanded generators {J, Ga, H, Pa} coming from the

space-time subspaces decomposition satisfy the Poincaré algebra. On the other hand, the
expanded algebra for the speed-space and speed-time cases are the Para-Poincaré and the
Newton-Hooke algebras, respectively. Interestingly, the procedure can be applied starting from
any kinematical algebra. For instance, one can obtain the Galilei and Carroll symmetry by
applying the S

(1)
E resonant expansion of the Poincaré algebra and performing a 0S-reduction.

In such case the subspaces decomposition of the Poincaré algebra for recovering the non- and
ultra-relativistic counterpart are analogue to those considered in table 4, whose generators
satisfy now the Poincaré commutators. Alternatively, the Carroll algebra can be obtained
by S

(1)
E -expanding the Para-Poincaré algebra considering the resonant condition and after

applying the 0S-reduction. However, in such case, the subspaces decomposition of the Para-
Poincaré algebra is the one considered for reproducing a speed-space limit. Thus, the S

(1)
E

semigroup along the resonant condition and the 0S-reduction reproduce the sequential limits
allowing to obtain the kinematical algebras appearing in the original cube (see figure 2).

3.2 Extended kinematical Lie algebras

The previous procedure can be extended with a larger semigroup S
(2)
E to avoid degeneracy

in the non-relativistic regime. To this end, let us first consider the speed-space subspaces
decomposition of the AdS algebra given by V0 = {J, H} and V1 = {Ga, Pa}. Then, let
S

(2)
E = {λ0, λ1, λ2, λ3} be the relevant semigroup whose elements satisfy the following mul-
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Figure 2. This cube reproduces the original kinematical algebras as sequential expansions starting
from the AdS algebra. Although the S

(1)
E semigroup is applied in all the directions, there are three

different subspace decompositions of the original algebra according to table 4. Then, each expanded
kinematical generator is related to an original one as in table 5.

tiplication law,

λ3 λ3 λ3 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ1 λ1 λ2 λ3 λ3

λ0 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

(3.6)

with λ3 being the zero element of the semigroup. A resonant subset decomposition of the
semigroup S

(2)
E is given by S

(2)
E = S0 ∪ S1 with

S0 = {λ0, λ2, λ3} , S1 = {λ1, λ3} . (3.7)

Then a non-relativistic symmetry is obtained after applying the resonant S
(2)
E -expansion to

the so (2, 2) algebra and performing its 0S-reduction. The non-relativistic generators are
related to the relativistic AdS ones through the semigroup elements as in table 6.
The expanded commutation relations are obtained considering the multiplication law of
the semigroup S

(2)
E along the original AdS commutators (2.1). In particular, the expanded

generators satisfy the extended Newton-Hooke algebra [64–70] whose commutation relations
can be found in table 7. Following the same procedure, the extended Bargmann algebra [71,
72] can be obtained starting from the relativistic Poincaré algebra with the speed-space

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
0

Speed-space
λ3
λ2 S, M
λ1 Ga, Pa

λ0 J, H
J , H Ga, Pa

Table 6. Non-relativistic generators in terms of the AdS ones and the semigroup elements.

Commutators Extended Extended Extended Extended
Newton-Hooke Bargamnn para-Bargmann static

[J, Ga] ϵabGb ϵabGb ϵabGb ϵabGb

[J, Pa] ϵabPb ϵabPb ϵabPb ϵabPb

[Ga, Gb] −ϵabS −ϵabS 0 0
[H, Ga] ϵabPb ϵabPb 0 0
[Ga, Pb] −ϵabM −ϵabM −ϵabM −ϵabM
[H, Pa] ϵabGb 0 ϵabGb 0
[Pa, Pb] −ϵabS 0 −ϵabS 0

Table 7. Commutation relations of the extended Newton-Hooke, extended Bargmann, extended
para-Bargmann and extended static algebra.

decomposition of table 6 and the S
(2)
E semigroup. Moreover, extended versions of a para-

Bargmann algebra and the static one are derived considering the resonant S
(2)
E -expansion

of the Carroll and para-Poincaré algebra, respectively. Here, the para-Bargmann algebra
denotes a central extension of the para-Galilei algebra which results to be isomorphic to
the Bargmann algebra but physically different. The four obtained extended kinematical
algebras appear considering a resonant S

(2)
E -expansion, a 0S-reduction and the speed-space

decomposition of the kinematical algebra of the table 2. Such extended kinematical algebras,
as we shall see in section 4, admit a non-degenerate invariant bilinear trace due to the
presence of two central charges S and M.

The previous results can be visualized in the cube of figure 3, which summarizes all
the sequential expansions starting from the AdS Lie algebra, leading to algebras that admit
an invariant metric. Then, the obtained cube extends the original cube of Bacry-Lévy-
Leblond [1] (see figure 1) to a new one without degeneracy, for which well-defined CS actions
can be constructed.

Let us note that the cube of figure 3 can be generalized to higher-dimensional spacetime.
Nevertheless, it is well known that the Poincaré algebra admits a non-degenerate invariant
bilinear trace only in three spacetime dimensions. Remarkably, the resonant S

(2)
E -expansion

of the AdS algebra can also be applied with a Space-time decomposition (see table 5). In such
case, the expanded algebra is characterized by two extra generators Zab and Za being related
to the Jab and Ga AdS generators, respectively,2 and corresponds to the so-called Maxwell
algebra [98–101], which admits an invariant metric in any spacetime dimension [102]. Hence,
a cube without degeneracy in higher spacetime dimensions would require to consider the
resonant S

(2)
E -expansion not only with the speed-space decomposition but also the space-time

2In tree spacetime dimensions, Zab ∝ ϵabZ, Jab ∝ ϵabJ .

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
0

Figure 3. This cube summarizes the different non-degenerate S-expansion relations starting from
the AdS Lie algebra. There is a space-time resonant S

(1)
E -expansion (black) and a speed-time resonant

S
(1)
E -expansion (red) which differ in the subspaces decomposition of so (2, 2) (see table 5). The

speed-space resonant S
(2)
E -expansions (green) reproduce the extended kinematical algebras.

and speed-time ones. In this work, we shall not consider the Maxwell case since we are
interested in maintaining the vanishing cosmological constant limit corresponding to the
space-time contraction or to a resonant S

(1)
E -expansion. Nonetheless, it would be interesting to

extend the non-degenerate cube to the Maxwell symmetries and analyze if the non-Lorentzian
versions of the Maxwell CS gravity theory [90, 103, 104] are recovered.

3.3 General kinematical Lie algebras

The non-degenerate cube for extended kinematical algebras previously obtained can be
generalized to a family of general kinematical algebras in two different ways. On one hand,
a S

(N)
E -expansion with arbitrary N can be applied to obtain larger kinematical algebras.

As we shall see, Post-Newtonian algebras and their Carrollian counterparts are recovered
for N ≥ 4. Nonetheless, analogously to the non-Lorentzian spin-3 symmetries [94], non-
degeneracy is guaranteed only for even value of N . On the other hand, the S

(N)
E semigroup

can be applied considering also the speed-time decomposition. In this direction, extended
and generalized ultra-relativistic symmetries are found. It is important to emphasize that
the S

(1)
E -expansion in the space-time direction is not modified since we desire to maintain

the original relativistic structure given by the AdS and Poincaré algebra. In particular, the
space-time S

(1)
E -expansion can be seen as a vanishing cosmological constant limit between

diverse general kinematical algebras.

General kinematical algebra and the S
(2)
E semigroup. The simplest generalization

of the kinematical Lie algebras can be obtained considering the S
(2)
E -expansion along the

speed-space and speed-time directions as in figure 4.
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Figure 4. This cube summarizes the different S-expansion relations starting from the AdS Lie algebra
to obtain extended and general kinematical algebras. There is a speed-space resonant S

(2)
E -expansion

(green) and a speed-time resonant S
(2)
E -expansion (blue). Both speed-space and speed-time expansions

are based on the same semigroup S
(2)
E but differ in the subspaces decomposition of the original algebra

(see tables 8 and 10). The space-time resonant S
(1)
E -expansions (black) reproduces the usual space-time

limit corresponding to the vanishing cosmological constant limit.

Speed-space Speed-time
λ3

λ2 S, M C, Ta

λ1 Ga, Pa H, Ga

λ0 J, H J, Pa

J , H Ga, Pa J , Pa H, Ga

Table 8. Non-Lorentzian generators in terms of the AdS (or Poincaré) ones and the semigroup
elements.

To obtain general kinematical algebras considering S
(2)
E as the relevant semigroup requires

two steps. First, let us consider the speed-space and speed-time decomposition of the AdS
(or Poincaré) algebra as in table 4. Let S

(2)
E be the relevant semigroup whose elements

satisfy (3.6). Then, let us consider S
(2)
E = S0 ∪ S1 as a resonant decomposition given by (3.7).

Hence, two inequivalent non-Lorentzian algebras appear after applying the resonant S
(2)
E -

expansion to the AdS algebra and considering its 0S-reduction. As we have seen in the
previous section, the extended Newton-Hooke and extended Bargmann algebra (see table 7)
are obtained using the speed-space decomposition.
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0
2
4
)
0
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Subspaces Speed-space Speed-time
(extended para-Poincaré) (extended Newton-Hooke)

V0 J, H, C J, S, Pa

V1 Ga, Pa, Ta H, M, Ga

Table 9. Subspaces decomposition of extended non-Lorentzian algebras.

A speed-time decomposition as in table 8 allows us to obtain an extended para-Poincaré
algebra whose commutation relations appear in table 11. One can notice that the extended
para-Poincaré algebra is isomorphic to the Maxwell Lie algebra [98–100], but physically
different.3 On the other hand, the extended Carroll algebra (see table 11) is obtained starting
from the Poincaré algebra instead of the AdS one considering the speed-time decomposition
and the resonant S

(2)
E -expansion.

A second step is required to obtain the remaining general kinematical algebras. To this
end, there are two inequivalent ways to derive them. Indeed, as one can see from figure 4,
a general para-Bargmann algebra can be obtained by applying the resonant S

(2)
E -expansion

together with its 0S-reduction from the extended Para-Poincaré or from the extended Newton-
Hooke algebra. Nevertheless, the choice of the original Lie algebra is conditioned to the
subspace decomposition. For instance, starting from the extended para-Poincaré algebra
requires to consider the speed-space subspaces decomposition of table 9, while a speed-time
subspace decomposition is required starting from the non-relativistic symmetry.

The general para-Bargmann algebra (see table 11) is characterized by three central charges
S, M and B which are related to the extended para-Poincaré and extended Newton-Hooke gener-
ators through the semigroup elements as in table 10. The obtained expanded algebra results to
be isomorphic to the so-called Maxwellian extended Bargmann (MEB) algebra [79, 103] but has
different physical implications due to the interpretation of the generators Pa and Ga, which are
interchanged with respect to the MEB symmetry. Indeed, the corresponding three-dimensional
CS MEB theory is characterized by a vanishing cosmological constant and by the vanishing of
the curvatures associated with the spin-connection, R (ωa) = R (ω) = 0. On the other hand, as
we shall see, the general para-Bargmann gravity theory contains a cosmological constant which
acts as a source for the spin-connection curvature R (ωa) = −ϵabτeb. Such behavior is due
to the presence of the commutator [H, Pa] = ϵabGb in the general para-Bargmann symmetry.

A general static algebra (see table 11) can also be obtained if we consider the resonant
S

(2)
E -expansion and its 0S-reduction of the extended Carroll or the extended Bargmann algebra

(see figure 4). Analogously to the general para-Bargmann, the choice of the starting algebra
is conditioned to its subspace decomposition. Indeed, starting from the extended Carroll
algebra requires to consider the speed-space decomposition, while a speed-time decomposition
is needed if we consider the expansion of the extended Bargmann algebra (see table 10).

Let us notice that the successive applications of the S
(2)
E semigroup generate larger

kinematical algebras with additional central charges as it is shown in table 12. Although

3The Maxwell structure appears by considering the set {C, Ta} as the Maxwellian generators {Z, Za} and
by interchanging the role of the generators Pa and Ga.
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J
H
E
P
0
1
(
2
0
2
4
)
0
4
0

Speed-space Speed-time
λ3

λ2 S, M, B C, B, Ta

λ1 Ga, Pa, Ta H, M, Ga

λ0 J, H, C J, S, Pa

J, H, C Ga, Pa, Ta J, S, Pa H, M, Ga

Table 10. General kinematical generators in terms of the non-Lorentzian ones and the semigroup
elements. The speed-space column contains expanded kinematical generators in terms of the extended
para-Poincaré (or extended Carroll) ones. On the other hand, the expanded generators are obtained
from the extended Newton-Hooke (or extended Bargmann) ones in the speed-time column.

Commutators Extended Extended General General
para-Poincaré Carroll para-Bargmann static

[J, Ga] ϵabGb ϵabGb ϵabGb ϵabGb

[J, Pa] ϵabPb ϵabPb ϵabPb ϵabPb

[Ga, Gb] −ϵabC −ϵabC −ϵabB −ϵabB

[H, Ga] ϵabTb ϵabTb ϵabTb ϵabTb

[Ga, Pb] −ϵabH −ϵabH −ϵabM −ϵabM

[H, Pa] ϵabGb 0 ϵabGb 0
[Pa, Pb] −ϵabJ 0 −ϵabS 0
[J, Ta] ϵabTb ϵabTb ϵabTb ϵabTb

[Pa, Tb] −ϵabC 0 −ϵabB 0
[C, Pa] ϵabTb ϵabTb ϵabTb ϵabTb

Table 11. Commutation relations of the extended para-Poincaré, extended Carroll, general para-
Bargmann and general static algebra.

some general kinematical algebras coincide in the amount of generators, they are different
and cannot be related through a redefinition or change of basis.4

The cube of Bacry and Lévy-Leblond [1] is now generalized through the application of the
semigroup S

(2)
E along the speed-time direction as in figure 4. Such generalization might seem

unnecessary since the non-degeneracy was already guaranteed for the Para-Poincaré, Carroll,
extended para-Bargmann and extended static algebra of the cube in figure 3. However, the
presence of an invariant metric in four or higher spacetime dimensions requires a generalization.
For instance, the Para-Poincaré algebra, which is isomorphic to the Poincaré one, does not
admit a non-degenerate invariant trace in four spacetime dimensions. The non-degeneracy
is restored considering the Maxwell symmetry [63], which results to be isomorphic to the
extended para-Poincaré algebra obtained here as a resonant S

(2)
E -expansion of the AdS algebra.

4The only exception is given by the extended Bargmann and the extended para-Bargmann algebras which
turn out to be isomorphic but physically different. Both algebras are related by interchanging the generators
Pa and Ga.
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H
E
P
0
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2
0
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4
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0
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0

Extended Extended Extended General
AdS Newton- para- para- para-

Hooke Poincaré Bargmann Bargmann
Time generators J , H J, H J, H, C J, H J, H, C

Spatial generators Ga, Pa Ga, Pa Ga, Pa, Ta Ga, Pa Ga, Pa, Ta

Central charges S, M S, M S, M, B

Amount of generators 6 8 9 8 12
Extended Extended Extended General

Poincaré Bargmann Carroll static static
Time generators J , H J, H J, H, C J, H J, H, C

Spatial generators Ga, Pa Ga, Pa Ga, Pa, Ta Ga, Pa Ga, Pa, Ta

Central charges S, M S, M S, M, B

Amount of generators 6 8 9 8 12

Table 12. Generators content of the extended and general kinematical algebras.

General kinematical algebra and the S
(N)
E semigroup. The cubes in figures 3 and 4

obtained previously can be generalized for a family of non-Lorentzian algebras considering
an arbitrary S

(N)
E semigroup. Our purpose is to present the most general scheme involving

non-Lorentzian symmetries. As we shall see, known Newtonian, post-Newtonian algebras
and their Carrollian counterparts can be obtained for particular values of N .

Let us consider first S
(N)
E = {λ0, λ1, λ2, · · · , λN+1} as the relevant semigroup whose

elements satisfy

λαλβ =
{

λα+β if α + β ≤ N + 1 ,

λN+1 if α + β > N + 1 ,
(3.8)

with λN+1 = 0S being the zero element of the semigroup. Let S
(N)
E = S0 ∪ S1 be a subset

decomposition of the semigroup with

S0 =
{

λ2m, with m = 0, . . . ,

[
N

2

]}
∪ {λN+1} ,

S1 =
{

λ2m+1, with m = 0, . . . ,

[
N + 1

2

]}
∪ {λN+1} , (3.9)

where [. . .] denotes the integer part. The subset decomposition (3.9) is said to be resonant
since it satisfies the same algebraic structure than the subspace decomposition (3.1) of
the original so (2, 2) algebra (or Poincaré). Then, generalized kinematical Lie algebras are
obtained after considering a resonant S

(N)
E -expansion of the AdS algebra (or Poincaré) and

applying a 0S-reduction. In particular, the expanded generators are expressed in terms of
the original ones as in table 13.

In the ultra-relativistic regime we obtain generalizations of the para-Poincaré and Carroll
algebras (see table 14) which we have denoted as pp(N) and car(N), respectively. In the non-
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E
P
0
1
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0
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4
)
0
4
0

Expanded nh(N) pp(N) Expanded pg(N) pg(N)

generators from AdS from AdS generators from nh(N) from pp(N)

J(m) λ2mJ λ2mJ J(n,m) λ2mJ(n) λ2mJ(n)

H(m) λ2mH λ2m+1H H(n,m) λ2m+1H(n) λ2mH(n)

G(m)
a λ2m+1Ga λ2m+1Ga G(n,m)

a λ2m+1G(n)
a λ2m+1G(n)

a

P(m)
a λ2m+1Pa λ2mPa P(n,m)

a λ2mP(n)
a λ2m+1P(n)

a

Table 13. Expanded generators in terms of the original ones and the semigroup elements.

Figure 5. This cube summarizes the different S
(N)
E -expansion relations starting from the AdS Lie

algebra to obtain general kinematical algebras.

relativistic counterpart, we obtain the generalized Newton-Hooke and Galilean algebras [92]
which have been denoted as nh(N) and gal(N), respectively.

Two other generalized kinematical algebras, denoted as stat(N) and pg(N) (see table 15),
appear by applying the resonant S

(N)
E -expansion to the generalized non-Lorentzian symmetries

together with the 0S-reduction condition (see figure 5). The relations between the expanded
generators and the original ones depend on the nature of the starting algebra. Indeed, the
expanded generators defined in terms of the ultra-relativistic kinematical generators are
defined quite differently from those derived from the non-relativistic ones (see table 13).
For instance, the pg(2) algebra, corresponding to the general para-Bargmann, contains S

as a central charge which corresponds to J(1,0) if it is obtained from the nh(2) algebra. On
the other hand, the central charge S coincides with J(0,1) if it is derived by expanding the
pp(2) algebra. The upper index (n, m) in the expanded generators of table 13 reflects the
application of two successive expansions: the first applied to the relativistic AdS (or Poincaré)
algebra and the second to its non-Lorentzian counterpart.
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0

Commutators nh(N) gal(N) pp(N) car(N)

[
J(n), G(m)

a

]
ϵabG

(n+m)
b ϵabG

(n+m)
b ϵabG

(n+m)
b ϵabG

(n+m)
b[

J(n), P(m)
a

]
ϵabP

(n+m)
b ϵabP

(n+m)
b ϵabP

(n+m)
b ϵabP

(n+m)
b[

G(n)
a , G(m)

b

]
−ϵabJ(n+m+1) −ϵabJ(n+m+1) −ϵabJ(n+m+1) −ϵabJ(n+m+1)

[
H(n), G(m)

a

]
ϵabP

(n+m)
b ϵabP

(n+m)
b ϵabP

(n+m+1)
b ϵabP

(n+m+1)
b[

G(n)
a , P(m)

b

]
−ϵabH(n+m+1) −ϵabH(n+m+1) −ϵabH(n+m) −ϵabH(n+m)

[
H(n), P(m)

a

]
ϵabG

(n+m)
b 0 ϵabG

(n+m)
b 0[

P(n)
a , P(m)

b

]
−ϵabJ(n+m+1) 0 −ϵabJ(n+m) 0

Table 14. Commutation relations of the non-Lorentzian kinematical Lie algebras.

Let us note that the original cube of Bacry and Lévy-Leblond [1] is recovered for N = 1
in which the resonant S

(1)
E -expansion reproduces the different limits starting from the so (2, 2)

Lie algebra (see figure 1). For N = 2, we recover the generalized cube presented in figure 4
which is characterized by a non-degenerate invariant trace in the non-relativistic regime. Inter-
estingly, for N = 3 the so-called Newtonian algebra is obtained as a resonant S

(3)
E -expansion

of the Poincaré algebra. The Newtonian algebra appears as the underlying symmetry of an
action principle for Newtonian gravity [105]. Such symmetry can be seen as an extension of
the extended Bargmann algebra and is characterized by the presence of additional generators
{Ba, Ta} which coincides with our G(3)

a and P(3)
a generators of table 13. A Newton-Hooke version

of the Newtonian algebra [97] is obtained if we apply the 0S-reduced resonant S
(3)
E -expansion

to the AdS algebra, meanwhile Carrollian versions of the Newtonian symmetries appear in the
ultra-relativistic regime. The inconvenient with N = 3, analogously to the N = 1 case, is the
degeneracy of the invariant tensor for the kinematical algebras obtained in the non-relativistic
direction. Such degeneracy can be avoided considering N = 4 which reproduces the extended
Newtonian algebra [76] and its Newton-Hooke version [82, 106]. For N > 4, the expanded kine-
matical algebras reproduce post-Newtonian algebras together with their Carrollian versions.

4 Extended kinematical Chern-Simons gravity theories in three spacetime
dimensions

In this section we apply the S-expansion method to derive the diverse CS actions associated
with the extended kinematical algebras obtained in the cube of figure 3. The choice of the
cube is not arbitrary but is due to the fact that the extended kinematical algebras, unlike
the usual kinematical algebras presented in [1], are characterized by the fact that they admit
a non-degenerate invariant bilinear trace ensuring the construction of a well-defined CS
action. As we shall see, each kinematical CS action can be obtained as sequential expansions
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Commutators pg(N) stat(N)

[
J(n,p), G(m,q)

a

]
ϵabG

(n+m,p+q)
b ϵabG

(n+m,p+q)
b[

J(n,p), P(m,q)
a

]
ϵabP

(n+m,p+q)
b ϵabP

(n+m,p+q)
b[

G(n,p)
a , G(m,q)

b

]
−ϵabJ(n+m+1,p+q+1) −ϵabJ(n+m+1,p+q+1)

[
H(n,p), G(m,q)

a

]
ϵabP

(n+m,p+q+1)
b ϵabP

(n+m,p+q+1)
b[

G(n,p)
a , P(m,q)

b

]
−ϵabH(n+m+1,p+q) −ϵabH(n+m+1,p+q)

[
H(n,p), P(m,q)

a

]
ϵabG

(n+m,p+q)
b 0[

P(n,p)
a , P(m,q)

b

]
−ϵabJ(n+m+1,p+q) 0

Table 15. Commutation relations of the generalized kinematical Lie algebras pg(N) and stat(N) by
expanding the nh(N) and the gal(N) algebra, respectively. The upper index (n, p) in the generators
denotes two sub-sequential S-expansions.

starting from the AdS CS one by expressing the expanded gauge fields in terms of the
original ones. In particular, the so (2, 2) Lie algebra admits the following non-vanishing
components of the invariant tensor:

⟨JJ⟩ = −µ0 , ⟨JH⟩ = −µ1 , ⟨HH⟩ = −µ0 ,

⟨GaGb⟩ = µ0δab , ⟨GaPb⟩ = µ1δab , ⟨PaPb⟩ = µ0δab , (4.1)

where µ0 is related to an exotic sector of the three-dimensional AdS CS gravity [54, 55]. Let
us note that in the Poincaré limit we have ⟨HH⟩ = ⟨PaPb⟩ = 0.

According to Theorem VII of [88], the S-expansion procedure has the advantage of
providing us with the invariant tensor of the expanded algebra in terms of the original one.
Remarkably, the expanded algebras obtained in the cube of figure 3 admit non-degenerate
invariant tensors. In particular, the invariant tensor for each extended kinematical algebra
is obtained considering the resonant expansions employed to obtain the different symmetry
algebras of the cube in figure 3. The explicit non-vanishing components of the invariant tensors
for each expanded algebra are listed in table 16, in which the ultra-relativistic generators are
related to the relativistic ones through the semigroup elements as in table 5. On the other
hand, the generators involved in the invariant tensors for the extended kinematical algebra
are related to the relativistic and ultra-relativistic ones as in table 6.
Let us note that the constants appearing in the expanded invariant tensor are related to
the original ones as follows:

β0 = λ0µ0 , β1 = λ1µ1 ,

α0 = λ2µ0 , α1 = λ2µ1 ,

γ0 = λ2β0 = λ0α0 , γ1 = λ2β1 = λ1α1 , (4.2)
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0
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0

Para- Extended Extended Extended Extended
Poincaré Carroll Newton- Bargmann para- static

Hooke Bargmann
⟨JJ⟩ −β0 −β0 0 0 0 0
⟨JH⟩ −β1 −β1 0 0 0 0
⟨HH⟩ 0 0 0 0 0 0
⟨GaGb⟩ 0 0 α0δab α0δab 0 0
⟨GaPb⟩ β1δab β1δab α1δab α1δab γ1δab γ1δab

⟨PaPb⟩ β0δab 0 α0δab 0 γ0δab 0
⟨JS⟩ — — −α0 −α0 −γ0 −γ0

⟨JM⟩ — — −α1 −α1 −γ1 −γ1

⟨HM⟩ — — −α0 0 0 0
⟨HS⟩ — — −α1 −α1 −γ1 −γ1

Table 16. Non-vanishing components of the invariant tensor for the expanded kinematical algebras.

where the γ’s can be obtained from either the ultra-relativistic constants or the non-relativistic
ones. Nevertheless, starting from a non-relativistic algebra requires to consider S

(1)
E as the

relevant semigroup with λ2 = 0S being the zero element (see the cube in figure 3).
A CS action invariant under the kinematical Lie algebras of the cube in figure 3 can

be constructed by considering the non-vanishing components of the invariant tensor given
by (4.1) and table 16 together with the corresponding gauge connection one-form A = AATA

in the general expression of the CS action,

ICS = k

4π

∫
⟨AdA + 2

3A3⟩ . (4.3)

Here k denotes the CS level of the theory which is related to the gravitational constant G

through k = 1/(4G). In the relativistic case, the gauge connection one-form A reads

A = WJ + V H + W aGa + V aPa . (4.4)

Here W represent the spin-connection for boosts, Wa is the spatial spin-connection, V is
the time-like vielbein and V a corresponds to the spatial vielbein. The curvature two-form
F is given by

F =R (W ) J + R (V ) H + Ra
(
W b

)
Ga + Ra

(
V b

)
Pa , (4.5)

with

R (W ) = dW + 1
2ϵacWaWc + 1

2ℓ2 ϵacVaVc ,

R (V ) = dV + ϵacWaVc ,

Ra
(
W b

)
= dW a + ϵacWWc + 1

ℓ2 ϵacV Vc ,

Ra
(
V b

)
= dV a + ϵacWVc + ϵacV Wc . (4.6)
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0

Para-Poincaré Extended Newton-Hooke Extended para-Bargmann

R (ω) dω + 1
2ℓ2 ϵaceaec dω dω

R (τ) dτ +ϵacωaec dτ dτ

Ra
(
ωb

)
dωa +ϵacωωc + 1

ℓ2 ϵacτec dωa +ϵacωωc + 1
ℓ2 ϵacτec dωa +ϵacωωc + 1

ℓ2 ϵacτec

Ra
(
eb

)
dea +ϵacωec dea +ϵacωec +ϵacτωc dea +ϵacωec

Ra (s) — ds+ 1
2ϵacωaωc + 1

2ℓ2 ϵaceaec ds+ 1
2ℓ2 ϵaceaec

Ra (m) — dm+ϵacωaec dm+ϵacωaec

Table 17. Curvature two-forms for the Para-Poincaré, extended Newton-Hooke and extended
para-Bargmann algebras. The flat limit ℓ → ∞ reproduces the curvatures for the Carroll, extended
Bargmann and extended static algebras.

Here, we have considered the space-time rescaling of the generators as in table 1 in order
to introduce explicitly the cosmological constant through Λ = − 1

ℓ2 . Then, in the vanishing
cosmological constant limit ℓ → ∞ we recover the Poincaré curvature two-forms.

The gauge connection one-form for the ultra-relativistic algebras is given by

A = ωJ + τH + ωaGa + eaPa . (4.7)

In particular, the curvature two-form for the para-Poincaré symmetry algebra reads

F = R (ω) J + R (τ) H + Ra
(
ωb

)
Ga + Ra

(
eb

)
Pa , (4.8)

where the components are defined in table 17.
As in the relativistic case, we have introduced the ℓ parameter through the space-time

rescaling considered in table 1. In the vanishing cosmological constant limit ℓ → ∞ we obtain
the Carroll curvature two-forms. On the other hand, the gauge connection one-form taking
values in the extended kinematical Lie algebra reads

A = ωJ + τH + ωaGa + eaPa + sS + mM , (4.9)

where s and m are the gauge fields associated to the central charges S and M, respectively.
Although the extended kinematical algebras share the same expression for the curvature
two-form F , they differ in its components. Indeed, the curvature two-form for the extended
kinematical Lie algebras is

F = R (ω) J + R (τ) H + Ra
(
ωb

)
Ga + Ra

(
eb

)
Pa + Ra (s) S + Ra (m) M , (4.10)

where the components are given in table 17.
The relativistic so (2, 2) three-dimensional CS gravity action is obtained using the con-

nection 1-form (4.4) and the non-vanishing components of the invariant tensor (4.1) in the
general expression (4.3),

ICS = k

4π

∫ {
µ0

[
−WdW + 1

ℓ2 VaRa
(
V b

)
− 1

ℓ2 V dV + WaRa
(
W b

)]
+ µ1

[
−2WdV + WaRa

(
V b

)
+ VaRa

(
W b

)]}
, (4.11)
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CS terms Para-Poincaré Extended Extended

Newton-Hooke para-Bargmann

−ωdω β0 — —
1
ℓ2 eaRa

(
eb

)
β0 α0 γ0

ωaRa
(
ωb

)
— α0 —

−2sR (ω) — α0 γ0

− 2
ℓ2 mR (τ) — α0 —

−2ωdτ β1 — —

ωaRa
(
eb

)
β1 α1 γ1

eaRa
(
ωb

)
β1 α1 γ1

−2sR (τ) — α1 γ1

−2mR (ω) — α1 γ1

Table 18. List of the CS terms appearing in the ultra-relativistic and extended kinematical gravity
theories. The constants indicate in which sector of the theory the CS terms are present. The explicit
expressions for the curvature two-forms for a given kinematical Lie algebra appear in table 17.

where the curvature two-forms are defined in (4.6). Naturally, we recover the iso (2, 1) CS
action in the flat limit ℓ → ∞.

The CS action for the ultra-relativistic and the extended kinematical Lie algebras can be
constructed by considering the respective gauge connection one-form (4.7) and (4.9) together
with the corresponding non-vanishing components of the invariant tensor. The explicit terms
appearing in the corresponding CS action are listed in table 18. In particular, each term
appears in a particular sector of the action according to table 16 and is expressed in terms
of the curvature two-forms defined in table 17.

The term proportional to β0 corresponds to an exotic ultra-relativistic action, while
β1 reproduces the para-Poincaré gravity action. The latter results to be isomorphic to the
relativistic Poincaré CS action by interchanging the spatial spin-connection and the spatial
vielbein. In the vanishing cosmological constant limit ℓ → ∞, the terms proportional to α’s
reproduce the most general Carroll gravity action. On the other hand, along α0 and α1 we
obtain an extended Newton-Hooke gravity action which is known to describe a non-relativistic
model with cosmological constant. The extended Newton-Hooke algebra can alternatively be
obtained as a non-relativistic limit of the so (2, 2)⊕ u (1)2 algebra. In our procedure, no U (1)
enlargement is required to get the desired central extensions. Here, the flat limit ℓ → ∞
reproduces the extended Bargmann CS gravity action [71, 72]. Finally, the CS gravity action
for the extended para-Bargmann algebra and its static limit appear along the γ constants.
One can note that the extended Bargmann and the extended para-Bargmann are isomorphic
by interchanging the spatial spin-connection with the spatial vielbein. Nevertheless, both
theories possess distinct field equations which imply that they are physically different.
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Gauge Para-Poincaré Extended Extended Extended

fields Newton-Hooke para-Bargmann para-Bargmann

(from UR) (from NR)

ω λ0W λ0W λ0ω λ0ω

τ λ1V λ0V λ0τ λ1τ

ωa λ1Wa λ1Wa λ1ωa λ1ωa

ea λ0Va λ1Va λ1ea λ0ea

s — λ2W λ2ω λ0s

m — λ2V λ2τ λ1m

Table 19. Expanded gauge fields in terms of the original ones through the semigroup elements.
The multiplication law of the semigroup elements for S

(1)
E and S

(2)
E are given by (3.2) and (3.6),

respectively.

It is interesting to notice that the non-Lorentzian families of CS gravity actions appearing
in table 18 can be obtained directly from the relativistic CS action (4.11). This can be
achieved by expressing the non-Lorentzian gauge fields in terms of the relativistic ones through
the semigroup elements as in table 19. In the case of the extended Para-Bargmann and its flat
limit, the corresponding gauge field one-forms can be either obtained from the ultra-relativistic
(UR) ones (4.7) or the non-relativistic (NR) ones (4.9). Moreover, it is important to mention
that the expansion relations of table 19 are not modified in the vanishing cosmological constant
limit ℓ → ∞. Thus, the cube in figure 3 is not only valid to relate different kinematical
Lie algebras equipped with non-degenerate invariant tensor but also applies to relate the
corresponding kinematical CS gravity theories through the S-expansion method.

As an ending remark, the kinematical CS gravity actions obtained here are based
on symmetry algebras equipped with a non-degenerate invariant bilinear form. The non-
degeneracy implies that the CS actions ensure a kinetic term for each gauge field and the
field equations are given by the vanishing of the curvatures defined in (4.5) and (4.10). Then,
no additional constraint have to be imposed to solve the field equations. The non-degeneracy
is not exclusive of the extended kinematical Lie algebras obtained with S

(2)
E but appears

in every generic cube of figure 5 in which the S
(2M)
E semigroup is considered along the

speed-space direction. Such particularity can be seen from the non-degeneracy conditions
on the relativistic constants µ0 and µ1 appearing in the invariant tensor (4.1). In particular,
the non-degeneracy requires µ0 ̸= µ1 for the AdS algebra and µ1 ̸= 0 for the Poincaré case.
In the non-relativistic regime the S

(N)
E -expansion of the AdS algebra, reproducing the nh(N)
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algebra, admits the following non-vanishing components of the invariant tensor:

⟨J (n)J (m)⟩ = −α
(N)
0 δ2n+2m

N , ⟨G(n)
a G

(m)
b ⟩ = α

(N)
0 δ2n+2m+2

N δab ,

⟨J (n)H(m)⟩ = −α
(N)
1 δ2n+2m

N , ⟨G(n)
a P

(m)
b ⟩ = α

(N)
1 δ2n+2m+2

N δab ,

⟨H(n)H(m)⟩ = −α
(N)
0 δ2n+2m

N , ⟨P (n)
a P

(m)
b ⟩ = α

(N)
0 δ2n+2m+2

N δab , (4.12)

where the nh(N) generators are related to the AdS ones as in table 13. In the gal(N) limit we
have ⟨H(n)H(m)⟩ = ⟨P (n)

a P
(m)
b ⟩ = 0. On the other hand, the constants satisfy

α
(N)
0 = λN µ0 , (4.13)

α
(N)
1 = λN µ1 , (4.14)

with λN being a semigroup element of S
(N)
E . Then, the non-degeneracy of the invariant

tensor for the nh(N) algebra implies:

α
(N)
0 ̸= α

(N)
1 , (4.15)

where the invariant tensor (4.12) restricts N to be even. In the gal(N) case, the non-degeneracy
conditions reduced to α

(N)
1 ̸= 0 which, from (4.12), is satisfied only for even value of N . The

same analysis applies for the pg(N) and stat(N) obtained as S
(N)
E expansions of generalized

Carrollian Lie algebras. The expansion in the speed-space direction restricts the constants
appearing in the invariant tensor to exist only for even values of N .

Thus, the next non-degenerate kinematical gravity theory appears for M = 2, which re-
produces the known extended Newtonian gravity [76], its Newton-Hooke version [82, 106] and
its Carrollian counterpart [92]. Indeed, as we have discussed in section 3, the S

(3)
E -expansion

of the Poincaré algebra in the non-relativistic direction reproduces the so-called Newtonian
algebra [105]. However, as it was noticed in [76], a three-dimensional CS action based on
Newtonian symmetry suffers from degeneracy. Such degeneracy has been avoided by introduc-
ing an extended version of the Newtonian algebra [76] which can be obtained as a resonant
S

(4)
E -expansion of the Poincaré algebra along the speed-space direction. The corresponding

non-degenerate CS actions based on Post-Newtonian extensions together with their ultra-
relativistic versions can be constructed following the same procedure presented in this section.

5 Discussion

In this work we have extended the kinematical Lie algebras presented by Bacry and Lévy-
Leblond [1] through the S-expansion procedure. It is well known that the non-relativistic
regime of the kinematical algebras presents degeneracy in three spacetime dimensions. Here
we have overcome such difficulty by considering expansions instead of contractions to obtain
higher-dimensional kinematical algebras which are characterized by additional central charges.
Such central charges are crucial to avoid degeneracy and allow to define non-degenerate invari-
ant bilinear trace ensuring the proper construction of a well-defined CS action. We have first
showed that the S

(1)
E semigroup reproduces the original cube of [1]. Then, a non-degenerate

cube (see the cube of figure 3) is obtained in which non-relativistic symmetry algebras are
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derived by applying a resonant S
(2)
E -expansion along the speed-space direction. Subsequently,

we have presented generalizations of the kinematical algebras by considering larger semigroups
S

(N)
E in both speed-time and speed-space directions. Remarkably, the generalized kinematical

algebra can be obtained as sequential S-expansions starting from so (2, 2).
In the second part of this paper, we have presented the three-dimensional CS gravity

actions based on the extended kinematical algebras. The S-expansion results are particularly
useful to construct the respective CS actions since they provide us with the non-vanishing com-
ponents of the expanded invariant tensor in terms of the original ones. Moreover, the extended
kinematical algebras admit a non-degenerate invariant tensor leading to field equations that
are given by the vanishing of the curvature two-forms for the extended kinematical algebras
in the cube of figure 3. Then, no additional constraints have to be imposed to solve the
equations of motion. Finally, we showed that the non-Lorentzian gauge fields can be expressed
in terms of the relativistic ones through the semigroup elements, allowing us to obtain each
kinematical CS action from the relativistic one using the semigroup expansion properties.

The generalization of our results to supersymmetry is a natural next step. In particular,
the expansion procedure based on semigroups would allow us not only to obtain a supersymmet-
ric extension of the original cube of Bacry and Lévy-Leblond [1] but also to obtain the extended
kinematical superalgebra which admits non-degenerate invariant bilinear trace. As it was
shown in [72, 78, 81], in addition to the extra bosonic content, supplementary fermionic charges
have to be added to derive the supersymmetric extension of the extended Bargmann symmetry
algebra in the absence of degeneracy. Our method could provide us a general recipe to obtain
non-degenerate kinematical supergravity theories as subsequential expansions starting from
the AdS supergravity. On the other hand, the number and nature of the extra gauge fields
appearing in the supersymmetric extensions could offer a criteria to select relativistic theories.

Another aspect that deserve to be explored is the study of the kinematical algebras
considering symmetry algebras beyond AdS and its Poincaré limit. A natural deformation
of Poincaré algebra is the Maxwell algebra [98–101] whose physical implications in gravity
have been extensively studied [107–128]. Unlike the Poincaré algebra, the Maxwell algebra is
benefited with a non-degenerate invariant metric even in higher spacetime dimensions [63, 102].
In this direction one could obtain deformed kinematical algebras admitting non-degenerate
invariant tensor in arbitrary spacetime-dimensions. In three spacetime dimensions, one
expect to obtain not only known non-Lorentzian Maxwellian symmetry algebras [92, 103,
104, 129, 130] but also new ones.

It would also be interesting to explore which kinematical algebras can admit a non-
vanishing torsion. The inclusion of a torsion in the relativistic theory can be done through the
Mielke-Baekler gravity formalism [131, 132] which implies the modification of the Riemannian
geometry to a Weizenböck one. At the non-relativistic level, torsional gravity models have
been recently proposed in [83, 96, 133] by considering deformations of the extended Bargmann
and extended Newtonian symmetry algebras. One could analyze if the torsion can be switched
on for other (generalized) kinematical algebras and study the relation with the torsional
Newton-Cartan gravity model introduced in [75, 134, 135].

It would be worth it to explore if our results can be generalized to higher-spin algebras.
The extensions of the original kinematical algebras [1] to three-dimensional theories that
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include a spin-3 gauge field coupled to gravity have already been presented in [73, 94, 95]. Our
results could allows us not only to reproduce known results but also to obtain the minimal non-
degenerate cube required to construct well-defined spin-3 CS gravity actions. Then, one could
apply our procedure to explore the kinematical algebras for theory containing massless spin- 5

2
gauge field. Thus, higher-spin kinematical algebra could be obtained as sequential expansions
starting from the osp (1|4) × osp (1|4) and the hyper-Poincaré algebra. Moreover, the S-
expansion method could provides us with the desired general kinematical algebras equipped
with non-degenerate invariant tensor allowing us to construct proper CS hypergravity theory.
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