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Summary

The term Structural Health Monitoring (SHM) identifies all those activities aimed
at periodically inspecting the health status of a structural system over time in op-
erating conditions. In particular, operational modal analysis (OMA) identifies all
those techniques based on the analysis of output-only vibrational responses dur-
ing in-service situations without measuring the input excitation. The main goal
of OMA is to determine the modal properties, i.e. natural frequencies, damping
ratios, and mode shapes of a structure. These parameters define the dynamics
of the so-called combined system, i.e. comprising both the actual structural sys-
tem and the loading system, this latter typically conceived as a stationary white
noise excitation. The current Thesis document summarizes the research activities
conducted during the current Ph.D. program mainly focused on SHM vibration-
based approaches improved by innovative machine learning (ML) techniques. The
mathematical framework at the base of OMA has been initially reviewed, explor-
ing both time-domain and frequency-domain methods, and differentiating between
parametric and nonparametric procedures. The PyOMA software was developed
with a fruitful collaboration with two other institutions. PyOMA represented the
first Python-based open-source package collecting a suite of the most used and
well-established conventional OMA methods, thus delivering an essential tool for
both researchers and practitioners working in this sector. Furthermore, due to the
growing demand for automatic and continuous SHM monitoring systems, a novel
framework named intelligent automatic operational modal analysis (i-AOMA) has
been developed by leveraging the potentialities offered by nowadays artificial intel-
ligence (AI) solutions. The i-AOMA method combines quasi-Monte Carlo sampling
to reduce the impacts of the user’s arbitrary choice of OMA control parameters,
and postprocessing the identification results with effective ML-based data-driven
solutions. This methodology can reliably identify actual physical recurrent modal
properties whilst discarding those spurious ones. Moreover, it also provides an un-
certainty evaluation of the modal parameter results. Generally speaking, an ideal
SHM paradigm can be formalized at least into 5 levels, depending on the depth
of investigation and understanding of any occurring structural damage. Therefore,
the main research efforts have been herein devoted to the purpose of integrating
ML innovative data-driven procedures into the SHM Level 1, i.e. referred to as
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the damage detection task. This is a crucial aspect because it determines the
amount of economic and time resources to be earmarked for further deeper damage
diagnosis and/or prognosis evaluations, and even for optimizing and prioritizing
maintenance activities and safety restoration interventions. Nondestructive testing
(NDT) procedures have been herein effectively integrated with deep learning (DL)
methods, e.g. focusing on computer vision automatic classification of tunnel linings
defects based on ground penetrating radar (GPR) surveys. Vibration-based NDT
for damage detection tasks has been also analyzed, especially focusing on subspace-
based damage-sensitive features derived from the mathematical framework of the
OMA stochastic subspace identification (SSI) algorithm. Several research efforts
should be still spent to provide further deeper insights into the above-mentioned as-
pects. Moreover, since the scope of applicability of conventional OMA approaches
is limited to linear structures under operational stationary white noise excitation,
future promising research paths should additionally explore the field of nonlinear
and nonstationary OMA methods. This means exploring the methods of the actual
procedure for analyzing time-varying evolving modal parameter histories computed
from vibration responses of structures under transient loads, e.g. under earthquake
excitation, and potentially damaging over time.
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Chapter 1

Introduction

In this first introductory section, the main research areas of the present Thesis are
stated. The three-year Ph.D. program has been conducted under the guidance of
Prof. Giuseppe Carlo Marano, full professor of Structural Design at Politecnico di
Torino (Italy), with the co-supervision of two international collaborators, i.e. Prof.
Giansalvo Cirrincione, associate professor at University of Picardie “Jules Verne”
(France), and Prof. Giuseppe Quaranta, associate professor in Structural Engineer-
ing at Sapienza University of Rome (Italy). The topic of structural health monitor-
ing (SHM) covers an important segment of the nowadays Structural Engineering
challenges. Being this field strongly inter- and multi-disciplinary, this introductory
part aims to mainly underline the public interest in this topic. Catastrophic con-
sequences arise when there is a lack of proper engineering solutions, and analyzing
past disasters helps all of us to be more aware of both the severe economic and
social impacts that involve the entire community and the public interest, not only
a prerogative of technical professional circles. Therefore the essential motivations
of the present study are presented in the following.

1.1 Scope and Motivations
Monitoring the health status of existing structures and infrastructures over time
is an essential and extremely topical issue worldwide. Recent collapses have par-
ticularly shaken public opinion, rekindling the general interest in investing in the
Structural Civil Engineering sector, especially for risk mitigation strategies and
promoting smart and innovative solutions to ensure and preserve the safety levels
of our existing heritage [1]. Severe economic and life losses are usually associated
with structural failures, especially when strategic constructions are involved [2].
Nonetheless, they sadly represent a crucial opportunity to grow our engineering ex-
perience and improve our understanding in order to move toward a new mentality,
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focused on performance-based, risk-prevention solutions, increasing safety and reli-
ability [3]. Indeed, the history of structural collapses often follows the “pendulum
principle” [4]. If the greater impact on public opinion is, thus greater academic and
economic resources are usually rapidly allocated for preventing similar events by
deeply studying and understanding the catastrophe-triggering causes.

The USA counts over 617,000 bridges and about 42% are at least 50 years
old [5], an increased statistics from 39% in 2016. The bridge heritage’s average
age is estimated at about 44 years, however, 12% of highway bridges are aged 80
years or older. In 2018, the Federal Highway Administration (FHWA) defined a
“structurally deficient” bridge when one of the key structural elements, i.e. culvert,
substructure, superstructure, and deck, is assessed in poor conditions. The qua-
drennial Report Card for America’s Infrastructure 2021 edition [5] documented that
7.5% of the total bridges are considered structurally deficient, and their average age
is about 69 years. A total of 1,062 bridge collapses occurred between 1980-2012 in
the US [6], some of them depicted in Fig. 1.2, whereof 503 occurred between 1989
and 2000 [2]. The bridge design and maintenance mindset radically changed after
the catastrophic suspension Tacoma Narrow Bridge collapse occurred on November
7th, 1940, in Washington State, thankfully with no human losses [7, 8]. The subse-
quent failure analyses and studies on the physical interaction of aerodynamics and
aeroelastic phenomena permitted the consciousness-raising and the introduction of
new design rules when conceiving similar long-span suspension bridges [9]. Nowa-
days, to ensure new infrastructure resilient design, the American Socienty of Civil
Engineers (ASCE) strongly encourages federal agencies to incentive the adoption
of up-to-date structural codes and standards, such as e.g.:

• ASCE 7, Minimum Design Loads and Associated Criteria for Buildings and
Other Structures (ASCE/SEI 7-22);

• ASCE 24, Flood Resistant Design and Construction;

• ASCE 41, Seismic Evaluation and Retrofit of Existing Buildings;

• ASCE Manual of Practice 140, Climate-Resilient Infrastructure: Adaptive
Design and Risk Management.

Instead, the bridge inspection attitude was completely overturned after the Silver
Bridge collapse, better acknowledged as Point Pleasant Bridge, on December 15th,
1967, over the Ohio River in West Virginia, causing 46 deaths during rush-hour
heavy load traffic conditions [7]. Indeed, the federal government mandated na-
tional bridge inspections periodically from 12 to 48 months to preserve the public’s
safety [5]. The inspection’s goals are to identify the location and type of the bridge,
its age, and its actual conditions, including the traffic loadings. According to the
degree of structural deficiencies evidenced by the bridge inspector, the structure
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can be posted for load, speed, or weight restrictions on one side, otherwise un-
dergoing repairing interventions, or closed to traffic in the most serious scenarios.
According to the 2021 ASCE’s report [5], about 10% of all the US bridges experi-
enced such restrictions in 2019. A non-robust design combined with the increase
of load levels and undetected damages may dreadfully threaten the structural in-
tegrity, recalling e.g. the I-35W Bridge failure in Minneapolis, Minnesota State, on
August 1st, 2007, resulting in 13 deaths [10]. Analyzing the US past collapses, it
is worth evidencing that design loads levels computed by designers are responsible
for only 4% of structural collapses [6], thus being in line with an expected failure
probability of 10−4÷10−5 considering an initial failure probability of 10−6 curtailed
by execution uncertainties. For the sake of mentioning the order of magnitude of
the economic aspects associated with bridge collapses, the I-35W Bridge catastro-
phe induced costs about 17 million USD in 2007 and additional 43 million USD in
2008, without accounting indirect costs [2]. Among the different causes of bridge
failure reported in Fig. 1.1, natural phenomena represent the preponderant source,
principally floods and scour [2, 6], even though the human factors are another de-
cisive aspect affecting the bridges’ remaining life and safety levels. The destructive
impact of natural hazards is often multiplied by maintenance negligence and/or
inadequacy of old structures [11]. Furthermore, the human factors, especially re-
garding the proper attention to design and construction methods on one side, and
even regarding effective inspection and maintenance programs on the other side,
are the aspects on which we can proactively improve, since natural disasters are
often unavoidable and not fully controllable by humans [2]. This may also mean
that overloads, scour, or internal causes such as mistakes at the design or at execu-
tion level are not properly accounted for by the designer and/or by partial safety
factors of actual design codes [6]. Another possible source of neglected maintenance
could be ascribed to inadequate inspections with under-reported negative external-
ities [11]. Instead, referring to buildings, one of the most recent and catastrophic
collapses occurred on June 24th, 2021, in Champlain Towers South, a 12-story
condominium located in Surfside, Florida State, which claimed 98 deceased [12].
The real causes of failure are still unclear nowadays, however, it seems that a non-
robust design combined with differential settlements caused by water infiltration
and rebar corrosion of RC elements in the parking at the basement level produced
a progressive collapse mechanism with such disproportionate consequences [12, 13].

On the other hand, considering the Italian panorama, it is worth noting that
probably Italy has the most complex transportation network in the world due to
its varied and widespread orographic and hydro-graphic features [11]. In addition,
Italy hosts about 50% of all the tunnels in the EU [11]. The total railway heritage
length is about 17,000 km, with a total number of 9,660 artifacts between bridges
and viaducts, and 10,162 underpasses. Instead, the Italian roadway system presents
globally about 837,493 km divided into five categories, viz., in decreasing impor-
tance order, highways, state roads, regional roads, provincial roads, and municipal
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Figure 1.1: Bridges collapse causes in the USA, reprinted from [6].

roads. Moreover, it is worth evidencing that the infrastructure heritage is entrusted
to several management companies [6]. 23 different companies are involved within
the railways field, despite the dominant player is the Italian Railway Infrastruc-
ture (RFI) company, holding about 83% of the total railway length. Formed in
2001, RFI management was always more prone to address durability issues, since
the overall Italian railway scenario is quite old, referring e.g. to the first Italian
railway line established in Naples in 1839 [6]. Therefore, modern inspection tech-
niques and progressive digitization have led to a railway bridge management system
(BMS) in 2019 acknowledged as DOMUS system (in Italian “Diagnostica Opere
d’arte Manutenzione Unificata Standard”) [14]. Focusing on roadway system, the
dominant company is the National Autonomous Agency for the roads (ANAS), in
Italian “Azienda Nazionale Autonoma delle Strade”, owned by FS Group company
(in Italian “Gruppo Ferrovie dello Stato”), thus entirely financed by the Ministry
of Economics and Finance (MEF). ANAS holds in total 30,000 km of roads and
a number of 14603 bridges, and more than 2000 tunnels. Nonetheless, consider-
ing only the highway roads, the 7472 km are controlled by 32 different companies,
and ANAS only holds 12% of the total length [6]. About 80% of Italy’s highway
roadways was built in the time-span 1960-1970, whereas more ancient and often in
worst conditions are provincial and municipal roads [11].

One of the most recent and tragically iconic infrastructure failures uppermost
in our mind is the Polcevera Viaduct collapse in Genoa, which occurred on Au-
gust 14th, 2018 and caused 43 victims [1]. Completed in 1967 after only 4 years
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(a) (b)

(c) (d)

Figure 1.2: Some sadly known collapses occurred in USA. (a) Tacoma Narrow
Bridge, courtesy of PRI’s Studio 360; (b) Silver Bridge (Point Pleasant Bridge),
courtesy of Bob Smerecki Art; (c) I-35W Bridge, courtesy of Marion Doss; (d)
Champlain Towers South Surfside Florida, reprinted from [12].

of construction, the Riccardo Morandi’s bridge was a masterpiece of Italian engi-
neering planetary known, composed of three prestressed reinforced concrete (PRC)
cable-stayed balanced systems [3, 15]. Other recent and probably less internation-
ally notorious bridge collapses occurred in Italy in recent years, as illustrated in
Fig. 1.4. Indeed, in almost 18 months from late 2016 until mid-2018 five road
bridges collapsed [16]. It is worth mentioning the Fossano ring road in Piedmont
which collapsed without any traffic loading condition on April 18th, 2017 [17]. De-
spite apparent healthy external conditions, the possible failure causes have been
addressed as systematic human errors due to inadequate post-tensioned prestress-
ing cable grouting. Indeed, the damage patterns surveyed by visual inspection
on cables immediately afterwards the failure evidenced a degradation scenario not
compatible with the expected one for a 20-year-old in-service condition [17, 18].
As documented in Losanno et al. [19], in Italy approximately the 18% of bridge
collapse is related to human factors, specifically 7% is attributable to degradation
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of structural components, whereas the remaining part related to design or construc-
tion errors. These statistics are in agreement with US scenario in the time range
1989-2000, as declared in Deng et al. [2]. As reported in [16], it is worth reminding
also the failures of the highway overpass in Camerano, Marche on March 9th, 2017,
the roadway bridge crossing the Fiumara Allaro river, in Calabria on January 23rd,
2017, and the viaduct bridge between Annone and Cesana Brianza, in Lombardy
October 28th, 2016. The excessive number of different companies, jointly with the
complex and long-standing Italian red tape, may be sometimes one of the causes of
the degradation of Italian infrastructures. About 1,425 bridges have unclear owner-
ship even though they should be under ANAS control [6]. For instance, this is the
case of the Annone overpass in Lombardy, because for Lecco province the bridge
purview was transferred to ANAS, however, the existing documentation proved
that the administrative transfer was never formalized. Only after several collision
accidents due to unsatisfied overpass clearance height evidence of the bureaucratic
technicality. Finally, it collapsed in 2016 due to excessive degradation in the Gerber
half-joint, jointly with maintenance deficiencies, and overloading traffic not foreseen
in the original design. Additionally, the administrative unclear ownership affected
the readiness and coordination in post-emergency management [20]. On April 8th,
2020, a domino-type progressive collapse occurred for the 111-year-old slender RC
arch Caprigliola bridge located in Massa and Carrara, in Tuscany, on Magra river
[21]. No fatalities took place gratefully to the COVID-19 traveling restrictions of
that time. The most accredited chronicle of the disaster concerns local damage
which rapidly spread to the entire bridge. The true reasons for the collapse are
still unknown, nonetheless, the literature studies revealed a possible combination
of adverse conditions due to material degradation phenomena, overloading dur-
ing decades, Caprigliola-side slope slippage, and foundation differential settlements
[21]. In fact, the lack of proper robustness in the original design has meant that
the collapse of one span provoked a rapid spread of damage. This was because the
mutual arch stability conditions restraining the horizontal thrust among the spans
were missing. The “pendulum effect” [4] of all these bridge collapses led to a grad-
ual introduction of new structural codes to approach again the scientific world with
the practical structural engineering domain. Indeed, as a direct consequence of the
Polcevera Bridge collapse, the Italian Infrastructure Ministry and Transportation
promulgated on December 17th, 2020, the Decree No. 578, entitled “Guidelines
for the classification and management of risk, for the evaluation of safety and for
the monitoring of existing bridges”, in Italian, “Linee Guida per la classificazione
e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti
esistenti” (LG20) [22]. These guidelines provide systematic rules to ensure ho-
mogeneity in assessing risks and triaging the maintenance interventions of bridges
[11]. According to them, the vulnerability assessment has been split in a five-level
process:

6



1.1 – Scope and Motivations

• Level 0: census and geolocalization;

• Level 1: direct visual inspections both of the structure and the characteristics
of the area (geomorphological, hydrological, and hydraulic);

• Level 2: definition of the Attention Class (AC) related to potential risks on
parameters of hazard, vulnerability, and exposure, and multi-hazard hierar-
chical analysis;

• Level 3: carrying out preliminary assessments;

• Level 4: execution of accurate assessments (according to the Technical Stan-
dards for Construction);

• Level 5: network resilience, to be applied to bridges considered to be of
strategic importance.

Concerning the Italian buildings existing heritage, a short premise should be
made. Based on the OERCO21 technical report “1.2.1. Study Of Most Used
Materials In Italian Construction Sector”2, the Italian existing building heritage
is in a generalized old conservation state. Before 1920s, the most used building
typologies for residential purposes were exclusively masonry structures, combined
with timber employed for slabs and roofs. Starting around 1920s, load bearing
masonry began to be replaced even more often by reinforced concrete (RC) frames,
and afterwards leading to the RC frames predominance for new constructions after
1970s. As reported in Fig. 1.3, it is worth underlining that following the 15th
Italian National Institute of Statistics (ISTAT) general census of 20113 the prevalent
structural typology of existing building heritage is nowadays still represented by
masonry structures combined with timber slabs and roof, which are also the oldest
ones, and probably the most vulnerable ones. Luckily no recent catastrophic failure
occurred on buildings collapse due to degradation effects only in Italy, even though
two roof collapses have been documented in the literature lately. In Pieraccini et
al. [23], the collapse of a long-span steel trusses roof covering a school building in
Northern Italy collapsed in 2010 after an ordinary snowfall. Its completion dates
back to 2008, and despite the school was opened few month before the collapse in
2010, gratefully no fatalities occurred. The main probable causes were attributed
to the use of inadequate spherical joints and the use of an excessively brittle steel
material for bolts, spheres and members. Once again the anthropogenic factor was
pointed out as the responsible. Another partial roof collapse without causalities

1European Project Open Educational Resource (for CO2 emissions in construction industry).
2OERCO2 online technical report resource.
3Online data warehouse resource from the ISTAT 15th Population and housing census 2011.
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Figure 1.3: ISTAT 15th Population and housing census 2011 results: (a) Absolute
number of new constructions for various time spans. (b) Overview of how structural
typologies proportions varied for existing residential building heritage over time; (c)
Pie chart of the structural typologies of proportions at the 2011 census time.

occurred in 2004 in a two-story building located in Palermo, Sicily, during ordinary
maintenance activities aiming to realize a waterproofing layer [24]. The long-span
in-situ cast RC roof was constructed around 1950 and this time the collapse under
its self-weight was attributed to materials degradation issues, especially due to
corrosion of beams reinforced bars due to high carbonation levels.

Focusing on building existing heritage implies mentioning another emerging
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concern, i.e. related to the soil consumption issue. Land consumption is defined as
the transformation from a natural condition to an artificial ground covering [25].
The human activities involved are distinguished into permanent artificial covering
(e.g. urbanization) and non-permanent one (e.g. mining areas). Soil provides the
fundamental ecosystem for humankind’s survival and development. Nonetheless,
the often scarce mindfulness about the real intangible value of the soil led to hu-
man activities with degradation drawbacks resulting in prohibitive rehabilitation
costs. Therefore, nowadays conceptions impose to rethink the land as a limited and
non-renewable natural resource [25, 26]. The monitoring of soil consumption is per-
formed by the Italian National Institute for Environmental Protection and Research
(ISPRA) which yearly publishes official reports about the Italian situation [26]. Ex-
cessive soil consumption has strong and multiple impacts, for instance, soil sealing
resulting in the increase in hydro-geological risks, and social-economical impacts
with the reduction of agriculture activities, besides the climate and ecological im-
pacts with the biodiversity reduction. Due to Italy’s multi-colored geomorphology,
it is estimated that 91% of Italian Municipalities are affected by hydro-geological
risks [11]. European Commission in 2021 has compiled four cornerstones to be fol-
lowed in the soil consumption hierarchy attempting to accomplish with the United
Nations (UN) 2030 Agenda for Sustainable Development launched in 2015 [27]: 1.
Avoid soil consumption when it is possible; 2. Reuse already impermeable soils
before consuming new natural ones; 3. Reduce at the minimum the use of highly
natural land (such as forests or highly fertile grounds); 4. Compensation measures
should be activated to point toward the ideal zero consumption. Focusing on the
second point, an effective possible strategy to cope with the soil consumption miti-
gation, and even prompting sustainability aspects, should be promoting restoration
of the ancient existing building heritage, e.g. focusing on preserving historical cen-
ters from long-term degradation effects [28, 29]. On June 15th, 2023, in Turin
(Piedmont) the timber roof of the former Porta Susa railway station suddenly col-
lapsed4. The masonry construction built in 1856 was dismissed in 2009, after the
completion and opening of the new neighbouring Porta Susa underground railway
station. After hosting some convivial events, the historical building was definitely
abandoned in 2017. Despite some mild attempts to recover the nineteenth-century
historical building, the aging effects prevailed with the ancient timber roof collapse
in June 2023, probably due to water leakage. This represents one of the count-
less examples in Italy of historical buildings that should be worthy of restoring
and rehabilitating to ensure once again usability with today’s safety requirements
[29]. Other iconic examples still located in Turin are represented by two Pier Luigi
Nervi’s masterpieces which are completely abandoned nowadays, i.e. the Turin
Exhibition Center [30] and the Palace of Labour [31].

4From the Italian newspaper LA STAMPA.
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(a) (b)

(c) (d)

Figure 1.4: Some sadly collapses occurred in Italy. (a) Polcevera Bridge, Liguria,
courtesy of Maurizio Boi; (b) Fossano Bridge, Piedmont, reprinted from [17]; (c)
Caprigliola Bridge, Tuscany; (d) Former Porta Susa Station, Piedmont, reprinted
from LA STAMPA.

All the so far debated social and economic aspects motivate the growing and
significant demand for the scientific community to develop effective and innovative
smart SHM solutions to be implemented also in historical buildings and infras-
tructures, bestowing them smart features to increase their conservation ensuring
enough safety levels. In Japan, due to the severe seismicity, the SHM deployment
on buildings already started in the 1950s, but it actually began rapidly widespread
in recent years, afterward the 1995 Kobe earthquake [32]. In particular, before
the 2011 Tohoky earthquake, only 150 buildings were equipped with an SHM sys-
tem, and the number sharply rose to 500 in 2016. In 2018, it was estimated that
about 850 buildings were equipped with an SHM system, often installed volun-
tarily by owners in the private sector, counting about 700 out of the estimated
850 [32]. The previously documented bridge collapse cases evidenced how existing
bridges and viaducts are extremely vulnerable, especially to aging effects. Indeed,
the increasing load demand over time and in-situ structural material properties
changes adversely combine with environmental agents, often leading to rapid and
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extreme localized degradation phenomena when not properly treated. These un-
wanted events directly influence their load-bearing capacity, threatening their re-
liability and safety degrees. The lack of proper and timely maintenance programs
increases the probability of collapse of aged structures and infrastructures. For
instance, in 1979, Riccardo Morandi himself alerted about the durability aspects of
the Polcevera Viaduct. He foregrounded the highly aggressive environmental issues
of chloride attacks and elevated salinity rates due to geomorphological aspects of
the proximity to the seaside, and moreover, highlighting the aggressive chemicals
within polluted air due to the industrial activities of the surrounding area [3, 15].
Lack of proper and timely maintenance may have also a strong social impact. The
“social” costs of all road accidents in Italy, fatal or not, have been evaluated by
the Ministry of Infrastructures as 15 billion EUR in 2019. A percentage between
5-20% of this latter can be attributed to the poor road conditions, or indirectly to
the lack of sufficient driver’s time reaction to those unexpected road defects [11].

As reported in the infographic chart in Fig. 1.5, in the USA, the last decades’
governments efforts and investments within the infrastructure sector encouraged to
reducing the number of highway structurally deficient bridges from 12.1% in 2009
to 7.5% in 2019. The mentality progressively evolved from a total replacement of
old bridges toward a predictive maintenance approach [5]. However, there is still a
great deal to be done since the rate of improvements shrunk to only 0.1 annually in
last years. The FHWA estimated that the backlog for repairing the existing bridge
amounts to 125 billion USD, warning that the current rate of deterioration is exceed-
ing the rate of rehabilitation. Nonetheless, federal investments in bridges remained
quite stagnant in the last years. The Highway Trust Fund which historically funded
US bridges and road projects is primarily financed by fuels tax which remained sta-
ble at 18.3 cents per gallon since 1993 [5]. In the 2021 ASCE’s report, an economic
measure was suggested to increase the federal motor fuel tax over the next five years
to 24.4 cents. This may attempt fixing the Highway Trust Fund deficit, and further
ensuring reliable future funding, even accounting inflation rates [5]. Anyway, the
increasing mindfulness of maintaining the existing bridges instead of building new
ones has prompted also new attitudes concerning durability issues. Foremost, the
Americal Association of State Highway and Transportation Officials now mandates
that new bridges must be designed with a nominal life of 75 years rather than the
common 50-year approach. Secondly, the adoption of non-destructive evaluation
techniques, such as the ones fostered in the current Thesis, ensures minimal impact
on the existing structure whilst delivering the current health state of the structure.
Dynamic characterization and new technologies such as ground penetrating radar
(GPR), thermography and tomography, and unmanned aerial vehicles (UAVs) in-
spections, provide key insights to support optimal and efficient decision-making
processes. New bridges should be designed as “living structures” since sensors are
predisposed and embedded from the beginning, ensuring continuous feedback for a
global life-cycle assessment. Since it accounts for ongoing long-term costs besides
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upfront capital ones (e.g. construction cost), the life-cycle cost analysis (LCCA) is
nowadays vital for infrastructure asset management since it provides more realis-
tic economic predictions for stakeholders’ optimal budget allocation purposes [11].
The identification of damage at early stages ensures the prioritization of mainte-
nance interventions on the entire infrastructure network with an optimal allocation
of the limited resources, whilst guaranteeing generalized public safety. Moreover,
fair maintenance in the early stages of damage ensures repairing interventions at
a fraction of the cost rather than incipient-collapse rehabilitation operations [11,
33]. This efficient maintenance program timely preserving bridges in fair condi-
tions is estimated to reduce the number of structurally deficient bridges in the
US below 5%, besides decreasing the future maintenance backlogs [5]. Moreover,
the adoption of innovative materials may improve the infrastructure network re-
silience and durability, using e.g. high-performance steel and composite structures,
corrosion-resistant reinforcements, and ultra-high-performance concrete. Another
challenge to overcome is that every single structure is deteriorating at its own pace.
Therefore, a systematic database approach is required to effective manage the US
National Bridge Inventory (NBI). Novel Transportation Asset Management Plans
(TAMPs) are now required in the US to predict fair or poor bridges conditions in a
10-year future horizon, aiding cost-effective ways to timely addressing deterioration
phenomena [5]. NBI no longer tracks those bridges considered functionally obsolete
that do not comply with roadway geometry design or vertical/horizontal clearance.
However, it is estimated that these about 94,000 bridges in the US still represent
bottlenecks from a transportation standpoint [5], inducing traffic congestion and
higher traveling time, especially considering strategic transportation functions such
as fire trucks, ambulances, school buses, etc. As a direct consequence of the 2021
ASCE’s report card, the US Congress issued the Federal Infrastructure Bill Public
Law No. 117-58 on November 15th, 2021, better acknowledged as the Infrastruc-
ture Investment and Jobs Act (IIJA) [34]. This five-year investment plan recently
boosted the infrastructure sector earmarking globally 1.2 trillion USD across the
17 infrastructure categories studied by the ASCE in its quadrennial comprehensive
assessment of America’s infrastructures compiled since 1998. Concerning bridge
structures, the aim of IIJA is to modernize the asset management promoting life
cycle cost analysis, maintain and improving existing assets. 500 billion USD have
been designated in total over five years to road and bridge programs, whereof 40
billion in investments for the nation’s bridges. 27 billion USD have been imme-
diately devoted to about 15,000 most urgent bridges for replacement, rehabilita-
tion, preservation and construction programs. This will ensure that the number
of structurally deficient bridges will not increase despite those bridges will con-
tinue aging. In ASCE’s IIJA Recommendations for Effective Implementation, it
is claimed that the investment will boost over 100 new programs to improve and
modernize the existing infrastructure assets, including the Bridge Replacement, Re-
habilitation, Preservation, Protection, and Construction Program, the Rebuilding
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Figure 1.5: Infographic chart of nowadays USA infrastructure state and recent
investment efforts to support bridge rehabilitation programs.

American Infrastructure with Sustainability and Equity (RAISE) grant program,
and the Federal-State Partnership for State of Good Repair Grant Program, Fed-
eral Emergency Management Agency’s (FEMA) Building Resilient Infrastructure
and Communities (BRIC) grant program.

Considering the European continent, the comparative report “Overview of trans-
port infrastructure expenditures and costs” of EU commission [35] provided a sur-
vey of earmarking for operation and maintenance for roadways (OMR) over time.
In 1995, when the EU counted 15 Member States, the OMR expenditures were
about 44 billion EUR. Consider that in 1990s EU launched the Trans-European
Transport Network (TEN-T) program to develop Europe-wide transportation net-
work promoting safety, energy efficiency, and digitization [11]. However, due to
the financial crisis in 2008, a steady decrease was registered in the time inter-
val 2009-2016. About 38 billion for OMR expenditures has been recorded for the
28 EU Member States in 2016, just 86% than twenty years before [11, 35]. In
fact, the Great Recession and the following austerity policies reduced the available
resources for both new public works and maintaining the existing ones. It is es-
timated that the infrastructure funding gap affects a reduction of at least about
1% yearly of gross domestic product (GDP) of Member states [11]. Considering a
public policy perspective, one of the reasons for the infrastructure sector funding
backlog can be ascribed as an information deficit. It is often difficult to retrieve
quality data related to infrastructure maintenance. These data involve the asset’s
inventory such as location, current health status, age, exposure to hazards, us-
age volumes, etc. This knowledge is essential to prioritize multi-year budgeting
for ordinary and extraordinary maintenance [11]. Also in the American context,
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there is a similar issue, since there are still infrastructure sectors where data is
scarce or unreliable (e.g. school facilities), still suffer from a lack of inventory of
assets or robust condition information [5]. An important challenge for next future
is to improve information transparency avoiding potential asymmetry at all levels
of governments, state-owned enterprises, and private companies to improve bud-
geting preparation and consistency in infrastructure expenditures for multi-year
strategic plans [11]. Focusing on the Italian scenario, the first attempt to gather
all the critical information of the whole portfolio of national infrastructure net-
work assets occurred in 2018 with the establishment of the National Archive of
Public Infrastructures (AINOP), in Italian, “Archivio Informatico Nazionale delle
Opere Pubbliche”, Law Decree No. 109 of 28 September 2018 (“Decreto Genova”).
Nonetheless, in Italy there are some intrinsic governance issues producing a slow
approach to investment decision-making, i.e. the progressive decentralization of
infrastructure spending on one side, and a progressive depowering of the institu-
tional agencies on the other side. In Italy, sub-national public administrations are
responsible for over half of public investments, however, their role did not always
achieve local financing empowerment, thus justifying the necessity of maintain a
certain degree of centralization, especially for EU funding opportunities [11]. In-
deed, Italy as a Member State should accomplish to EU directives and programs.
Therefore, there is also a progressive transition from emergency or episodic mainte-
nance toward a more systematic predictive maintenance mindfulness. Nonetheless,
there is still a great deal to be done especially in the roadway system rather than
the railway one. A few years ago, 250 million EUR were yearly earmarked for
ANAS. However, without any multi-year strategic financial plan, this funding was
just enough to cover the most urgent critical issues, thus preventing any long-term
strategy [6]. Unfortunately, Italy faced a longstanding infrastructure investment
gap, further intensified after the 2008 financial crisis, registering a decrease in pub-
lic expenditure on capital investments from 4.6% of GDP in 2009 to only 2.9% of
GDP in 2019 [11]. Moreover, the multiple numbers of different companies acting
on road asset management jointly with Italian bureaucracy complexity represent
an obstacle to shared and common conservation rules, resulting in lengthiness and
countless downtime of authorization paths. Italian Agency for Territorial Cohesion
estimated that, for projects under 100,000 EUR costs, the authorization process
last on average more than 2 years, whereas it lasts over 15 years for more expen-
sive works [11]. In 2016, the Italian legislation attempted to modernize the bridge
inspection procedures which dated back to Ministerial Circular n°6736/61/A1 of
July 19th, 1967 [6], involving filling out inspection reports. In order to seek trans-
parency, simplification, and reduction of works completion time, Italian legislation
enacted the Legislative Decree 50/2016 “New Code of Public Contracts”, and later
in 2019 Law Decree 32/2019 Decree “Unlock Construction Sites”, in Italian “Sblocca
Cantieri” which reformed of Public Contracts Code to simplify public works pro-
cedures, followed by Law decree 76/2020 converted into Law 120/2020 denoted as
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Simplification Decree, in Italian “Decreto Semplificazione” which promoted digiti-
zation of public administration and envisaging the transfer of ownership of bridges
and overpasses on secondary roads to ANAS. Therefore, as a consequence of the
latter law, the number of bridges under the ANAS control reached 18,602 in total.
In July 2016 a new multi-year financial plan for ANAS allocated 23 billion EUR
over the 2016-2020 time-span, ten times the normal yearly funding for maintenance
purposes [6]. This permitted the introduction of the ANAS’s BMS in 2017 within
the predictive maintenance Road Asset Management (RAM) model, envisaging the
large scale adoption of structural health monitoring systems divided into multiple
levels of control and deepening. The term asset management identifies all those
procedures acted to ensure that an asset (structure) operates in a way that en-
hances the asset’s life, in order to fulfill present and long-term requirements, whilst
optimizing its maintenance and management costs, balancing among competing pri-
orities [36]. An SHM system is not a decision-making tool per se, but it can provide
real-time crucial information to support an effective asset management policy. This
latter strongly depends on the decision-making process performed at each stage of
an asset’s lifecycle, thus impacting subsequent stages and the entire lifetime as-
set’s organization. Other data and information that bridge managers can obtain
to support decision-making are visual inspections and non-destructive evaluation.
Bridges within an asset management network are categorized into three classes,
i.e. core, intermediate, or advanced, based on their risk profile and every special
criticality. A continuous and fully operational SHM system requires a significant
money investment to deploy sensors and maintain the data collection and interpre-
tation system over time. An example of a cost-benefit analysis is reported in [37],
which discusses the implementation of a long-term SHM system on the cable-stayed
Mezcala bridge case study in Mexico. The SHM economical effort represents the
main drawback that limits its large-scale application. Therefore, in an optimal
asset management strategy only strategic structures, i.e. those belonging to the
advanced class, should be equipped with a complete SHM system that justifies the
capital investment [33, 36]. In fact, high-risk artifacts have the potential to result
in considerable cost savings for the stakeholders. SHM is not meant to replace
visual inspection but provides more objective insight which combined with visual
inspections, thus delivering important elements to support decision-making tasks.
Furthermore, it is advisable to perform a decision-mapping procedure in advance
to optimize the SHM system plan accounting for the major vulnerabilities of the
specific artifact under investigation. It is worth underlining that it should be clear
in mind that infrastructure is a system of systems, interconnected and interdepen-
dent, therefore an effective challenge for next years is to encourage the creation and
utilization of infrastructure data sets across classes [5, 11]. Similarly, SHM is a part
of the entire infrastructure preservation chain to which it is delegated the impor-
tant task of dynamically “understanding” the risk evolution and identifying when
and where any damage occurs [36]. Considering those aspects, smart investment
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will ensure an SHM transition into commercially viable asset management policies,
with a clear future vision for our infrastructure heritage. Recently, Europe financed
several research and innovation projects to address significant improvements and
renewals of the infrastructure sector. For instance, the European Commission Joint
Research Centre (JRC) established an exploratory research project denoted Mon-
itoring Transport Infrastructures with Connected and Automated Vehicles (MIT-
ICA), carried out in the period 2020-2022, to investigate the indirect SHM (iSHM)
[38]. The main idea is to explore innovative infrastructure motoring methods based
on vehicle-bridge interaction and the deployment of sensor-equipped vehicles to in-
directly retrieve the bridges’ health state. In 2019 European Green Deal introduced
a set of policies and directives leading toward a green transition. This is in line
with the Sustainable Development Goals (SDGs) stated in the UN 2030 Agenda, as
summarized in Fig. 1.6. Public administrations and rating agencies started adopt-
ing Environmental, social, and corporate governance (ESG) standards to evaluate a
potential investment in the infrastructure sector, even incorporating key social and
economic aspects to forecast future service demands [11]. Italy is currently imple-
menting the National Recovery and Resilience Plan (NRRP), or in Italian “Piano
Nazionale di Ripresa e Resilienza” (PNRR) to be fulfilled by 2026. This massive
investment program of 235.14 billion EUR for Italy, part of the Next Generation
EU (NGEU) program, has been allocated to 6 missions aiming to three principal
aims, viz. digitization, ecological transition, and social inclusion. In particular
mission 3 denoted “Infrastructure for sustainable mobility” earmarks 31.4 billion
EUR for empowering the railways system, especially regional tracks in Southern
Italy and high-speed lines [11]. However, the main EU funding limitation is often
an unintended effect of investing in new goals whilst daunting maintenance expen-
diture for existing assets, in fact, not prioritized within the NRRP program. The
infrastructure maintenance funds are currently financed by the Italian Complemen-
tary Fund with 300 million EUR [11]. Nonetheless, among the emerging priorities
of safety and modernization, these investments can be effectively introduced in the
infrastructure sector for smart SHM solutions with InfraTech solutions and new
technologies [11]. Investing policies for higher resiliency and modern infrastructure
presents benefit-to-costs ratios greater than 1, opening new opportunities to opti-
mize the assets’ diagnostic monitoring and risk assessment, enabling cheaper and
less invasive repairing interventions, reducing environmental impacts and fostering
innovation friendly and sustainable management frameworks [11].

Another crucial aspect of the current historical period is represented by the
overwhelming digital revolution which fosters innovative and original artificial-
intelligence-based (AI) solutions. The roles of smart cities are rapidly changing and
drastically evolving due to the effective integration of Internet of Things (IoT) tech-
nologies and Machine Learning (ML) solutions. The digital revolution is rapidly af-
fecting the Civil Engineering sector since new mobility technologies, increase public
safety and quality of life, whilst accomplishing new requirements for environmental
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Figure 1.6: Infographic chart of Italy infrastructures and recent European invest-
ment support.

protection, and in the meanwhile still ensuring economic growth opportunities and
contained cost of living [39]. New and emerging InfraTech and digital technologies,
such as digital twins, AI, ML, IoT, and UAVs among the others, can revolution-
ize the way our structures and infrastructures are designed, build and maintained
[38]. Novel AI-assisted SHM can be applied to all the different stages of structure
and infrastructure life cycles, i.e. considering the construction phase, in-service
and management conditions, maintenance, etc. heightening the infrastructures to
a new intelligent transportation systems (ITS) [40].

Therefore, with those motivations and big picture perspective, the present The-
sis encloses the results of research conducted during the three-year Ph.D. Program
at Politecnico di Torino. The present document attempts in its own way to con-
tribute with some new slight step forward within this vast and multidisciplinary
research field unpretentious of being completely exhaustive. Once again, it is worth
emphasizing that every implication, related aspect, and consequence of developing
innovative research in the SHM field involves the entire society at different levels
and not only a prerogative of technical professional circles. Supporting research for
innovation and modernize our structure and infrastructure heritage prompts cost
saving in the digital era, whilst promoting long-term sustainability in economic,
social and environmental terms [5].
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1.2 Machine learning perspectives in structural
engineering

In the last decades, the increase of computational capabilities increasingly promoted
the adoption of data-driven methodologies in structural engineering, fostered by the
advent of innovative Artificial Intelligence (AI) solutions [41]. However, these latter
are often blamed to be black box methods with the lack of proper interpretability, in
contrast to the traditional structural engineering field characterized by transparent
analytical, numerical, experimental, or phenomenological methods [41].

AI and ML are strongly related fields. Specifically, ML represents a sub-field of
the vastest AI world, as depicted in Fig. 1.7. The term AI identifies that computer
science branch attempting to artificially reproduce biological processes like human
intelligence, thus synthetically replicating cognition and logic [41]. Conversely, the
term Machine Learning (ML) indicates a family of methods that automatically
permits acquiring information and knowledge from the unformed mass of avail-
able data, then allowing to make predictions (inference) for new and previously
unobserved quantities [42, 43]. ML is often described also as those methods whose
rules have not to be explicitly implemented (hard-coding), but they are derived
directly from the information contained in the data under investigation [43]. From
a terminology standpoint, the term data denotes any raw collected quantity that
hardly conveys any meaning as it is, whereas information represents the outcome of
the data-processing task delivering meaningful summaries of interest [44]. Instead,
in the broader conception of the term information, knowledge means the human
understanding of a certain phenomenon resulting from an integration of human per-
spectives and the conducted analyses to obtain some meaningful conclusions [44].
Knowledge can be described as a tripartite concept [44]: 1. Know-why, denoting
the understanding of the phenomenon under investigation; 2. Know-what, denoting
cognition or recognition of the underlying mechanisms occurring, thus describing
the phenomenon under study; 3. Know-how, meaning the resulting capacity of
choosing a proper action based on the acquired understanding of the phenomenon
under study.

Since the huge amount of prolific studies and applications in the last decades
sharing the adoption of artificial neural networks and their variants and deriva-
tives, the Deep Learning (DL) subfield has been separately recognized within the
ML area. In recent years, an evolving area of study has been identified as the Data
Science subject, being the diminutive of data-driven science [44]. It comprises theo-
ries and multidisciplinary application-domain techniques drawn from mathematics,
statistics, computer science, machine learning, and database fundamentals, encom-
passing all those methods aimed to extract knowledge from data, i.e. from the data
preparation, reasoning, and mining, until the interpretation of the applied intelli-
gent models’ outcomes. Furthermore, as illustrated in Fig. 1.7, since the nowadays
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availability of low-cost sensor devices and fast communication technologies, a new
multidisciplinary field called Big data has emerged within the Data science area,
and the methods, tools, and technologies developed to deal with those data have
been formalized into the data analytics domain [44].

ML is preferred when dealing with complex problems with large amounts of
data, in which traditional approaches do not yield good solutions, or because hard
coding is an impracticable way since a huge number of complicated rules should be
carefully explicitly programmed. Furthermore, ML reveals another its great poten-
tial when working in a fluctuating environment, i.e. when the model has to adapt
to new data [43]. In their literature review [41], Tapeh and Naser explained that
first traces of research studies concerning AI applications in structural engineering
date back to late 1980s, and considering last 20-year studies, four main research
themes transpired:

• Definition of data-driven phenomenological models;

• Prediction of structural behavior;

• Analytical description of physical phenomena;

• Computer vision applications for image or video data.

Computational methods can be classified in two main groups, denoted respectively
as hard computing and soft computing. Whilst the foremost adopt hard-coding
and explicit analytical forms, the latter employs approximate or implicit methods.
Moreover, the various computational techniques can differently categorized into [41,
45]:

• White box: uses explicit and well-established functional relationships;

• Grey box: partially based on theoretical understanding or prior knowledge
and on a data-driven part;

• Black box: based on complex implicit relationship hard to interpret, often
completely data-driven.

Often, the majority of AI procedures, especially the ones concerning the use of
DL architectures, fall within the black box procedures. As stated in Tapeh and
Naser [41], AI has been extensively adopted to address three main structural engi-
neering problems. The foremost concerns modeling problems, especially to predict
the structural behavior or the mechanical properties of structures. Secondly, the
majority number of studies were about simulation problems, including simulated
damage and SHM of structures, even encompassing seismic effects. Thirdly, another
densely populated research field is represented by structural optimization problems.
It is worth mentioning that soft-computing methods, especially the meta-heuristic
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gence, Machine Learning, Deep Learning, Reinforcement Learning, and Generative
Intelligence, and their connections with Data Science and Big Data.

optimization algorithms, represent another branch of AI related to computational
intelligence, since they are inspired by Mother Nature’s intelligence mimicking in-
herent mechanism of biology, physics, genetics, etc. [46, 47, 48, 49, 50]

The following subsections constitute a useful basis for the further chapters of
the present Thesis, introducing a brief theoretical review, reporting the main fun-
damentals and general remarks about ML and DL fields.

1.2.1 Machine learning techniques remarks
In essence, a ML method frequently deals with defining a generic model 𝒚(•) whose
variable parameters are inferred in a data-driven way on the so-called training set
𝒙. The input data are usually preprocessed and often undergo a feature extraction
stage. The training data are usually expressed in a tabular form [41], and each
row is called an instance, or an observation, or a data sample. The total number
of rows indicates the size of the dataset, whereas the number of columns denotes
the dimensionality of the feature space. The features are also named attributes, or
measurements, and they characterize each sample. The precise form of 𝒚(𝒙) is es-
tablished through the training phase by quantifying how well the optimized model
predicts the observed data. The training phase is the learning process, whereas the
capacity to predict well new and previously unseen test set data is acknowledged
as the generalization capabilities of the model [51]. The ML approaches are intrin-
sically statistical and probabilistic-based since the uncertain nature of the learning
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task [42]. The ML approaches can be categorized into three main different pro-
cedures according to the type of available data, thus also influencing the learning
process peculiarities:

• Supervised learning : describes the relationship between input data and their
known targets (labeled data);

• Unsupervised learning : labels do not exist for data (unlabeled), therefore it
attempts to describe intrinsic relationships among data;

• Reinforcement learning : conceptually different than the other ones, it is
based on an intelligent agent that learns the optimal action policy to receive
the maximum reward based on feedback retrieved by the environment [52].

Focusing on supervised learning, a classification problem is when the goal is to as-
sign input data to a finite number of targets, whereas a regression problem is when
the output target consists of one or more continuous variables [51]. In unsupervised
learning, a clustering problem is set when the goal is to discover groups’ similarities
within the data, whereas it is a density distribution estimation task when the distri-
bution of data is investigated. A dimensional reduction problem is an unsupervised
learning technique that projects data from their original domain toward a new sub-
space. It may be useful both for visualization purposes or because it is hoped that
the ML problem would be easier to solve in the new resulting subspace [51]. Other
unsupervised learning applications include detecting anomalies or novelties for new
incoming instances based on the information learned from starting available data
[43]. The term ML becomes a synonym of data mining when it is used to deeply
explore large amounts of data with the aim of discovering new insights and hidden
patterns [43]. It is worth mentioning that there exists also another branch be-
tween supervised and unsupervised learning denoted as semi-supervised learning.
This latter involves datasets where only a few instances are labeled, whereas the
majority of them are available without any a priori label [43].

As depicted in Fig. 1.8, other criteria exist to categorize the different types of
ML methods besides the nature of the available data [43]. The learning process
is known as online learning when the ML model can learn incrementally from a
stream of incoming data. In this case, data instances are feeding the model sequen-
tially, or in small groups defined mini-batches. Online learning is ideal when dealing
with continuous flow of data which require rapid and autonomous adaptations. In
this case, it is fundamental to control the learning rate parameter, i.e. governing
the adaptation speed rate of the ML model. Online learning is called out-of-core
learning when the user is forced to use it due to physical limitations of computa-
tional resources, e.g. when it is necessary to train big datasets which cannot fit
all together at one time the machine memory. On the other hand, when the ML
system is incapable of learning incrementally, the learning process is acknowledged
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as batch or offline learning. In this case, the model has to be trained on all data,
thus often requiring larger computational resources and time. However, when new
input data become available, the old trained system with batch learning must be
completely replaced, i.e. a totally new model should be trained from scratch again.
Another possible way to categorize ML methods is based on the way they gener-
alize, which directly involves how input data samples are used to build knowledge
[43]. The most trivial approach is named instance-based learning, meaning that
the ML learns from available examples, and then generalizes to new instances by
comparing them with previously learned samples based on some similarities met-
rics. Instead, a model-based learning approach rely on a trained and optimized
mathematical model on available data, and uses it to make inference and predic-
tions for new previously unseen instances. In this case, a model selection phase
must be performed to find the optimal model based on a utility or fitness function,
or conversely, usually based on a cost function.

The typical workflow in ML project is depicted in Fig. 1.9. The first step con-
cerns the input features preparation involving incomplete samples elimination or
imputing missing values, the selection of relevant features for the problem under
study, and the reduction of the dimensionality of the data. A ML model should be
trained on a sufficient amount of data to work properly, otherwise, the sampling
noise may largely affect the pattern recognition task rather than the information
contained in the available data [43]. Moreover, these data must be representative
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of the problem under investigation in order to generalize well on new instances.
A significant time investment is normally pursued to clean up raw data and to
perform feature engineering tasks, i.e. selecting and extracting relevant features.
An essential preprocessing transformation is converting all raw data attributes into
numerical data to properly feed the ML model. Various options are available when
dealing with categorical features. The most trivial method is converting the fea-
ture using a one-hot encoding scheme. This produces an increase of the feature
space creating a sparse matrix for every single categorical attribute, thus introduc-
ing several dummy features equal to the number of possible categories. For each
sample, only one dummy attribute is equal to 1 and all the others are 0, hence the
name one-hot encoding. However, if the number of categories is large, as a rule of
thumb greater than 50 [43], the one-hot encoding will result in an excessive number
of input features, possibly compromising the training process performance. When
one-hot encoding is no longer a doable option, it is advisable, especially in the DL
field, to replace each category with a learnable and low-dimensional vector, des-
ignated as embedding. Special categorical features are named ordinal categorical
attributes since an ordered relationship among categories exists. In this case, a
label-to-integer encoding scheme could be a viable option, once the user has sorted
the feature categories in increasing order of importance. Conversely, categorical fea-
tures are named nominal variables when any existing ordering relationship among
categories do not exist. For nominal categorical variables another possibility could
be performing a label-to-integer encoding, followed by a proper scaling procedure.
In this way, the categories converted into integer values are scaled to a common
scale to avoid a possible biased learning, i.e. preventing categories associated with
greater integers will affect more the training process [43]. Indeed, with few excep-
tions, the best practice is always to scale every single feature column to a common
order of magnitude range [53, 54]. Two main scaling schemes are usually adopted.
The min-max scaling converts each 𝑗-th numerical feature column in a way that
each 𝑖-th sample lie in a [0,1] support, i.e.

𝑥′
𝑖𝑗 =

𝑥𝑖𝑗 −min(𝒙𝑗)
max(𝒙𝑗) − min(𝒙𝑗)

, (1.1)

whereas, the standard scaling normalizes the feature column in a [−1,1] range,
being 𝜇𝒙𝑗

and 𝜎𝒙𝑗
the mean and the standard deviation of the 𝑗-th feature column

respectively, i.e.
𝑥′
𝑖𝑗 =

𝑥𝑖𝑗 − 𝜇𝒙𝑗

𝜎𝒙𝑗

, (1.2)

Subsequently to the data preparation phase, the next step is to split the data
into a training set and a hold-out test set. Indeed, the best way to check how
the model generalizes well is to test the trained model on new previously unseen
data [51, 55], and calculate the resulting generalization error rate through specific
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Figure 1.9: The typical ML project workflow.

metrics. However, generally a ML model should be trained using as much as possible
of the available data to maximize its training performance [43]. Therefore, the
preponderant part of the dataset is designated to the training set, with a common
split rate of 80%, and consequently, the remaining 20% of the dataset is assigned
to the test set. As illustrated in Fig. 1.9, the term hold-out means that the test
set is hidden away and it does not contribute at all in the entire learning process.
The test set comes into play only in the final evaluation part, i.e. when the ML
model has been already trained and optimized and its generalization capabilities
are checked. The training/test splitting proportions are not strictly fixed and they
depend on the size of the dataset. For instance, considering a very large dataset of
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dozen millions of instances, then even holding the 1% could be enough to estimate
generalization errors. It is worth underlining that the specific manner to split
data depends on their internal distribution. In fact, for an imbalance classification
problem [56, 57], it may be necessary to adopt specific sampling schemas, such as
e.g. a stratified sampling strategy, in order to pseudo-randomly assign data to the
training and test sets, but maintaining the initial proportions among classes of the
original dataset. Moreover, to avoid a biased split of data, it is advisable to perform
a random shuffling before the training/test split step.

Generally, ML models should be trained using as much as possible of the avail-
able training data. As defined in [43], a model is a simplified representation of
the observations. This means that superfluous information has been discarded, by
making some assumptions, to push better generalization capabilities to new in-
stances. In 1997, Wolpert and Macready [58] stated the famous “No-Free Lunch
Theorem”, explaining that whether no assumptions a priori are made on the data,
there is no reason to prefer a model over the other alternatives. Therefore, there is
no model that a priori works better than others, and the user should ideally test all
existing models to choose the best one. However, since it is not practically possible
to test all the algorithms, the user should make some reasonable assumptions and
choose a bunch of algorithms expected to work fine for the specific problem under
study, and eventually compare them to choose the best performer. The hold-out
test set metrics could be used to contrast various ML models in order to select the
best one. Nonetheless, since the definition of the specific form of a ML model is
often characterized by a wide choice of hyperparameters a priori, it may be prefer-
able to automatize the comparisons among different models whilst considering their
hyperparameter tuning directly embedded along the training phase. It is worth re-
minding that a hyperparameter is a parameter controlling the learning algorithm
and not the model itself, despite they characterize the exact form of the ML model
[43]. Therefore, the training process optimizes the parameters of the model whilst
the chosen hyperparameters are not changed because of the training procedure.
Therefore, a further hold-out split with a usual size proportion of about 10% is
performed within the training set only, thus separating a validation set used for
the model selection purposes [43, 59, 60, 61]. Nevertheless, if the extracted vali-
dation set is too small, it can provide a noisy and non-representative estimate of
the predictive performances [51]. Furthermore, training and evaluating the mod-
els always on the same validation set may bias the choice for the best performer,
preferring the one which works better on that particular validation set only rather
than the one with the maximum generalization capabilities [43]. Accordingly, the
training set is divided into a number 𝑘 of equally sized folds. Each fold then serves
as a training set and validation set throughout a process known as 𝑘-fold cross-
validation [55]. Therefore, the training set should be split into 𝑘 equal subsets,
and each fold was used for training and validation. Specifically, one fold is chosen
as a validation set while the remaining 𝑘 − 1 folds are used for training. It has
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Table 1.1: Confusion matrix for a binary classification problem.

Predicted Class
Positive (P) or class 1 Negative (N) or class 0

Actual Class Positive (P) or class 1 True Positive (TP) False Negative (FN)
Negative (N) or class 0 False Positive (FP) True Negative (TN)

been demonstrated in previous studies that the stratified cross-validation with 10
folds delivers smaller bias whilst limiting the variance even when computational
capabilities virtually permit for more folds [62]. Anyway, this process leads to 𝑘
different models constructed with different hyperparameters sets, and each one is
trained on a distinct subset of data. The exploration of the hyperparameters pos-
sible values is denoted as hyperparameter tuning process. In contrast to the naive
empirical trial-and-error hyperparameter exploration procedures, some systematic
techniques have been developed in the last decades, such as e.g. the grid search
method or the random search approach combined with cross-validation procedures
[43, 42, 60, 61]. Classification metrics across the various folds are then collected and
averaged to enable a fair comparison of such different ML models. In practice, the
cross-validation procedure offers a means to compare entirely distinct ML models,
thereby pinpointing the predictors that consistently deliver the best performance
on average and exhibit robust responses across different segments of the training set
[63]. Finally, afterward the training phase and the final evaluation on the hold-out
test set, the final model can be deployed for the inference stage, also named as the
recall phase, i.e. using the optimal model to deliver its predictions based on the
learned knowledge for new incoming data.

Several evaluation metrics are used in ML context depending on the type of
problem. According to Ferri et al. [64] nomenclature, evaluation metrics can be
regrouped in three main categories: threshold, ranking, and probabilistic metrics.
The foremost threshold metrics are used commonly with ML classifiers and they are
based on a qualitative description of error, on which an acceptable threshold could
be set to minimize the error. Focusing on a supervised binary classification problem,
the most adopted way to inspect the results is through a confusion matrix which
counts the number of actual predicted samples with respect to the actual labels
ground truth, as reported in Tab. 1.1 [43, 61]. The classification error rate 𝐸𝑟 can
be computed as

𝐸𝑟 =
𝐹𝑃 + 𝐹𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
, (1.3)

whereas the classification accuracy 𝐴𝑐 can be computed as

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
= 1 − 𝐸𝑟, (1.4)

Out of the total classifications, accuracy reflects what percentage is truly positive.
Accuracy has some well-known limitations when dealing with imbalanced datasets.
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This is because high accuracy values are achieved when the classifier is completely
biased toward the majority class. Therefore, the true positive rate 𝑇𝑃𝑟 and false
negative rate 𝐹𝑁𝑟 are preferred when dealing with imbalance classification prob-
lems, i.e.

𝑇𝑃𝑟 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑁
, (1.5)

𝐹𝑁𝑟 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
, (1.6)

Similar definition can be obtained for the 𝑇𝑁𝑟, which is also called specificity.
Moreover, the precision and recall metrics have been considered associated with

the confusion matrices of the current trained models. The precision estimates the
number of samples that were correctly classified in a certain class over the total
number of samples which have been truly associated with that class

P = 𝑇𝑃
𝑇𝑃 + 𝑇𝑁

, (1.7)

whereas, the recall metric, or even known as sensitivity, indicates the number of
samples correctly associated with a certain class over the number of samples which
actually truly belongs to that class

R = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (1.8)

Recall gives the true positive rate. This is typically used to measure the coverage of
the minority class of major interest in imbalanced learning problems. The F1-score
represents a sort of harmonic mean of precision and recall metrics, therefore it is
widely used as a synthetic evaluation metric of the performances

F1-score = 2
1
P + 1

R
= 2 ⋅ P ⋅ R

P+ R
, (1.9)

and its generalization is also known as F𝛽-score or F-measure

F𝛽-score = (1 + 𝛽2) ⋅ P ⋅ R
𝛽2P+ R

. (1.10)

For handling with imbalanced datasets [56, 57], the balanced accuracy computes
the average of the percentage of positive and negative class instances correctly
classified, representing i.e. the average of the recall of the majority and minority
classes. This is commonly recognized as one of best metrics to synthesize the
classification performance over both classes in terms of recall values.

The ranking metrics are the second category of metrics according to Ferri et al.
[64], and they are based on how well the model ranks the examples. The receiver
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operating characteristic (ROC) curve is a positive-slope diagnostic graph used to
evaluate the performance of a classifier based on 𝐹𝑃𝑟 reported on the abscissa and
𝑇𝑃𝑟 reported on the ordinate axis. The ROC curve is computed by shifting the
decision threshold of the classifier, thus evaluating the models at different error
rates, delivering the proportions of instances correctly classified for a given false
positive rate (𝐹𝑃𝑟). Each model evaluated at different thresholds represents a sin-
gle point on the ROC graph. The main diagonal bisector line represents the no-skill
classifier, i.e. a classifier that provides a complete random guess on the resulting
prediction. Any point below the no-skill classifier performs worse than a random
guess. Instead, the perfect classifier would lie on the left upper corner of the graph,
i.e. when 𝑇𝑃𝑟 = 1 and 𝐹𝑃𝑟 = 0. The area under the receiver operating charac-
teristic curve (AUC-ROC) is the ranking metric resulting from computing the area
under the curve, whose ideal value is 1. A specular alternative to the ROC curve
is the negative-slope precision-recall curve (PRC), especially useful for imbalance
learning problems. The PRC is constructed computing precision obtained for vari-
ous degree of recall [56, 57]. This diagnostic graph explores the trade-off between
the well classified positive examples and the number of misclassified negative ones.
The slope of PRC is negative since P decrease as R increase. In this case, the
no-skill classifier is represented by an horizontal line whose precision corresponds
to the positive class proportion over the entire dataset. For a balance dataset it
would be 0.5. In this case, the perfect classifier is represented by the upper right
corner of the graph, i.e. when 𝑃 = 1 and 𝑅 = 1. Even in this case, a quantitative
metric is represented by the area under the curve (AUC-PRC).

The probabilistic metrics are the third typology of metrics according to Ferri
et al. [64], specifically designed to quantify the uncertainty in the predictions of
a classifier. For instance, the mean absolute error (MAE) is the average absolute
deviation between between paired predictions 𝑦𝑖 and ground truth observations 𝑦𝑖,

MAE = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖|, (1.11)

in which 𝑛 is the number of samples in the test set. In practice, MAE measures
the distance between two vectors corresponding to the 𝐿1-norm, also denoted as
‖•‖1, and even named Manhattan norm [43]. The mean squared error (MSE), also
known as Brier score [64], is the squared version of MAE, i.e.

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, (1.12)

The root mean squared error (RMSE) corresponds to the Euclidean norm, the
typical notion of distance, denoted as 𝐿2-norm or ‖•‖2. MAE and MSE could be
considered a probability metrics when the predictions probabilities are compared
with the true probabilities [64]. The most widespread probability metrics is the
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cross-entropy or also named negative log likelihood (LogLoss) which measures the
difference between two probability distributions. For a binary classification prob-
lems it is given by

𝐻(𝒚,𝒚) = LogL = −1
𝑛
[

𝑛
∑
𝑖=1

𝑦𝑖 ⋅ log(𝑦𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦𝑖)] . (1.13)

MAE, MSE, and RMSE are typically employed to evaluate regression problems.
Moreover, besides all the traditional statistical diagnostic tools such as the residual
graphs, the classical indicator of goodness of fit, i.e. the coefficient of determination
ℛ2, is also typically employed with regression problems.

Overgeneralization represents a pitfall that has to be carefully checked and con-
trolled. Technically speaking, the overfitting problem occurs when a selected model
performs outstandingly on the training set, but it dramatically fails in generaliza-
tion over hold-out test samples [43, 42]. The overfitting issue may appear due to the
adoption of an excessively complex model, i.e. with a high number of parameters,
relative to a noisy and small training set [43]. Indeed, it may happen that the noise
level will contribute mostly to the learning process, hiding the real information car-
ried on by the data, thus losing sight of the real learning goal. In other words, the
overfitting issue arises when prediction errors exhibit low bias on training data but
with a high variance with test data, [42]. The term bias indicates the non-negative
squared difference between the target average output and the algorithm average
output, whereas variance is a non-negative quantity that measures the predictions’
variability concerning the targets [65]. In other words, the bias can be attributed
to that part of generalization error due to wrong assumptions, whereas variance
indicates if the model is highly susceptible to small variations in training data [43].
The curse of dimensionality may be another cause for overfitting, i.e. arising when
training set have a huge number of features with respect to the number of available
samples [43]. Besides gathering more training data which is often costly or even
impossible, a viable option to mitigate overfitting issues is to constrain the model
parameters’ values. This method is denoted as regularization and it works by im-
posing certain hyperparameters directly to govern and limit the level of complexity
of the model. On the contrary, the underfitting problem arises when an excessively
simple model is used to learn the actual hidden patterns underlined by training data
[43]. In other terms, underfitting arises when training samples are characterized
by a high bias and the test predictions exhibit a low variance around the biased
target [42]. The optimal model complexity should be obtained by minimizing the
validation error, i.e. characterized by the best tradeoff between the prediction bias
and variance, a condition known as bias-variance tradeoff [42, 65].

The training phase of a ML model involves solving a minimization problem for
a learning cost function to find the best fitting parameters for the available training
set [43]. Several optimization problems have been formalized in mathematics in the
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last century, specifically within the Operation Research fields. The mathematical
programming methods involve a set of design variables even subjected to a number
of constraints. The stochastic method involves problems with a set of random vari-
ables with known probability distribution. Statistical methods involve experimental
data analysis in order to create empirical models of which laws best represent the
data. The classical optimization approaches are usually related to gradient-based
or mathematical methods. They are called classical methods to distinguish them
with respect to the modern meta-heuristic approaches and because they are mathe-
matically “well-posed” methods. Despite an example of a closed-form learning cost
function that could be represented by the least square method for linear regression
problems, in the ML area it is typical to employ iterative optimization methods.
The gradient descent algorithm is a classical optimization algorithm that measures
the local gradients of the cost function for a certain model’s parameters vector and
finds the negative steepest direction in which adjusting parameters in the next it-
eration to progressively minimize the learning cost function [43]. For a supervised
ML problem, a simple example of cost function 𝐽(𝒘) could be the sum of squared
errors (SSE) [61], being 𝒘 the 𝑚 parameters of the model,

𝐽(𝒘) = 1
2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖), (1.14)

in which 𝑛 is the number of training data. The gradient descent algorithm involves
computing the gradient ∇𝐽(𝒘) at iteration 𝑗 to update the weights at the next
(𝑗 + 1)-th iteration with the following update rule:

𝒘(𝑗+1) = 𝒘(𝑗) +Δ𝒘 =𝒘(𝑗) − 𝜂𝜕𝐽(𝒘)
𝜕𝒘

= 𝒘(𝑗) − 𝜂∇𝐽(𝒘), (1.15)

∇𝐽(𝒘) =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑤0

𝐽(𝒘)
𝜕

𝜕𝑤1
𝐽(𝒘)
⋮

𝜕
𝜕𝑤𝑚

𝐽(𝒘)

⎤
⎥
⎥
⎥
⎦{𝒙,𝒚}train

. (1.16)

In the update rule in Eq. (1.15), the learning rate 𝜂 is the key parameter of the
gradient descent algorithm. It is crucial to properly tune this hyperparameter be-
cause it directly governs the size of update steps among the iterations. When the
learning rate is excessively large, the algorithm will jump around the optimal set
of parameters never reaching the real global optimum, whereas, conversely, if it is
extremely small, the algorithm will require a huge amount of iterations to reach
convergence [43, 61]. If the cost function is a convex function, this mathematically
ensures the existence and uniqueness of a global minimum, and the gradient de-
scent method is theoretically proven to always approach, sooner or later, the global
minimum [43]. The above equations denote the so-called batch gradient descent or
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full gradient descent algorithm, since the derivatives computed in Eq. (1.16) are
evaluated over the whole training set at every iteration step. Nonetheless, since
this method could be very slow, especially with large datasets, the stochastic gra-
dient descent (SDG) method has been proposed. To overcome this limitation, it
randomly selects only a single training sample (e.g. for online learning) or a small
subset of samples (mini-batch gradient descent) at every step to compute gradients
[43, 61]. However, the training process would be noisier because only a few pieces
of information are used to update weights at every step. On the other hand, this
method allows out-of-core learning for limited machine memory and huge datasets.
Furthermore, SDG is preferred when dealing with irregular cost functions, since
its randomness nature naturally aids the algorithm to avoid being stacked and en-
trapped into local minima. By convention, to not entrust only in a single instance,
SDG algorithm is run with a round of various iterations, and each round is called
an epoch [43]. Moreover, the training set should be composed of independent and
identically distributed instances to ensure that SDG pushes parameters toward the
global optimum. To approach this condition, it is advisable to perform a shuffling
of the training set at every epoch. SDG has an indirect effect of regularization.
In fact, despite it perform worse on training set than classical gradient descent, it
often provide comparable or even better performance on test set [60]. In mini-batch
SDG, the algorithm accounts for a batch 𝐵 = {𝑗1, ..., 𝑗𝑚} of training points for the
ML parameters update, providing a good trade-off among stability and speed of
the algorithm [60],

𝒘(𝑗+1) = 𝒘(𝑗) +Δ𝒘 = 𝒘(𝑗) − 𝜂∑
𝑖∈𝐵

𝜕𝐽(𝒘)|𝑥𝑖

𝜕𝒘
(1.17)

To further optimize the algorithm, the learning rate can be adapted during it-
erations, enhancing exploration of the parameters’ space at the beginning of the
algorithm whilst improving local exploitation approaching the optimum. There-
fore, the learning schedule is a function that adaptively adjusts the learning rate,
similar to what happens in meta-heuristic algorithms [46].

As previously stated, due to the “No free lunch theorem”, the user has to select
a number of ML classifiers in order to be quite confident of the choice of the best-
performing model. Every ML algorithm comes with its own set of advantages
and disadvantages, and it is not possible to know a priori how it will perform.
Therefore, when working with ML, it is always extremely important to train and
compare different models and not only entrust a uniquely individual learner. Fig.
1.10, illustrates some of the most widely adopted ML techniques. In brief, some of
the most widely adopted classifiers are the following:

• 𝐾-nearest neighbors (KNN) [66]: it is a supervised ML algorithm that classi-
fies data points based on the majority class among their𝐾-nearest neighbours.
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Figure 1.10: List of some ML algorithms according to the learning methods.

• Linear support vector machine (Linear SVM) [67]: it is a classification algo-
rithm that finds a hyperplane that separates data into different classes. It is
especially effective for linearly separable datasets.
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• Radial basis function support vector machine (RBF SVM) [68]: it is a vari-
ant of the corresponding linear version that implements a radial basis func-
tion kernel to handle non-linearly separable data. It maps data to a higher-
dimensional space in such a way to improve the separation among the classes.

• Decision tree (DT) [69]: it is a supervised algorithm in which the learning
process implements a divide-and-conquer strategy by conducting a greedy
search that identifies the optimal split points within a tree.

• Random forest (RF) [70]: it is an ensemble learning method that combines
multiple decision trees to improve predictive accuracy and to reduce overfit-
ting.

• Neural network (Neural Net) [71, 45]: they consist of layers of interconnected
nodes (neurons) that mimic how the human brain works.

• Adaptive boosting (AdaBoost) [72]: it is an ensemble learning method that
combines weak classifiers to create a strong classifier. It focuses on improving
the classification of difficult-to-classify examples.

• Naive Bayes [73]: it is a probabilistic classification algorithm based on Bayes’
theorem where the features are assumed to be conditionally independent each
other.

• Quadratic discriminant analysis (QDA) [51]: it is a classification method that
models the distribution of each class as a quadratic shape. It’s a more flexible
variant of the corresponding linear version and is especially suitable when the
classes have different covariance matrices.

• Logistic regression (LR) [74, 51]: it is a supervised statistical-based method in
which the posterior probability of one class is formulated as a logistic sigmoid
function taking as argument a linear function of the features. Contrary to its
name, the LR is a classification model born for binary classification tasks.

• Linear discriminant analysis (LDA) [75]: it is an analytical closed-form clas-
sifier that does not require any hyperparameter tuning. It represents a gen-
eralization of Fisher’s linear discriminant method [51], and it aims to find a
linear combination of features to linearly separate classes in a classification
scheme.

Instead, the unsupervised learning techniques also deserve special attention
since the vast majority of data are unlabeled. One of the most widespread meth-
ods is represented by clustering techniques [43]. Formally, the clustering analysis
aims to group a dataset 𝒟 = {𝒙1,𝒙2, ...,𝒙𝑛} into 𝑘 disjoint subsets denoted by
𝐶1,𝐶2, ...,𝐶𝑘 [76]. All samples are assigned to a finite number of groups, similarly
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to a classification task, but this time in an unsupervised manner, i.e. identifying
instances that are similar enough to be grouped together and simultaneously be-
ing sufficiently different from other groups. Practically speaking, based on some
similarity metrics, the main idea is to minimize intra-cluster distances among sim-
ilar samples, whereas maximizing inter-cluster distances among different groups
[77]. Different types of clusters can be formalized. Hard or categorical clustering is
the process of producing exhaustive clusters in which every sample belongs to one
and only one cluster, and conversely, it is denoted as soft clustering when samples
are associated with clusters with a certain degree of membership. K-means is an
example of a hard clustering algorithm, whereas mixture modes are an example
paradigm of soft clustering [76]. Both hard and soft clustering are also denoted
as partitioning or flat clustering to distinguish them from hierarchical clustering.
This latter produces a set of nested clusters organized in a hierarchical tree, also
known as dendrogram [78], in a way that clusters can be regrouped into finer parti-
tions of lower level or into super-clusters at higher levels [76]. The term relational or
similarity-based clustering arises when data are organized in a way to establish pair-
wise relationships between data points instead of the traditional vector of features.
Alternative distinctions among clustering methods can be stated according to the
clustering criterion [76]. Probabilistic model-based clustering involves techniques
to describe the distribution of data, such as finite mixture approaches or nonpara-
metric Bayesian approaches. On the other hand, cost-based clustering methods
minimize a cost function, and a further subdivision can be performed according to
centroid-based algorithms, such as K-means, or spectral clustering which analyzes
similarity metrics among data. A further distinction can be obtained considering
between parametric and nonparametric clustering techniques.

Among unsupervised learning techniques, some of them are often used in the
feature engineering phase, i.e. the dimensionality reduction techniques for the fea-
ture space. Two main approaches prevail within dimensionality reduction tech-
niques [43]. The foremost are denoted as projection techniques since the training
instances originally belonging to a high-dimensional space are projected toward a
lower-dimensional subspace. The second branch is represented by manifold learn-
ing, meaning that a d-dimensional manifold is a portion of an n-dimensional space
that locally can be assumed as a d-dimensional hyperplane, with 𝑑 < 𝑛. Based
on often observed empirically manifold hypothesis, the process of modeling the
training space through manifolds is known as manifold learning. The principal
component analysis (PCA) is the most famous dimensionality reduction projection
method that aims at reducing the number of feature dimensions while preserving
as much valuable information as possible while still able to describe the dataset
with a controlled information loss [66, 79, 80]. Since the entropy is a measure of
the information content, the basic assumption of PCA is that the total variance
of the dataset is not explained equally by all dimensions of the dataset. Thus,
through a singular value decomposition (SVD) of the dataset matrix, this latter
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is projected with a linear transformation onto the eigenvector space [79, 80]. If
some components have low variance, it is possible to truncate the SVD at a lower
dimension delivering a projection onto a reduced subspace without a detrimental
information loss. In order to contain the information loss associated with the di-
mensionality reduction, it is advisable to select a proper number of components
providing a sufficient explained variance ratio (EVR). The EVR is the ratio of the
variance explained by the single component over the total variance [79]. To further
speed up the traditional PCA some alternatives have been formulated, e.g. the
randomized PCA which reduced the computational complexity, or the incremental
PCA which permitted using a mini-batch approach avoiding heavy computation
using the whole dataset [42]. Alongside those linear projection techniques, many
other nonlinear projection methods exist, such as the kernel PCA, the locally linear
embedding (LLE), random projections, multidimensional scaling (MDS), isomap,
t-distributed stochastic neighbor embedding (t-SNE), and linear discriminant anal-
ysis (LDA) [42].

According to Tapeh and Naser’s literature review [41], the most adopted AI-
based algorithms within structural engineering studies are the artificial neural net-
work, the genetic algorithm, the genetic programming, and the support vector
machine, respectively. The first two appear in about 56% of the over 4000 research
records of the last decade. This witnessed the still relevant and topical study sub-
jects of SHM and structural optimization. Moreover, this underlined the large
versatility of neural networks and genetic algorithms applicable for a wide range of
problems, and even their well-established and mature development, often preferred
over other black box solutions. The dataset size dimension in the structural engi-
neering field exhibited remarkable variability. The majority of studies worked with
a number of 100-300 instances, but there are also some sporadic studies dealing
with over 10,000 samples [41]. This fact highlights the common difficulties expe-
rienced within Civil Engineering of acquiring sufficient high-quality data sources
for properly training and tuning heavy and sophisticated ML models, thus forcing
researchers to foster simple models or other statistical-based alternatives rather
than testing the innovative and latest ML trends. Therefore, the scarce availabil-
ity of open-access data for specialist structural engineering applications, jointly
with missing AI code sharing, strongly limits the possibility of a fair comparison
among similar studies based on shared validated benchmarks [41]. This challenge
should be addressed as a priority in the next future to project AI-based struc-
tural engineering research toward a more transparent, ethical, and reproducible
scenario. Indeed, a greater understanding of actual underlining physical and me-
chanical mechanisms, jointly with a clearer ML model interpretation which aid a
deeper exploration and new insights, must be favored in AI-based structural engi-
neering research field rather than embracing the “chased accuracy” culture, often
unveiled in many nowadays AI-related studies [41].
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1.2.2 Deep learning subfield
Despite the early origins of neural networks dating back to the 1940s, they were
rediscovered in the 1990s, only when available technologies were able to satisfy the
computational efforts required [81]. Many deep learning architectures were devel-
oped over years to cope with different demands in all aspects of human life which
arises due to the astoundingly beginning of the digital revolution and artificial in-
telligence or information age [82, 83]. Considering the Scopus’ literature search
service, according to the search query “Deep Learning” and “Structural Health
Monitoring” extended to all bibliographic fields, about 4000 documents have been
found in total. Fig. 1.11 (a) illustrates how the research topic started to gain inter-
est from 2012 and it is still nowadays a vibrant research area. Indeed, nowadays,
the actual research level lies in the growing branch of this curve and it seems to
exhibits an exponential growth with a very sharp slope, demonstrating that the
research level is only at the beginning. This fact motivates the aim of the cur-
rent study, i.e. it attempts to outline and critically discuss the adoption of the
most recent DL techniques in SHM with a particular focus on civil engineering
structures, emphasizing the pro and cons of the various techniques. Further min-
ing the Scopus search results with the above-mentioned query, as depicted in Fig.
1.11 (b) the majority of the studies belongs to the Engineering field (about 35%),
highlighting the wide range of successful DL applications to SHM. In the second
place, the Computer Science field appears (about 20%) illustrating how the machine
learning and deep learning architectures are still under development with everyday
improvements to deliver more reliable models, with hopefully less computational
efforts. This second place points out how the above two main sectors are nowadays
strongly interconnected, with fruitful competencies exchange for the great aim to
provide future smart structures and infrastructures, more reliable and safe. Most
of the considered studies are journal articles (about 73%), whereas about 17% are
conference papers and only the 7.6% is related to review papers, which indicates
still few works to exhaustively catalog and discuss the most recent developments.
Still focusing on the above-mentioned search query results, considering the Pareto
chart illustrated in Fig. 1.12, it is possible to show that China appears to be the
most prolific country which investigated DL applied to SHM (about 1652 published
documents), followed by the USA (about 852 documents). Setting the limit of in-
terest to 80% of the cumulative frequency value, the actual most active countries
which riding high in that topic are 16 countries, in which Italy is placed at the 7th.

The deep learning subject represents a subpart of ML as illustrated in Fig. 1.7,
standing out by the adoption of artificial neural networks (ANN) and its derivative
architectures as learning models. The origins of ANN date back to early studies
in Neuroscience and Biology (neurobiology) around the 1940s aimed to physiologi-
cally explain how the human brain and neurological system works [45]. In 1943, the
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neurophysiologist McCulloch and the mathematician Pitts [83] described the first
functional schema of human neuron cell, acquiring the name of McCullock-Pitts
(MCP) neuron [61]. As illustrated in Fig. 1.13, a biological neuron is an elongated-
shaped cell composed of a cell body nucleus surrounded by branches called den-
drites with a longer peripheral part protected by a myelin sheath denoted as the
axon. This latter ends up with final branching extensions named telodentria with
a micro-structure terminations denoted as synaptic terminals. Neuronal activity is
provoked by electrical signals or chemical processes generally called synapses, which
represent how stimuli and communication occur among neurons. Specifically, input
signals coming from other neurons through synapses are captured toward dendrites
and transferred to the cell nucleus to be processed. Afterwards, action potential
signals, i.e. short electrical impulses, travel through axons reaching the neurotrans-
mitters [43]. When the cumulated stimuli overcome a certain threshold in the axon
terminals, the neuron is activated, meaning that new synapses are fired toward
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subsequent neurons. On the contrary, the neuron cell will inhibit the received stim-
uli without activating any synapses toward other neurons [83, 45]. MCP neuron’s
mechanism evidences a one-way direction of information flow transmission. More-
over, it represented the strong basis of further neurocomputing studies, since it was
employed to solve logical propositions. In 1957, Rosenblatt [82] introduced for the
first time the perceptron, also denoted as threshold logic unit or linear threshold
unit, i.e. the first artificial neuron considered as an information processing unit
[43]. An illustration of the Rosenblatt model is reported in Fig. 1.13. In Rosen-
blatt’s perceptron rule, both input and output values are numerical values. The
perceptron computes a weighted sum of input data 𝒙, from all 𝑛 input synapses,
combined with learnable synaptic weights 𝒘. Then, to evaluate if neuron is active
or not, the perceptron output 𝑧 is given by a nonlinear activation function 𝜙(•)
evaluated on the previous linear combination. Specifically, in original Rosenblatt’s
rule the activation function was the Heaviside or step function 𝐻(•), thus limiting
the neuron output being only an hard class threshold ±1, i.e.

𝜙(𝑎) = 𝐻(𝑎) = {
0 if 𝑎 < 0,
1 otherwise.

(1.18)

From a mathematical standpoint, in order to consider also possible constant val-
ues in the linear combination, a first weight 𝑤0, is normally incorporated with a
fictitious unitary input 𝑥0 = 1. This introduces a bias neuron representing the
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Figure 1.13: MCP neuron model and Rosenblatt’s perceptron model.

invariant part of the prediction, and 𝑤0 is called bias 𝑏 [60] The perceptron input-
output relationship can be formalized as follows [43, 45, 61]:

𝑧 = 𝜙(𝒘𝑇𝒙) = 𝜙(
𝑛
∑
𝑖=0

𝑤𝑖 ⋅ 𝑥𝑖) = 𝜙(
𝑛
∑
𝑖=1

𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏) . (1.19)

The training process of an ANN aims to find the best set of synaptic weights, fol-
lowing the update rule presented in Eq. (1.15). However, in original Rosenblatt
neuron, the optimization was done heuristically by minimizing the number of mis-
classifications, e.g. considering a least square loss function [60]. Moreover, a single
Rosenblatt neuron acts as a simple linear binary classifier, i.e. with linear deci-
sion boundary (similarly to logistic regression or decision tree algorithms). In fact,
given a linearly separable dataset of observations, when the output is positive the
sample will belong to a positive class, otherwise, it belongs to the negative class.
Therefore, the Rosenblatt neuron was unable to solve even simple but slightly com-
plex problems such as the “exclusive logical or” (XOR) classification tasks [43, 61].
To overcome this strong limitation and tackling more sophisticated problems, the
multiple-layer perceptron (MLP) computational graph model has been formalized
by stacking several perceptrons together, actually giving rise to the advent of deep
learning field. In MLP, the computing units are arranged in various layers, viz. an
initial input layer, a final output layer, and an arbitrary number of intermediate
layers denoted as hidden layers [43, 61]. The number of hidden layers used de-
fines the depth of an ANN [61]. The various neurons of each single layer are fully
connected with all the other neurons in the immediately following layer, hence the
name of feed-forward neural network (FNN). Within the DL field, an ANN is de-
noted shallow neural network when it presents one or two hidden layers, whereas it
is a deep network when more hidden layers are configured. Dataset fed the ANN by
the input layer, whose number of units is equal to the number of features. However,
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these dummy neurons have no learnable weight associated since they only act to
transmit data features to the subsequent computing layers. Layers spatially close
to the input layer are described as lower layers, whereas on the opposite they are
denoted as upper layers. The various 𝑘 hidden layers fulfil the role of providing
recursive non-linear transformations of the input features [84]. The output of the
first hidden layer can be expressed as

𝒉1 = Φ(𝒘𝑇
1𝒙). (1.20)

being 𝒘1 the weight connections vector of the first hidden layer, whereas the output
of the 𝑖-th layer is accordingly given by

𝒉𝑖 = Φ(𝒘𝑇
𝑖 𝒉𝑖−1). (1.21)

The results of the output layer 𝒐 can be expressed as

𝒐 = Φ(𝒘𝑇
𝑘+1𝒉𝑘). (1.22)

The success of MLP layer-wise architecture and also the subsequent unstoppable
overwhelming improvements in the DL field owe their origins to the groundbreak-
ing enhancement in the ANN training algorithm, which is still adopted nowadays.
Indeed, in 1985, Rumelhart et al. [85] illustrated the backpropagation method to
effectively optimize DL architectures. In practice, it is based on a two-step version
of the gradient descent algorithm. Foremost, using the initial randomly initialized
weights, the input data are transmitted into the network with the feed-forward
approach until reaching the output layer and computing the loss or error function.
It is crucial to initialize weights randomly to break the symmetry and avoiding
that the entire layer behaves like a single unit [43]. Afterward, a backpropagation
algorithm computes gradients based on the network’s final error with a backward
chain-rule process, i.e. with successive derivatives, until reaching the input layer.
In this way, with the second backward passage, it is possible to quantify the actual
contribution of each single weight connection to the final computed loss, and there-
fore adopting the above gradient descent parameter update rule at the end of every
training epoch, see Eq. (1.15). This process also known as reverse-mode automatic
differentiation, or reverse-mode autodiff, is particularly efficient when dealing with
few outputs, in this case one single loss function, and many variables, i.e. all the
synaptic weights connections [43]. In summary, the training dataset is divided into
mini-batches, and one at a time, is forward passed computing loss for every in-
stance. Backward pass with chain rule computes all weights’ contributions to the
final loss function until reaching the input layer. Through those iterative steps,
gradient descent algorithm trains the MLP architecture until convergence. In fact,
any ANN can be seen as a mere computational graph that establishes the compo-
sition of simple functions, which can be simply unpacked with nested chain rule in
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the backpropagation process [60]. For MLP trained with the backpropagation rule,
different activation functions can be adopted to both avoid discontinuities in the
first derivatives, such as in the Heaviside function, and further introduce a more
powerful nonlinear capabilities. Common monotonic activation functions include
[84, 60, 61, 86]:

• Linear (or identity) activation function: it is the identity function with do-
main and codomain ℝ, useful for regression tasks,

𝜙(𝑧) = 𝑧; (1.23)

• Logistic sigmoid function: it is a regular, i.e. continuous and differentiable,
S-shaped function with domain ℝ and codomain [0,1],

𝜎(𝑧) = 1
1 + 𝑒−𝑧 ; (1.24)

• Hyperbolic tangent function: it is a regular S-shaped function with domain
ℝ and codomain [−1,1], it is a scaled version of the logistic sigmoid function
𝜎(•) from which it depends in turn, i.e.

tanh(𝑧) = 2 ⋅ 𝜎(2𝑧) − 1 = 𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧 ; (1.25)

• Rectified Linear Unit (ReLU): it is continuous but not differentiable in the
origin and its derivative is zero in the negative part of abscissa axis, however
it is fast to compute and widespread used,

ReLU(𝑧) = max(0, 𝑧); (1.26)

• Softmax function: it is a generalization of the logistic sigmoid function, it
is adopted only in the output layer, and it allows computing probabilities of
belonging to a certain 𝑖-th output class than the other 𝑚 possible ones for
classification problems,

𝜙𝑠(𝒛) =
𝑒𝑧𝑖

∑𝑚
𝑗=1 𝑒

𝑧𝑗
. (1.27)

All units in the same layer use the same activation function [60]. A two-layer MLP
can theoretically approximate any function if a sufficient number of hidden units
are employed, however, like any ML model, overfitting and underfitting issues may
arise. Furthermore, despite their great capacity and versatility, their inner com-
plexity requires careful design to avoid any issues even when dealing with large
datasets [60]. Overfitting can be fostered by a large number of parameters, in
this case, a regularization can be useful to constrain the model using few non-zero
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parameters. A possible approach is the Tikhonov regularization, which consists
of applying a penalty to the loss function of the type 𝜆‖𝒘‖2, with 𝜆 > 0. This
regularization directly affects the parameter update rule, acting as a sort of grad-
ual forgetting typical of biological neural networks, which forget less important,
i.e. noisy, patterns progressively [60]. Another form of regularization is the early
stopping process, which restricts the parameter space, and consequently stops the
gradient descent algorithm before reaching convergence. In practice, holding out
a validation set from the training set, when the error on the validation set starts
rising, the early stopping terminates the learning process [60]. Moreover, increas-
ing the depth of a MLP rather than increasing the number of neurons for every
layer acts as a sort of regularization, since features in the last upper layers depend
on the already processed information provided by the initial lower layers (hier-
archical features). Nonetheless, besides longer training time required, deep ANN
presents new two opposite issues, i.e. the problem of vanishing or exploring gra-
dients. In fact, the chain-rule local derivatives in backpropagation process can
exponentially decay or increase with backward pass with very long path, causing
an unstable parameter updating process, especially affecting the initial lower layers
[60]. Therefore, it is worth reminding that any ANN is merely a repeated com-
position of certain types of functions, and this fact increase the ANN capacity of
representation power to approximate any arbitrary function [60]. However, not any
function can be used in ANN, in fact the above examples of activation functions
have been carefully designed with certain properties to works efficiently in the DL
field. For instance, a MLP with only linear activation functions it was demonstrated
that it trivially reduces to a single-layer MLP performing a linear regression task
[60]. This fact enforces the importance of using nonlinear activation functions,
which ensure nonlinear mapping of data pointing toward desirable behaviors, for
instance, that non-separable data become linearly separable in the hidden feature
space [60]. In traditional optimization, the main problem is stacking in local sub-
optima rather than converging toward global optimum [46]. The optimization of
ANN is a strongly nonlinear problem with several local optima. However, this lat-
ter issue is of secondary importance than the nonlinearities issues which can often
compromise the convergence of the entire training process. However, in the ANN
field, a good choice is sometimes starting from sub-optimized networks using an
approach denoted pretraining [60].

Besides traditional MLP architecture presented so far, it is possible to relax the
definition of ANN referring to any computational graph. In fact, it is possible to
consider unconventional architectures where inputs are fed directly to hidden layers
and not only in the first input layer, or conversely, retrieving the loss computation
at any hidden nodes, especially for regularization purposes. Skip or residual con-
nections represent a clever unconventional ANN architecture stratagem introduced
to speed up the training process. Considering a certain layer with a set of incoming
input features, these features are duplicated and follow two different fork paths.
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One path fed the layer which traditionally processes them delivering the output
results. Instead, the other path, i.e. the residual connection, directly transfer
input features to be combined with the layer’s processed output. This was demon-
strated as being extremely helpful during training, especially at the beginning of
the learning process, because of acted as a sort of identity function. The unpro-
cessed information helps to speed up the learning process even when the weights of
the layers are close to zero, when instead normally this fact would slow down the
backpropagation process due to the vanishing gradient [43, 59].

Starting from MLP, massive research efforts and relevant developments pro-
vided some types of ANN architectures which rapidly became widespread and a
common standard nowadays in the DL field. The perceptron represented the basic
building block to construct more sophisticated ANN, whose architectures have been
specialized in recent years often starting from insights and reasoning on the type
of data and the problem to address [60]. For instance, text in a sentence requires
considering a certain degree of correlation between successive words, or, focusing
on an image example, pixels in a certain neighborhood are correlated with each
other. Digital images are grid-structured data with a reference system origin in the
upper-left corner, with the ordinate axis downward and the abscissa axis rightward
[87]. Every grid position stores an integer numerical value called a pixel, and the
pixels’ grid density level defines the resolution of an image. In practice, gray-scale
images with an 8-bit encoding are matrices with pixel values between 0 to 255 cor-
responding to its brightness level representation, from black to white respectively.
Instead, colored images are encoded as three-dimensional tensors, with the first two
dimensions defining its resolution, and the third dimension equal to three, called
depth or number of channels, related to the red-green-blue (RGB) color scheme
representation. Again, with an 8-bit color depth, pixels vary between 0 to 255 for
each color channel defining their intensity. RGB images are based on the additive
property of color space, meaning that the 256 resulting shading for every color chan-
nel permits representing about 16 millions of possible colors [87]. Any computer
interprets two images as distinct when their pixel representation is different, even
though for the human eye the same object is depicted but e.g. shot from different
points of view or with varying brightness levels, a property of image data called
translation invariance [60]. Convolutional neural networks (CNNs), in the early be-
ginning named neocognitron, were inspired by the neurobiology studies about the
brain’s visual cortex starting in the 1960s. However, they rapidly emerged in the
computer vision field only in the 1980s-1990s gratefully to the technological and
computational power improvements making their training feasible [43]. Around
the 1960s, thanks to experiments for mapping the visual cortex activity of cats and
monkeys [88], scientists discovered the concept of a receptive field of a neuron. In
practice, many surface neurons tend to react only to visual stimuli that lie in a
small region of the visual field. Moreover, their receptive field may have different

43



Introduction

Input RGB 
images

Convolutional 
Layer

Max-pooling
Layer

Convolutional 
Layer

Max-pooling
Layer

Fully Connected 
Dense Layers

Figure 1.14: CNN example workflow.

sizes and tend to overlap each other in order to provide all together the total image
in the visual field. Another biological-based insight was related to the specialized
role of some neurons. For instance, some cells capture only horizontal lines, whereas
some other else captures inclined lines, and so on. Furthermore, deeper neurons
with larger receptive fields may capture complex patterns by combining patterns
of specialized surface neurons with small receptive fields, thus evidencing a sort
of hierarchy among visual cortex cells [43]. These neurobiological discoveries pro-
vided the basis for the development of CNNs, able to work with grid-structured or
tensor-like datasets such as digital images. In general, as illustrated in Fig. 1.14,
a CNN can be decomposed essentially into two parts: a first part acting as an
automatic feature extractor essentially based on the convolution operation, and a
second MLP-like part feed-forward dense final layers [61]. In the CNN context,
every 𝑞-th layer can be represented as a three-dimensional tensor with height 𝐿𝑞,
width 𝐵𝑞, and depth or number of channels 𝑑𝑞. The word depth is normally used
to express the layer position 𝑞 within the ANN, whereas the tensor third dimension
𝑑𝑞 is preferably named as the number of channels. Without loss of generality, input
images are located in the initial layer 𝑞 = 1, typically characterized by the same 𝐿1
and 𝐵1, and with depth equal to 3 or 1 for RGB or gray-scale images, respectively.

In the automatic feature extractor part, convolutional layers and pooling layers
are two fundamental building blocks, firstly introduced in 1998 by Lecun et al.
[89]. This initial part is demanded to provide a feature hierarchy from low-level
feature patterns, such as capturing geometric primitives, vertical lines, horizontal
lines, etc., to deliver high-level and more complex feature patterns in deeper layers,
such as object shapes. Convolutional layers are designed to reproduce the receptive
field concept of the visual cortex. In a convolutional layer, artificial neurons are
conceived as a spatially arranged matrix to cover the input image spatial extension,
in contrast to the vertical array deployment of MLPs’ hidden layers. Since the
number of neurons is considerably lower than the number of pixels in the image,
the computational operations are characterized by relatively sparse connectivity
[61]. Indeed, every unit is connected to the input image according to a certain
receptive field area 𝐹𝑞 × 𝐹𝑞 × 𝑑𝑞, thus receiving information only from the patch
of pixels of its competence 𝐹𝑞 × 𝐹𝑞 for all the input channels 𝑑𝑞. It is desirable
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that neighboring neurons present some overlapping portions of their receptive field
to reduce overfitting [60]. To control the level of overlap, a hyperparameter 𝑆𝑞
denoted as stride can be defined, by default equal to 1 pixel. Therefore, the partially
overlapped local receptive field regions dowel the entire image, defining a certain
number of neurons located in a spatially arranged matrix. Following the neural
specialization to certain stimuli inspired by neurobiology studies, it is possible to
think that an entire matrix of neurons shares the same set of weights denoted
kernel or filter. In this way, every neuron focuses on a small part of the image,
and according to their filter weights, they specialize to capture a specific pattern
in that small region of interest. Every unit performs the convolution operation,
i.e. the dot product between the monitored pixels patch and the related filter. To
further inspect the input image for capturing a different pattern, a new matrix of
neurons can be considered like before, but with a new filter, i.e. with a different
set of weights. Therefore, in a convolutional layer, neurons can be conceptualized
as a tensor with a number of channels equal to the number of filters 𝑛𝐹 adopted.
Typically, the number of adopted filters is a power of two [60]. Therefore, in
general terms, the 𝑝-th filter in the 𝑞-th convolutional layer is a three-dimensional
tensor 𝑾 (𝑝,𝑞) = [𝑤(𝑝,𝑞)

𝑖,𝑗,𝑘 ], being 𝑖, 𝑗 and 𝑘 the height, width and depth of the filter,
respectively. The convolution operation from the 𝑞-th convolutional layer to the
next (𝑞 + 1)-th one is formalized as the dot product of the 𝑝-th filter 𝐹𝑞 ×𝐹𝑞 × 𝑑𝑞
over the entire input image 𝑯(𝑞) repeated in every valid position (𝑖, 𝑗), i.e.

ℎ(𝑞+1)
𝑖,𝑗,𝑝 =

𝐹𝑞

∑
𝑟=1

𝐹𝑞

∑
𝑠=1

𝑑𝑞

∑
𝑘=1

𝑤(𝑝,𝑞)
𝑟,𝑠,𝑘 ⋅ ℎ

(𝑞)
𝑖+𝑟−1,𝑗+𝑠−1,𝑘, (1.28)

where ∀𝑖 ∈ {1, ...,𝐿𝑞 − 𝐹𝑞 + 1}, ∀𝑗 ∈ {1, ...,𝐵𝑞 − 𝐹𝑞 + 1}, ∀𝑝 ∈ {1, ..., 𝑑(𝑞+1)},
indicating the compound of all the dot products as a three-dimensional tensor
𝑯(𝑞+1) = [ℎ(𝑞+1)

𝑖,𝑗,𝑝 ] denoted as activation or feature map, the analog of hidden states
in MLPs. It is noteworthy that, because of the duality between convolution and
cross-correlation operations, the convolution operation is substantially a correlation
operation in which the filter mask is rotated with a straight angle prior to the dot
product, thus using a flipped kernel [90, 61]. The different feature maps produced
by the adoption of 𝑛𝐹 different filters are stacked in the output tensor, which will
have a resulting number of channels 𝑑(𝑞+1) equal to 𝑛𝐹. The feature maps actually
represent pre-activation values which may undergo a one-to-one mapping through
an activation layer. The most used one is the ReLU activation for its benefits af-
fecting the training speed and accuracy. Therefore, the ReLU activation is usually
performed instantly after the convolutional layer, often implicitly embedded in the
convolutional layers’ computational graph representations [60]. From a symmet-
rical perspective, the convolution operation can be interpreted as the procedure
of placing the filter at each possible location on the image and computing the
dot product. The total number of filter’s possible spatial positions on the image,
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i.e. consequently the number of neurons, is determined once the filter dimensions
𝐹𝑞 × 𝐹𝑞 × 𝑑𝑞 and the stride hyperparameter 𝑆𝑞 have been fixed. The increase of
the latter hyperparameter will reduce the granularity of the convolution operation,
helpful when dealing with limited computing capacity machines. The output of the
convolutional layer presents a reduced size than the input image, which is not desir-
able to avoid losing information at the border of the image. Therefore, in order to
preserve the spatial input dimension in the resulting output volume, a half-padding
may be introduced in the input image. This means that a lateral padding frame of
entirely zero values of width 𝑃𝑑 = ⌊(𝐹𝑞−1)/2⌋ is added to the original image, hence
fictitiously increasing its size prior to the convolution operation. Another padding
alternative is denoted full-padding, meaning that the 𝑃𝑑 = 𝐹𝑞 − 1 is used. In this
way, the filter sticks out from the image in both directions leaving only 𝐹𝑞 − 1 of
both sides lying on the image in the first position, finally resulting in an increased
output size [60]. This kind of increasing size “reversed convolution” is employed for
autoencoders algorithm-type. On the other hand, a valid padding strategy means
that no fictitious padding 𝑃𝑑 = 0 is employed. Therefore, knowing the number of
filters 𝑛𝐹 used, the filters dimension 𝐹𝑞 × 𝐹𝑞 × 𝑑𝑞, the padding size 𝑃𝑞, and the
stride hyperparameter 𝑆𝑞, the output volume from a convolutional layer will have
an height 𝐿(𝑞+1) = (𝐿𝑞−𝐹𝑞+2⋅𝑃𝑞)/𝑆𝑞+1, a width 𝐵(𝑞+1) = (𝐵𝑞−𝐹𝑞+2⋅𝑃𝑞)/𝑆𝑞+1,
and a number of channels equal to 𝑛𝐹. The number of learnable parameters 𝑛𝑊 in
a convolutional layer can be computed as

𝑛𝑊 = 𝑛𝐹 ⋅ (𝑑𝑞 ⋅ 𝐹 2
𝑞 + 𝑏), (1.29)

in which 𝑏 can be equal to 1 or 0 if accounting or not the presence of an external
bias for every filter, likewise in MLP architectures. It is noteworthy that the above-
defined convolution is characterized by the equivariance to translation property.
This means that in order to capture a particular pattern or shape independently
where it spatially is located in the image requires processing all the receptive fields
in the same way. Indeed, this is done by sharing the weights of a certain filter
to all the neurons which process singularly small portions of the image to capture
that specific shape [60]. A schematic illustration of the working principles of the
convolutional layers is depicted in Fig. 1.15. Specifically, an input RGB image
is processed with two different 3x3 filters (𝐹𝑞 = 3), thus involving two layers of
neurons with a sparse connection with the input image. Furthermore, pairwise
neurons between the two layers share the same receptive field for all the channels
of the input image. However, the two layers of neurons are characterized by two
different sets of weights, which are shared among neurons belonging to the same
layer. Every computational unit performs the convolution operation between the
filter and its corresponding pixel patch, whose results are aggregated in the resulting
feature map. In the specific example, one filter represents a possible weight set to
specialize neurons in capturing horizontal lines in the input image, whereas the
second filter captures better vertical edges. Because two filters have been used,
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Figure 1.15: Illustration of convolutional layer working mechanism with two filters.

the output volume presents a stacking of two feature maps, i.e. with a number of
channels 𝑑(𝑞+1) = 2. These resulting feature maps evidence the special role of the
convolutional layer in performing an automatic feature extraction from the input
image, since the filters are learned during the training process to automatically
extract features of interest to address the problem under investigation. Moreover,
it is worth observing that consecutive deeper convolutional layers will increase the
global receptive field constructing a feature hierarchy. Every pixel of the feature
maps in a layer 𝑞+1 represents the results of neurons that already process a certain
receptive field on the original image at layer 𝑞. Then, when a deeper convolutional
layer 𝑞 + 1 places new neurons with a new receptive field on the previous feature
maps at layer 𝑞+1, they are actually extracting new features leveraging information
from an even larger receptive field on the original image 𝑞. Indeed, as shown in Fig.
1.16, despite three consecutive 3x3 filters being adopted on a 7x7 image, the global
receptive field will increase from 3x3 to 5x5 and 7x7 respectively. As demonstrated
in the example feature maps reported in Fig. 1.16, deeper convolutional layers will
combine primitive features detected on small regions in early feature maps because
of their enlarged global receptive field. In fact, two vertical or horizontal edge
detection filters applied consequently highlight how the deeper feature maps will
evidence longer detected vertical or horizontal lines.

The other building block of CNNs is represented by the pooling layer, at the
early beginning defined as the sub-sampling layer. The pooling layer works on the
activation map level by reducing the spatial volume in terms of height and width
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consecutive applications of the filters showed in Fig. 1.15.

but preserving the starting number of channel 𝑑𝑞. In the max-pooling layer, every
feature map from 𝑞-th layer is divided into several square regions of size 𝑂𝑞 × 𝑂𝑞
according to a certain stride 𝑆𝑞 hyperparameter. A certain degree of overlap is
again desirable to reduce possible overfitting issues [60]. Then, only the most re-
markable feature information is maintained in every squared region by retaining the
maximum value only. Therefore, the output size of the max-pooling layer will be
[(𝐿𝑞−𝑂𝑞)/𝑆𝑞+1]×[(𝐵𝑞−𝑂𝑞)/𝑆𝑞+1]×𝑑𝑞 [60]. Another possible pooling approach
is denoted as average-pooling retaining the average of the features in every square
region. However, max-pooling has been demonstrated to be more effective thanks to
their stronger non-linear effects, which help enhancing most important information
in activation maps whilst dropping the less important and probably useless data.
Indeed, convolution layers increase the global receptive field only gently, requiring
thus very deep networks to achieve satisfactory results, whilst the interleaved intro-
duction of the pooling layer radically boosts the learning by drastically increasing
the global receptive field [60]. In summary, the automatic feature extraction part of
a CNN is composed of two or three set of convolutional and ReLU activation layers
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followed by a max-pooling layer, as depicted in Fig. 1.14. This schema is repeated
to deliver deeper ANN, integrating e.g. skip connections between layers attempt-
ing to mitigate the vanishing or exploding gradients. The last tensor of the feature
extraction part is finally flattened before feeding a final dense fully connected part.
This MLP-based tail performs the actual specialization of the network being able
to solve classification or regression tasks, in the same manner as a MLP architec-
ture. In fact, due to the above-mentioned neuron-units tensor-like interpretation
of the feature maps, the flattening operation actually reshapes the last matrices of
neurons (final feature maps) with dimension 𝐿𝑞 × 𝐵𝑞 × 𝑑𝑞 in a way to creates a
final hidden layer with a number of units equal to 𝐿𝑞 ⋅𝐵𝑞 ⋅ 𝑑𝑞 . The next one or two
hidden layers are fully connected in contrast to the sparse connections of the auto-
matic feature extraction part. Furthermore, it is worth noting that this latter part
evidences the highest computational burden of CNNs in terms of memory require-
ments, large number of activations, huge number of connections, and large number
of weights to train. The training process of a CNN is based on the backpropagation
rule, which has to be specialized for the new building blocks of convolutional layers
and pooling layers. Considering the latter layer typology, the partial derivative of
the loss considers directly the maximum value in the backward pass if no overlap
is present in max-pooling layers, whereas it is necessary to consider effects propor-
tionally to different contributing overlapped feature maps’ patches [60]. On the
other hand, the convolutional layer performs a linear transformation which can be
seen as a form of matrix multiplication. Indeed, it is possible to demonstrate that
the gradients at a layer (𝑞 + 1) multiply the transpose of the filter, i.e. the weight
matrix, to obtain gradients at layer 𝑞 during the backpropagation procedure. With
a simple intuitive explanation, during convolution filter acts as shifting on the input
images, whereas during backpropagation, derivatives are computed with respect to
the input volume, whose relative movements concerning the filter are opposite than
before [60]. CNNs are computationally burdensome, and the usual millions of pa-
rameters to be trained may lead toward overfitting issues. Therefore, these models
are ravenous for data, and a common stratagem attempting to reduce overfitting
issues relies on a data augmentation procedure. As previously stated, since two
images are different for a computer if their pixel representation is distinct, simple
strategies such as translation, horizontal or vertical flipping, rotation, variation of
brightness level or color intensity, etc. can be adopted as effective data augmenta-
tion tricks [43, 60]. The computational efforts required to effectively train CNNs
limited their development, resulting in a research gap from 1998 until around 2010,
when Graphical User Interface (GPU) computation revealed its great potential for
overcoming the deep ANNs resource burden. Some CNN architecture milestones
developed after LeNet-5 (1998) are e.g. AlexNet, developed in 2012, Visual Geom-
etry Group VGG-16 and GoogLeNet, both released in 2014, DenseNet, conceived
in 2016, and nowadays state-of-art EfficientNet, implemented in 2019 [43, 60].
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Numerous different applications required to develop ML-based systems to work
with sequence of data. For instance, in SHM area, it is common to deal with time-
series data 𝒙𝑡, i.e. streams of multivariate 𝑑-dimensional data collected over time
𝑡. Sequential data rely on the implicit assumption that data at every single time
instant depend on past data. Furthermore, another implicit assumption is that time
series exhibit a certain level of stationarity, since their underlining properties are
practically constant over time. A mathematical model for dealing with time-series
should be able to convert earlier input data into hidden states, and leveraging them
to update the current hidden state 𝒉𝑡. This latter for instance can be expressed as
a function of the immediately previous hidden state 𝒉𝑡−1 and the current incoming
information 𝒙𝑡, i.e.

𝒉𝑡 = 𝑓(𝒉𝑡−1,𝒙𝑡). (1.30)

In the field of DL, recurrent neural networks (RNNs) were developed to deal with
this kind of data stream [60]. Indeed, RNNs receive incoming data 𝒙𝑡 at each
time-stamp and, accordingly, the current hidden state 𝒉𝑡 is adjusted at every time
instant, see Eq. (1.30). This latter relationship imposes a recursive self-loop of the
ANN architecture which progressively adjusts the hidden state whilst input data are
gradually processed. In fact, the computational graph of a RNN can be represented
with the so-called hidden representation, i.e. depicted as an MLP with an explicit
self-loop symbol, or it can be illustrated in the so-called time-layered representation,
meaning that the feed-forward MLP is unpacked explicitly showing all the hidden
states for the finite-length time series under study. Furthermore, RNNs gives also
the possibility to return an output result 𝒚𝑡 at every instant according to a distinct
function 𝒚𝑡 = 𝑔(𝒉𝑡), learning e.g. output probabilities from hidden states. The
stationarity assumption imposes that the functions 𝑓(•) and 𝑔(•) are the same at
every time instant. Despite this assumption may not be in perfect agreement with
real-world scenarios, this reflects its benefits on greater learning stability and regu-
larization effects [60]. To ensure using the same functions for the entire time series
length, weight parameters are shared in all the recursive steps, clearly evidenced by
the multiple connections depicted in a time-layered RNN representation. Therefore,
backpropagation must take into account both the weight sharing and the tempo-
ral length of the time series, denoting a specific process called backpropagation
through time (BPTT). The possibility to return outputs at every instant inspired
RNNs to address forecasting applications, i.e. devoted to predicting future states
of a system based on previous past observed states. For instance, RNNs have been
applied to language modeling next-word prediction in a sentence. Instead, leverag-
ing the recursive nature of Eq. (1.30), RNNs have been subsequently modified to
model a function of variable-length inputs. Indeed, starting from an initial state
initialized to a constant vector 𝒉0, the next time-stamp state can be expressed as
𝒉1 = 𝑓(𝒉0,𝒙1), and, consequently, the next state indirectly depends on the pre-
vious data and directly depends on the new inputs 𝒉2 = 𝑓(𝑓(𝒉0,𝒙1),𝒙2), and so
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on. Therefore, RNNs are considered Turing complete [60], meaning that if sufficient
computational resources and data are provided, the RNN can theoretically simulate
any algorithm. Nonetheless, the basic RNN structures evidenced severe general-
ization flaws when dealing with excessively long sequences of data, in addition to
training issues like vanishing or exploding gradients. Therefore, special variants
become famous in the last decades denoted as long short-term memory (LSTM),
followed by a simplified version designated as gated recurrent units (GRUs) [60].
The most important advancements owing their origins to RNN is the development
of an attention-based mechanism that enhanced the power of RNN-like architecture
in dealing with very long sequences in a sequence-to-sequence approach, posing the
basis for the most important milestone in the DL field, i.e. the implementation of
neural transformers from 2017 and still evolving nowadays [91].

Another DL branch, i.e. the generative artificial intelligence, is radically revolu-
tionizing all the AI panoramas and related fields lately [92]. Since 2014, generative
adversarial networks (GAN) appeared as a novel ground-breaking approach in the
DL area [93]. This kind of architecture was based on adversarial learning of two
competing sub-models. A model named generator is demanded to learn the train-
ing probability space. In practice, the generator attempts modeling a mapping to
transform a starting random noise latent space toward a certain probability distri-
bution that, when sampled, provides new sample data quite similar to the ground
truth available training data. The other competing sub-model is designated as the
discriminator, and it is devoted to differentiating between real available training
data and fake synthetic sampled data. The training of such a model resembles a
minimax problem also known as a zero-sum game [92]. In fact, at the end of the
training phase, both the generator and the discriminator reach a Nash trade-off
equilibrium in which none of the two players prevails over the other. This means
that the generator G learned how to map the probability distribution of input
data 𝑝𝑑𝑎𝑡𝑎(𝒙) being able to produce such a realistic sample that the discrimina-
tor is no longer able to distinguish from actual real ones [93]. GAN models have
been further applied in many scientific and engineering sectors e.g. in earthquake
engineering [94], especially for data augmentation purposes. Despite basic GAN
architecture being rather recently developed, different variants have been already
proposed both for supervised and semi-supervised applications. For instance, it is
noteworthy to mention deep convolutional GAN (DCGAN) based on convolutional
layers implemented in the generator part, conditional GAN (cGAN) which lever-
ages conditional supervised learning, and the Wasserstein GAN (WGAN), which
adopts certain distance measure between synthetic and real training data distri-
bution [92]. The integration of self-attention mechanisms, and therefore of neural
transformers, in the generative AI solutions, recently led to the formalization of the
acknowledged generative pre-trained transformer (GPT) models around 2020-2022,
which represent the intrinsic core of the renowned ChatGPT, and of all the other
similar outstanding generative AI tools alternative.
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1.3 Contents’ outline
The following of the present document are organized as follows.

Chapter 2 is dedicated to a review of structural health monitoring approaches,
especially output-only operational modal analysis methods. In this chapter, a
Python library for OMA denoted PyOMA is described. PyOMA package has been
developed during the current three-year Ph.D. program with an international col-
laboration among three institutions. This open-source library is progressively get-
ting attention in the international community of research and practitiones world-
wide. In the conclusion of the chapter, some model-updating case studies have
been illustrated in which the author leveraged the advantage offered by PyOMA to
support the dynamic identification part.

Chapter 3 is mainly focused on the research studies conducted during the Ph.D.
program for effectively integrating artificial intelligence procedures within conven-
tional OMA techniques. Additionally, the aim was to also cope with automatic
OMA (AOMA) solutions, a groundwork requirement of nowadays and efficient
continuous SHM systems. The utmost outcome was the development of a new
open-source paradigm for automatic OMA frameworks entitled intelligent auto-
matic operational modal analysis (i-AOMA).

Besides dynamic identification strategies, in Chapter 4, the discussion moved
oriented to damage detection strategies for civil structures. Specifically, several in-
direct non-destructive tests have been considered during the current Ph.D. program,
some vibration-based integrated with neural networks, and others not vibration-
funded, specifically referring to the ground penetrating radar (GPR) for tunnel
lining health assessment, or even acoustic emission (AE) damage detection based
on high-frequency elastic waves ranging between kHz to MHz released by the dam-
aging material.

Eventually, before moving toward the conclusions, Chapter 5 illustrates some
current and future perspectives regarding the most coherent and genuine contin-
uation of this research activity. Specifically, the so far discussed OMA is mainly
based on a dogmatic assumption of stationarity of the analyzed signals. Nonethe-
less, within signal processing fields, many other different techniques have been
developed to analyze non-stationary and nonlinear signals. These kinds of signals
are more common than it is thought, e.g. during transient loading periods fol-
lowed by a free-decay response, during strong natural excitation such as wind or
earthquake, or even considering the actual load distribution of isolated heavy traffic
loading, which is really far from the stationary base hypothesis. Some of them have
mildly started being studied for nonstationary OMA, however much still remains
to be done and investigated, especially with the effective integration of AI solutions
within this important area.
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Chapter 2

Conventional approaches for
operational modal analysis

The term Operational modal analysis (OMA) is defined as the field of study related
to the techniques for dynamic identification of the modal properties of a struc-
tural system under ambient vibration or, generally speaking, exhibited during its
normal operating life. Those techniques exclusively use the information contained
in the vibration response only, so that is denoted as output-only [95, 96]. The
dynamic identification process indicates those methods aimed to identify the gov-
erning parameters of a mathematical model used to describe the structural system’s
dynamical behavior in order to capture with the best fit the real vibration response
collected during experimental campaigns [95]. Indeed, the actual vibration response
depends on the physical properties of the structure under investigation, represent-
ing its tangible fingerprint. This aspect represents the cornerstone and the rationale
behind the OMA research branch, i.e. searching for proper and reliable methodolo-
gies able to deliver the best estimation of the actual physical properties of the in-situ
structure by processing the structure’s vibration output response. The knowledge
of the in-situ physical properties of the structure has important implications, for
instance, for characterizing the level of change of material properties with respect
to the nominal values declared at the era of construction due to the occurrence of
degradation phenomena and long-term effects. One of the most important conse-
quences of OMA is the derivation of damage detection strategies in order to monitor
the evolution of the health state of a structural system by periodically inspecting
its dynamic behavior over time. Therefore, in the OMA, it is crucial to achieve
a sufficient understanding of the structural dynamics and structure’s mechanics in
order to capture its actual health state for SHM purposes. Several interdisciplinary
challenges are generally involved in the OMA context, e.g. considering random
vibration aspects such as linear or nonlinear vibration conditions, in-service life
under stationary and either nonstationary situations, or even aspects concerning
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solid technical knowledge from analog-to-digital data acquisition and related spe-
cific signal processing tools, which often requires application-oriented assumptions
and tailored simplifications [95]. The current chapter is dedicated specifically to
conventional OMA approaches whose main assumption is dealing with structural
systems which can be defined as linear time-invariant (LTI) systems [96]. This
basic hypothesis refers to structures exhibiting a linear behavior, i.e. in elastic
conditions, usually in agreement during the operational in-service life situations,
and characterized by constant parameters over time, denoted as stationary con-
ditions. Considering the long-term continuous monitoring within the SHM field,
the material properties vary in an extremely slow manner over a long period of
time, meaning that their variation is slow enough to be approximately considered
constant during each single experimental dynamic test session.

The present chapter is organized as follows. In the next section 2.1, a brief his-
torical contextual overview is provided, recalling also some fundamental aspects of
digital signal processing of random vibration signals. Subsequently, in section 2.2,
conventional OMA techniques are discussed by distinguishing between frequency-
domain-based and time-domain-based methods. Thereafter, in section 2.3, the Py-
OMA module is described. PyOMA is the first open-source python-based library
developed during the current Ph.D. program in collaboration with other two insti-
tutions implementing a suite of conventional OMA techniques, whose theoretical
background has been presented in section 2.2. Eventually, in section 2.4, some se-
lected case study research works developed during the current Ph.D. program which
remarkably used the PyOMA module have been presented. Specifically, these stud-
ies have been organized according to two different objectives which stimulated the
research question, i.e. considering the dynamic identification goal on one side, and
the model updating procedure on the other side.

2.1 Hystorical highlights and OMA fundamentals

2.1.1 Brief history of OMA
The branch of study regarding vibrations of bodies is rooted in ancient history, when
e.g. the ancient Greek mathematicians and philosophers, specifically Pythagoras,
set the origin of music by analyzing the sound emitted from strings fastened at
different lengths, defining the concepts of notes and octaves [95]. During the Re-
naissance period, the Italian astronomer Galileo Galilei in his famous masterpiece
entitled “Discourses Concerning Two New Sciences” (1638) essayed regarding the
vibration of bodies, describing the resonance event of distant bodies characterized
by the same natural frequency, and denoting it as the phenomenon of sympathetic
vibration [95]. In 1755, the Swiss mathematician D. Bernoulli laid the foundation
of the modal superposition principle, since he discovered that a vibrating string
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can be described according to the overlapping of simple harmonics’ oscillations,
denoting by him as the “principle of coexistence” [95]. Probably, the most over-
whelming impacts in the following centuries among every scientific and engineering
field owe to Joseph Fourier, who developed his homonymous theorem when ana-
lyzing heat transmission principles in 1822. Referring to more recent eras, it is
worth mentioning the British physicist J.W. Strutt, better acknowledged as 3rd
Baron Rayleigh, whose contribution of the last two centuries represents the basic
framework of the modern structural dynamics, condensing the damping definition
accounting for both mass and stiffness quantities [95].

The first rudimentary OMA can be traced back to damage detection in railway
lines in the 1800s [7], however, the main branch of study developed prior to modern
OMA was denoted as the experimental modal analysis (EMA) [96]. Indeed, two
main branches can be identified within dynamic identification strategies according
to what is monitored, i.e. the input-output methods and output-only methods [95].
EMA is based on measuring both artificially impressed input-induced excitation
and resulting vibration response, with the goal to characterize how the structural
system acts as a filter, i.e. modifying the known input signal to obtain the out-
put response. The input-output EMA methodologies are mainly prerogative of
mechanical engineering and related vibration control study branches, since usually
mechanical system’s contained scale allows for monitoring both the impressed input
signal and the output structural response. Considering the mechanical engineering
field, first attempts were represented by condition monitoring of rotating machines
during in-service life, i.e. normally excluding the transient periods of start-up and
shut-down [7]. Typically accelerometer sensors are employed, but also velocity sen-
sors and laser contact-less displacement transducers. On the other hand, despite
OMA methods sharing and deriving mostly its theoretical background from EMA,
OMA refers to output-only methodologies attempting to characterize the entire
system only knowing the structural response. Therefore, it is named “operational”
because it refers to the unmeasured random loads acting on the structure during its
in-service operational life. This was a crucial factor for the success of OMA over the
EMA for civil engineering systems, since the scale of buildings and infrastructure is
excessively large to be able to artificially induce a proper excitation to activate the
entire dynamics of the structure, and it is also impracticable to accurately measure
input random forces such as traffic and wind loads. As illustrated in Fig. 2.1, a
typical fundamental assumption is formulated to generally describe the nature of
the unknown inputs. A white noise input signal is considered in origin, feeding a
loading excitation filter which generates the actual unknown random forces acting
on the structure under investigation in operating conditions (e.g. wind, traffic, etc.)
resulting in the vibration response actually monitored. This led to the OMA key
concept of identifying the “the whole system” (or combined system [96]), encom-
passing both the actual structural system and the loading excitation system [95].
Dealing with civil structures, since generally the acceleration response is in the order
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Figure 2.1: Combined system identified within the OMA context.

of magnitude of mg, very sensitive, high performance, and low noise piezoelectric
accelerometers are required [96], but also other typologies are commonly adopted
such as force-balance accelerometers and, due to recent advancements in micro-
electronics, the micro-electro-mechanical systems (MEMS), electric-resistance ones
or vibrating wire strain gauges have been also widely adopted [7]. Therefore, the
main difference between EMA and OMA is the nature of the input, which is mea-
sured and known in EMA whilst completely unknown in OMA [96]. Another reason
for the popularity and success of OMA over EMA among researchers, engineers,
and practitioners can be ascribed to the relatively low cost and speed of the ex-
perimental campaigns, jointly with the recent advancement of the computational
methods [95]. For instance, referring e.g. to a bridge, it is not strictly required
to shut the traffic down, since it is of interest to capture a representative vibra-
tion response during usual in-service operating conditions. Modern OMA properly
formalized as a research field started at the beginning of last century [96], even
though literature is well documented from around 1930s-1960s, especially regard-
ing earthquake conditions and ambient vibration tests on buildings [95], and later
on fostered by new computational capabilities of modern calculators and because of
the introduction of efficient numerical methods such as the Fast Fourier Transform
in 1965 [97]. Nevertheless, the theoretical background was mature enough to foster
practical implementations of vibration-based damage assessment systems for civil
structures starting around the 1980s [7], and as extensively discussed in the previ-
ous chapter of the present document, national and international regulations began
enacting mandatory rules for periodically or continuously monitoring the health
state of strategic structure and infrastructures mainly for public safety reasons [7].

2.1.2 Signal processing basics for OMA
In general, a signal is any function of multiple independent variables which carry
information about a physical system. Considering time as an independent variable,
it is possible to distinguish between continuous-time signals, 𝑥(𝑡), and discrete-time
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ones, 𝑥(𝑡𝑘), being 𝑡𝑘 a 𝑘-th time instant [97]. Another fundamental distinction is
based on the nature of the amplitude of the signal (the dependent variable), which
discriminates between analogical signals, when both time and amplitude are con-
tinuous, and numerical or digital signals in which time and amplitude are discrete
sequences. Analogical sensing instrumentations have been progressively replaced
by electronic circuits and calculators, imposing a conceptual transition toward the
digital signal processing field. As previously mentioned, the theoretical bases owe
their ancient origins to the 1600s with groundbreaking improvements in the 17th
and 18th, further revolutionized around the 1940s-1960s due to the computational
capabilities of modern calculators and the development of specific electronics or
computing algorithms. Therefore, since then every monitored physical quantity
has been sampled at discrete time and stored in a finite arithmetic calculator,
imposing the evolution of theoretical and mathematical backgrounds from a con-
tinuous domain to a discrete one. Signal processing is the transformation of signals
to convey intrinsically incorporated information in a more direct interpretable way
[97].

The Fourier theorem represents the fundamental starting point of the signal
processing area, allowing to decomposition of any signal in a linear combination
of sinusoidal components at different frequencies called harmonics. Originally de-
veloped for periodic signals only, it was extended to non-periodic signals as well,
assuming that period is infinite. In continuous time, the direct and inverse Fourier
transform appear as follows [96]:

𝑋(𝑓) = ∫
∞

−∞
𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡 ; 𝑥(𝑡) = ∫

∞

−∞
𝑋(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓, (2.1)

in which 𝑖 is the imaginary unit, 𝑓 denotes continuous frequency and 𝑡 indicates
continuous time. The Fourier transforms exhibit interesting properties such as
linearity, time shift, integral and differentiation, and convolution properties [96].
The latter one synthetically states that a convolution operation in the time domain
translates into a simple multiplication operation in the Fourier frequency domain.
Dealing with finite length 𝑇 = 𝑁Δ𝑡 digital signals 𝑥𝑛 = 𝑥(𝑛Δ𝑡) with 𝑛 = 0, ...,𝑁−
1, sampled with a sampling frequency 𝑓𝑠 = 1/Δ𝑡, being Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 the
sampling period, the discrete Fourier transform (DFT) and its inverse form have
been formalized, considering a discrete frequency domain described by 𝑓𝑘 = 𝑘/𝑇
with 𝑘 = 0, ...,𝑁 − 1:

𝑋𝑘 = 𝑋(𝑓𝑘) =
𝑁−1
∑
𝑛=0

𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛

𝑁 ; 𝑥𝑛 = 1
𝑁

𝑁−1
∑
𝑘=0

𝑋𝑘𝑒
𝑖2𝜋𝑘𝑛

𝑁 . (2.2)

According to the Shannon-Nyquist theorem [96, 7], the highest frequency that can
be represented in the discrete Fourier domain is denoted Nyquist frequency and it
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is given by the half of the sampling frequency:

𝑓max = 𝑓𝑠
2
. (2.3)

The physical quantities monitored in OMA generally appear as a random (stochas-
tic) process, being the collection of all the realization of random variables over a
certain time duration. A random process can be characterized according to some
descriptors and descriptive statistics such as probability density functions, mean,
variance, auto-correlation and cross-correlation functions, auto-spectral and cross-
spectral density functions, and coherence functions. Due to the basic hypothesis of
conventional OMA, signals are usually considered stationary stochastic ergodic ran-
dom processes. Stationarity implies that the properties characterizing the signals,
e.g. mean 𝜇𝑋 and the autocorrelation 𝑅𝑋𝑋, do not change over time [96]. Ergod-
icity of a finite length stationary stochastic process (finite-energy signals) means
that the time average statistic is a finite constant value and it can be obtained by
the discrete estimator of average overall arbitrary sample sequences [7, 97], instead
of using the ensemble average expectation operation which supposes using infinite
realizations of random variables over time (infinite-energy signals) [97]. Indeed,
since dealing with random variables, this should imply considering a collection of
signals covering all possible realizations at every time instant, thus characterizing
the random process through ensemble averages or expectations. However, if the
time window of observation is infinitely long, a single digital signal can be used to
estimate the characteristics of the entire random process:

𝜇𝑋 = 𝔼[𝑥(𝑡𝑘)] = lim
𝑁→∞

1
𝑁

𝑁
∑
𝑘=1

𝑥(𝑡𝑘), (2.4)

𝑅𝑋𝑋(𝜏) = 𝔼[𝑥(𝑡𝑘)𝑥(𝑡𝑘 + 𝜏)] = lim
𝑁→∞

1
𝑁

𝑁
∑
𝑘=1

𝑥(𝑡𝑘)𝑥(𝑡𝑘 + 𝜏). (2.5)

in which 𝜏 is the time lag. In practice, the autocorrelation function quantifies
how much a signal is similar to itself to inspect regularities in the signal [7], by
computing the product of the finite digital signal with itself translated in all possible
positions in the time domain, controlled by the time lag parameter. The second-
order statistics covariance function is connected with the correlation function

𝐶𝑋𝑌(𝜏) = 𝔼[(𝑥(𝑡𝑘) − 𝜇𝑋)(𝑥(𝑡𝑘 + 𝜏) − 𝜇𝑋)] = 𝑅𝑋𝑌(𝜏) − 𝜇2
𝑋, (2.6)

and they coincide when the process is zero-mean. Considering a second signal 𝑦(𝑡𝑘),
the cross-correlation represents a measure of similarity between the two signals, and
it is defined as

𝐶𝑋𝑌(𝜏) = 𝔼[(𝑥(𝑡𝑘) − 𝜇𝑋)(𝑦(𝑡𝑘 + 𝜏) − 𝜇𝑌)]
= 𝔼[(𝑥(𝑡𝑘))(𝑥(𝑡𝑘 + 𝜏))] − 𝜇𝑋𝜇𝑌 = 𝑅𝑋𝑌(𝜏) − 𝜇𝑋𝜇𝑌.

(2.7)
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If two processes are uncorrelated, 𝐶𝑋𝑌(𝜏) = 0, ∀𝜏 implying that 𝑅𝑋𝑌(𝜏) = 𝜇𝑋𝜇𝑌.
Noticing that |𝐶𝑋𝑌(𝜏)|

2 ≤ 𝐶𝑋𝑋(0)𝐶𝑌 𝑌(0) (and equivalently for correlation func-
tions), this implies that the maximum values of the covariance and correlation
functions are obtained for zero-lag.

Another fundamental tool to characterize finite duration 𝑇 stationary stochas-
tic processes is the power spectral density (PSD) functions, also named simply
spectra, which are defined as the auto- and cross-correlations of the complex con-
jugate of the Fourier transform and the Fourier transform of the signal itself. Since
input signals in OMA are modeled as a Gaussian zero-mean white noise random
process, they are completely determined by the auto-spectral density which is di-
rectly connected to the variance of the stochastic process. The two-side auto-PSD
(real-valued functions) and cross-PSD (complex-valued function) are defined as [96]

𝑆𝑋𝑋(𝑓) = lim
𝑇→∞

𝔼[1
𝑇
𝑋∗

𝑘𝑋𝑘] = lim
𝑇→∞

𝔼[1
𝑇
|𝑋𝑘|

2] , (2.8)

𝑆𝑌 𝑌(𝑓) = lim
𝑇→∞

𝔼[1
𝑇
𝑌 ∗
𝑘 𝑌𝑘] = lim

𝑇→∞
𝔼[1

𝑇
|𝑌𝑘|

2] , (2.9)

𝑆𝑋𝑌(𝑓) = lim
𝑇→∞

𝔼[1
𝑇
𝑋∗

𝑘𝑌𝑘] , (2.10)

whereas the typically used one-side version is given by doubling the amplitude but
preserving the phase:

𝐺𝑋𝑋(𝑓) = 2𝑆𝑋𝑋(𝑓), (2.11)
𝐺𝑌 𝑌(𝑓) = 2𝑆𝑌 𝑌(𝑓), (2.12)
𝐺𝑋𝑌(𝑓) = 2𝑆𝑋𝑌(𝑓). (2.13)

It is worth noting that PSD and correlation functions are Fourier transform pairs
(Wiener-Khinchin relations [96]), meaning that it is possible to obtain the PSD
from the Fourier transform of the correlation functions:

𝑆𝑋𝑋(𝑓) = ∫
+∞

−∞
𝑅𝑋𝑋(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏, (2.14)

𝑆𝑌 𝑌(𝑓) = ∫
+∞

−∞
𝑅𝑌 𝑌(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏, (2.15)

𝑆𝑋𝑌(𝑓) = ∫
+∞

−∞
𝑅𝑋𝑌(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏. (2.16)

The coherence function 𝛾2
𝑋𝑌(𝑓) is defined as the ratio between the squared cross-

PSD and the product of the auto-PSD. It varies between 0 and 1 and determines the
degree of linear dependency of two signals, thus helping to detect nonlinearities,
since it formally resembles the linear correlation coefficient (Pearson coefficient)

59



Conventional approaches for operational modal analysis

[42]:

𝛾2
𝑋𝑌(𝑓) =

|𝐺𝑋𝑌(𝑓)|
2

𝐺𝑋𝑋(𝑓)𝐺𝑌 𝑌(𝑓)
= |𝑆𝑋𝑌(𝑓)|

2

𝑆𝑋𝑋(𝑓)𝑆𝑌 𝑌(𝑓)
(2.17)

In practice, according to the Blackman-Tukey procedure [96], for finite and
long enough stationary ergodic processes, it is possible to estimate the correlation
function from a direct computation procedure as below, see e.g. Fig. 2.2,

�̂�𝑋𝑋(𝑟Δ𝑡) = 1
(𝑁 − 𝑟)𝜎2

𝑋

𝑁−𝑟
∑
𝑛=1

(𝑥𝑛 − 𝜇𝑋)(𝑥𝑛+𝑟 − 𝜇𝑋), 𝑟 = 0,1, ...,𝑚 (2.18)

denoting 𝑟 as the lag number, 𝑚 as the maximum possible lag, 𝜇𝑋, and 𝜎𝑋 the
sample mean and sample variance of the signal, and thereafter computing the PSD
through its Fourier transform. However, the introduction of the efficient Fast
Fourier Transform (FFT) algorithm permitted a direct computation of the PSD
according to the acknowledged Welch procedure [96]. To improve the accuracy, the
one-side PSD estimator is computed by splitting the signal into a number of seg-
ments with duration 𝑇 and then averaging the spectra obtained by performing the
Fourier transform on every single segment. It is worth reminding that the Fourier
transform was formulated specifically for periodic signals, therefore performing the
FFT on a non-periodic segment of the signal will generate errors and inaccuracies
in the spectra. As illustrated in the example of Fig. 2.3, this problem known as
leakage leads to a dispersion of the energy content associated with every frequency
line which spreads on a wider frequency bandwidth. This problem can not be
avoided, but it can be attenuated by considering a proper windowing procedure,
i.e. imposing the signal to be zero at the beginning and the end of the considered
window. Rectangular windows 𝑤rectangular(𝑡𝑘) have been adopted initially, i.e. the
new signal is given by 𝑥(𝑡𝑘)𝑤rectangular(𝑡𝑘), being

𝑤rectangular(𝑡𝑘) = {
1 if 0 ≤ 𝑡𝑘 ≤ 𝑇,
0 otherwise.

(2.19)

The rectangular window narrows the leakage frequency bandwidth, but the energy
is still quite dispersed in the nearby of every frequency line. To quantify this latter
aspect, it is important to define the side-lobe attenuation, expressed in decibels
(dB), which represents the magnitude amplitude difference in the spectrum between
the highest lobe and the first side lobe. As demonstrated in Fig. 2.4, rectangular
window is characterized by a side-lobe reduction of 13 dB, however it is preferred
to adopt the Hanning or cosine window 𝑤hanning(𝑡𝑘) which is characterized by a
greater side-lobe reduction of 32 dB, but with a broader bandwidth dispersion:

𝑤hanning(𝑡𝑘) = {
√8

3 [
1
2 − 1

2 cos (
2𝜋𝑡
𝑇 )] if 0 ≤ 𝑡𝑘 ≤ 𝑇,

0 otherwise.
(2.20)
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Figure 2.2: Direct computation of auto-correlation function according to Eq. (2.18)
on a sinusoidal signal.

Windowing sometimes needs the introduction of some correction factor to adjust
frequency spectra amplitude to maintain the signal’s energy equivalence, as demon-
strated by the √8

3 factor in Eq. (2.20) [96].
Besides the Shannon-Nyquist theorem, another important aspect must be ac-

counted for when dealing with sampled digital signals. The aliasing issue is related
to the sampling frequency which undersamples all those high-frequency components
greater than the Nyquist frequency, which may erroneously appear in the range of
observable frequencies. Therefore, the only way to avoid the aliasing problem is
to apply an anti-aliasing filter which is an analog low-pass filter, which cancels out
all those high-frequency components before storing the digital signal [96]. Since a
real filter is characterized by a certain transition band, consequently, the Nyquist
frequency is further reduced by about 20%.

The Laplace transform represents the generalization of the Fourier transform
[95] since the foremost converts a signal to a general complex plane in the variable 𝑠,
whereas the second one maps a signal to the frequency complex plane 𝑖𝑓, so implying
that 𝑠 = 𝑖𝑓. However, when dealing with sampled signals of structural response
the vibration response is typically damped over time because civil structures are
normally underdamped systems [98]. Therefore, the related digital signal is better
treated in the Z-domain, being the z-transform a sort of discrete version of the
Laplace transform being able to capture also the negative exponential decay part.
Indeed, the 𝑧 complex variable is defined in polar form as

𝑧 = 𝑟𝑒𝑖𝜔, (2.21)
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Figure 2.3: Spectral leakage attenuation through the windowing procedure.
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Figure 2.4: Fourier transform of rectangular and Hanning windows to show side-
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being 𝜔 the circular frequency, 𝜔 = 2𝜋𝑓𝑘, and the Z-transform of a digital signal
𝑥𝑛 is given by the Fourier transform of the signal multiplied for an exponential
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sequence [97]

𝑋(𝑧) =
∞
∑

𝑛=−∞
𝑥𝑛𝑧−𝑛 ⇒ 𝑋(𝑟𝑒𝑖𝜔) =

∞
∑

𝑛=−∞
𝑥𝑛 (𝑟𝑒𝑖𝜔)−𝑛 = 𝑋(𝑓𝑘)𝑟−𝑛. (2.22)

The general equation of the motion for any LTI multi-degree of freedom (MDOF)
system is given by a set of 𝑁 second-order ordinary differential equations (ODEs)
written according to the acknowledged D’Alembert principle of dynamic equilib-
rium [98]:

𝑴 ̈𝒚(𝑡) + 𝑪 ̇𝒚(𝑡) +𝑲𝒚(𝑡) = 𝒇(𝑡), (2.23)

in which the symbols 𝑴, 𝑪 and 𝑲 denotes respectively the mass, the damping
and the stiffness matrices, whereas 𝒚(𝑡) and its temporal derivatives indicates the
DOFs displacement, velocity and acceleration, whilst 𝒇(𝑡) denotes the input forces
vector. The system is defined as stable if it produces finite outputs as a conse-
quence of bounded input excitation. The system is defined as causal or physical
realizable [96], when it depends only on past inputs with respect to the current time
instant, implying that the response is zero for time instants before the zero instant,
so that the moment from which the system started being observed [97]. Under the
proportional damping hypothesis, in the OMA context is the typical assumption
of monitoring LTI systems, i.e. in elastic conditions [95]. In this way, it is possible
to characterize the modal response according to the modal decoupling of the set of
coupled ODEs into a set of 𝑁 decoupled first-order ODEs. Moreover, one of the
main hypotheses of LTI systems is based on the superposition principle validity, so
that the response of the system to an arbitrary load sequence, can be obtained ac-
cording to the discretization of the input into a sequence of unitary impulse (Dirac’s
delta function 𝛿(𝑡𝑘 − 𝜏)) excitation, and the Duhamel’s convolution integral of the
unitary impulse response function (IRF) ℎ(𝑡𝑘) convoluted with the arbitrary dis-
cretized input signal [98]. Through the superposition principle, the solution delivers
natural frequencies, damping factors, and mode shapes of every natural mode of vi-
bration. The concept of characteristic mode shape describes in practice the spatial
distribution of movement of a structure. Reminding the concept of identification
of the whole combined system, the early dynamic identification methods delivered
“operating deflection shape” (ODS) instead of mode shapes, defined as the macro-
scopic deflection exhibited from a structure being excited at a certain frequency
value [95]. It is worth underlining that the mode shape is a different concept from
the ODS because the latter is defined for any frequency value, whereas a mode
shape is specifically defined for a certain natural frequency, presenting an infinite
number of equivalent numerical representations [95]. Theoretically speaking, mode
shapes are obtained for LTI systems in stationary conditions, whereas ODS can be
defined also in nonlinear conditions. According to the modal superposition princi-
ple, the dynamic response of a linear structure can be reconstructed by superposing
the harmonics which do not depend on any external force or load but only depend
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intrinsically on the stiffness and mass properties (eigenvalue analysis). Conversely,
ODS is in a direct dependence relationship with the applied loads. Among all non-
unique and infinite possible descriptions, the mode shapes are usually reported as
normalized vectors, whereas only a single unique version with certain values and
units exists for the ODS. Despite all the above-mentioned conceptual differences,
at natural frequencies, the ODS can be confused with the mode shapes being nu-
merically equivalent [95].

Considering the Fourier transform (or in general the Z-transform) of the motion
Eq. (2.23), the set of differential equations translates to a system of algebraic
equations. Furthermore, it is possible to define the frequency response function
(FRF) 𝐻(𝜔) which merely represents the ratio between the transform of the output
signal 𝑌 (𝜔) and the transform of the input forces 𝐹(𝜔):

𝒀 (𝜔) = 𝑯(𝜔)𝑭 (𝜔). (2.24)

The FRF contains information on the structural system of interest. Indeed, ex-
pressing the FRF with a polynomial partial fraction expansion form [95], i.e.

𝑯(𝜔) =
𝑁
∑
𝑛=1

( 𝑨𝑛
𝑖𝜔 − 𝜆𝑛

+ 𝑨∗
𝑛

𝑖𝜔 − 𝜆∗
𝑛
) . (2.25)

denoting 𝑨𝑛 = 𝝓𝑛𝜸𝑇
𝑛 as the residue matrices consisting of mode shape vector

𝝓𝑛 and modal participation vector 𝜸𝑇
𝑛 [99], and the superscript (•)∗ indicating

the complex conjugate operator, the poles 𝜆𝑛 of the system contains the modal
parameter of interest, i.e. natural frequencies, damping ratios, and it would be
possible to obtain also the mode shapes. It is worth recalling that, if a function can
be expressed by the ratio of two polynomials, the solutions of the numerators are
called roots or zeros, whereas the solutions of the denominator are denoted as poles.
It is worth noting that IRF and FRF are also Fourier pairs, since it is possible to
convert the convolution Duhamel’s integral in a simple product in the transformed
domain, thus obtaining the FRF from the transform of the IRF:

𝒉(𝑡) =
𝑁
∑
𝑛=1

(𝑨𝑛𝑒𝜆𝑛𝑡 +𝑨∗
𝑛𝑒𝜆

∗
𝑛𝑡) . (2.26)

The PSD of the response in Eq. (2.24) carries the same information as the FRF,
considering that if the hypothesis of input white noise holds, the spectrum of the
input forces should be constant. The poles of the system present a four-quadrant
symmetry, thus delivering four complex conjugate pairs of the same mode, two
referred to stable solutions (negative real parts), and two referred to unstable so-
lutions (positive real parts).

However, in the OMA context, the input is not measured, therefore this path
is not a feasible procedure. Nevertheless, it is worth noting that, besides that FRF
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and IRF are Fourier transform pairs, and PSD and correlation functions are also
Fourier transform pairs, it is possible to observe that IRF and correlation functions
are also Fourier transform pairs in the OMA field [96]. Therefore, this observation
allows to consider that second-order statistics of the output response signals should
contain those structural modal information of interest. Referring to the only causal
part of the solution, the poles will appear as complex conjugate pairs [96], i.e. with
a two-quadrant symmetry. To obtain only half of the poles of interest, it is possible
to compute the positive PSD (PSD+), considering only positive time lags, i.e.

𝑆+
𝑌𝑌(𝜔) = DFT(𝑅𝑌 𝑌(𝜏)|𝜏≥0),⇒ 𝑆𝑌 𝑌(𝜔) = 𝑆+

𝑌𝑌(𝜔) + [𝑆+
𝑌𝑌(𝜔)]𝐻, (2.27)

being DFT(•) the operator of the discrete Fourier transform, and the superscript
(•)𝐻 the Hermitian operator, which means delivering the complex conjugate trans-
pose of a matrix. Therefore, as extensively discussed in [95], the vibration response
data of LTI systems can be decomposed in the time domain according to the fol-
lowing modal decomposition

𝒚(𝑡) = 𝜱𝒑(𝑡) (2.28)
being 𝜱 the modal shape matrix and the column vector 𝒑(𝑡) the modal coordinates
of the response obtained from solving the Duhamel’s integral of the modal load of
each 𝑛-th mode. From this definition, an analytical procedure explains the corre-
lation function in terms of the causal part of the response in polynomial residual
partial fractional form, thus showing the poles in the discrete time domain [95].
As reported in [96], in the output-only case, the correlation function of the output
measurements can thus be expressed as a sum of complex exponentials, and the
causal part only (positive time lags) associated with the 𝑁 pairs of only stable poles
(𝜆𝑛,𝜆∗

𝑛) is given by

𝑹𝑌 𝑌(𝜏 ≥ 0) =
𝑁
∑
𝑛=1

(𝝓𝑛𝜸𝑇
𝑛𝑒𝜆𝑛𝜏 +𝝓∗

𝑛𝜸𝐻
𝑛 𝑒𝜆∗

𝑛𝜏) , (2.29)

in which 𝜸𝑇
𝑛 are the modal participation vectors [99] of the 𝑛-th mode shape 𝝓𝑛.

On the other hand, also the PSD can be decomposed accordingly, leveraging the
fact that it is a Fourier pair of the correlation function, allowing the expression of
the PSD in partial fractional terms, making explicit the four complex conjugate
pairs discrete-domain poles, related to both causal and non-causal parts [95].

Traditional input-output methods have been reformulated to cope with output-
only conditions, e.g. referring to the readjusted version of FRF as spectrum-driven
methods, or IRF used with correlation functions [95]. Therefore, different output-
only techniques have been developed and derived from the historical reasoning of
the FRF able to work with response-only data to characterize always multiple-input
and multiple-output (MIMO) systems, the only subjects of OMA procedures [96].
The system is defined as observable when a layout of several sensors is properly de-
signed to capture vibration information able to reconstruct (estimate) with reverse
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procedure the entire dynamics of the system. Since working with digital signals
in the Z-domain, the found poles 𝜆𝑛 = 𝑧𝑛 which carry modal information of ac-
tual interest has to be converted back to the continuous time Laplace domain with
the complex variable 𝑠𝑛 in order to obtain the real values of modal parameters.
Therefore, the following transformation should be performed:

𝜆𝑛 = 𝑧𝑛 = 𝑒𝑠𝑛Δ𝑡, ⇒ 𝑠𝑛 = ln(𝜆𝑛)
Δ𝑡

(2.30)

𝑓𝑛 = |𝑠𝑛|
2𝜋

(2.31)

𝑓𝑑,𝑛 = ℑ𝔪(𝑠𝑛)
2𝜋

(2.32)

𝜉𝑛 = −ℜ𝔢(𝑠𝑛)
|𝑠𝑛|

(2.33)

(2.34)

in which, referring to the 𝑛-th mode, 𝑓𝑛 and 𝑓𝑛,𝑑 indicate the natural frequency
and the damped natural frequency respectively, whereas 𝜉𝑛 is the damping ratio of
the system.

2.1.3 Vibration tests and experimental campaigns
Mathematical models are usually employed to describe the dynamic properties of
the structure. Nonetheless, to be representative, any model should undergo a care-
ful calibration process, i.e. conditioning it on real vibration data responses collected
with experimental tests campaign [95]. Due to historical origins within the EMA
field, the first vibration testing methods were the forced-type ones. During forced
tests, an artificially controlled excitation is imposed on a small/medium scale struc-
ture using basically the following different methodologies:

• Mechanical shakers: These devices allow imparting sufficiently large dynamic
forces in a sweep frequency range of interest and even adjusting the sinusoidal
waveform. For instance, considering large bridge structures the first natural
frequencies of interest are below 1 Hz, however, it is still challenging to pro-
duce large forces at low frequencies without incurring prohibitive direct and
indirect costs, i.e. for equipment, transportation, and mounting. Common
adopted devices are of the type electro-magnetic, eccentric mass, or hydraulic
(even including laboratories shaking tables) [95].

• Transient loads: this technique involves two main strategies. The foremost is
denoted as the impact test, based on an impact hammer equipped with a force
traducer. This is mainly devoted to studying small-size structures likewise
mechanical ones. Secondly, another widespread technique is denoted as pull

66



2.1 – Hystorical highlights and OMA fundamentals

back or quick release test. The method imposes a certain static displacement
far enough from its static equilibrium point and suddenly releases it. In this
way, the structure exhibits a free decaying vibration response [95].

• Man-excited motions: in this technique walking or jumping patterns of a num-
ber of people knowing all individual masses represent the known artificially
induced excitation.

• Induced ground-motion: this method is based on adopting shaking table de-
vices programmed to reproduce ground-shaking recordings time histories.

Nonetheless, when dealing with large-scale civil structures, the main difficulties
of forced vibration tests are related to adequately exciting all the modes which
mainly contributes to the actual response of a structure in-service conditions with-
out inducing any damage due to an excessive excitation [95]. Therefore, this chal-
lenging task fostered the output-only methods based on ambient vibration tests,
i.e. recording the vibrational response under natural or environmental excitation
levels. This led to challenges in the mathematical framework requiring it to be able
to extract the modal information of interest working with a low level of vibration
close to the background noise. Typically, the order of magnitude of the recorded
accelerations sweeps from tens to hundreds of milli-g’s (mg) under pure ambient vi-
bration without traffic and strong wind actions, and it can be considerably different
considering e.g. a truck passage. In order to capture such vibration levels, good-
quality sensors are needed. For instance, for recording accelerations piezoelectric
sensors represent the best option in terms of frequency resolution and bandwidth
and easy installation procedures, however their are expensive, fragile, and it is not
able to catch the zero-frequency (DC) band [96]. Another cost-effective widely used
accelerometer typology is the force-balance type which is characterized by low noise
floor and is able to capture DC frequency, however, the frequency range is upper
bounded at a few hundred Hz, so that much lower than piezoelectric ones [96].
Nowadays a very low-cost cost sensing solution is related to lately advancements of
micro-electronics represented by MEMS sensors. Moreover, another challenging as-
pect is using a limited number of sensors which may capture noisy data periodically
during the structure’s lifetime in a continuous monitoring scenario. In summary,
OMA methods must deal with statistical uncertainties both aleatory and epistemic
ones, arising e.g. from random measurement errors due to also electrical noise of
sensors themselves, as shown in Fig. 2.1. On the contrary, the main success fac-
tors of this kind of ambient test are the rapidity of the experimental campaign
and generally lower costs than the forced tests. It is worth noting that besides the
above-mentioned difficulties, a series of assumptions are conducted when dealing
with large civil structures, thus crucially affecting the identification process [95].
For instance, simplified assumptions are usually performed considering e.g. soil-
structures interaction, and in general the surrounding environment. In fact, during
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operating conditions, structures are actually subjected to wind loads, traffic exci-
tation on or beneath the structure, walking or jumping of people and occupants,
operating mechanical systems, micro-tremors, etc. Therefore, the basic assumption
of white noise input actually derives from statistical considerations inspired by the
central limit theorem [100]. Indeed, the results of many additive random sources
tend toward a Gaussian white noise process. A consequence of this assumption is
that every single natural frequency is not biased or driven in any particular way by
the unknown input source since all the energy spectra are constant and thus equally
and broadly distributed in the entire frequency domain. However, considering real
in-service conditions the complete respectfulness of this basic assumption is a utopia
because every single kind of input is not an ideal white noise process, therefore the
input disturbances will activate natural frequencies in more or less different ways
[95]. It is worth reminding that the stiffness properties of e.g. a bridge structure
may vary with temperature both daily and seasonally. Therefore, this variation can
be recorded as a damage alert if not properly accounted for, whereas a data normal-
ization procedure should aim to avoid false positives due to known environmental
changes [7]. Similarly, different traffic conditions may produce varying operational
conditions, which need some other source of information in order to mitigate their
adverse effects. Furthermore, when multiple kinds of sensors are adopted, it could
be useful to adopt a data-fusion method to get a deeper and more reliable insight
into the real modal properties and actual health state of the structure [7].

2.2 Conventional OMA stationary methods

2.2.1 Several potential classifications of OMA methods
The various OMA techniques share a common root since they historically derive
from the previously discussed reasoning about the IRF, FRF, correlation functions,
and spectral functions. As noticed in [96], the many different methods can be the-
oretically reconducted in a unified matrix polynomial approach to modal analysis
(UMPA). However, for historical reasons, the various OMA methods are normally
distinguished according to different criteria, as synthetically schematized in Fig.
2.5. The most important distinction, and usually the most adopted generally, is
based on the domain of analysis, discriminating between time-domain methods and
frequency-domain ones. The foremost is usually preferred since the mathematical
backgrounds ensure better conditioning of methods (avoiding intrinsic spectral leak-
age issue) and an improved behavior dealing with noisy data, sometimes with proper
noise rejection techniques [96]. On the other hand, frequency-domain methods are
worse conditioned due to e.g. spectral leakage issues, but it has been improved us-
ing windowing and Z-domain equations, whilst noise reduction has been improved
through averaging approach, e.g. referring to partial overlapping of windows during

68



2.2 – Conventional OMA stationary methods

One-stage methods

Two -stage methods

Local estimates

Global estimates

Time Domain

Frequency Domain

Internal representation

External representation

Parametric methods

Nonparametric methods

Low-order methods

High-order methods

SDOF methods

MDOFs methods

Domain of
analysis

System
representation

Existance
of a model

Number of
DOFs

Modal
parameter
estimates

Number of
Analysis
Stages

Figure 2.5: Several potential classifications of OMA methods.

windowing operations. Some OMA joint time-frequency domain analysis methods
convey results in terms of periodogram or spectrogram, i.e. a combined frequency
and temporal graphical representation [95].

Another possible criterion to rearrange OMA methods is based on the type of
representation of the dynamical model of the system. It is distinguished between
internal representation methods, the ones that provide a detailed description of the
dynamical model, and external representation methods, the approaches based on a
set of equations which not directly reflect the physics of the vibration phenomena
but are just best fitted to the measured response [96]. If a mathematical model is
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adopted, characterized by a certain number of parameters to be calibrated according
to the experimental vibration data, the methods are denoted as parametric, other-
wise, they are called non-parametric ones. For instance, parametric time-domain
models are further distinguished between covariance-driven and data-driven meth-
ods. The foremost requires a pre-processing step to estimate the correlation func-
tions of data, whereas the latter deals directly with raw vibration sequences. OMA
parametric methods are further classified according to the number of parameters
to be calibrated, discriminating between low-order models and high-order ones. In
analogy to this definition, non-parametric models can be referred to as zero-order
methods. Despite the modal decomposition, the dynamics of a structural system
depend on the effects superposition of all modes together. However, at resonance,
it is possible to assume that only the mode characterized by the single natural
frequency mainly exhibits. Therefore, when a single mode is dominant and can be
separately identified, the OMA method is defined as an SDOF approach, whereas
when dealing with closely-spaced modes the OMA method is defined as MDOFs
technique [96]. It is worth noting that the natural frequencies and damping ratios
can be identified based on local estimates, i.e. since they are inherently contained
in every single vibration response signal and theoretically do not depend on the spe-
cific sensor spatial layout, which instead is fundamental for reconstructing mode
shapes and avoiding spatial aliasing post-processing problems. Therefore, when
modal parameters can be obtained from every single vibration sequence, the OMA
method is denoted as a local estimate, whereas it is denoted as a global method
when the modal parameter estimates depend on processing all the time-histories
sequence altogether. OMA techniques are classified as one-stage methods when di-
rectly delivering all modal information, whereas two-stage approaches indicate that
natural frequencies and damping ratios are obtained at first, and then, afterward
selecting every specific mode of interest according to the found natural frequencies,
the related mode shape can be obtained accordingly [96].

2.2.2 Frequency domain methods
2.2.2.1 Peak-peaking method

The peak-peaking method, also acknowledged as the basic frequency domain method,
is one of the earliest and simplest OMA algorithms developed, and nowadays is
mainly used as a stand-alone procedure for a rapid in-situ assessment of the pre-
liminary effectiveness of the ambient vibration testing experimental campaign [96].
It could be defined as an SDOF method since it is based on the hypothesis to
identify every single mode separately, which hardly ever naturally happens in real-
ity. Therefore, to fulfill the starting assumption of the method, it works fine with
well-separated modes characterized by low damping ratios. An 𝑟-th mode is consid-
ered well-separated in the spectral domain if the minimum distance from any other
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mode is greater than the bandwidth 𝐵 of that mode, determined as 𝐵 = 2𝜉𝑟𝑓𝑟,
being 𝜉𝑟 its damping ratio and 𝑓𝑟 its natural frequency [95]. The modal parameters
are obtained as a local estimate, i.e. it is based on the analysis of every vibration
signal coming from every sensor channel separately. It is worth underlining that
the method delivers only the ODS and not the proper mode shapes.

As its name suggests, it is based on identifying the peaks on the PSD matrix
graph, which is characterized also by a certain degree of subjectivity, being the
main drawback of this technique. When the 𝑟-th mode is dominant, the modal de-
composition of Eq. (2.28) simplifies by considering only the 𝑟-th modal coordinate
𝑝(𝑡) and mode shape 𝝓𝑟, i.e.

𝒚(𝑡) = 𝝓𝑟𝑝(𝑡). (2.35)

The correlation function matrix of the output signal 𝑹𝑌 𝑌(𝜏) can be obtained by
considering the autocorrelation of the modal coordinate 𝑅𝑝𝑟𝑝𝑟

(𝜏), i.e.

𝑹𝑌 𝑌(𝜏) = 𝔼[𝒚(𝑡 + 𝜏)𝒚𝑇(𝑡)] = 𝑅𝑝𝑟𝑝𝑟
(𝜏)𝝓𝑟𝝓𝑇

𝑟 . (2.36)

Using the Fourier transform pair property, the one-side PSD matrix can be obtained
by considering the spectral density of the modal coordinate 𝐺𝑝𝑟𝑝𝑟

(𝑓), i.e.

𝑮𝑌 𝑌(𝑓) = 𝐺𝑝𝑟𝑝𝑟
(𝑓)𝝓𝑟𝝓𝐻

𝑟 . (2.37)

The latter equation demonstrated that the PSD𝐺𝑌 𝑌(𝑓) = [𝒈1, 𝒈2...] of the response
signal 𝒚(𝑡) contain the modal information of interest, being 𝒈𝑖 the generic column
vector composing the PSD. Moreover, at the resonance frequency, the system can
be approximated as an SDOF system characterized only by the 𝑟-th mode. This
implies that the PSD matrix is rank 1, and any column or row is proportional to
the mode shape vector 𝝓𝑟 and can be assumed as an estimate of it as

𝝓𝑟 = 𝒈𝑖. (2.38)

Normally, to better discriminate among structural modes of real interest, the PSD
graph is analyzed in conjunction with the coherence function (Eq. (2.17)), since
when it goes to 1 it implies a high signal-to-noise ratio (SNR). Usually expressed
in dB, the SNR represents a measure of how much a superimposed undesired noise
contaminates the signal of actual interest and it is defined as the base-10 logarithm
of the square ratio between the signal amplitude 𝐴𝑦 and the noise amplitude 𝐴𝑛,
i.e.

SNR = log10 (
𝐴𝑦

𝐴𝑛
)

2

. (2.39)

Despite its simplicity, the peak-peaking method is not reliable if used stand-
alone, and more reliable and systematic procedures have been developed accord-
ingly.

71



Conventional approaches for operational modal analysis

2.2.2.2 Frequency domain decomposition

The Frequency domain decomposition (FDD) method generalizes the peak-peaking
method since it overcomes the limitation of well-separated modes, and centralizes
all the evaluation in a single graph based on the singular value decomposition of the
PSD matrix. This time, the response signal can be decomposed according to the
modal decomposition expressed in Eq. (2.28), and the correlation function matrix
𝑹𝑌 𝑌(𝜏) of the output signal can be obtained considering the autocorrelation matrix
of the modal coordinates 𝑹𝑃𝑃(𝜏), i.e.

𝑹𝑌 𝑌(𝜏) = 𝔼[𝒚(𝑡 + 𝜏)𝒚𝑇(𝑡)] = 𝜱𝑹𝑃𝑃(𝜏)𝜱𝑇. (2.40)

Leveraging the Fourier transform pair property, the one-side PSD matrix can be
obtained by considering the spectral density of the modal coordinate 𝑮𝑃𝑃(𝑓), i.e.

𝑮𝑌 𝑌(𝑓) = 𝜱𝑮𝑃𝑃(𝑓)𝜱𝐻. (2.41)

The response PSD matrix can be decomposed according to the linear algebra tool
named singular value decomposition, which is a generalization of the diagonalization
procedure [7]. The matrix 𝑮𝑌 𝑌(𝑓) is thus decomposed into a diagonal matrix
𝜮 = diag(𝜎1,𝜎2, ...) containing the singular values (SVs) sorted in descending
order and two orthogonal and unitary matrices 𝑼 = [𝒖1,𝒖2, ...] and 𝑽, meaning
that 𝑼𝐻𝑼 = 𝑼𝑼𝐻 are equal to the identity matrix 𝑰. Since the PSD is a positive
definite Hermitian matrix, it holds that 𝑼 = 𝑽, therefore:

𝑮𝑌 𝑌(𝑓) = 𝑼𝜮𝑽 𝐻 = 𝑼𝜮𝑼𝐻. (2.42)

Comparing Eqs. (2.41) and (2.42), it is possible to observe that 𝑮𝑃𝑃(𝑓) is diagonal
if and only if the modal coordinates are uncorrelated each other, thus reinterpreting
the SVs as the auto spectral densities of the modal coordinates [95]. In this case, it
is possible to establish a relationship between the estimated PSD matrix from the
output monitored signals and its SVD matrix, permitting reducing PSD at rank 1
for a selected frequency 𝑓𝑘, i.e.

𝑮𝑌 𝑌(𝑓𝑟) = 𝜎𝑟𝒖𝑟(𝑓𝑟)𝒖𝐻
𝑟 (𝑓𝑟). (2.43)

and defining the number of mode shapes according to the rank of SVs matrix (non-
zeros SVs), and estimating every 𝑟-th mode shape according to the columns of left
eigenvectors 𝑼, i.e.

𝝓𝑟 = 𝒖𝑟(𝑓𝑟). (2.44)

However, if the uncorrelated modal coordinate assumption does not hold, the mode
shape estimates are biased and should not be used for physical interpretations [95].
Anyway, mode shapes are inherently biased within FDD since SVD decomposition
imposes singular vector to be orthogonal. Therefore, in [95] it is suggested that
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the best estimate of mode shape is obtained considering only the first singular
vector at a frequency line being the dominant one, i.e. imposing 𝜎1 in Eq. (2.43).
However, due to noise presence, the estimate of natural frequencies and mode shapes
is uncertain if only the peak value of the first SV is considered at a frequency line
𝑓𝑘. Therefore, in the Enhanced Frequency Domain Decomposition (EFDD) method
also information around the peaks is exploited. In fact, this led to the concept
of extracting an SDOF bell around the peaks, considering a set of SVs around
the mode of interest. To determine the SVs of interest to retain, the correlation
among the mode shape estimates in the nearby peak is evaluated according to a
quantitative metric denoted as the Modal Assurance Criterion (MAC). Considering
two general mode shapes 𝝓𝑎 and 𝝓𝑏, the MAC is defined as

MAC(𝝓𝑎,𝝓𝑏) =
∣𝝓𝑎

𝐻𝝓𝑏∣
2

(𝝓𝑎
𝐻𝝓𝑎) (𝝓𝑏

𝐻𝝓𝑏)
, 0 ≤ MAC(𝝓𝑎,𝝓𝑏) ≤ 1. (2.45)

When MAC is equal to one means that two vectors are perfectly correlated, on the
contrary when it is 0 the two vectors are completely uncorrelated [99]. Therefore,
considering the mode shape estimate at the peak 𝝓𝑟 and any closer mode shape,
the retained SVs are characterized by a MAC value greater than the threshold,
usually imposed to 80%. The SDOF bell in the PSD extracted around the peak
can be converted back to the time domain with the inverse transform. The resulting
correlation function can be interpreted as a free decay response of a corresponding
SDOF structural system. Therefore, besides the natural frequency and mode shape,
the EFDD method allows estimating also the damping ratio 𝜉𝑟 associated with the
𝑟-th mode [95], e.g. adopting the logarithm decrement technique which is a linear
regression of the number of zero-crossing or extremes of the free decay correlation
function graph [96, 98]. The damped natural frequency is thus given by

𝑓𝑟,𝑑 = 𝑓𝑟√1− 𝜉2𝑟 . (2.46)

Toward the idea of an assisted or automatic selection of structural modal peaks
of actual interest rather than noise peaks on the SVD graph of the PSD matrix,
the modal coherence indicator function 𝑑1(𝑓𝑘) can be used [99]. This is basically
a correlation measure between the first singular vector at a selected frequency 𝑓𝑘
and the other neighbor frequencies 𝑓:

𝑑1(𝑓𝑘) = 𝒖𝑇
1 (𝑓)𝒖1(𝑓𝑘). (2.47)

It is worth noting that another advantage of FDD is its intrinsic noise separa-
tion effect provided by the adoption of the SVD tool. For instance, referring to the
illustrative example using synthetic data, the SVD graph of the PSD matrix from
the FDD method points out that the system is excited from a sinusoidal excitation
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Figure 2.6: SVD graph of the PSD within the FDD method, showing the intrinsic
noise separation effect provided by the SVD method.

with constant peaks appearing in the SV lines, but, without considering them, it
is possible to notice that the real peaks of the first SV are related to the natural
frequencies of the system, i.e. at 1.57 Hz, 3.97 Hz, and 5.98 Hz. Moreover, with-
out special noise excitation exciting particular frequencies, the SV graph allows
highlighting peaks related to structural modes of interest which significantly rise in
amplitude, especially from the first SV line above the noise floor level.

2.2.3 Time domain methods
2.2.3.1 Stochastic state-space models

The time-domain description of the dynamics of a structural system can be done
using a parametric model with a physical basis denoted as a state-space model
[96]. The main idea is to rewrite the general second-order ODEs of the motion,
Eq. (2.23), into two separate ODEs of the first order denoted as state equation and
observation equation, by expressing them according to a new variable called state
vector 𝒔(𝑡):

𝒔(𝑡) = [𝒚(𝑡)̇𝒚(𝑡)] . (2.48)

The state variables are sometimes also denoted as hidden variables because they
characterize the internal representation of the model which is unmeasurable, and to
study the dynamics of the system, only the response of the structure is the actually
observed quantity. Focusing on the continuous-time domain firstly, the forcing
vector in Eq. (2.23) is rewritten as 𝒇(𝑡) = 𝑷𝒖(𝑡) according to an input location
matrix 𝑷 ∈ ℝ𝑛×𝑁𝑖𝑛 and a function 𝒖(𝑡) describing the variations of input actions
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over time, being 𝑛 the number of DOFs and 𝑁𝑖𝑛 the number of inputs. The specific
definition of these two latter terms 𝑷 and 𝒖(𝑡) depend on the intrinsic nature of
the input actions, i.e. on which DOFs the input is acting on. For instance, in
earthquake engineering, the input is usually represented by an acceleration ground
input indicated as �̈�𝑔(𝑡) acting only at the base DOFs of the structure. Nevertheless,
Eq. (2.23) is reformulated as

𝑴 ̈𝒚(𝑡) + 𝑪 ̇𝒚(𝑡) +𝑲𝒚(𝑡) = 𝑷𝒖(𝑡), (2.49)

The first derivatives of the state vector are given by

̇𝒔(𝑡) = [ ̇𝒚(𝑡)
̈𝒚(𝑡)] , (2.50)

The first component ̇𝒔1(𝑡) of Eq. (2.50) is directly given by

̇𝒔2(𝑡) = [𝟎 𝑰] 𝒔(𝑡) + [𝟎]𝒖(𝑡), (2.51)

whereas the second component ̇𝒔1(𝑡) of Eq. (2.50) is directly derived by making
explicit the response acceleration vector of Eq. (2.49)

̇𝒔2(𝑡) = [−𝑴−1𝑲 −𝑴−1𝑪]𝒔(𝑡) + [−𝑴−1] 𝑷𝒖(𝑡), (2.52)

eventually obtaining the state equation

̇𝒔(𝑡) = [ 𝟎 𝑰
−𝑴−1𝑲 −𝑴−1𝑪]𝒔(𝑡) + [ 𝟎

−𝑴−1]𝑷𝒖(𝑡) ⇔

̇𝒔(𝑡) = 𝑨𝑐𝒔(𝑡) + 𝑩𝑐𝒖(𝑡),
(2.53)

in which 𝑨𝑐 ∈ ℝ2𝑛×2𝑛 is the state transition matrix, or simply the state ma-
trix, which transforms the current state into the next state representation, and
𝑩𝑐 ∈ ℝ2𝑛×𝑛 is the input influence matrix, the subscript 𝑐 denotes the continuous
time domain. The observation equation depends on the number 𝑙 and the type of
sensors used to monitor the physical quantities characterizing the response of the
structure gathered in 𝒚𝑙(𝑡). Ideally, monitoring both accelerations, velocities, and
displacements at all 𝑛 DOFs, the response vector 𝒚𝑙(𝑡) belongs to ℝ3𝑛×1, gathering
on the column dimensions the displacements 𝒚(𝑡), velocities ̇𝒚(𝑡), and accelerations
̇𝒚(𝑡). It could be theoretically expressed as a function of the state vector, and ac-

cordingly decomposed accounting for the relative output location matrices 𝑪𝑎, 𝑪𝑣,
and 𝑪𝑑 belonging to ℝ𝑛×𝑛, i.e.

𝒚𝑙(𝑡) = 𝑪𝑎 ̈𝒚(𝑡) + 𝑪𝑣 ̇𝒚(𝑡) + 𝑪𝑑𝒚(𝑡) (2.54)

and substituting the acceleration ̈𝒚(𝑡) made explicit from Eq. (2.49), it becomes

𝒚𝑙(𝑡) = [𝑪𝑑 −𝑪𝑎𝑴−1𝑲 𝑪𝑣 −𝑪𝑎𝑴−1𝑪] [𝒚(𝑡)̇𝒚(𝑡)] + 𝑪𝑎𝑴−1𝑩𝒖(𝑡) (2.55)
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It is worth noting that the latter equation provides only those part of the response
vector 𝒚𝑙(𝑡) referred to the accelerations, thus indicated as 𝒚𝑙(𝑡). Furthermore, this
demonstrated that, since the state space formulation, the accelerations measure-
ments in observation equations explicitly depends on the state variables, which are
displacements and velocities respectively. Conversely, the displacement and veloc-
ity measurements can be considered independently provided by the state variables,
and are possibly affected only by direct input. Therefore, considering a plausible
and general scenario in which, for every single DOF, both displacements, veloci-
ties, and accelerations are measured, observation equations which express response
vector 𝒚𝑙(𝑡) in Eq. (2.54) as a function of state variables 𝒔(𝑡) becomes

𝒚𝑙(𝑡) = ⎡⎢
⎣

𝑪𝑑 𝟎
𝟎 𝑪𝑣

𝑪𝑑 −𝑪𝑎𝑴−1𝑲 𝑪𝑣 −𝑪𝑎𝑴−1𝑪
⎤⎥
⎦
𝒔(𝑡) + ⎡⎢

⎣

𝟎
𝟎

𝑪𝑎𝑴−1

⎤⎥
⎦
𝑷𝒖(𝑡) ⇔

𝒚𝑙(𝑡) = 𝑪𝑐𝒔(𝑡) +𝑫𝑐𝒖(𝑡),
(2.56)

In latter equation, 𝑪𝑐 ∈ ℝ3𝑛×2𝑛 is called the output influence matrix and 𝑫𝑐 ∈
ℝ3𝑛×2𝑛 is the direct transmission matrix, which explains how an input directly
reflects in the output response. In structural dynamics, it is worth noting that
for the mathematical framework herein analyzed, the input directly affects the
acceleration measurements. Beside, the above mentioned general case, considering
a realistic scenario for SHM, in which only accelerometer sensors are deployed on
the structure under investigation, the observation equations can be restricted only
to Eq. (2.55), with an obvious consequent reformulation of 𝑪𝑐 and 𝑫𝑐.

All the previous mathematical elaborations permitted to rewriting of the motion
equation according to the deterministic continuous-time state-space model accord-
ing to the state equation and observation equation respectively, i.e.

̇𝒔(𝑡) = 𝑨𝑐𝒔(𝑡) + 𝑩𝑐𝒖(𝑡) , (2.57)
𝒚𝑙(𝑡) = 𝑪𝑐𝒔(𝑡) +𝑫𝑐𝒖(𝑡). (2.58)

This model is called deterministic since the input excitation is considered determin-
istic, and the modal information that characterizes the structural system is con-
tained in the eigenvalues of state matrix 𝑨𝑐. Infinite equivalent state space model
representations, called realizations, can be defined for a certain system. Indeed,
when a similarity transformation matrix with an arbitrary non-singular square ma-
trix 𝑻 is applied to the state vector, the resulting state space model changes, but
the eigenvalues of the state matrix preserved modal information of interest since
the eigenvalues do not vary. Therefore, with a vibration experimental test, the idea
is to use the monitored response to find one specific realization among the infinite
possible realizations of the same system.

Considering the discrete time-domain, with time instants 𝑡𝑟 = 𝑟 ⋅ Δ𝑡 described
according to a sampling period Δ𝑡, with 𝑟 ∈ ℕ, and discrete state vector 𝒔𝑟(𝑡𝑟) =
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𝒔(𝑟 ⋅ Δ𝑡) with dimensionality 𝑛 characterizing the order of the system, under the
zero-order hold sampling assumption (input is piecewise-constant on every sampling
period), and a total number 𝑁 of 𝑙 channels measurements 𝒚𝑟 ∈ ℝ𝑙 , the discrete
version of the deterministic state space model can be derived

𝒔𝑟+1(𝑡𝑟+1) = 𝑨𝒔𝑟(𝑡𝑟) + 𝑩𝒖𝑟(𝑡𝑟) , (2.59)
𝒚𝑟(𝑡𝑟) = 𝑪𝒔𝑟(𝑡𝑟) +𝑫𝒖𝑟(𝑡𝑟), (2.60)

in which the state space matrices are defined as

𝑨 = 𝑒𝑨𝑐Δ𝑡 , (2.61)
𝑩 = (𝑨− 𝑰)𝑨−1

𝑐 𝑩𝑐 , (2.62)
𝑪 = 𝑪𝑐 , (2.63)
𝑫 = 𝑫𝑐. (2.64)

In order to take into account unmeasurable noise sequences, two random processes
are introduced. The process noise 𝒘𝑟 encompasses disturbances and the so-called
modeling errors, due to inaccuracies of the state space model to capture the actual
dynamics of the physical system. The measurement noise 𝒗𝑟 is instead due to the
electronics of sensors, which convert physical analog signals into finite-arithmetic
and finite-memory digital equipment. These two noise processes are considered
additive components, as already evidenced by the measurement noise process in
Fig. 2.1, and they are assumed zero-mean Gaussian white noise processes, thus
unequivocally determined by the second-order statistics. Therefore, considering
any couple of time instants 𝑝 and 𝑞, the variance is given by

𝔼[(𝒘𝑝
𝒗𝑝

)(𝒘𝑞 𝒗𝑞)] =
⎧{
⎨{⎩

[
𝑸𝑤𝑤 𝑺𝑤𝑣

(𝑺𝑤𝑣)𝑇 𝑹𝑣𝑣] if 𝑝 = 𝑞

𝟎 if 𝑝 ≠ 𝑞,
(2.65)

The matrices 𝑸𝑤𝑤 ∈ ℝ𝑛×𝑛, 𝑺𝑤𝑣 ∈ ℝ𝑛×𝑙, and 𝑹𝑣𝑣 ∈ ℝ𝑙×𝑙 are the covariance
matrices of the noise processes 𝒘𝑟 and 𝒗𝑟 [101]. Accordingly, dropping the explicit
dependence from the discrete-time instants, the discrete-time deterministic (input)
stochastic state space model is given by

𝒔𝑟+1 = 𝑨𝒔𝑟 +𝑩𝒖𝑟 +𝒘𝑟 , (2.66)
𝒚𝑟 = 𝑪𝒔𝑟 +𝑫𝒖𝑟 + 𝒗𝑟, (2.67)

In the OMA context, the input excitation is generally unknown and modeled as a
Gaussian white noise process. Therefore, it is possible to simply define the pure
stochastic state space model by incorporating the unmeasurable input into the
process and measurement noise sequences, i.e.

𝒔𝑟+1 = 𝑨𝒔𝑟 +𝒘𝑟 , (2.68)
𝒚𝑟 = 𝑪𝒔𝑟 + 𝒗𝑟, (2.69)
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Therefore, the process noise directly becomes the unmeasurable input excitation
action of the system, whereas the measurement process represents a direct distur-
bance which is reflected in the measured output. Indeed, the measured response is
thus split into an observable part of the system and a direct unobservable distur-
bance. This is in accordance with the concept of a combined system (see Fig. 2.1).
This fact is also reflected in the eigenvalues of the state matrix which will encom-
pass both poles related to the structural system and ones related to the input noise
excitation process. Therefore, the main objective in OMA when adopting stochastic
state space time-domain parametric models is to determine at least one realization
of matrices 𝑨 ∈ ℝ𝑛×𝑛 and 𝑪 ∈ ℝ𝑙×𝑛 in order to retrieve the modal information of
interest. The matrix pairs 𝑨 and 𝑪 are considered observable, implying that all
modes are observable in the output measurements 𝒚𝑟 [101]. Furthermore, the order
of the system 𝑛 is still unknown, thus it has to be also defined within the OMA
procedure, as well as the second-order statistics of the output of the model and of
the given output which are equal [101].

2.2.3.2 Covariance-equivalent representation of stochastic state space
model

In agreement with the OMA framework, the stochastic state space model system’s
response is represented by a zero-mean Gaussian process, and thus the output co-
variance conveys all significant information to describe this random process. Hence,
it is possible to define a covariance equivalent model as an estimated state space
model characterized by an optimal unbiased estimator, i.e. the correct output
covariance able to describe the statistical properties of the output process [96]. As-
suming an LTI stationary stochastic process, the state vector is also a zero-mean
Gaussian process characterized by the following state covariance matrix 𝜮𝑠𝑟 which
is independent of the time and uncorrelated with noise processes [101]:

𝜮𝑠𝑟 = 𝔼 [𝒔𝑟𝒔𝑇𝑟 ] , 𝔼 [𝒔𝑟𝒘𝑇
𝑟 ] = 𝔼 [𝒔𝑟𝒗𝑇

𝑟 ] = 𝟎. (2.70)

The Lyapunov equation provides an alternative definition for the state covariance
matrix 𝜮𝑠𝑟 considering the next state 𝒔𝑘+1 [101]

𝜮𝑠𝑟 = 𝔼 [𝒔𝑘+1𝒔𝑇𝑘+1] = 𝔼 [(𝑨𝒔𝑘 +𝒘𝑟) (𝑨𝒔𝑘 +𝒘𝑟)
𝑇]

= 𝑨𝔼 [𝒔𝑟𝒔𝑇𝑟 ]𝑨𝑇 + 𝔼 [𝒘𝑟𝒘𝑇
𝑟 ]

= 𝑨𝜮𝑠𝑟𝑨
𝑇 +𝑸𝑤𝑤.

(2.71)

The output covariance matrix, i.e. the cross-correlation matrix of the measured
output response from all sensors’ channels for sample 𝑟 and with finite time lag 𝑖,
is defined in general as

𝑹𝑖 = 𝔼 [𝒚𝑟+𝑖𝒚𝑇
𝑟 ] (2.72)
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from which it is possible to derive the initial output covariance matrix 𝑹0 for lag
𝑖 = 0,

𝑹0 = 𝔼 [𝒚𝑟𝒚𝑇
𝑟 ] = 𝔼 [(𝑪𝒔𝑘 + 𝒗𝑟) (𝑪𝒔𝑘 + 𝒗𝑟)

𝑇]
= 𝑪𝔼 [𝒔𝑟𝒔𝑇𝑟 ]𝑪𝑇 + 𝔼 [𝒗𝑟𝒗𝑇

𝑟 ]
= 𝑪𝜮𝑠𝑟𝑪

𝑇 +𝑹𝑣𝑣.
(2.73)

It is possible to define the next state-output covariance matrix 𝑮 which represents
the covariance between the response of the system 𝒚𝑟 and the updated state vector
𝒔𝑟+1

𝑮 = 𝔼 [𝒔𝑟+1𝒚𝑇
𝑟 ] = 𝔼 [(𝑨𝒔𝑘 +𝒘𝑟) (𝑪𝒔𝑘 + 𝒗𝑟)

𝑇]
= 𝑨𝔼 [𝒔𝑟𝒔𝑇𝑟 ]𝑪𝑇 + 𝔼 [𝒘𝑟𝒗𝑇

𝑟 ]
= 𝑨𝜮𝑠𝑟𝑪

𝑇 + 𝑺𝑤𝑣.
(2.74)

from which it is possible to obtain an alternative definition for the output covariance
matrix sequence 𝑹𝑖, so that

𝑹𝑖 = 𝑪𝑨𝑖−1𝑮 , 𝑹−𝑖 = 𝑮𝑇 (𝑨𝑖−1)𝑇 𝑪𝑇. (2.75)

The Eq. (2.75) has fundamental consequences which are at the base of stochas-
tic subspace identification algorithms, being that output covariance can be con-
sidered as Markov parameters of an LTI system defined by state space matrices
𝑨, 𝑪, 𝑮, and 𝑹0. In general, Markov parameters describe the input-output re-
lationship of a discrete-time model with sampled response according to a pulse
response function to a unit pulse input [102]. This implies that 𝑹𝑖 can be esti-
mated directly from the measured data, viz. from 𝑮, and the decomposition of the
output covariance matrices permits to retrieve the state matrix 𝑨 whose poles rep-
resent the sought solution of the dynamic identification problem when employing a
parametric stochastic state space time-domain method based on a covariance-driven
approach.

2.2.3.3 Kalman filter representation of stochastic state space model

The stochastic state space model in Eqs. (2.68)-(2.69) can be expressed in an
alternative form according to the Kalman filter approach [96]. Henceforth, it is
assumed that the system matrices 𝑨, 𝑪, 𝑸𝑤𝑤, 𝑹𝑣𝑣 and 𝑺𝑤𝑣 are already known.
All the measurements beforehand 𝑟-th time instant can be gathered according to
the following measurements matrix

𝒀𝑟−1 = [𝒚0 𝒚1 … 𝒚𝑟−1]
𝑇 . (2.76)

The best state space model estimate should minimize the prediction error between
the estimated response 𝒚𝑟 at 𝑟-th time instant and the measured one 𝒚𝑟 denoted
as innovation error 𝒆𝑟 [96]:

𝒆𝑟 = 𝒚𝑟 − 𝒚𝑟, (2.77)
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noting that 𝒆𝑟 is a zero-mean Gaussian white noise process because also 𝒚𝑟 is
assumed of this type. The estimated response can be statistically defined as the
conditional expectation of the ideal response 𝒚𝑟 at time 𝑡𝑟 conditioned on past
measured ones 𝒀𝑟−1, and assuming no correlation holds with the measurement
noise process 𝒗𝑟, i.e.

𝒚𝑟 = 𝔼 [𝒚𝑘|𝒀𝑟−1] = 𝔼 [𝑪𝒔𝑟 + 𝒗𝑟|𝒀𝑟−1] = 𝑪𝒔𝑟. (2.78)

The minimization of the innovation error can be obtained if the optimal state
estimate 𝒔𝑟 at every 𝑟-th time instant can be found, which is statistically defined
as the conditional expectation of the ideal current state conditioned from the past
responses [96]:

𝒔𝑟 = 𝔼 [𝒔𝑘|𝒀𝑟−1] . (2.79)

The state prediction error 𝜺𝑟 is the difference between the ideal state 𝒔𝑘 and the
predicted state 𝒔𝑘, thus representing the error part which cannot be estimated from
one step ahead of the state vector [96], i.e.

𝜺𝑟 = 𝒔𝑘 − 𝒔𝑘. (2.80)

The nonsteady state stochastic state space model adopting the Kalman filter for
the LTI system is called the forward innovation model and it is based on the state
predictors 𝒔𝑟 and output response predictor 𝒚𝑟, i.e

𝒔𝑟+1 = 𝑨𝒔𝑟 +𝑲𝑟𝒆𝑟 , (2.81)
𝒆𝑟 = 𝒚𝑟 −𝑪𝒔𝑟, (2.82)

in which 𝑲𝑟 is denoted as nonsteady Kalman gain. The model in Eqs. (2.81) and
(2.82) assumes that the initial state estimate is zero 𝒔0 = 𝟎. Moreover, denoting
with 𝑷𝑟 = 𝔼 [𝒔𝑟𝒔𝑇𝑟 ] the Kalman state covariance matrix, the initial covariance
matrix of Kalman state estimate is given by

𝑷0 = 𝔼 [𝒔0𝒔𝑇0 ] = 𝟎. (2.83)

The covariance of the innovation error is given by [101]:

𝔼 [𝒆𝑟𝒆𝑇𝑟 ] = 𝑹0 −𝑪𝑷𝑘𝑪𝑇, (2.84)

in which 𝑹0 is the initial output covariance matrix defined in Eq. (2.73). The
general idea behind the stochastic state space Kalman formulation is that at the
𝑟-th time instant, the nonsteady Kalman state estimates 𝒔𝑟 substitute the state
𝒔𝑟 in stochastic state space formulation in Eqs. (2.68)-(2.69), and both equations
the two noise processes 𝒘𝑟 and 𝒗𝑟 are condensed in a single term, i.e. the in-
novation error 𝒆𝑟. The nonsteady Kalman state estimate 𝒔𝑟 is found by solving a
series of recursive formulas depending only on previous Kalman state estimates and
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past output measures [96], thus finally delivering the state estimate, the nonsteady
Kalman gain, the Kalman state covariance, i.e.

𝒔𝑟 = 𝑨𝒔𝑟−1 +𝑲𝑟−1 (𝒚𝑟 −𝑪𝒔𝑟) , (2.85)

𝑲𝑟−1 = (𝑮−𝑨𝑷𝑟−1𝑪𝑇) (𝑹0 −𝑪𝑷𝑟−1𝑪𝑇)−1
, (2.86)

𝑷𝑟 = 𝑨𝑷𝑟−1𝑨𝑇 + (𝑮−𝑨𝑷𝑟−1𝑪𝑇) (𝑹0 −𝑪𝑷𝑟−1𝑪𝑇)−1 (𝑮 −𝑨𝑷𝑟−1𝑪𝑇)𝑇 .
(2.87)

The Eq. (2.87) is acknowledged as the Riccati equation. Theoretically, the for-
ward innovation model is denoted as nonsteady because Kalman state covariance
is nonsteady for a transient period at the beginning of the recursive process. Nev-
ertheless, under the assumption of stable state matrix 𝑨, meaning that at a finite
input excitation the response is limited as well, which translates in mathematical
terms in evaluating that all eigenvalues of the matrix have negative real parts (see
section 2.1.2), both Kalman state covariance and Kalman gain are constant and
independent from time instants, i.e.

𝑷𝑟 = 𝑷 , 𝑲𝑟 = 𝑲 (2.88)

Therefore, the steady-state Kalman filter stochastic state space formulation is given
by

𝒔𝑟+1 = 𝑨𝒔𝑟 +𝑲𝒆𝑟 , (2.89)
𝒆𝑟 = 𝒚𝑟 −𝑪𝒔𝑟, (2.90)

in which the Kalman gain

𝑲 = (𝑮−𝑨𝑷𝑪𝑇) (𝑹0 −𝑪𝑷𝑪𝑇)−1 (2.91)

can be found by the resolution of the Riccati equation

𝑷 = 𝑨𝑷𝑨𝑇 + (𝑮−𝑨𝑷𝑪𝑇) (𝑹0 −𝑪𝑷𝑪𝑇)−1 (𝑮 −𝑨𝑷𝑪𝑇)𝑇 (2.92)

solved through a generalized eigenvalue problem as described in detail in [101].
Rearranging (2.90) to explicit the response estimate vector 𝒚𝑟, the steady state
Kalman filter forward innovation model of Eqs. (2.89)-(2.90) is directly comparable
with stochastic state space formulation in Eqs. (2.68)-(2.69):

𝒔𝑟+1 = 𝑨𝒔𝑟 +𝑲𝒆𝑟 𝒔𝑟+1 = 𝑨𝒔𝑟 +𝒘𝑟
𝒚𝑟 = 𝑪𝒔𝑟 + 𝒆𝑟 𝒚𝑟 = 𝑪𝒔𝑟 + 𝒗𝑟

(2.93)

Despite the well-posed theoretical framework, within the OMA context the basic
assumption hypothesis of already knowing the system matrices 𝑨, 𝑪, 𝑸𝑤𝑤, 𝑹𝑣𝑣

and 𝑺𝑤𝑣 does not hold. Therefore, the modal identification strategies based on
the Kalman filter formulation are denoted as data-driven time-domain parametric
methods, because they must rely solely on the output measurement data to estimate
the state sequences, thus avoiding analytically solving the Riccati equation [96].
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2.2.3.4 Covariance-based stochastic-subspace identification

Several time-domain methods have been developed for OMA in the last decades,
based on the analysis of correlation functions of vibration output responses under
natural excitation conditions, which progressively replaced forced vibration tests as
discussed in section 2.1.3. Therefore, the related output-only OMA methods have
been denoted as Natural Excitation Techniques (NExT), and it is worth mentioning
at least three distinguished approaches, i.e. the least square complex exponential
(LSCE) algorithm, the Ibrahim time domain (ITD) method and the eigenvalue
realization algorithm (ERA), which is very similar to subspace-based identifica-
tion approaches. The interested reader about LSCE, ITD, and ERA can refer to
[103, 104, 105] respectively. The NExT OMA procedures were very popular at
the beginning but they were progressively abandoned for several limitations and/or
drawbacks [96], preferring stochastic subspace identification strategies.

The covariance-based stochastic-subspace identification (SSI-cov) is a paramet-
ric time-domain algorithm based on the Ho-Kalman realization algorithm [106],
which estimates states’ realizations using only output measured data. The SSI-cov
algorithm is based on the stochastic state space model Eqs. (2.68)-(2.69), charac-
terized by a certain order 𝑛 of the model, a number 𝑙 of monitored DOFs with a
finite number 𝑁𝑑 of measured output data samples in total, with 𝒔𝑟 ∈ ℝ𝑛, 𝒚𝑟 ∈ ℝ𝑙,
𝑨 ∈ ℝ𝑛×𝑛 and 𝑪 ∈ ℝ𝑙×𝑛, under the hypothesis that all the states of the system are
controllable and observable. A state is defined as controllable if it can be obtained
from any previous initial state with certain control actions, whereas it is defined
as observable when the state at a certain time instant is completely determined by
knowing both the input and output of the system. Similarly to Eq. (2.18), the
output correlation matrices �̂�𝑖 ∈ ℝ𝑙×𝑙 are estimated according to a user-defined
finite integer lag parameter 𝑖 ∈ ℕ, called time shift or number of block rows within
the context of stochastic-subspace identification approaches [96], i.e.

�̂�𝑖 =
1

𝑁𝑑 − 𝑖
𝒀1∶𝑁𝑑−𝑖𝒀 𝑇

𝑖∶𝑁𝑑
, (2.94)

in which matrices 𝒀1∶𝑁𝑑−𝑖 = [𝒚0 𝒚1 … 𝒚𝑁𝑑−𝑖]
𝑇 ∈ ℝ𝑙×𝑁𝑑 and 𝒀𝑖∶𝑁𝑑

∈ ℝ𝑁𝑑×𝑙

represent the output measurements time histories obtained from 𝑙 sensors gathered
and rearranged in a similar manner as Eq. (2.76). All correlation estimates, which
assume the meaning of output covariance matrices in the SSI-cov context, are com-
puted for time lags from 𝑖 to 2𝑖 − 1 and they are rearranged into a block Toeplitz
matrix 𝑻1|𝑖 ∈ ℝ𝑖𝑙×𝑖𝑙 (viz. a matrix with constant diagonals) as follows:

𝑻1|𝑖 =
⎡
⎢
⎢
⎢
⎣

𝑹𝑖 𝑹𝑖−1 … 𝑹2 𝑹1
𝑹𝑖+1 𝑹𝑖 ⋱ ⋱ 𝑹2
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑹2𝑖−1 𝑹2𝑖−2 … 𝑹𝑖+1 𝑹𝑖

⎤
⎥
⎥
⎥
⎦

. (2.95)
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The subscript in 𝑻1|𝑖 indicates the indices of the first column of the matrix [101].
The derivation of the Toeplitz matrix of output correlations starting from the out-
put vibration measured data is extensively discussed in the Appendix A. The use
of the Toeplitz matrix of output covariance matrices can reduce the computational
effort during the modal identification, thereby improving the efficiency of the elab-
oration. For a system of order 𝑛, the choice of the number of block rows parameter
𝑖 must fulfill the following condition [96]

𝑙𝑖 ≥ 𝑛. (2.96)

The real order 𝑛 of the state-space model is unknown. The Ho-Kalman realization
algorithm is based on the minimal realization concept, meaning that the results of
the algorithm attempt to deliver also the minimum order 𝑛 which ensures that the
system is fully controllable and observable. Nevertheless, at the beginning of the
SSI-cov procedure, a preliminary rough estimate of 𝑛 can be obtained by exploring
the rank of the PSD of the output response measurements or of the SVD of the PSD,
such as according to the FDD method. This latter rough estimate permits a proper
choice of the time shift parameter by fulfilling the condition 𝑖 ≥ 𝑛/𝑙. When the
system is fully controllable and observable, the Toeplitz matrix can be factorized
into the product of two matrices denoted as observability matrix 𝑶𝑖 ∈ ℝ𝑙𝑖×𝑛, which
only depends on the state matrix𝑨 and the output influence matrix𝑪, and reversed
controllability matrix 𝜞𝑖 ∈ ℝ𝑛×𝑙𝑖, which depends solely on the state matrix 𝑨 and
the next state output covariance matrix 𝑮, i.e.

𝑻1|𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

[𝑨𝑖−1𝑮 … 𝑨𝑮 𝑮] = 𝑶𝑖𝜞𝑖. (2.97)

Therefore, matrix 𝑪 can be readily extracted from the first 𝑙 rows of 𝑶𝑖, whereas
matrix 𝑮 can be obtained from the last 𝑙 columns of 𝜞𝑖. In order to obtain the
observability and controllability matrices separately, the SVD decomposition of the
Toeplitz matrix is employed, i.e.

𝑻1|𝑖 = 𝑼𝜮𝑽 𝑇 = [𝑼1 𝑼2] [
𝜮1 𝟎
𝟎 𝟎] [

𝑽1
𝑽2

] ≈ 𝑼1𝜮1𝑽 𝑇
1 (2.98)

in which the dimension of the SV matrix 𝜮 is approximately reduced to its actual
rank 𝑛 by excluding all the near-zero SVs in the 𝜮1 ∈ ℝ𝑛×𝑛, and with 𝑼1 ∈ ℝ𝑙𝑖×𝑛

and 𝑽 𝑇
1 ∈ ℝ𝑛×𝑙𝑖. Therefore, the observability and controllability matrices are

obtained as follows

𝑻1|𝑖 = 𝑼1𝜮1𝑽 𝑇
1 = 𝑼1 (𝜮

1/2
1 𝜮1/2

1 )𝑽 𝑇
1 = (𝑼1𝜮

1/2
1 ) (𝜮1/2

1 𝑽 𝑇
1 ) = 𝑶𝑖𝜞𝑖 , (2.99)

𝑶𝑖 = 𝑼1𝜮
1/2
1 𝑻 , (2.100)

𝜞𝑖 = 𝑻 −1𝜮1/2
1 𝑽 𝑇

1 , (2.101)
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noting that in the Eqs. (2.100)-(2.101) a similarity non-singular transformation
matrix have been included since the method formally identifies one specific realiza-
tion from the measured data among the infinite equivalent state-space realizations,
but it generally simplifies assuming an identity matrix 𝑻 = 𝑰.

Once the observability and controllability matrix is known, the second part of
the SSI-cov method deals with finding the state matrix 𝑨, and with an output
influence matrix 𝑪 estimate the modal parameters of actual interest. As already
above-mentioned, matrix 𝑪 can be readily extracted from the first 𝑙 rows of 𝑶𝑖,
whereas matrix 𝑮 can be obtained from the last 𝑙 columns of 𝜞𝑖. For estimating
matrix 𝑨 at least two main different procedures are available in the literature [96].
The first method is based on the NExT-ERA approach, which requires defining
a new one-time lag Toeplitz matrix of the output covariances 𝑻2|𝑖+1, and noting
that in its factorization A readily appears besides observability and controllability
matrices:

𝑻2|𝑖+1 =
⎡
⎢
⎢
⎢
⎣

𝑹𝑖+1 𝑹𝑖 … 𝑹3 𝑹2
𝑹𝑖+2 𝑹𝑖+1 ⋱ ⋱ 𝑹3
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑹2𝑖 𝑹2𝑖−1 … 𝑹𝑖+2 𝑹𝑖+1

⎤
⎥
⎥
⎥
⎦

= 𝑶𝑖𝑨𝜞𝑖. (2.102)

Therefore, considering Eqs. (2.100)-(2.101) obtained from SVD decomposition of
the original output covariance Toeplitz matrix Eq. (2.95), the state matrix 𝑨
estimate is given by

𝑨 = 𝑶†
𝑖𝑻2|𝑖+1𝜞

†
𝑖 = (𝜮−1/2

1 𝑼𝑇
1 )𝑻2|𝑖+1 (𝑽1𝜮

−1/2
1 ) . (2.103)

where the † superscript indicates the Moore–Penrose pseudo-inverse operation [96].
The second method to estimate state matrix 𝑨 has been initially formulated

by Yi and Yun [107, 96]. It is based on pre- and post- multiplying the output
covariance Toeplitz matrix Eq. (2.95) by two invertible matrices 𝑾1 and 𝑾2,
i.e. 𝑾1𝑻1|𝑖𝑾2, thus delivering after SVD decomposition, the following alternative
definition for the observability matrix:

𝑶𝑖 = 𝑾−1
1 𝑼1𝜮

1/2
1 𝑻 . (2.104)

In the literature, two different weighting schemes have been proposed, denoted as
balanced realization (BR) and canonical variate analysis (CVA) weighting [108].
In the BR procedure, if the weight matrices are equal to the identity matrix, viz.
𝑾1 = 𝑾2 = 𝑰. In this case, it is possible to demonstrate that𝑶𝑇

𝑖 𝑶𝒊 = 𝜞𝑖𝜞 𝑇
𝑖 = 𝜮1

(Gram matrices), and the term balanced in BR refers to the fact that the input
excitation transfers to the state in a similar and balanced way as well as the state
transfers to the output response [96]. Leveraging the shift-invariance property of𝑶𝑖
[109], it is possible to further decompose the observability matrix to make explicit
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obtaining state matrix 𝑨 by defining a matrix 𝑶↑
𝑖 , obtained by removing the last 𝑙

lines from 𝑶𝑖, and a matrix 𝑶↓
𝑖 , retrieved by removing the first 𝑙 rows of 𝑶𝑖 [110,

111], i.e.

𝑶𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

= [ 𝑶↑
𝑖

𝑪𝑨𝑖−1] = [ 𝑪𝑶↓
𝑖
] ⇒ 𝑶↑

𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−2

⎤
⎥
⎥
⎦

, 𝑶↓
𝑖 =

⎡
⎢
⎢
⎣

𝑪𝑨
𝑪𝑨2

⋮
𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

(2.105)

⇒ 𝑶↑
𝑖𝑨 = 𝑶↓

𝑖 ⇒ 𝑨 = 𝑶↑
𝑖
†
𝑶↓

𝑖 (2.106)

On the other hand, the CVA weighting is based on ensuring balanced energy levels
among all the system’s modes and it adopts the Cholesky decomposition of two
new Toeplitz matrices to retrieve the weighting matrices [108]. 𝑾1 is given by the
inverse of the lower triangular matrix [𝑳+]−1 obtained from the Cholesky factor-
ization of a reversed one-time lag Toeplitz matrix of the output covariances 𝑻+

0|𝑖−1
in which the upper triangle is transposed, i.e.

𝑻0|𝑖−1 =
⎡
⎢
⎢
⎢
⎣

𝑹0 𝑹𝑇
1 … 𝑹𝑇

𝑖−2 𝑹𝑇
𝑖−1

𝑹1 𝑹0 ⋱ ⋱ 𝑹𝑇
𝑖−2

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑇

𝑹𝑖−1 𝑹𝑖−2 … 𝑹1 𝑹0

⎤
⎥
⎥
⎥
⎦

= 𝑳+[𝑳+]𝑇 ⇒ 𝑾𝟏 = [𝑳+]−1.

(2.107)
𝑾2 is given by the inverse of the lower triangular matrix [𝑳−]−1 obtained from
the Cholesky factorization of a reversed one-time lag Toeplitz matrix of the output
covariances 𝑻−

0|𝑖−1 in which, instead, the lower triangle is transposed, i.e.

𝑻0|𝑖−1 =
⎡
⎢
⎢
⎢
⎣

𝑹0 𝑹1 … 𝑹𝑖−2 𝑹𝑖−1
𝑹𝑇

1 𝑹0 ⋱ ⋱ 𝑹𝑖−2
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑹𝑇
𝑖−1 𝑹𝑇

𝑖−2 … 𝑹𝑇
1 𝑹0

⎤
⎥
⎥
⎥
⎦

= 𝑳−[𝑳−]𝑇 ⇒ 𝑾𝟐 = [𝑳−]−1.

(2.108)
Therefore, the eigenvalues of the weighted Toeplitz matrix in Eq. (2.95), i.e.
𝑾1𝑻1|𝑖𝑾2, can be geometrically interpreted as canonical angles between two sub-
spaces which ensure balanced energy levels among all the system’s modes [96, 108].

The OMA identification solution, i.e. the modal parameter estimates of in-
terest (natural frequencies, damping ratios, and mode shapes), can be obtained
once state matrix 𝑨 and output influence matrix 𝑪 have been determined. The
eigenvalue decomposition (EVD) of matrix 𝑨 leads to the diagonal matrix 𝜦 =
diag([𝜆1, ...,𝜆𝑢, ...𝜆𝑚]) ∈ ℝ𝑛×𝑛 of discrete-time complex conjugate system poles
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pairs 𝜆𝑢,𝜆∗
𝑢 (two-quadrant symmetry) and corresponding right eigenvectors 𝝍𝑢:

𝑨 = 𝜳𝜦𝜳−1 , 𝑨𝝍𝑢 = 𝜆𝑢𝝍𝑢, (2.109)

where 1 ≤ 𝑢 ≤ 𝑚, being𝑚 = 𝑛/2 the total number of eigenvalues of actual interest.
The motivation of this latter aspect is due to the fact that only modes with positive
damping, i.e. with positive imaginary parts, are of actual interest among the 𝑛
complex conjugate poles, implying that for physical reasons the number of modes of
interest is half of the system’s order [96, 112]. The undamped and damped natural
frequencies and damping ratios are finally determined through the conversion back
from Z-domain discrete time to Laplace-domain continuous time, i.e. according to
Eqs. (2.30)-(2.33), reported also here for simplicity:

𝑠𝑢 = ln(𝜆𝑢)
Δ𝑡

, 𝑓𝑢 = |𝑠𝑢|
2𝜋

, 𝜉𝑢 = −100ℜ𝔢(𝑠𝑢)
|𝑠𝑢|

,

where 𝑠𝑢 are the continuous-time system poles, Δ𝑡 is the sampling interval, | ⋅ |
denotes the complex modulus and ℜ𝔢(𝑠𝑢) is the real part of 𝑠𝑢. The real part of
the eigenvectors 𝝍𝑢 instead leads to the experimental mode shapes 𝝓𝑢, given by

𝝓𝑢 = ℜ𝔢(𝑪𝝍𝑢), (2.110)

with 𝜱 = [𝝓1, ...,𝝓𝑢, ...,𝝓𝑚] ∈ ℝ𝑙×𝑚.
It is worth mentioning that the entire SSI-cov procedure can be equivalently

performed by using a block-Hankel matrix (a matrix with constant anti-diagonals)
of the output measurements’ covariance estimates instead of the Toeplitz matrix
in Eq. (2.95), as summarized in the Appendix A. Furthermore, it is necessary to
point out that the entire theoretical framework is based on estimated quantities
(e.g. output covariances Eq. (2.94)), since the measurement data are composed of
a finite number of data. Moreover, considering additive noise source due to the state
space modeling inaccuracies, and sensors’ hardware measurement noise, jointly with
computational noise due to finite precision arithmetic of computers, the rank of
the estimated Toeplitz matrix is not able to exactly deliver the real theoretical
order of the system, even because due to noise the Toeplitz factorization is not
mathematically exact. The Toeplitz matrix rank can be theoretically highlighted
by the greatest relative difference exhibited in its SVs sorted in decreasing order.
Nevertheless, since in the OMA context, the real goal is achieving reliable modal
parameters’ estimates rather than finding a very accurate dynamics description
through a state space model, a conservative overestimation approach for the system
order is normally adopted, resulting in the acknowledged stabilization diagram
(SD) approach [96]. In practice, the system order 𝑛 is imposed from low values
and progressively increased to higher over-specification values until reaching a user-
defined threshold. Therefore, the Toeplitz output covariance matrix dimensions are
initially restricted to low dimensions and, according to the SSI-cov, poles are then
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computed. This procedure is repeated imposing the sizes of the Toeplitz matrix for
all progressively increasing orders. Reminding that the obtained poles of interest
are only half of the system order in the subspace-based identification field because
of retaining only poles with positive imaginary parts, the system order grows up
by twos. The over-specification of the model order 𝑛 reveals new spurious poles
along with the physical ones of interest. The spurious ones are denoted noise poles,
when they are associated with real physical basis because of the identification of
the excitation system beside the structural system (see combined system concept
in Fig. 2.1). On the other hand, they are called mathematical modes when they
arise due to all the other inaccuracies and noise sources mentioned before. As
depicted in the example Fig. 2.7, the stabilization diagram is a bi-dimensional
graph showing the poles of the system for a certain order on the ordinate axis with
respect to the natural frequency reported on the abscissa axis. The SD provides
a simple yet powerful tool to clearly separate stable physical modes from unstable
spurious ones, by tracking the stable poles’ alignments for progressively increasing
orders of the system. Stability checks are performed to discriminate between stable
and unstable poles in terms of frequency, damping ratio, and mode shapes, and
they are configured into two classes. Hard validation criteria (HVC) are based
on rigorous physical principles and they apply to all poles singularly, whereas soft
validation criteria (SVC) establish relative thresholds between pole pairs at two
different orders [113, 114]. The HVC defines spurious poles as those that do not
appear as complex conjugate pairs, modes with natural frequencies greater than
maximum Nyquist frequency (also considering possible decimation), and those with
negative or unrealistic excessive positive damping ratios (usually set at 10%) [113]:

𝜉𝑢 ≤ 0.1, (2.111)

𝑓𝑢 ≤ 𝑓𝑠
2
. (2.112)

Assuming that 𝑎 is a pole identified at model order 𝑛, the SVC define spurious
poles by comparing pole 𝑎 with any other pole 𝑏 at the model orders 2, 4, ...,𝑛/2
according to the following relative stability criteria [96]:

Δ𝜉 = 𝜉𝑎 − 𝜉𝑏
𝜉𝑎

≤ 0.05, (2.113)

Δ𝑓 = 𝑓𝑎 − 𝑓𝑏
𝑓𝑎

≤ 0.01, (2.114)

1 −MAC(𝝓𝑎,𝝓𝑏) ≤ 0.02. (2.115)

In general, stabilization diagram representation can be adapted for any parametric
OMA method. This graphical tool permits a quite clear separation of physical mod-
els rather than spurious ones. Moreover, as depicted in the example Fig. 2.8, the
stabilization diagram is often combined with at least the first SV graph of the PSD
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Figure 2.7: Stabilization diagram. The colors of the poles, identified by the numbers
0.0 to 4.0 in the legend, indicate respectively: unstable, stable in frequency, stable
in frequency and mode shape, stable in frequency and damping, stable in frequency
damping and mode shape.
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Figure 2.8: Stabilization diagram with overlapped SVD graph of the PSD, from
synthetic data used in the example shown in Fig. 2.6.

matrix, for double checking that the stable pole alignments are in correspondence
of the peaks of the SV lines of the PSD identified by the FDD method.
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2.2 – Conventional OMA stationary methods

2.2.3.5 Data-driven-based stochastic-subspace identification

The Data-driven SSI (SSI-dat) is based on the Kalman filter formulation of the
stochastic state space modeling, stemming the issue of solving the Riccati equation
(see Eq. (2.92)) because it estimates the Kalman states sequence directly from
available data. The SSI-dat starts with the rearrangement of the measured data
from 𝑙 sensors, gathered in vectors 𝒚𝑟 ∈ ℝ𝑙 for every 𝑟-th time instant, with 𝑟 =
0, 1, ...,𝑁𝑡, in a Hankel matrix (a matrix with constant anti-diagonals) 𝒀0|2𝑖−1 with
a predefined number of block-rows according to an integer time lag parameter 𝑖.
Therefore, the Hankel matrix has a fixed number of block rows equal to 2𝑙𝑖 and
consequently, considering a total number of data equal to 𝑁𝑑 = 𝑁𝑡+1, the number
of columns is directly given by 𝑗 = 𝑁𝑑 − 2𝑖 + 1, see also Appendix A.

𝒀0|2𝑖−1 = 1√
𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒚0 𝒚1 𝒚2 … … 𝒚𝑁𝑡−2𝑖+1
𝒚1 𝒚2 𝒚3 ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+2
𝒚2 𝒚3 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+3
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖−1

𝒚𝑖−1 𝒚𝑖 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖
𝒚𝑖 𝒚𝑖+1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+1
𝒚𝑖+1 𝒚𝑖+2 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+2
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝒚2𝑖−2 𝒚2𝑖−1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−1
𝒚2𝑖−1 𝒚2𝑖 … … 𝒚𝑁𝑡−1 𝒚𝑁𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [ 𝒀𝑝
𝒀𝑓

]. (2.116)

The Hankel matrix can be subdivided into two submatrices denoted as past data
matrix 𝒀𝑝 and future data matrix 𝒀𝑓, both with dimensions 𝑙𝑖×𝑗. Within the SSI-
dat context, the Kalman states vector 𝒔𝑟 obtained from output observation up to in-
stant 𝑟−1 are gathered in a Kalman state sequence matrix 𝑺𝑖 = [𝒔𝑖, 𝒔𝑖+1, ..., 𝒔𝑖+𝑗−1]
[96, 101]. This latter matrix is estimated according to 𝑺𝑖, obtained by linear al-
gebra geometric orthogonal projection operations of the row space of future data
matrix 𝒀𝑓 toward the row space of past data matrix 𝒀𝑝, mathematically expressed
according to a projection matrix 𝜫𝑖:

𝜫𝑖 = 𝒀𝑓/𝒀𝑝 = 𝒀𝑓𝒀 𝑇
𝑝 (𝒀𝑝𝒀 𝑇

𝑝 )† 𝒀𝑝, (2.117)

in which the symbol 𝒀𝑝 underlines that the projection result lies in the past data
matrix row space. It is worth noting that the product 𝒀𝑓𝒀 𝑇

𝑝 holds the output au-
tocorrelation of the data used for constructing the Toeplitz matrix in the SSI-cov
method, demonstrating that this orthogonal projection and output covariances are
strongly interconnected, see Appendix A. Under the assumption of a fully control-
lable and observable system [96], and if the time lag parameter 𝑖 is fulfilling the
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condition in Eq. (2.96), the main theorem of stochastic subspace identification state
that the projection matrix 𝜫𝑖 can be decomposed as the product of the extended
observability matrix 𝑶𝑖 and the Kalman filter state sequence 𝑺𝑖 [101], i.e.

𝜫𝑖 = 𝑶𝑖𝑺𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

[𝒔𝑖 𝒔𝑖+1 ... 𝒔𝑖+𝑗−1] . (2.118)

The Hankel matrix of output data can be decomposed according to linear alge-
bra LQ decomposition, which delivers a lower triangular matrix 𝑳 and an orthogo-
nal matrix 𝑸 (𝑸𝑸𝑇 = 𝑸𝑇𝑸 = 𝑰). Considering the block-row nature of the output
data Hankel matrix, the lower triangular matrix can be actually decomposed into
block sub-matrices, where 𝑳11 ∈ ℝ𝑙𝑖×𝑙𝑖, 𝑳21 ∈ ℝ𝑙×𝑙𝑖, 𝑳22 ∈ ℝ𝑙×𝑙, 𝑳31 ∈ ℝ𝑙(𝑖−1)×𝑙𝑖,
𝑳32 ∈ ℝ𝑙(𝑖−1)×𝑙, and 𝑳33 ∈ ℝ𝑙(𝑖−1)×𝑙(𝑖−1), and consequently also the orthogo-
nal matrix is decomposed into block sub-matrices 𝑸1 ∈ ℝ𝑗×𝑙𝑖, 𝑸2 ∈ ℝ𝑗×𝑙, and
𝑸3 ∈ ℝ𝑗×𝑙(𝑖−1), so that

𝒀0|2𝑖−1 = 𝑳𝑸 = ⎡⎢
⎣

𝑳11 𝟎 𝟎
𝑳21 𝑳22 𝟎
𝑳31 𝑳32 𝑳33

⎤⎥
⎦

⎡⎢
⎣

𝑸𝑇
1

𝑸𝑇
2

𝑸𝑇
3

⎤⎥
⎦
. (2.119)

Therefore, the projection matrix can be numerically obtained directly from the LQ
decomposition of the output data Hankel matrix as follows

𝜫𝑖 = 𝒀𝑓/𝒀𝑝 = [𝑳21
𝑳31

] [𝑸𝑇
1 ] . (2.120)

Reminding Eq. (2.118) it is possible to obtain the extended observability matrix 𝑶𝑖
and the Kalman filter state sequence matrix 𝑺𝑖 using the SVD of the numerically
estimated projection matrix (2.120), resembling in someway the SSI-cov Toeplitz
matrix decomposition (refer to Eq. (2.98)):

𝜫𝑖 = 𝑼𝜮𝑽 𝑇 = [𝑼1 𝑼2] [
𝜮1 𝟎
𝟎 𝟎] [

𝑽1
𝑽2

] ≈ 𝑼1𝜮1𝑽 𝑇
1 , (2.121)

thus obtaining

𝑶𝑖 = 𝑼1𝜮
1/2
1 𝑻, (2.122)

𝑺𝑖 = 𝑶†
𝑖𝜫𝑖, (2.123)

where 𝑻 is a transformation matrix that can be considered as an identity matrix.
Now it is possible to estimate the state matrices 𝑨 and 𝑪 to get the modal param-
eter of interest.
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Alternatively, the output data Hankel matrix can be decomposed considering
the following rearrangement with past output matrix with a block row added 𝒀 +

𝑝
and future matrix with first block row removed 𝒀 −

𝑓 :

𝒀0|2𝑖−1 = 1√
𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒚0 𝒚1 𝒚2 … … 𝒚𝑁𝑡−2𝑖+1
𝒚1 𝒚2 𝒚3 ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+2
𝒚2 𝒚3 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+3
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖−1

𝒚𝑖−1 𝒚𝑖 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖
𝒚𝑖 𝒚𝑖+1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+1
𝒚𝑖+1 𝒚𝑖+2 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+2
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝒚2𝑖−2 𝒚2𝑖−1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−1
𝒚2𝑖−1 𝒚2𝑖 … … 𝒚𝑁𝑡−1 𝒚𝑁𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ⎡
⎢
⎣

𝒀0|𝑖−1
𝒀𝑖|𝑖

𝒀𝑖+1|2𝑖−1

⎤
⎥
⎦
= [ 𝒀 +

𝑝
𝒀 −
𝑓

].

(2.124)
Therefore, considering the LQ decomposition in Eq. (2.119), the projection matrix
and the output matrix 𝒀𝑖|𝑖 can be obtained as follows:

𝜫𝑖−1 = 𝒀 −
𝑓 /𝒀 +

𝑝 = [𝑳31 𝑳32] [
𝑸𝑇

1
𝑸𝑇

2
] (2.125)

𝒀𝑖|𝑖 = [𝑳21 𝑳22] [
𝑸𝑇

1
𝑸𝑇

2
] (2.126)

Reversed controllability matrix 𝜞𝑖 can be obtained from Eq. (2.97) as follows

𝜞𝑖 = 𝑶†
𝑖𝑻1|𝑖, (2.127)

from which 𝑮 matrix can be obtained extracting the last 𝑙 columns. The initial
output covariance 𝑹0 can be obtained as

𝑹0 = 1
𝑗
𝒀𝑖|𝑖𝒀 𝑇

𝑖|𝑖, (2.128)

According to [96], three methods are available to estimate state matrices 𝑨 and
𝑪. The first method is based on solving a least square problem on a set of overdeter-
mined equations according to the Kalman states sequence 𝑺𝑖 = [𝒔𝑖, 𝒔𝑖+1, ..., 𝒔𝑖+𝑗−1]
from the time instant 𝑖 until 𝑖+ 𝑗−1 [96], being 𝝆𝑤 and 𝝆𝑣 the residuals which are
uncorrelated with regressors 𝑺𝑖:

[𝑺𝑖+1
𝒀𝑖|𝑖

] = [𝑨𝑪]𝑺𝑖 + [𝝆𝑤
𝝆𝑣

] , (2.129)
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[𝑨𝑪] = [𝑺𝑖+1
𝒀𝑖|𝑖

]𝑺†
𝑖 . (2.130)

All terms in Eq. (2.130) are numerically obtained by LQ decomposition.
The second method to estimate state matrices leverages the shifting nature

of the observability matrix, identical to the SSI-cov method described in Eqs.
(2.105)-(2.106).

𝑶𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

= [ 𝑶↑
𝑖

𝑪𝑨𝑖−1] = [ 𝑪𝑶↓
𝑖
] ⇒ 𝑶↑

𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−2

⎤
⎥
⎥
⎦

, 𝑶↓
𝑖 =

⎡
⎢
⎢
⎣

𝑪𝑨
𝑪𝑨2

⋮
𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

⇒ 𝑶↑
𝑖𝑨 = 𝑶↓

𝑖 ⇒ 𝑨 = 𝑶↑
𝑖
†
𝑶↓

𝑖

Alternatively, it is possible to decompose with SVD the linear combination of 𝑶↑
𝑖

and 𝑶↓
𝑖 matrices, i.e.

[𝑶↓
𝑖 −𝑶↑

𝑖] = 𝑼𝜮𝑽 𝑇 ⇒ 𝑽 = [𝑽11 𝑽12
𝑽21 𝑽22

] , (2.131)

𝑨 = 𝑽22𝑽 −1
12 (2.132)

with 𝑽11,𝑽12,𝑽21,𝑽22 ∈ ℝ𝑛×𝑛.
At this point, it is noteworthy to remind that these first two methods are not

able to mathematically guarantee positive realness of state sequence estimates, and
therefore this holds also for SSI-cov algorithm, which is based on this second ap-
proach (Eqs. (2.105)-(2.106)) [96, 101]. Indeed, the noise covariance estimates, and
matrices 𝑮 and 𝑹0 are unbiased estimates under the assumption of infinitely long
monitored data sequence. However, dealing with finite duration vibration response
data, these estimates occasionally lead to a state space model whose states are not
real and nor positive. This fact translates in the frequency domain into a synthe-
sized spectrum which is not positive at every frequency line, which is meaningless
from a mathematical point of view. Theoretically, in this case, any forward inno-
vation model cannot be obtained [96, 101], even if it is worth underlining that in
the OMA context we are more interested in providing reliable estimates of modal
parameters of the structure under investigation rather than provide a very accurate
state space model [96]. Nevertheless, when positive realness is a stringent require-
ment, the third method to estimate state matrices must be adopted. This approach
adopts the same least square problem on the first method, i.e. Eq. (2.129), but
uses the residuals to estimate the nonsteady state covariance matrices of the noise
process affecting the states, viz. the innovation, in Kalman filter state space for-
mulation, so that

1
𝑗
[𝝆𝑤
𝝆𝑣

] [𝝆𝑇
𝑤 𝝆𝑇

𝑣 ] = [ 𝑸𝑤𝑤
𝑖 𝑺𝑤𝑣

𝑖
[𝑺𝑤𝑣

𝑖 ]𝑇 𝑹𝑣𝑣
𝑖
]𝑺†

𝑖 . (2.133)
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Since the Kalman filter converges unbiased with infinite data, the approximation
for finite data introduces a bias but still ensures the positive realness of the states
because the noise process covariance matrix in Eq. (2.133) is a positive-definite
matrix for construction (all its eigenvalues are positive), i.e.

𝑸𝑤𝑤 = 𝑸𝑤𝑤
𝑖 , 𝑺𝑤𝑣 = 𝑺𝑤𝑣

𝑖 , 𝑹𝑣𝑣 = 𝑹𝑣𝑣
𝑖 . (2.134)

The steady-state approximation ensures the validity of Eqs. (2.71)-(2.75), thus
permitting to directly numerically solving the Riccati equation (2.92) in order to
obtain the forward innovation model [96].

Once state matrices 𝑨 and 𝑪 are known, the modal parameters can be ob-
tained as aforementioned in SSI-cov method in Eq. (2.109), i.e. by solving the
EVD problem of state transition matrix 𝑨 in order to find Z-domain eigenvalues,
which converted back to continuous Laplace domain, deliver modal parameters in
terms of natural frequencies, damped natural frequencies, and damping ratios ac-
cording to Eqs. (2.30)-(2.33), whilst mode shapes are estimated according to Eq.
(2.110). Also in SSI-dat, despite the actual model order 𝑛 can be theoretically
estimated by the rank of the projection matrix, it is unknown in reality due to
noise and often not evident from missing large relative scatter in SVs. Therefore,
a conservative approach based on a stabilization diagram is commonly adopted
also in this case, in order to find the stable pole alignments characterizing the real
modes of the structure. The stability checks are the same as expressed in HVC
Eqs. (2.111)-(2.112) and SVC Eqs. (2.113)-(2.115).

Some SSI-dat variants have been proposed in literature according to weighting
procedures with matrices 𝑾1 ∈ ℝ𝑙𝑖×𝑙𝑖 and 𝑾2 ∈ ℝ𝑗×𝑗 pre- and post- multiplied
to the projection matrix 𝑾1𝜫𝑖𝑾2 beforehand the LQ decomposition [96]. The
unweighted principal components (UPC) method is the one that has been discussed
so far, i.e. considering identity matrices for both 𝑾1 and 𝑾2 matrices. The UPC
SSI-dat is normally used with well and equally excited modes, and with good SNR
data [96]. Instead, the canonical variate analysis (CVA) SSI-dat is preferred with
non-uniformly excited modes and with noisy response data [96]. It employs the
following weighting matrices:

𝑾1 = (1
𝑗
𝒀𝑝𝒀 𝑇

𝑝 )
−1/2

, 𝑾2 = 𝑰𝑗×𝑗. (2.135)

Similarly to CVA SSI-cov, the SV of the weighted projection matrix can be in-
terpreted as principal cosine angles between past output matrix row subspace and
future output matrix row subspace [96]. Eventually, the principal component (PC)
SSI-dat represents a compromise between CVA SSI-dat and UPC SSI-dat, so using
the following weighting matrices:

𝑾1 = 𝑰𝑙𝑖×𝑙𝑖 , 𝑾2 = 𝒀 𝑇
𝑝 (1

𝑗
𝒀𝑝𝒀 𝑇

𝑝 )
−1/2

𝒀𝑝. (2.136)

93



Conventional approaches for operational modal analysis

Despite UPC, PC, and CVA having slightly different physical meanings, no signifi-
cant differences in modal parameter estimate accuracy have been evidenced in the
literature [96].

2.2.3.6 Quality assessment of the dynamic identification results

Afterward, the modal identification in the OMA context, assessing the quality of the
outcomes is fundamental to ensure the reliability and representativeness of the ob-
tained modal results. For instance, considering time-domain parametric SSI meth-
ods, the stochastic state space model attempts to describe the dynamic behavior of
the system under a white noise excitation, therefore a synthetic response spectrum
can be associated to this state space model which can be directly compared with
the spectrum directly obtained from the vibration response measurements, or from
the first SV from the SVD of the PSD (FDD method). An analytical closed-form of
the synthetic spectrum associated with a discrete-time stochastic state space model
can be found in [115], depending only on the state matrices 𝑨, 𝑪, 𝑮, and 𝑹0:

𝑺𝑌 𝑌(𝑧) = 𝑪 (𝑧𝑰 −𝑨)−1 𝑮+𝑹0 +𝑮𝑇 (𝑧−1𝑰 −𝑨𝑇)−1 𝑪𝑇∣
𝑧=𝑒𝑖𝜔Δ𝑡

, (2.137)

being 𝜔 the circular frequency, 𝜔 = 2𝜋𝑓𝑘. This spectral comparison permits to
assessment of the frequency-domain performance of the time-domain parametric
SSI methods [115].

To ensure better reliability of OMA results, several different algorithms are
usually employed alongside for mutual validation of the modal estimates outcomes.
Furthermore, a fundamental aspect of assessing the quality of modal results lies in
deeply analyzing the mode shape estimates. Foremost, from a mathematical point
of view, the mode shapes usually appear as complex vectors since the real-world
case studies are normally affected by noise (measurement and process noise), but
sometimes also from other physical phenomena such as nonlinearities, aerodynam-
ics interactions, non-proportional damping effects, gyroscopic effects, and so on.
Therefore, the analysis of their degree of complexity is crucial. Visual inspecting
the mode shape components in the Argand-Gauss complex plane, real mode shape
results should be characterized by a phase angle close to 0∘ or to 180∘. Therefore,
the real to complex conversion in Eq. (2.110) could be potentially done without
any loss of information only for those modes whose components have phase an-
gle 0∘ ± 10∘ or to 180∘ ± 10∘. In practice, the complex to real conversion is done
anyway, despite the analysis of this aspect could be important to evidence if some
of the aforementioned physical phenomena are occurring on the structure under
investigation. To quantitatively evaluate the degree of complexity of mode shape,
two indicators have been proposed in the literature named modal phase collinearity
(MPC) and mean phase deviation (MPD), and the interested reader can refer to
[96] for further details. OMA mode shapes results are normally unscaled, and the
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user generally scales them according to the maximum component or according to
a fixed DOF, e.g. the highest point at the top of the building, acting as a sort of
control point.

Consistency checks should be pursued both among different concurrent OMA al-
gorithms used for mutual validation, but also concerning the modal results obtained
from numerical finite element (FE) models. These latter are initially implemented
with undamped models and nominal values for structural materials, however, they
must be calibrated according to experimental results, in order to capture the actual
dynamic behavior of the real-world structure through a numerical FE model. This
fitting procedure is known as model updating and it configures an optimization
problem [116]. A crucial aspect is the mode pairing process, i.e. finding the right
estimates of the mode shapes for each natural frequency value. For instance, in
the stabilization diagram, the stable pole alignments permit identifying the natural
frequency, however, any pole associated with a specific alignment is associated with
a certain complex mode shape vector. The modal parameter pairing can be visually
inspected from a tabular representation, highlighting their relative difference, or on
a Cartesian plane, expecting a good pairing if the modal parameter associated with
two different sets lies the closest possible to the bisector line. During the pairing
procedure, to better characterize closed modes, it could be useful to account also
for the frequency separation, referring to the modal overlap factor (MOF) index,
which instead considers natural frequency and damping ratio of a reference mode
𝑛 with respect to a close pole 𝑛 − 1:

MOF𝑛 = 𝑓𝑛𝜉𝑛
𝑓𝑛 − 𝑓𝑛−1

. (2.138)

The MAC index in Eq. (2.45) is a metric to characterize the degree of similarity
(correlation) between mode shape pairs, merely based on vector components. From
a linear algebra point of view, the MAC index represents the squared cosine angle
between two vectors, and it could be interpreted as a squared linear regression
coefficient. If MAC is greater than 0.8, the two modes can be considered highly
correlated, conversely, when it is lower than 0.2 the two modes are practically
uncorrelated. MAC values are organized in the MAC matrix, and it can be used
also to define AutoMAC values, when checking the effectiveness of sensors layout
evidencing the possible presence of a spatial aliasing problem, or CrossMAC values,
when used to compare results derived from different OMA techniques. Despite
MAC is probably the widest adopted indicator, the main drawbacks of MAC are
its insensitivity to small changes in modal displacements (due to e.g. systematic
deviations or either random aleatory errors), and the fact that no information about
scatter for each DOF is preserved [96]. Another indicator that can be used alongside
MAC is the modal scale factor (MSF) used only to highlight if any difference in
the scale factor between two modes holds [96]. To overcome the drawback of MAC
insensitivity to small changes, the normalized modal difference (NMD) indicator
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has been proposed, and it was demonstrated to work well, especially with highly
correlated modes:

NMD(𝝓𝑎,𝝓𝑏) = √1 −MAC(𝝓𝑎,𝝓𝑏)
MAC(𝝓𝑎,𝝓𝑏)

. (2.139)

To overcome the MAC issue of not considering DOF spatial information, two other
indicators have been proposed in the literature, i.e. the coordinate modal assurance
criterion (COMAC) and its enhanced version (ECOMAC) to avoid errors due to
different mode scaling [96].

2.2.4 Notes about other OMA methods
As already before mentioned, several time-domain methods have been developed
for OMA in the last decades, based on the analysis of correlation functions of vi-
bration output responses under natural excitation conditions, which progressively
replaced forced vibration tests as discussed in section 2.1.3. Therefore, the related
output-only OMA methods have been denoted as Natural Excitation Techniques
(NExT), and it is worth mentioning at least three distinguished approaches, i.e.
the least square complex exponential (LSCE) algorithm, the Ibrahim time domain
(ITD) method and the eigenvalue realization algorithm (ERA), which is very simi-
lar to subspace-based identification approaches. The interested reader about LSCE,
ITD, and ERA can refer to [103, 104, 105] respectively. The NExT OMA procedures
were very popular at the beginning but they were progressively abandoned for sev-
eral limitations and/or drawbacks [96], preferring stochastic subspace identification
(SSI) strategies. Some other topical and quite popular OMA techniques are related
to wavelet analysis or cepstral analysis [7], transmissibility functions [96], random
decrement techniques [96], or yet the poly-reference versions (commercially known
as polymax) of the frequency domain and time domain SSI techniques [96]. Fur-
thermore, the nonparametric techniques are taking place such as the second-order
blind identification method [96].

In the beginning of OMA, the autoregressive moving average (ARMA) models
were also another very popular and widely used technique, which have been pro-
gressively abandoned due to their convergence issues and excessive computational
burden, besides the high number of spurious modes not trivially separable from
the structural ones [96]. In practice, the ARMA models do not rely on a physical
internal representation as the state space modeling, but they only set a fitting prob-
lem of a polynomial function able to reproduce the measured data. As the name
suggests, the polynomial model is based on two parts, one related to autoregressive
(AR) coefficients, whose calibration delivers the modal parameters of actual inter-
est, and the second one is the moving average (MA) nonlinear part, which instead
ensures a good statistical description of the vibration response. Therefore, ARMA
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models attempt to analytically replicate the vibration response random process,
therefore modeling both the actual response of the structure and also the noise and
disturbances, thus requiring very high-order models which consequently deliver a
huge number of spurious modes.

2.3 PyOMA: a Python package for operational
modal analysis

Within the structural health monitoring (SHM) field, the operational modal analy-
sis (OMA) gained special attention in recent years becoming the most acknowledged
and standard approach for mechanical, civil, and aerospace engineering to inspect
the actual state of a structural system during its in-service conditions. The OMA
comprises an ensemble of algorithms capable of identifying the dynamic charac-
teristics of a structure (i.e., eigenfrequencies, mode shapes, and damping ratios)
leveraging information contained in output-only vibration response measurements.
Frequency domain decomposition and stochastic subspace identification (SSI) algo-
rithms among others form the most acknowledged and well-established techniques
employed nowadays. As delineated in Fig. 2.9, the PyOMA module has been
developed within a research project conducted within the current Ph.D. program
and supported by the ArtIStE (artificial intelligence in structural engineering) re-
search team in Politecnico di Torino University. The PyOMA project was born
from the collaboration among three institutions: the University of L’Aquila (Italy),
the Norsk Treteknisk Institutt (Norwegian Institute of Wood Technology) in Oslo
(Norway), and the Politecnico di Torino University (Italy). For the first time,
an open-source Python OMA module has been implemented to provide an effec-
tive, versatile, and free-to-use OMA framework oriented both for researchers and
practitioners. Especially for this latter category, the authors also provided a more
familiar graphical user interface (GUI) of the same OMA python framework de-
noted as PyOMA_GUI, to further increase the usability of the above-mentioned
implementation to everyone, without requiring any specific Python coding skills.
In the current section of this Thesis, the main features of the PyOMA mod-
ule and its GUI-based counterpart are illustrated. The PyOMA source code in
the released version 1.5 and the PyOMA_GUI software in the released version
1.1 are made freely available by the authors at the following GitHub repository
(https://github.com/dagghe/PyOMA). For a complete and detailed overview of
the PyOMA software functionalities, the reader can also refer to [117]. In detail,
the current released version 1.5 of the PyOMA package implements the following
six acknowledged techniques, the first three based on frequency domain approaches,
and the last three according to time domain methods, whose theoretical frameworks
have been already extensively discussed in the previous sections:
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Figure 2.9: PyOMA research project overview.

1. frequency domain decomposition (FDD) [118];

2. enhanced frequency domain decomposition (EFDD) [119];

3. frequency spatial domain decomposition (FSDD) [120];

4. covariance driven stochastic subspace identification (Cov-SSI) [115, 96];

5. data-driven stochastic subspace identification (DD-SSI) [101];

6. natural excitation technique eigensystem realization algorithm (NExT-ERA)
[96, 105];

PyOMA module is therefore an open-source Python module that implements a
complete output-only OMA suite for researchers, engineers, and practitioners [117].
As depicted in the flowchart of Fig. 2.10, after importing the vibration data, the
user may estimate the modal parameters using the implemented functions both for
frequency (FDD-based variants) and/or time (SSI-based variants) domain analyses.

The PyOMA implementation delivers the first Python-based OMA package
for researchers and practitioners. The authors further equipped their tool with a
Python-based graphical user interface (GUI) called PyOMA_GUI software. This
additional available option clearly enhanced the user-friendly and immediate usage
of this software. PyOMA_GUI has been developed in PyQt5, which implements
in a single integrated tool the operational modal analysis of civil structures with
output-only measurement data. A general overview of the software functionalities
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Figure 2.10: PyOMA implemented algorithms.

is depicted in Fig. 2.11. This software employs the functionalities mentioned above
offered by the PyOMA python module. Therefore, PyOMA_GUI provides an
exceptionally user-friendly interface to improve the accessibility of the PyOMA
module, ensuring widespread usage for scientists, researchers, and applied civil and
structural engineers. The main features PyOMA_GUI provides are listed below:

• Importing data tab;

• Definition of the geometry of the structure and the monitoring system (chan-
nels and degrees of freedom, DOFs);

• Pre-processing of the acquired signals with detrending and decimation op-
tions;

• Dynamic identification algorithms with visualization of the results (graphs,
modal shapes);

• Post-processing tabs and output export functionalities.

Recently, our multi-institutional research team is currently working to release a
completely renewed version of the PyOMA module denoted as PyOMA2, as shown
in the new logo shown in Fig. 2.12. This new implementation transforms Py-
OMA from a basic function library into a sophisticated module, fully leveraging
Python’s class capabilities, thus improving its usability and functionality in the
OMA field. A notable addition is interactive plotting, enabling users to directly
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Figure 2.11: “PyOMA_GUI” graphical user interface software general overview.

select modes for extraction from algorithm-generated plots. This was mainly in-
spired by the open-source module PyEMA (https://github.com/ladisk/pyEMA).
Furthermore, a novel feature allows users to define the geometry of the struc-
tures under analysis, enhancing the visualization of mode shapes post-analysis.
The new source code is accessible from the following GitHub repository (https:
//github.com/dagghe/PyOMA2). In detail, the new PyOMA2 module is struc-
tured into three primary levels of Python classes. At the first level are the setup
classes: users instantiate these classes by providing a data array and the sampling
frequency for a single setup scenario, or a list of data arrays and their respective
sampling frequencies for a multi-setup scenario. The second level comprises the
algorithm classes: users can instantiate the algorithms they wish to run and then
add them to the setup class. The third level contains the support classes, which
serve as auxiliary components to the first two levels. This level includes various
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Figure 2.12: The new PyOMA2 logo.

specialized classes, i.e. the result classes, where outcomes are stored, the geometry
classes, for storing geometric data, the run parameters classes, where parameters
used for running the algorithms are kept, and dedicated classes for animating mode
shapes and interacting with plots generated by the algorithm classes. In addition,
there is a further level that includes the set of functions internally called by the
class methods, which represents an updated version of those functions available in
our previous release PyOMA. For users interested in a more direct approach, it
is still possible to import only the functions and execute them sequentially to ob-
tain the results. However, this approach precludes the use of interactive plots and
the animation capabilities provided by the dedicated classes. Collectively, all these
layers work together to create a robust and comprehensive framework, facilitating
efficient module operation and data processing. PyOMA2 expands its scope to sup-
port both single and multi-setup data measurements, effectively managing multiple
acquisitions involving a combination of reference and roving sensors [109]. This in-
cludes the SSI-dat versions illustrated in [121], denoted as Post Separate Estimation
Re-scaling (PoSER) and Pre-Global Estimation Re-scaling (PreGER). Moreover,
besides retaining the previous algorithms found in its predecessor, PyOMA2 intro-
duces the multi-setup versions of SSI algorithms and also the poly-reference Least
Square Frequency Domain (pLSCF) method, also known as Polymax [96].

2.4 PyOMA for model-updating-related studies
Our PyOMA module revealed practical advantages, especially in the automatic
OMA and SHM perspectives. Moreover, the scientific soundness of using our
Python-based code for OMA has been already successfully demonstrated in some
recent research studies and applications. Hereinafter, some research studies con-
ducted during the current Ph.D. program are presented united by the adoption of
PyOMA for pursuing the model updating procedure on the case studies analyzed.
In summary, the parametric model updating defines those optimization procedures
to find the best estimates of the 𝑁𝑝 parameters 𝜽 ⊂ Ω ∈ ℝ𝑁𝑝 of a numerical finite
element model which governs its dynamic behavior in order to cope with the experi-
mental vibration data collected from vibration test [116, 122]. Therefore, the model
updating process is nothing more than an optimization problem, i.e. from a math-
ematical point of view, it is the minimization of a function called objective or merit
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function (OF) ℱ(𝜽) which depends on a certain choice of design or decision vari-
ables 𝜽. In general, for solving optimization problems, the branch of mathematics
called operational research formalized starting from World War II on several math-
ematical programming techniques, which configures gradient-based methods [123].
Afterward, new heuristic approaches were developed to solve complex optimization
problems in which classical methods failed or required prohibitive computational
costs. These new methodologies were mainly inspired by Nature, mimicking in-
telligent behavior and survival strategies of animals [123]. These paradigms were
also introduced to the Artificial Intelligence field (AI) and were mathematically
formalized under the category of methods called meta-heuristic algorithms to solve
optimization problems. During the current Ph.D. program, some innovative hybrid
meta-heuristic methods have been proposed, and the interested reader can refer to
[46, 124, 48, 50, 125] for further details.

In control engineering, the model updating procedure is normally conducted
as an on-line procedure, whereas in the civil engineering field, it is typically done
off-line. Indeed, for civil structures, the main goal of model updating is not sim-
ply numerically replicating the physical test data, but calibrating the numerical
model in order to be more representative of the actual conditions of the real-world
structural system by using its dynamic footprint obtained from signal processing
dynamic identification methods, and use the calibrated model to make predictions
for alternative loading conditions, estimate residual life, SHM, damage detection
procedure and digital twin, etc. [122]. The model updating procedure configures
as an optimization problem based on minimizing the following objective function
accounting for the relative difference of every 𝑢-th natural frequencies and mode
shapes’ MAC index between the experimental results denoted by superscript (𝑒)
and the numerical multi-modal model denoted by superscript (𝑐), with 1 ≤ 𝑢 ≤ 𝑚
being 𝑚 the maximum number of modes of interest [126, 116]:

min
𝜽∈Ω

ℱ(𝜽) =
𝑚
∑
𝑢=1

𝛾𝑢 (
𝑓 (𝑒)
𝑢 − 𝑓 (𝑐)

𝑢 (𝜽)
𝑓 (𝑒)
𝑢

)+
𝑚
∑
𝑢=1

𝛽𝑢 [1 −MAC(𝝓(𝑒)
𝑢 ,𝝓(𝑐)

𝑢 (𝜽))] ,

(2.140)
in which 𝛾𝑢 and 𝛽𝑢 are two set of weighting factors. For instance, in [126], when
there is major confidence in lower modes, the weighting factors can be trivially
assumed as inversely proportional to the natural frequency value. The modeling
parameters are generally configured as the geometric and material properties of
a structure, since they directly affect its modal response. However, since the ge-
ometric properties come from a direct survey and they are generally known with
good confidence, model updating often reduces to mainly assess the stiffness-related
parameters only [127]. Model updating problems are inverse problems since the ob-
jective is to obtain the parameters that produce a given output. Nevertheless, this
optimization problem is often prone to ill-posedness and ill-conditioning, meaning
that the existence, uniqueness, and stability of a solution to the inverse problem
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cannot be guaranteed [127]. Indeed, OMA methods provide only mode shapes
unscaled with respect to the mass matrix. Therefore, the mass and the stiffness
matrices cannot be both unknowns simultaneously. The mass matrix is often as-
sumed as known because it derives from materials’ specific weights and geometric
properties, which can be usually known with good confidence, and consequently,
the optimization strategy may only focus on stiffness parameters. Deterministic
model updating aims to find the optimal parameters associated with the best fit
between the model output and the observed data, generally solving a constrained
optimization problem under the assumption of the existence of an optimal solution
characterized by a deterministic set of design variables. In contrast, probabilistic
model updating procedures assume that the design vector is composed of random
variables, and the goal is defining the entire distribution of the modeling parame-
ters, often pursued in a Bayesian way. The main challenges in finding the agree-
ment between experimental and numerical mode shapes depended on the chosen
arrangement of the accelerometers, which can lead to spatial aliasing problems.
Furthermore, the choice of updating parameters is determinant since the numerical
predictions of modal parameters should be sensitive to small changes in parameters.
In addition, the modeling process often requires accounting for factors and specific
parametrizations of inaccurate parts, such as boundary conditions, that normally
are not considered in a regular finite element model [116]. Therefore, sensitivity
analyses are often required to select which parameters greatly affect the dynamic
response rather than others that can be not considered during the optimization
process, thus reducing the complexity and computational burden of the model up-
dating problem. Anyway, it is worth reminding you that the updating process will
never be a perfect fit, since experimental data are inherently affected by some noise
sources, both aleatory and systematic. Additionally, due to the Nyquist-Shannon
sampling theorem, the sampling frequency of measured data directly limits the
maximum number 𝑚 of numerical modes which can be considered when solving
the optimization problem in Eq. (2.140) [116]. Eventually, to assess the quality of
the updating process outcome, it is necessary to evaluate that the mass, stiffness,
and damping ratios of the updated model are still based on physically meaningful
parameters [116].

2.4.1 Indirect estimate of concrete strength:
The Corvara Bridge case study

The current section discusses our research study [127], which proposed a methodol-
ogy to estimate the concrete strength of a structure based on an ambient vibration
test and leveraging the Young’s modulus value retrieved by a FE model updating
process. The optimization problem of deterministic FE model updating leads to
an optimal set of 𝑁𝜽𝑀

model parameters 𝜽𝑀 ∈ 𝒟 ⊆ ℝ𝑁𝜽𝑀 which minimizes a
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cost function ℱ, defined as the discrepancy of the operational response from dy-
namic vibration experimental data, denoted as 𝒚, and model predictions denoted
as 𝑮𝑀(𝜽𝑀) [116]:

𝜽𝑀 = argmin
𝜽𝑀

ℱ(𝑮𝑀(𝜽𝑀) − 𝒚)∣
𝜽𝑀

(2.141)

The modeling parameters (𝜽𝑀) generally configure as the geometric and material
features, which directly affect the modal response of the structure. Since the ge-
ometric properties come from a direct survey and they are generally known with
good confidence, model updating reduces to mainly assess the stiffness parameters
only. Therefore, the FE model updating using the modal parameters can only esti-
mate the stiffness parameters, but not the strength of the material, which is gener-
ally assessed from additional experimental tests, e.g. destructive tests on concrete
specimens. Nevertheless, these two variables are in general correlated and [128]
attempted to estimate material properties from the FE model updating stiffness
parameters. In our research study [127], the proposed indirect method for estima-
tion of the concrete resistance from ambient vibration data has been formalized in
five steps:

1. Initial FE model. With first-attempt estimates or nominal values of the
parameters, an initial FE model allows to perform of the modal analysis,
helpful to optimal sensor placement.

2. Experimental campaign and OMA. Modal parameters are estimated
with the OMA methods from vibration response measurements collected un-
der operational conditions.

3. FE model updating. The resolution of the optimization problem leads
to the optimal set estimate of model parameters. Their prior admissible
variability range depends on the user experience and knowledge of the existing
structure. Since the geometric features are known, then the mass matrix is
assumed to be known, and the model updating optimization considers only
the stiffness properties. The variance matrix of the optimal parameters 𝜮𝜽𝑀
can be estimated by propagating the variance with a first-order approximation
of the OF in the minimum point.

𝜮𝜽𝑀
= (𝑱𝜽𝑀,ℱ)

†
𝜎2
ℱ (𝑱𝑇

𝜽𝑀,ℱ)
†

(2.142)

where 𝜎2
ℱ is the variance of the OF at the minimum, 𝑱𝜽𝑀,ℱ = 𝜕ℱ

𝜕𝜽𝑀
|𝜽𝑀=𝜽𝑀

is
the Jacobian matrix of the OF at the optimum 𝜽𝑀.

4. Indirect estimation of the material strength. Empirical relationships
hold between the concrete strength 𝑹 and the modeling parameters 𝑹 =
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Figure 2.13: Corvara bridge case study: (a) Global and side view of the; (b) Trans-
verse and longitudinal cross-section of the bridge.

𝑹(𝜽𝑀), therefore its estimate �̂� can be obtained by evaluating these empiri-
cal relationships in the optimum 𝜽𝑀. The covariance matrix of the estimated
resistance (𝜮�̂�) can be obtained from the first-order approximation of these
empirical relationships as

𝜮�̂� = (𝑱𝜽𝑀,𝑹)𝜮𝜽𝑀
(𝑱𝑇

𝜽𝑀,𝑹) (2.143)

where 𝑱𝜽𝑀,𝑹 = 𝜕𝑹
𝜕𝜽𝑀

|𝜽𝑀=𝜽𝑀
is the Jacobian matrix of the empirical relation-

ships evaluated by the optimum values of the parameters.

The proposed procedure has been applied to a multi-span prestressed concrete
bridge located in Corvara (Pescara, Italy), illustrated in Fig. 2.13. The bridge con-
sists of seven equal spans 20.00 m long, each of these composed of eight prestressed
concrete girders (PSC) of the type TAS-PN 120/46, and a reinforced concrete (RC)
deck. The bridge presented an overall good conservation state, despite the lack of a
proper rainwater drainage system. Additionally, the deck lacks bearings: the piers
support the bridge without any load transfer device [127]. On 4th August 2020, the
authors measured the response of the bridge to ambient excitation, recording the
one-hour structural vibration sampled at 200 Hz for each span separately, obtaining
seven different measurement datasets. Ten bi-axial Force-Balance accelerometers
(FBA) were arranged equally spaced in two symmetric measurement chains, placed
at 1.30 m from the lateral edges and with the extremal ones in correspondence of
the span edges, as depicted in Fig. 2.14. Due to the bridge traffic closure during the
experimental campaign, shallow levels of vibration have been recorded with root-
mean-square values below 0.1 mg. The experimental modal parameters have been
obtained by processing the experimental data employing both EFDD and SSI-cov
algorithms for mutual validation, both provided in the PyOMA module. Despite
the low level of the excitation, the stabilization diagram in Fig. 2.14 permitted
identifying four stable modes in the frequency range 0-20 Hz, whose results are

105



Conventional approaches for operational modal analysis

(a)

Stabilization Diagram - shift: 30

Frequency [Hz]
12.50 2.5 5.0 7.5 10.0 15.0 17.5 20.0 22.5 25.0

10-5 

10-4 

10-3 

SV
D

 o
f P

SD
 [d

B
]

O
rd

er

20

10

30

40

50
Label

0
1
2
3
4

Rigid mode

1st mode 2nd mode 3rd mode 4th mode

(b)

Figure 2.14: Corvara bridge case study: (a) experimental setup overview; (b) sta-
bilization diagram.

Table 2.1: Corvara case study: OMA results of the seven spans: 𝑓𝑖 and 𝜉𝑖 are the
natural frequency and damping ratio of the 𝑖-th mode.

Span 𝑓1 𝜉1 𝑓2 𝜉2 𝑓3 𝜉3 𝑓4 𝜉4
num. [Hz] [%] [Hz] [%] [Hz] [%] Hz [%]

1 7.38 1.58% 9.15 1.29% 14.20 1.70% - -
2 7.17 1.55% 8.68 1.93% 14.10 1.33% 23.53 1.22%
3 7.33 1.64% 8.87 1.12% 13.45 1.34% - -
4 6.98 1.13% 8.62 1.26% 13.39 1.58% 23.06 2.05%
5 6.95 1.95% 8.44 1.34% 13.42 1.58% 22.89 1.10%
6 7.15 1.81% 8.53 1.09% 14.14 1.50% 23.73 1.15%
7 7.17 1.69% 8.55 1.17% 14.60 1.42% - -

reported in Tab. 2.1 for the seven spans, and the experimental mode shapes are
illustrated in Fig. 2.15. It is noteworthy that the very first alignment of poles in the
stabilization diagram has been identified as a rigid translational mode, therefore the
actual modes of interest started at nearly 7 Hz. In a different set of identical PSC
girders, the first mode shapes tend to be very similar to each other (MAC > 0.99),
confirming that there is no substantial difference in boundary restraint conditions
among the spans [129]. On the other hand, the respective natural frequencies may
reveal more scattered values, probably due to the dispersion of the concrete Young’s
modulus due to different degradation levels among the spans. The second mode
is the first torsional mode. Since the lack of bearing devices, displacement by the
supports is nearly zero due to the mono-lateral nature of the constraint. Due to
the sensor setup, it is not possible to unambiguously distinguish the mode shape
of the first and third modes (in which bending seems coupled with horizontal de-
formation); nevertheless FE model allows us to make such a distinction. Despite
it was not possible to identify the fourth mode in all the tested spans, when it
was possible, the mode shape clearly resembles the second mode of a beam-like
structure. The damping ratios between 1.5 and 2% are consistent with reasonable
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Figure 2.15: Corvara case study: visualization of the experimental mode shapes of
a sample bridge span.
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Figure 2.16: Corvara case study: (a) FE model view with marked accelerometers
positions; (b)-(e) first four FE mode shapes corresponding to the experimental ones.

physical values.
In order to perform the model updating procedure according to Eq. (2.140),

a FE model of a single span has been implemented in CSI SAP2000 commercial
software [130], adopting beam and shell elements with pinned-pinned boundary
restraints. Due to mode updating intrinsic ill-posedness and ill-conditioning, sensi-
tivity analysis provided a quantitative assessment of the goodness of choice of the
model parameter to be considered in the OF. The unknown model parameters are
the longitudinal Young’s moduli of the girder and the deck, denoted as 𝐸𝑏 and 𝐸𝑑
respectively. The two Young’s moduli were the base of a variance-based sensitiv-
ity analysis which consisted of decomposing the variance of the model output into
fractions attributed to the chosen mechanical parameters. After setting the inputs
sampling range with a standard deviation of 30% (see Tab. 2.2), model parameters
were generated with Saltelli’s sampling scheme [131, 132]. Total, (𝑁𝑠 ⋅ (2𝐷𝜽 + 2)
models were generated (where 𝑁𝑠 = 100 is the number of samples, and 𝐷𝜽 = 2 is
the number of input parameters) and the related first-order (𝑆1) and total-order
(𝑆𝑇) sensitivity indices are reported Tab. 2.3. They measure, respectively, the
effect of varying a single parameter alone and the output variance caused by all
the varying parameters. Both the OF in Eq. (2.140) and the first three natural
frequencies appeared more sensitive to Young’s modulus of the deck. Conversely,
𝑓4 is more affected by Young’s modulus of the supporting girders, which is con-
sistent with the observed torsional mode shape behavior which involves a greater
deformation of girders. The sensitivity analysis demonstrated the good choice of
unknown modal parameters in the FE model updating.
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Table 2.2: Corvara case study: nominal values in MPa of concrete mechanical
parameters, being 𝑓𝑘 the characteristic nominal strength.

Structure 𝑓𝑘 𝜎𝑓 𝐸 𝜎𝐸
Girder 55.00 4.88 36688.63 194.78
Deck 30.00 4.88 30588.56 297.73

Table 2.3: Variance-based sensitivity analysis results (Sobol Indicators).

Parameters OF 𝑓1 𝑓2 𝑓3 𝑓4
𝑆1 𝑆𝑇 𝑆1 𝑆𝑇 𝑆1 𝑆𝑇 𝑆1 𝑆𝑇 𝑆1 𝑆𝑇

𝐸b 28.8% 37.0% 30.8% 29.8% 21.5% 20.5% 17.9% 17.1% 87.5% 87.1%
𝐸d 63.8% 72.1% 71.2% 69.5% 80.5% 79.0% 84.0% 82.6% 13.6% 12.4%

For solving the modal updating optimization problem, two optimization algo-
rithms were adopted for mutual validation of the results, i.e. the Differential Evo-
lution (DE) [133] and the Particle Swarm Optimization (PSO) [134, 46]. However,
since the outcomes were nearly coincident, only the results of the DE algorithm are
reported hereafter. The relative tolerance for convergence was set to 0.01, then OF
variance (𝜎ℱ) is approximately 𝜎ℱ ≈ ℱ(𝜽𝑀) ⋅ 0.01. The results are reported in
Tab. 2.4 which also illustrates the relative error between experimental and optimal
frequency is approximately below 15%. Still, the correspondence is very satisfactory
and the FE model achieves a good matching with the experimental data. According
to the Italian Building Code (NTC18), the empirical correlation between Young’s
modulus and the compression strength of concrete can be written as:

𝐸 = 22000 ⋅ ( 𝑓
10

)
0.3

(2.144)

where 𝐸 is the mean value of Young’s modulus and 𝑓 is the mean value of the
compression strength, which is related to characteristic compressive strength 𝑓𝑘,
according to Eurocode EN 1992, as 𝑓 = 𝑓𝑘 + 8. Assuming a normal distribution,
and knowing that the characteristic value lies at 5% percentile of the distribution,
the standard deviation 𝜎 is:

𝑓𝑘 = 𝑓 − 1.64𝜎 ⇒ 𝜎 = 8
1.64

= 4.878 (2.145)

The results reported in Tab. 2.5, provided the estimate of mean values of the
concrete mechanical properties coming from Eq. (2.144) and the relative variances
calculated with Eqs. (2.142)-(2.143). Young’s moduli results highlight the different
concrete classes of the girders (33000 - 48000 MPa) and the deck (24000 - 28000
MPa), which even reflects on the strengths (deck: 15 - 20 MPa; girders: 35 - 105
MPa). The deck resistance is lower than the nominal value (30 MPa), conversely,
it is higher for girders (55 MPa), probably due to the different pouring and curing
conditions. Because of the low tolerance in OF convergence, the variances of the
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Table 2.4: Comparison between experimental and optimized numerical natural fre-
quencies [Hz].

Span No 1 Span No 5
𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒) 𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒)

𝑓1 8.01 7.34 8.35% 𝑓1 6.95 6.97 -0.30%
𝑓2 9.15 8.56 6.42% 𝑓2 8.44 7.37 12.67%
𝑓3 14.20 14.48 -1.95% 𝑓3 13.42 14.88 -10.86%
𝑓4 - 22.88 - 𝑓4 22.89 22.65 1.02%

Span No 2 Span No 6
𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒) 𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒)

𝑓1 7.17 7.28 -1.55% 𝑓1 7.15 7.21 -0.84%
𝑓2 8.68 7.74 10.81% 𝑓2 8.53 7.63 10.55%
𝑓3 14.10 15.69 -11.25% 𝑓3 14.14 15.41 -9.02%
𝑓4 23.53 22.88 2.76% 𝑓4 23.73 23.31 1.77%

Span No 3 Span No 7
𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒) 𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒)

𝑓1 7.5 7.18 4.27% 𝑓1 8.27 7.84 5.20%
𝑓2 8.85 7.56 14.59% 𝑓2 9.3 8.24 11.40%
𝑓3 13.45 15.18 -12.84% 𝑓3 14.6 16.44 -12.60%
𝑓4 - 23.93 - 𝑓4 - 23.45 -

Span No 4
𝑓𝑛 𝑓(𝑒) 𝑓(𝑐) (𝑓(𝑒)-𝑓(𝑐))/𝑓(𝑒)

𝑓1 6.98 7.00 -0.31%
𝑓2 8.62 7.41 14.02%
𝑓3 13.39 14.97 -11.83%
𝑓4 23.06 22.61 1.97%

Table 2.5: Estimated mechanical parameters and related variances.
Parameters Span No 1 Span No 2 Span No 3 Span No 4 Span No 5 Span No 6 Span No 7
𝐸b [MPa] 44234.63 33754.20 41530.07 34622.50 35227.49 36909.78 48203.66
𝐸d [MPa] 27323.36 29599.20 24647.76 25638.10 24981.85 27088.64 28427.66
𝜎𝐸b [MPa] 27.41 28.92 23.14 87.38 62.01 66.18 28.21
𝜎𝐸d [MPa] 55.98 125.07 8.12 128.77 16.80 149.79 35.96
𝜎𝐸b𝐸d [MPa] 31.85 60.14 13.71 59.46 32.27 99.56 31.85
𝑓𝑏 [MPa] 81.29 36.12 67.27 38.98 41.06 47.22 105.19
𝑓𝑑 [MPa] 19.16 24.35 14.06 15.83 14.64 18.67 21.58
𝜎𝑓𝑏 [MPa] 0.15 0.09 0.11 0.30 0.22 0.25 0.18
𝜎𝑓𝑑 [MPa] 0.12 0.31 0.01 0.24 0.03 0.31 0.08

estimates are quite low. Tab. 2.6 lists the estimated values of Young’s moduli
and concrete resistance averaged over the seven spans. As anticipated, the con-
crete resistance of the deck exhibits a significantly lower resistance compared to
the reference values in Tab. 2.2, on average equal to 63.70%, while that of the
girders showed a slight improvement, on average equal to 7.70%. The reference
variances of 𝐸 and 𝑓, estimated from Eq. (2.145) are significantly higher than the
tolerances of the estimates. The above indirect procedure for estimating the con-
crete resistance from Young’s moduli has been validated against the values of the
concrete resistance evaluated from 3 concrete specimens extracted from each span.
Unfortunately, the authors could not extract the specimens from the deck and had
to limit the validation to the sole resistance of the girders. Tab. 2.7 compares
the values of Young’s moduli and resistance of the girders from concrete specimens
(superscript 𝑑) with those evaluated from the indirect method (superscript 𝑖), re-
porting the mean value 𝑓 (𝑖)

𝑏 and the variance 𝜎(𝑖)
𝑓𝑏 calculated for each specimen set
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Table 2.6: Averaged parameters among the spans.

Parameters Estimated Reference Percentage difference
𝐸𝑏 [Mpa] 39211.76 36688.63 6.43%
𝐸𝑑 [Mpa] 26815.22 30588.56 -14.07%
𝜎𝐸𝑏 [Mpa] 5119.68 194.78 96.20%
𝜎𝐸𝑑 [Mpa] 1695.72 297.73 82.44%
𝑓𝑏 [Mpa] 59.59 55.00 7.70%
𝑓𝑑 [Mpa] 18.33 30.00 -63.70%
𝜎𝑓𝑏 [Mpa] 26.39 4.88 81.52%
𝜎𝑓𝑑 [Mpa] 24.15 4.88 79.80%

Table 2.7: Comparison between the concrete resistance estimated from the FE
model updating (indirect) and that estimated from concrete samples (direct).

Indirect Estimation Direct Estimation Percentage difference

Span No 𝑓(𝑖)
𝑏 [Mpa] 𝜎(𝑖)

𝑓𝑏 [Mpa] 𝑓(𝑑)
𝑏 [Mpa] 𝜎(𝑑)

𝑓𝑏 [Mpa] 𝑓(𝑖)
𝑏 −𝑓(𝑑)

𝑏
𝑓(𝑑)
𝑏

𝜎(𝑖)
𝑓𝑏−𝜎(𝑑)

𝑓𝑏

𝜎(𝑑)
𝑓𝑏

1 81.29 0.15 67.80 3.20 19.89% -95.28%
2 36.12 0.09 29.40 1.20 22.85% -92.26%
3 67.27 0.11 54.40 3.40 23.66% -96.69%
4 38.98 0.30 42.10 4.50 -7.42% -93.44%
5 41.06 0.22 38.30 3.10 7.20% -93.01%
6 47.22 0.25 45.50 2.50 3.79% -89.84%
7 105.19 0.18 60.20 1.70 74.73% -89.14%

for each span. Except for span 7, where the indirect strength estimate is quite
far from the actual value, the percentage error of each set varies between 3%-23%.
The obtained results demonstrated the validity of the proposed indirect method as
a valid alternative to direct destructive tests. Moreover, the indirect method pro-
vides a global evaluation of the health of the structures and it allows the possibility
of tracking the values of interest over time when coupled with a permanent mon-
itoring system. Conversely, the extraction of concrete samples is limited mainly
because of uneconomic and local evaluation. The percentage differences of the two
variances are approximately 100%. Thus, the reference variance is far higher than
that obtained by propagating the variance of the OF. The two variances are not
comparable and derive from two different sources of uncertainties. First, the vari-
ance determined from the FE model updating expresses a modeling error. Instead,
the one from concrete samples represents the spatial variability of the concrete re-
sistance, which can not be estimated with an FE model in which Young’s modulus
is constant along the girder. In a real structure, Young’s modulus of concrete can
vary from point to point, exhibiting significant scatter in its mechanical properties.
Therefore, effectively dealing with damage localization may require to develop of
a refined FE model, with a more refined mesh with a varying Young’s modulus
among the FEs. However, this approach is virtually computationally expensive
and hardly ever applicable in practice. In summary, destructive tests on concrete
specimens are the common practice nowadays to evaluate the strength of concrete
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structures. However, the current study provided a valid alternative and less in-
vasive indirect framework for strength estimation from Young’s moduli estimated
through OMA and FE model updating. With a permanent monitoring system,
this approach may virtually track the mechanical parameters for potential nearly
real-time assessment of the structural capacity. However, estimating the variance
of the concrete strength is not always possible and it strongly depends on the level
of detail of the FE model. When the FE model can address the spatial variability
of the Young’s moduli along the girders, the proposed framework may be virtually
able to even capture the strength uncertainty.

In conclusion, the combined FE model updating with modal data and empirical
correlation between Young’s modulus and concrete may represent a valid alternative
to destructive tests, especially if continuous monitoring of the concrete state is re-
quired. Focusing on the specific Corvara bridge case study, the estimated resistance
of the deck and the girders differed from the reference values assumed in the design.
After almost 30 years of life, the deck’s concrete resistance exhibited an average 60%
decrement, while the girders’ resistance had an approximate 7% increment. The
outcomes of the proposed indirect method for estimating the compressive strength
of concrete are entirely confirmed by the resistances of the concrete specimens ex-
tracted from each span. The percentage error between the compressive strengths
obtained from the two methods is approximately 20%. The indirect estimates are
generally associated with an overestimation of Young’s moduli.

2.4.2 Cables force estimate in cable-stayed bridges:
The Marghera Bridge case study

The current section is dedicated to our research study [135] which discusses the
feasibility of complete model updating of cable-stayed bridges using experimental
estimates of the cable forces and modal parameters. Since OMA techniques provide
mass-unscaled mode shapes, the model updating optimization of both stiffness and
mass matrix simultaneously turns into an ill-posed problem [96]. Thus, current
traditional vibration-based finite element (FE) parametric model updating proce-
dures fail on large-scale structures [116]. Nevertheless, in cable-stayed bridges, it is
possible to experimentally determine both the deck’s modal parameters and cables’
natural frequencies, which may also provide an indirect estimate of cable forces
[136]. In this bridge typology, a well-posed FE model updating may be obtained
by estimating both mass mode shape scaling factors and cable forces by using a
step-wise FE updating procedure illustrated in Fig. 2.17. In the first step, the mass
matrix is determined from the cable forces, in turn, estimated from the natural fre-
quencies of the cables. Then, the unscaled mode shapes and natural frequencies are
used to tune the stiffness matrix in a second step. The validity of uncoupling the up-
dating procedure has been demonstrated by two variance-based sensitivity analyses
[131, 132], used also to select which parameters affect at most the two unknowns,
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Input Parameters Cable Forces (Ti)
Modal Parameters (Mi)

Sensitivity Analysis

Parameters
Tower's stiffness
Deck's mass and stiffness
Bearings' stiffness

Mi = f (          )

Ti = f (          )

Objective functions

Model updating procedure
1. Selection of the parameters
2. Formulation of the objective functions
3. Model optimization using meta-heuristic algorithms

Figure 2.17: Marghera bridge case study: proposed step-wise model updating pro-
cedure for cable-stayed bridges.

i.e. the cable forces and the modal parameters. The former is the sensitivity of the
cable forces to the specific mass and bearing deformability. The latter is the sensi-
tivity of the natural frequencies to Young’s moduli. This approach, thus requires
splitting and regrouping bridge components which mainly affect cable forces and
modal parameters. Anyway, this procedure can be fairly generalized since bridges
belonging to this cable-stayed category are commonly characterized by three main
parts: the deck, the bearings, and the tower. Therefore, the stiffness of the deck,
bearings, and tower, jointly with the deck’s mass may influence both cable forces
and modal parameters. Consequently, the model updating optimization problem
in Eq. (2.140) is modified accordingly for accounting for two functions containing
the squared difference between the two types of input parameters:

min
𝜽∈Ω

{ℱ(𝜽)} (2.146)

ℱ(𝜽) =
⎧{
⎨{⎩

∑𝑛𝑐
𝑖=1 (

𝑇 (𝑒)
𝑖 −𝑇 (𝑐)

𝑖

𝑇 (𝑒)
𝑖

)
2
, Cable forces

∑𝑛𝑚
𝑖=2 (

𝜔(𝑒)
𝑖 −𝜔(𝑐)

𝑖

𝜔(𝑒)
𝑖

)
2
+∑𝑛𝑚

𝑖=2 [1 −MAC(𝝓(𝑒)
𝑖 ,𝝓(𝑐)

𝑖 )] , Modal parameters

in which 𝜽 refers to all the involved bridge parameters defined in an input design
variable space Ω. The superscript 𝑒 refers to measured parameters, whereas 𝑐 to the
calculated ones. 𝑇 are the cables forces, 𝜔 the angular frequencies, and 𝜱 denotes
the mode shapes.

The proposed methodology has been tested on the iconic curved cable-stayed
case study bridge located in Venice (Italy) at the Marghera harbor, see Fig. 2.18.
With a total length of 387m, it is divided into six spans (42 m + 105 m + 126 m +
30 m + 42 m + 42 m), in which the first spans present a straight alignment, and the
others a curved one with a 175m radius. The deck consists of a composite concrete-
steel continuous girder embracing all six spans, supported by a set of cables flowing
into an inclined L-shape prestressed concrete tower. The cables are progressively
numbered from 1 to 9 starting from the tower symmetrically both toward the two
opposite directions, i.e. Mestre and Venice, as depicted in Fig. 2.18. A more
detailed description of the Marghera bridge can be found in [135, 137]. During
two ambient vibration tests performed in Autumn 2010 and Spring 2011 [138], the
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Figure 2.18: Marghera bridge case study: global overview.

Laboratory of Vibrations and Dynamic Monitoring of Structures from Politecnico
di Milano University (Milan, Italy) carried out the dynamic identification of the
Marghera bridge identifying about 11 modes in the 0-6 Hz dynamic range for both
the bridge and the cable stays, as reported in Fig. 2.19. Ambient vibration tests
were carried out using a 16-channel data acquisition system with 14 uniaxial piezo-
electric accelerometers (WR model 731A). Each sensor was connected to a power
unit acting also as an amplifier providing the needed power supply and selective
filtering. The sampling frequency was 200 Hz. The duration of each acquisition
was 60 min. Three different sensor layout configurations were adopted for a total
of about 50 points of measurement [137]. The dynamic characterization through
the PyOMA module confirmed the modal results obtained in other studies, as ex-
tensively discussed in [137]. On the other hand, each cable stay was instrumented
with a single sensor as evidenced in Fig. 2.18, placed at approximately nine meters
above the road surface, permitting to estimate their natural frequencies as reported
in Fig. 2.19. The cable forces reported in Tab. 2.8 have been derived by adopting
the simplified mechanical model of a fixed-fixed vibrating string and knowing its
experimental natural frequencies from the 2011 vibration test campaign, i.e.:

𝑓𝑛 = 1
2𝐿

(𝑇
𝜌
)
0.5

⇒ 𝑇 = 𝜌[2𝐿(𝜕𝑓𝑛
𝜕𝑛

)]
2

(2.147)

Each cable force 𝑇 is related to the 𝑛-th natural frequency 𝑓𝑛 of the cable, its length
𝐿, and its density 𝜌, and as demonstrated by Eq. (2.147), it may be obtained by
the derivative of the interpolating law 𝑛-𝑓𝑛. It is worth noting that factors like sag
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Figure 2.19: Marghera bridge case study: dynamic identification results from [138].

Table 2.8: Marghera bridge case study: cable forces identified from vibration data
in the tests of 2011 [138].

Cable No. 1 2 3 4 5 6 7 8 9
Mestre side 𝑇[kN] 458 757 2359 3715 3842 4199 4828 5289 4771
Venice side 𝑇[kN] 614 860 2381 3704 3961 4352 4698 5310 4655

extensibility, cable bending stiffness, and intermediate springs do not play a signif-
icant role in affecting the cable forces [137]. However, a remarkable discrepancy of
the cable forces between the two tower sides has been evidenced in Tab. 2.8.

A linear FE model of the Marghera bridge not reproducing any geometrical or
mechanical nonlinearity has been implemented in SAP2000, which is configured
in 8014 nodes and 6600 elements (namely 2946 beams, 18 trusses, and 3636 solid
elements), using four-nodes shell elements for the concrete slab and solid elements
for the tower. Initial values have been assumed for concrete Poisson’s ratio (0.2) and
Young’s modulus (25.0 kN/m3), and for the steel’s specific weight (78.5 kN/m3) and
Young’s modulus (205 GPa). Using these nominal values for structural materials,
the initial modal parameters before performing the updating procedure showed
already an acceptable agreement with the experimental value despite a certain gap
still exists, but conversely, the cable forces are enormously biased and far from the
experimental values. Therefore, a sensitivity analysis of the modeling parameters
and cable forces was strictly required to understand which parameters need to
be updated while also capturing the relative influences of the modeling parameters
affecting the modal properties and the OF in Eq. (2.146). An error functionℱ1 was
set as the first part of Eq. (2.146), accounting for the 18 force values discrepancy
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Figure 2.20: Marghera bridge case study: SAP2000 FE model overview.

Table 2.9: Marghera bridge case study: sensitivity indicators 𝑆1 for the error func-
tion Eq. (2.148) and for the cable forces.

𝑆1 on Eq. Mestre Side cables 𝑆1 [%]
(2.148) [%] 1 2 3 4 5 6 7 8 9

𝐸𝑐,𝑡 5.14 87.13 38.14 9.06 1.32 0.01 0.27 0.97 2.10 4.22
𝜌𝑠 0.34 0.08 0.25 0.27 0.23 0.17 0.12 0.07 0.05 0.03
𝜌𝑐 4.13 12.57 61.29 86.05 78.93 55.23 31.74 16.75 9.23 6.82

𝐸𝑐,𝑑 1.21 0.51 1.37 1.35 1.12 0.79 0.47 0.24 0.11 0.07
𝑘𝑎 93.14 0.48 0.69 4.79 19.18 43.59 66.41 80.52 86.86 87.17

Venice side cables 𝑆1 [%]
1 2 3 4 5 6 7 8 9

𝐸𝑐,𝑡 82.85 30.49 6.76 1.18 0.12 0.00 0.08 0.21 0.44
𝜌𝑠 0.18 0.39 0.41 0.36 0.29 0.20 0.12 0.05 0.01
𝜌𝑐 17.14 68.93 93.46 94.99 78.15 48.68 22.88 8.28 2.06

𝐸𝑐,𝑑 0.22 0.95 1.32 1.44 1.28 0.91 0.48 0.15 0.02
𝑘𝑎 0.19 0.83 0.01 3.79 21.13 50.04 75.34 89.66 95.70

between the estimated 𝑇 (𝑒)
𝑖 and the numerical 𝑇 (𝑐)

𝑖 values:

ℱ1 =
𝑛𝑐

∑
𝑖=1

(𝑇 (𝑒)
𝑖 − 𝑇 (𝑐)

𝑖

𝑇 (𝑒)
𝑖

)
2

(2.148)

From mechanical considerations, the authors identified that the most reasonable in-
fluencing parameters of cable forces and their domain space Ω may be: the stiffness
of the tower 𝐸𝑐,𝑡 ∈ [30, 50] GPa, the abutments supports’ stiffness 𝑘𝑎 ∈ [10, 500]
kN/mm, the steel mass 𝜌𝑠 ∈ [75, 80] kN/m3 and concrete mass 𝜌𝑐 ∈ [24, 30] kN/m3

of the deck, and its stiffness 𝐸𝑐,𝑑 ∈ [30, 50] GPa. The cables’ geometry and mate-
rial properties are accurately known, thus they were excluded from the sensitivity
analysis assessment. This sensitivity analysis permitted decomposing the model
output variance into fractions related to each analyzed mechanical parameter [139].
Saltelli’s sampling scheme has been adopted [131] to define the total number of sim-
ulations required. The variance-based sensitivity analysis provides the first-order
(not accounting for input variables’ interactions) Sobol sensitivity indicators 𝑆1,
which have been reported in Tab. 2.9 and also visually depicted in Fig. 2.21.
These outcomes proved that 𝑘𝑎 mainly affects the cable forces estimated by Eq.
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Figure 2.21: Marghera bridge case study: graphical representation of the sensitivity
of the objective functions in Eq. (2.148) with two different views (a)-(b) according
to the concrete Young’s modulus of the tower (𝐸𝑐, 𝑡), the vertical stiffness of the
bearings (𝑘𝑎) and the mass of the concrete deck (𝜌𝑐).

(2.148), thus being the most influential parameter in the subsequent FE model up-
dating procedure. 𝐸𝑐,𝑡 and 𝜌𝑐 also fairly affects the cable forces in Eq. (2.148).
From the cable forces point of view, three main trends may be evidenced from the
sensitivity analysis results. 𝑘𝑎 affects at the most the extreme cables (cable No.
6-9), whereas 𝐸𝑐,𝑡 plays a significant role for cables closer to the tower (cable No.
1-2). The intermediate cables (cable No. 3-5) appeared to be mainly affected by
𝜌𝑐. In summary, the sensitivity analysis results aided in defining the optimal set
of parameters to be considered in the FE model updating procedure, and it was
also possible to restrict the parameter space domain as follows to speed up the
optimization process: 𝐸𝑐,𝑡 > 30 MPa, 𝜌𝑐 < 25 kN/m3, and 𝑘𝑎 < 100 kN/mm.

On the other hand, the sensitivity analysis has been also conducted considering
the modal parameters influence according to the second term of Eq. (2.146), since
numerical modal parameters (𝜔(𝑐),𝜙(𝑐)) are functions of modeling parameters 𝜽.
The second term of Eq. (2.146) denoted as ℱ2(𝜽) can be synthetically rewritten as
ℱ2(𝜽) = 𝑓1(𝜽) + 𝑓2(𝜽). 𝑓1(𝜽) denotes the part depending on the angular frequen-
cies, whereas the 𝑓2(𝜽) is the MAC-related part. The Sobol sensitivity indicators
have been reported in Tab. 2.10-2.11. Inspecting Tab. 2.11, 𝜌𝑐 generally appears as
the most influential parameter in terms of natural frequency, immediately followed
by 𝑘𝑎. Conversely, inspecting Tab. 2.10, 𝑘𝑎 appears to be the most influential with
respect to mode shapes. As expected both mass and stiffness parameters play a
crucial role in the modal-based part of the FE model updating problem. Focusing
on mode 2, it is the only case where the sensitivity indicators showed a strong
influence of 𝐸𝑐,𝑡 in terms of frequencies. With deeper insights, modes 2-4 in Tab.
2.11 reported comparable values of 𝐸𝑐,𝑡, 𝜌𝑐, and 𝑘𝑎, and in modes 4 and 6 also 𝜌𝑠
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Table 2.10: Sensitivity indicators 𝑆1 for ℱ2(𝜽), 𝑓1(𝜽) and 𝑓2(𝜽), and for the fre-
quency of each modes (see Fig. 2.19).

𝑆1 on 𝑆1 on 𝑆1 on
ℱ2(𝜽) [%] 𝑓1(𝜽) [%] 𝑓2(𝜽) [%]

𝐸𝑐,𝑡 0.30 0.60 0.40
𝜌𝑠 0.50 0.90 0.70
𝜌𝑐 3.70 61.40 1.30
𝐸𝑐,𝑑 0.00 0.10 0.00
𝑘𝑎 94.60 41.60 97.20

𝑆1 on each frequency mode [%]
1 2 3 4 5 6 7 8 9 10 11

𝐸𝑐,𝑡 3.20 94.40 17.00 3.80 0.10 0.00 0.00 1.40 0.00 1.90 0.00
𝜌𝑠 0.30 0.00 5.30 17.80 0.70 1.20 0.50 3.90 5.30 4.30 2.00
𝜌𝑐 42.20 4.40 75.40 52.90 48.90 65.40 49.30 65.80 60.20 54.80 52.00
𝐸𝑐,𝑑 0.10 0.00 0.60 0.70 0.10 0.10 0.10 0.10 0.60 0.00 0.80
𝑘𝑎 54.60 4.40 23.30 39.20 53.20 33.80 51.00 34.10 52.30 48.30 51.90

Table 2.11: Sensitivity indicators 𝑆1 for for the MAC of each modes (see Fig. 2.19).

𝑆1 on MAC of each mode [%]
1 2 3 4 5 6 7 8 9 10 11

𝐸𝑐,𝑡 2.80 49.60 41.50 24.30 1.40 1.60 0.00 1.60 0.00 0.60 0.00
𝜌𝑠 2.60 0.20 16.30 58.30 3.80 48.80 0.00 0.60 0.90 0.60 0.60
𝜌𝑐 2.20 25.40 57.70 41.60 11.60 24.20 0.40 4.80 1.60 0.70 1.70
𝐸𝑐,𝑑 0.00 0.00 0.20 0.40 0.00 0.10 0.00 0.20 0.00 0.00 0.00
𝑘𝑎 95.70 74.10 30.20 36.30 97.90 87.20 99.60 98.50 99.40 98.40 96.90

is quite influential. In conclusion, on average, the sensitivity analysis provided a
ranking from the most to the least influential selected parameters according to 𝑘𝑎,
𝜌𝑐, 𝐸𝑐,𝑡, 𝐸𝑐,𝑑, 𝜌𝑠 respectively.

It is worth mentioning that the preliminary model already approaches the agree-
ment with experimental modal information, thus any model updating process only
driven by modal parameters may produce an identity of the updated parameters.
On the contrary, considering both mass and stiffness parameters an indetermi-
nate problem is encountered. Moreover, the possible discontinuities in the natural
frequency or mode shape parameters’ subspaces, may prevent an effective meta-
heuristic-based optimization process. Therefore, the FE model updating driven by
both cable forces and modal characteristics would be beneficial compensating for
the above-mentioned adverse effects. Specifically, due to the uncorrelation of the
above-selected parameters with respect to the cable forces (see Tab. 2.10-2.11), a
lower number of parameters may be considered for FE model updating, i.e.:

1. Assuming an 𝐸𝑐,𝑡, the optimization refers only to 𝜌𝑐 and 𝑘𝑎 for cables from
3 to 9, using the OF in Eq. (2.146).

2. Assuming 𝜌𝑐 and 𝑘𝑎 from the previous step, the optimization is limited to
𝐸𝑐,𝑡 for cables 1-2 and mode shape 2, using the OF in Eq. (2.146) limited to
the just mentioned conditions.

3. Assuming 𝜌𝑐, 𝑘𝑎, and 𝐸𝑐,𝑑 from the previous steps, a final optimization in-
volving deck’s 𝐸𝑐,𝑑, using the general OF statement of Eq. (2.146).
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Table 2.12: Cable forces and modal parameters associated with the optimum set
of parameters and percentage error before and after the updating. In the bottom
right part of the table, the optimum parameters are listed with the upper (U.B) and
lower (L.B.) bounds. In the cable notation, M indicates the Mestre side, whereas
V is the Venice side. Instead, in the mode labels, letters V, M, and T indicate the
prevalent mode nature, i.e. Bending, Mixed, or Torsional respectively.

Cable Exp. Num. Error Initial Mode Exp. Num. MAC Freq. Initial Initial freq.
Label [kN] [kN] error Label [Hz] [Hz] error MAC error

M1 458 408 11% 52% V1 0.635 0.699 97.10% -10.1% 97.41% -6.5%
M2 757 1228 -62% -77% V2 0.996 0.975 93.79% 2.1% 93.06% 2.1%
M3 2359 2372 -1% -2% V3 1.143 1.226 82.41% -7.3% 85.58% -7.3%
M4 3715 3852 -4% 5% T1 1.387 1.395 95.03% -0.6% 95.26% -0.5%
M5 3842 4271 -11% 12% M1 1.523 1.650 78.13% -8.3% 80.01% -8.1%
M6 4199 4453 -6% 29% T2 1.602 1.513 75.38% 5.5% 75.56% 5.7%
M7 4828 4540 6% 48% V4 1.963 2.073 97.04% -5.6% 96.91% -5.5%
M8 5289 5041 5% 56% T3 2.646 2.559 94.04% 3.3% 94.19% 3.3%
M9 4771 4618 3% 58% T5 4.072 3.995 89.03% 1.9% 89.10% 1.9%
V1 614 530 14% 43% T6 4.951 4.826 93.29% 2.5% 91.61% 2.2%
V2 860 1279 -49% -86% T7 5.625 5.539 94.48% 1.5% 94.48% 1.5%
V3 2381 2460 -3% -19%
V4 3704 3872 -5% -10% Optimized parameters

V5 3961 4284 -8% 0% Param. Unit L.B. U.B. Optimum
V6 4352 4563 -5% 18% 𝜌𝑐 kN/m3 23 30 24
V7 4698 4573 3% 40% 𝑘𝑎 kN/mm 100 10000 1350
V8 5310 5229 2% 57% 𝐸𝑐,𝑑 GPa 30 1 40
V9 4655 4791 -3% 76% 𝐸𝑐,𝑡 GPa 30 70 51.1

Further details about the above step-wise optimization procedure can be found in
[135]. Two meta-heuristic global optimization algorithms have been employed for
mutual validation, specifically the PSO method [134] and the differential evolution
(DE) [133] by their Python implementations, and leveraging the SAP2000-OAPI
[130]. No significant discrepancies were obtained between the two algorithms, thus
the authors reported only PSO results in this case. The three above-mentioned
step-wise optimizations led to the final values of the OF respectively of 0.4306,
0.0347, and 1.0296, and the final optimal modeling parameters values have been
reported in Tab. 2.12.

The optimum values are still consistent with the engineering judgment, except
for the tower stiffness which appears slightly overstated than usual values. How-
ever, it is worth noting that beyond its physical meaning, Young’s modulus acts as
a modeling parameter in FE model updating procedures, governing global dynamic
properties, and thus it is affected by a high level of uncertainties [140]. These
uncertainties may be mainly related to modeling errors, due to complex structure
simplifications or even meshes discretization, or to modeling parameters intrinsic
errors due to material and geometric properties uncertainties. Furthermore, the
FE model updating results are consistent with the ones discussed in [137]. It is
worth noting that the analyses also revealed that the agreement between modal
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parameters does not improve significantly, since the average percentage error re-
mains almost equal before and after the updating. Conversely, the cable forces
exhibited a significant consistent improvement, and the key to this improvement
has been identified in the introduction of the bearing stiffness in the sensitivity
and optimization procedure. The bearings consist of layered neoprene pads with
an estimated vertical stiffness equal to 1350 kN/mm, consistent with the vertical
stiffness of these structural devices.

In summary, the almost complete FE model updating optimization problem of
cable-stayed bridges using modal parameters and cable forces estimates is particu-
larly challenging when dealing with large-scale structures with numerous degrees of
freedom using traditional parametric model updating methods. However, in [135]
it was demonstrated that if an in-depth preliminary sensitivity analysis is carried
out to support the mindful formulation of the objective functions, the traditional
model updating based on meta-heuristic optimization algorithms still represents a
feasible approach, on the condition that the optimization problem must be solved in
a step-wise approach. Indeed, in the Marghera bridge case study, the availability of
the cable forces estimates allowed updating the inertial and stiffness features, com-
pared to more conventional FE updating where the sole modal parameters usually
deliver ill-posedness and indeterminacy of the optimization problem, imposing the
updating of only the mass or stiffness matrix to avoid this indeterminacy.

2.4.3 Train-track-bridge-interaction model in railway bridges:
The Orte-Falconara bridge case study

Another case study in which PyOMA was successfully adopted by our research
group for the dynamic characterization of a bridge structure can be found in [141].
This latter document is dedicated to the analysis of the dynamic characterization of
ballasted railway bridges using a non-proportional damping analytical finite differ-
ence model. Ballasted track is the most widespread railway typology, consisting of
the superstructure part (rails) and substructure one (ballast). Ballast is composed
of natural or crushed coarse-sized, angular, crushed hard stone and rock uniformly
graded. Some of the most important functions accomplished by the ballast among
others are retaining the tracks and sleepers, ensuring stress propagation from tracks
to subgrade and bearing functions, providing water drainage properties to the deck,
etc. The presence of the ballast produces changes in the boundary conditions and
damping of the structure of medium-length span railway bridges. Recent studies
in this field investigated the dynamic response characterization of railway bridges
under moving trains. Many of them focused only on the train-bridge interaction
modeling, concerning only about the type of trainload model (moving load, mov-
ing mass, and/or moving spring-damper), or track mathematical model. Despite
some simplified modeling techniques that have been initially proposed in the lit-
erature based on beam or shell elements for both the bridge and track, nowadays
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Figure 2.22: Orte-Falconara bridge case study: TTBI model illustration.

research trends go towards increasing the model complexity attempting to capture
even more complex mechanical phenomena. Nevertheless, this normally involves
a high computational burden, with associated modeling errors and convergence is-
sues, with an overall impactful uncertainty level. These latter aspects motivate
our research group to investigate a simplified train-track-bridge interaction (TTBI)
model, thus reducing model complexity and still maintaining the agreement with
experimental data through an appropriate model updating validation procedure.
Specifically, as illustrated in Fig. 2.22, the bridge and the track are modeled both
as Euler-Bernoulli beams coupled through a distributed spring-dashpot layer to
simulate the ballast, subjected to moving loads and solved by a Runge-Kutta finite
difference scheme with spatial and temporal discretization.

In detail, for the track modeling strategy, an Euler-Bernoulli beam model has
been employed, denoting its deflection as 𝑤𝑟(𝑥, 𝑡), being 𝜌𝑠𝐴𝑟 its constant mass per
unit length, 𝜌𝑠 indicating the steel specific mass, being 𝐴𝑟 the rails cross-section
area, characterized by constant bending stiffness 𝐸𝑠𝐼𝑟, with 𝐸𝑠 denoting the steel
Young’s modulus and 𝐼𝑟 the moment of inertia of rails. Therefore, the track-beam
equation of motion can be written as [142]:

𝜌𝑠𝐴𝑟�̈�𝑟(𝑥, 𝑡) + 𝐸𝑠𝐼𝑟𝑤𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑞𝑟(𝑥, 𝑡) + 𝑓𝑟(𝑥, 𝑡), (2.149)

in which the symbols �̈�𝑟 and 𝑤𝑟,𝑥𝑥𝑥𝑥 denote, respectively, the second time derivative
and the fourth spatial coordinate 𝑥 derivative of 𝑤𝑟. The distributed load 𝑞𝑟(𝑥, 𝑡)
arises from the contact restraint to the track displacement provided by the ballast
modeled through spring-dashpot bedding:

𝑞𝑟(𝑥, 𝑡) = 𝑞𝑏(𝑥, 𝑡) = 𝑘𝑓 [𝑤𝑟(𝑥, 𝑡) − 𝑤𝑏(𝑥, 𝑡)] + 𝑐𝑓 [�̇�𝑟(𝑥, 𝑡) − ̇𝑤𝑏(𝑥, 𝑡)] , (2.150)

in which 𝑤𝑏 indicates the bridge substructure deflection, while 𝑘𝑓 and 𝑐𝑓 denote
the stiffness and damping of the viscous-elastic Winkler spring-dashpot bedding.
𝑓𝑟(𝑥, 𝑡) represents the effect of the interaction forces between the rails and the
vehicles. As depicted in Fig. 2.23, the train loads have been modeled as moving
concentrated uniformly spaced forces with span 𝐿𝑣 and being 𝐿𝑡 is the train full
length, in which each car is modeled by a single force distributed on two axes.
In a such way that a train of 𝑁𝑣 cars presents 𝑁𝑣 + 1 moving forces, labeled
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Figure 2.23: Orte-Falconara bridge case study: moving train loading model.

as 𝑃𝑘 with 𝑘 = 1,2,… ,𝑁𝑣 + 1. Considering that the locomotive has a different
weight 𝑃𝑙 with respect to the other cars 𝑃𝑐, then 𝑃𝑘 can be expressed as 𝑃 =
{𝑃𝑙

2 , (
𝑃𝑙
2 + 𝑃𝑐

2 ) ,𝑃𝑐,… ,𝑃𝑐,… ,𝑃𝑐,
𝑃𝑐
2 }. Assuming the first force enters the bridge

at the initial time instant 𝑘 = 0, the time of the 𝑘-th load entering the bridge can
be expressed as 𝑡𝑘 = (𝑘 − 1)𝐿𝑣/𝑐.

𝑓𝑟(𝑥, 𝑡) =
𝑁𝑣

∑
𝑘=1

𝑃𝑘𝛿 [𝑥 − 𝑐(𝑡 − 𝑡𝑘)] (2.151)

Denoting 𝐿 as the bridge length, the boundary conditions are expressed as follows
for a pinned-pinned track:

𝑤𝑟(0, 𝑡) = 0 ; 𝑤𝑟,𝑥𝑥(0, 𝑡) = 0 ; 𝑤𝑟(𝐿, 𝑡) = 0 ; 𝑤𝑟,𝑥𝑥(𝐿, 𝑡) = 0 (2.152)

The bridge has been also modeled by Euler–Bernoulli beam, denoting (𝜌𝑐𝐴𝑐+𝜌𝑏𝐴𝑏)
as mass per unit length, 𝜌𝑐 as the concrete specific mass of concrete, 𝐴𝑐 as the
cross-section area of the beam, 𝜌𝑏 as the ballast specific mass, 𝐴𝑏 as the ballast
cross-section area, 𝐸𝑐𝐼𝑐 constant bending stiffness, with 𝐸𝑐 as concrete Young’s
modulus and 𝐼𝑐 as the beam cross-section inertia. The following partial differential
equation describe the vertical bridge deflection 𝑤𝑏(𝑥, 𝑡) [143]:

(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)�̈�𝑏(𝑥, 𝑡) + 𝐸𝑐𝐼𝑐𝑤𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑞𝑏(𝑥, 𝑡) (2.153)

where 𝑞𝑏(𝑥, 𝑡) is the force that is transferred to the bridge via the springs bedding,
defined as

𝑞𝑏(𝑥, 𝑡) = 𝑘𝑓 [𝑤𝑏(𝑥, 𝑡) − 𝑤𝑟(𝑥, 𝑡)] + 𝑐𝑓 [�̇�𝑏(𝑥, 𝑡) − ̇𝑤𝑟(𝑥, 𝑡)] (2.154)

Since the bridge has a pinned-pinned scheme, the boundary conditions are the same
as Eq. (2.152). The TTBI model outlined in Fig. 2.22 can be rewritten in matrix
form by adopting the finite difference method considering the Eqs. (2.149)-(2.150),
and Eqs. (2.153)-(2.154):

[ (𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏) 0
0 𝜌𝑠𝐴𝑟

]{ �̈�𝑏(𝑥, 𝑡)
�̈�𝑟(𝑥, 𝑡)

} + [ 𝐸𝑐𝐼𝑐 0
0 𝐸𝑠𝐼𝑟

]{ 𝑤𝑏,𝑥𝑥𝑥𝑥(𝑥, 𝑡)
�̈�𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡)

}+

+[ −𝑘𝑓 𝑘𝑓
𝑘𝑓 −𝑘𝑓

]{ 𝑤𝑏(𝑥, 𝑡)
𝑤𝑟(𝑥, 𝑡)

} + [ −𝑐𝑓 𝑐𝑓
𝑐𝑓 −𝑐𝑓

]{ �̇�𝑏(𝑥, 𝑡)
�̇�𝑟(𝑥, 𝑡)

} + { 0
𝑓𝑟

}

(2.155)
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Therefore, the spatial discretization requires subdividing into 𝑛 intervals of Δ𝑥
length each of the entire beam domain and consequently approximating the fourth
derivative. Denoting 𝑰 ∈ ℝ𝑛×𝑛 and 𝟎 ∈ ℝ𝑛×𝑛 as the identity and null matrices,
𝑫4 ∈ ℝ𝑛×𝑛 as the approximate fourth matrix derivative which satisfies the specific
boundary conditions (2.152), 𝒘𝑏(𝑡) ∈ ℝ𝑛×1 and 𝒘𝑟(𝑡) ∈ ℝ𝑛×1 as the vertical
deflection field of the bridge and track 𝒇𝑟 ∈ ℝ𝑛×1 as the discretization moving
force vector described in Eq. (2.151), one obtains

[ (𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)Δ𝑥𝑰 𝟎
𝟎 𝜌𝑠𝐴𝑟Δ𝑥𝑰 ]{ �̈�𝑏(𝑡)

�̈�𝑟(𝑡)
}+

[ 𝐸𝑐𝐼𝑐𝑫4 − 𝑘𝑓Δ𝑥𝑰 𝑘𝑓Δ𝑥𝑰
𝑘𝑓Δ𝑥𝑰 𝐸𝑠𝐼𝑟𝑫4 − 𝑘𝑓Δ𝑥𝑰 ]{ 𝒘𝑏(𝑡)

𝒘𝑟(𝑡)
}+

+[ −𝑐𝑓Δ𝑥𝑰 𝑐𝑓Δ𝑥𝑰
𝑐𝑓Δ𝑥𝑰 −𝑐𝑓Δ𝑥𝑰 ]{ �̇�𝑏(𝑡)

�̇�𝑟(𝑡)
} + { 0

𝒇𝑟
} = 0

(2.156)

which, in compact form, is formally identical to the classical conventional dynamic
problem in Eq. (2.23), in which 𝑴 ∈ ℝ2𝑛×2𝑛, 𝑪 ∈ ℝ2𝑛×2𝑛 and 𝑲 ∈ ℝ2𝑛×2𝑛

denotes the mass, damping, and stiffness matrices, 𝒇(𝑡) is the generalized forcing
term, and finally the generalized displacement field contains both bridge and track
vertical deflections 𝒚(𝑡) = [𝒘𝑏(𝑡)𝑇,𝒘𝑟(𝑡)𝑇]

𝑇 ∈ ℝ2𝑛×1. The 𝑫4 ∈ ℝ𝑛×𝑛 matrix is
a four-banded matrix, in which the boundary conditions of the considered simply
supported beam have been imposed by replacing the coefficients in bold which yield
to nullify the bending moment and displacement in both the extremes of the beam:

𝑫4 = 1
Δ𝑥4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −4 1 0 0 0 0 0 ⋮ 0
-7/2 6 −4 1 0 0 0 0 ⋮ 0
1 −4 6 −4 1 0 0 0 ⋮ 0
0 1 −4 6 −4 1 0 0 ⋮ 0

⋱ ⋱ ⋱ ⋱ ⋱
0 ⋮ 0 0 1 −4 6 −4 1 0
0 ⋮ 0 0 0 1 −4 6 −4 1
0 ⋮ 0 0 0 0 1 −4 −4 −7/2
0 ⋮ 0 0 0 0 0 1 −4 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.157)

On the other hand, the following continuous-time state-space model allowed
performing the time domain discretization of the generalized equation of the motion
Eq. (2.23):

�̇�(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩𝒖(𝑡) (2.158)

in which 𝒙(𝑡), 𝑨(𝑡) and 𝑩 and 𝒖(𝑡) are defined in [144] as a function of the gen-
eralized mass, damping and stiffness matrices, and the forcing term. Thereafter,
the Tustin Approximation method from Matlab System Identification Toolbox pro-
vided the discrete-time form of Eq. (2.158), denoting 𝑘 as the time step, which has
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Figure 2.24: Orte-Falconara bridge case study: viaduct overview and ambient vi-
bration testing.

been solved using the Dormand-Prince method based on an explicit Runge-Kutta
temporal discretization [145].

�̇�𝑘 = 𝑨𝑘𝒙𝑘 +𝑩𝒖𝑘 (2.159)

The proposed analytical model has been employed for the Orte-Falconara rail-
way bridge case study, located in the municipality of Trevi (Italy), and illustrated
in Fig. 2.24. The viaduct consists of 46 spans of about 20 m lengths and the
planimetric route of the piers identifies a curve with a radius equal to about 2232
m. As indicated in Fig. 2.25, each span consists of 8 PSC beams 1.40 m high and
thickness varying from 16 to 33 cm. The prestressing reinforcement is arranged in
the lower wing, and, according to the design drawings of the time, it consists of
29 cables arranged in 3 rows, sheathed at the support. In every span, four cross-
beams with rectangular cross-sections are present, consisting of a 40cm width and
a height equal to the beams. Above the beams, there is a 20 cm thick reinforced
concrete slab with 1.40 cantilevered elements, which support the side walkways to
the railway line and the parapets. The total width of the deck is about 12.40 m and
bears two running high-speed train tracks. A complete description of the bridge
can be found in [141].

The vibration testing experimental layout illustrated in Fig. 2.24 consisted of
two rows of seven equally-spaced FBA accelerometers with a mutual spacing equal
to 3.30 m, and the two extreme accelerometers were placed in correspondence of
the supports. Specifically, the accelerometers were arranged into two measurement
chains, each one driven by a master recording unit connected to a wireless access
point and synchronized by GPS receivers. The dynamic tests were carried out
under ambient excitation, acquiring 20-minute long signals sampled at a rate of
200 Hz, despite finally a cut-off frequency of the anti-aliasing filter was set to 40
Hz. The modal parameters were estimated using the SSI-cov method implemented
in PyOMA, specifically setting a block-row parameter equal to 7 and a maximum
model order equal to 70. The OMA results have been reported in Fig. 2.26,
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Figure 2.25: Orte-Falconara bridge case study: cross-section details with beams
numbering.
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Figure 2.26: Orte-Falconara bridge case study: modal parameter estimates ob-
tained with PyOMA software.

evidencing that the first bending and torsional modes are at approximately 8 Hz
and 9 Hz respectively.

Considering the above coupled TTBI model, in our research study [141], two
different excitation scenarios of the bridge were considered, i.e. ambient vibration
and train transit. In the former scenario, the ambient vibration measurements per-
mitted to estimate of the modal parameters, highlighting that the bridge exhibits
both bending and torsional modes. However, it is evident from the first two modes
illustrated in Fig. 2.26 that bending modes are not coupled with the torsional ones.
Specifically, the first mode closely resembles that of a pinned-pinned beam, and the
modal components by the supports are almost null, proving that the bearing de-
formation can be considered negligible in the current case study. Additionally, the
modal components of the first mode associated with the two rows of accelerometers
are almost coincident, proving prevalent bending rather than torsional modal de-
formation. These considerations proved that the first bending mode was negligibly
influenced by the track due to its minimal stiffness contribution compared to the
bridge cross-section. Therefore, the first bending mode obtained by ambient OMA

124



2.4 – PyOMA for model-updating-related studies

Table 2.13: Input parameters of the deterministic model updating optimization
algorithm.

Description Label Value Unit
Beam length 𝐿 19.85 m
Discretization step Δ𝑥 0.5 m
Concrete specific mass 𝜌𝑐 2500 kg/m3

Cross-section area of the bridge 𝐴𝑐 6.67 m2

Ballast specific mass 𝜌𝑏 2000 kg/m3

Cross-section area of the rails 𝐴𝑟 0.01 m2
Steel specific mass 𝜌𝑠 2000 kg/m3

Cross-section area of the ballast 𝐴𝑏 5.67 m2

Bending stiffness of the bridge 𝐸𝑐𝐼𝑐 12600 kN⋅mm2

Young’s modulus of steel 𝐸𝑠 210000 Mpa
Cross section area of the rails 𝐼𝑟 833⋅104 mm4

Velocity of the train 𝑐 110 km/h
Locomotive’s length 𝐿𝑣 5 m
Car’s length 𝐿𝑣 22 m
Locomotive weight 𝑃𝑙 300 kN
Car’s weight 𝑃𝑐 600 kN
Number of locomotives 2
Number of cars 7

in terms of mode shapes and natural frequencies could be reasonably used to esti-
mate the bending stiffness 𝐸𝑐𝐼𝑐 of the bridge model in Eq. (2.156) according to a
simplified equivalent beam model. Thus, a deterministic model updating process
has been performed using the parameters in Tab. 2.13. Specifically, the theoretical
natural frequencies and mode shapes of a pinned-pinned Euler-Bernoulli beam are
given by:

𝑓𝑖 = ( 𝑖2𝜋
2𝐿2)√𝐸𝑐𝐼𝑐

𝜌𝑐𝐴𝑐
, 𝜙𝑖 = sin(𝑖𝜋

𝐿
𝑥) (2.160)

where 𝑛 is the mode number, 𝑓𝑛 the 𝑛-th natural frequency, 𝜙𝑛 the 𝑛-th mode
shape. The following nonlinear least-squares problem has been solved to perform
the deterministic model updating process for estimating the bridge model bending
stiffness 𝐸𝑐𝐼𝑐 included in design vector 𝜽 of the model parameters to be optimized
[146, 147]:

𝜽 = argmin
𝜽

𝐽(𝜽) = argmin
𝜽

∑
𝑖

𝑤𝜀𝑖 ⋅ [𝜀𝑧𝑖(𝜽)]
2
, (2.161)

where 𝑤𝜀𝑖 is the weighting factor (assumed as unity in this case), and 𝜀𝑧,𝑖 denotes
the residuals between the experimental and numerical modal data 𝑧. In detail, only
the undamped eigenvalue 𝑧𝑖 = 𝜆𝑖 was adopted, considering 𝜆𝑖 = (2𝜋𝑓𝑖)2 where 𝑓𝑖
indicating the natural frequency:

𝜀𝜆𝑖
(𝜽) = 𝜆𝑖(𝜽) − �̃�𝑖

�̃�𝑖
, (2.162)
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where the upper tilde denotes the experimental values. The global minimum of the
objective function has been found in the correspondence of 𝐸𝑐𝐼𝑐 ≈ 12,600 kN⋅mm2.

On the other hand, in the latter excitation scenario considered, the train transit
exhibits the effect of the track. Indeed, as previously mentioned, the effect of the
track was negligible in the ambient OMA modal parameters due to its low bend-
ing stiffness compared to the bridge cross-section. Nevertheless, the track’s role
showed up during the train transit due to the load redistribution caused by the
track-ballast interaction. Therefore, the track-ballast-bridge model is considered in
the train transit case and optimized using experimental train transit data. These
data were represented by the vertical displacement history of the bridge collected
during train transit by using Micro-epsilon optoNCDT 1420 laser sensors with a
sampling rate of 1000Hz. The second part of the study [141] led to the deter-
mination of the non-proportional damping coefficient associated with the ballast
according to the proposed Euler-Beroulli TTBI model. However, this discussion
using displacement data for model updating of the ballast parameters is out of the
scope of the present Thesis document, and the interested reader can refer to [141]
for further details. In addition, another research study has been investigated lever-
aging the same optimized TTBI model which can be found in [148]. This latter
study is dedicated to the topic of the fragility estimate of railway bridges due to
concrete fatigue under repetitive loading cycles due to train transits by knowing
the annual train transit scheduling.

2.5 Conventional OMA conclusive remarks
In the present chapter, the main historical highlights on the theoretical background
of traditional operational modal analysis (OMA) techniques have been presented.
Afterward, the discussion moved to the PyOMA module, the first Python open-
source software for OMA, implementing and including those presented frequency-
domain-based and time-domain-based methods. This module provides both a suite
of user-friendly Python commands included in a single library and, additionally,
a first Graphical User Interface version for further improving the usability of the
PyOMA package also to practitioners without requiring specific coding knowledge.
In the final part of the chapter, some model-updating case studies analyzed during
the current Ph.D. program have been discussed, in which PyOMA was successfully
used to perform the modal parameters’ estimates.

Concluding this chapter, it is noteworthy to stress and point out some of the
main drawbacks and limitations of traditional OMA methods. All the basic as-
sumptions of traditional OMA (combined system, input white noise excitation,
stationarity and ergodicity) permit to clear identify the validity scope of the pre-
sented OMA algorithms, which mainly address dynamic identification of linear-
time-invariant (LTI) structures under stationary and unknown input signals during
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operating life conditions. This suggests that a completely different branch of study
is instead devoted to nonstationary and/or nonlinear OMA procedures because it
requires a completely different mathematical framework. Besides these aspects,
two apparent limitations can be noticed within traditional OMA. The first is rep-
resented by the absence of mass scaling of the mode shapes, thus mainly affecting
the damage detection strategies that analyze mass-normalized mode shapes such
as in flexibility-based methods [95]. Furthermore, despite input excitation is not
directly controlled in OMA, many concerns still normally arise when no adequate
excitation level is induced. Indeed, since the real input conditions are often quite
far from the theoretical white noise signals, a certain lack of sufficient excitation
of some modes of interest may occur, resulting in non-completely identifiable vi-
bration response data. In [95] some interesting considerations are presented about
heuristically checking if the loading conditions could be considered adequate. The
first consideration is about concentrated loads and it applies specifically to bridge
structures. Specifically, this first aspect concerns a large enough moving load when
it involves a large part of the structure under study. In this case, likewise, a car or
truck crossing a bridge, the load will excite the structure in an infinite number of
points, producing punctual effects that are propagated and overlapped along the
structure. Furthermore, this kind of load will excite precisely the vertical modes of
major interest. Instead, always in [95], a second aspect is discussed when involving
distributed loads and checking if the correlation length is significantly smaller than
the global structural scale. For instance, this is the case of wind load conditions
because the acting loads are random forces both in time and space dimensions.
Nevertheless, if the correlation length at a fixed time is smaller than the size of the
structure under investigation, this ensures a random nature of the loading model,
thus falling into the hypothesis of having a multiple-inputs dynamic excitation.
Similar observations can be made also for traffic on a road in the nearby urban
context in which the building under study is located. Indeed, the external traf-
fic induces multiple random inputs exciting the structure, but if the road is far
enough, a single car may induce a single input loading source, resulting in a non-
representative modal result. In [95], two gold rules are finally remarked within the
OMA field. The first relates to carefully checking about a proper random multi-
ple input excitation able to activate the modes of major interest. The second rule
is actually a fundamental common sense consideration remarking the garbage-in-
garbage-out (GIGO) principle. Accordingly, it is necessary to record good quality
output-only vibration response data in order to attempt to achieve reliable modal
estimates. Practically speaking, this means also checking the signal-to-noise ratio,
checking the presence of outliers and dropouts, the presence of spikes in measured
signals, employing an adequate sensing system, avoiding spatial aliasing using a
sufficient number of sensors, etc.

Nowadays topical research trends prompted by the use of machine learning and
artificial intelligence tools can offer the possibility to improve conventional OMA
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methods, especially in the field of automatic OMA (AOMA) or in the damage
detection field. In the following chapters, these latter topics are thus extensively
discussed. Specifically, the next chapter is dedicated to the development of an
effective introduction of the machine learning technologies within the stochastic
subspace identification algorithm to overcome existing arbitrary and subjectivity
of the existing method, while delivering a novel, intelligent-based, and automatic
operational modal analysis framework.
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Chapter 3

Machine-learning-aided
operational modal analysis

As addressed so far in the previous Chapter 2, OMA methods have been proven
effective in identifying dynamic properties of existing structures and infrastructures
under operational conditions. Nevertheless, the provision and installation of contin-
uous monitoring systems for long-term SHM purposes potentially applicable to the
entire infrastructure network require significant economic planning efforts. As pre-
viously discussed in Chapter 1 in Figs. 1.5-1.6 countries all around the whole world
are still actively working in that direction to permit a transition at a large regional
scale of a widespread, real-time, and continuous SHM-based safety assessment.
Therefore, this specific transnational background context has lately motivated for
earmarking significant research efforts toward a novel design of lower-cost but still
reliable monitoring sensing systems and seeking for the improvement, and automa-
tion of the available OMA methods. Indeed, the present Chapter introduces a new
paradigm for the automatic output-only modal identification of linear structures
under ambient vibrations developed during the current Ph.D. program, namely
the intelligent automatic operational modal analysis (i-AOMA). In summary, this
new framework leverages the SSI-cov algorithm, but it can be easily extended also
to the alternative SSI-dat method. The i-AOMA workflow consists of two main
phases. Initially, quasi-random samples of the control parameters for the SSI-cov
algorithm are generated. Once the SSI-cov algorithm is performed for each sample,
the corresponding stabilization diagrams are overlapped and processed in order to
set up a database for training the intelligent core of the i-AOMA method. This
latter is represented by the machine learning random forest (RF) technique. The
RF is demanded to predict which combination of the SSI-cov governing parame-
ters is able to provide mostly good modal estimates and simultaneously with the
least possible spurious noisy information. Afterward, the second main step of the
iAOMA method starts, and new quasi-random samples of the control parameters
for the SSI-cov algorithm are generated repeatedly until a statistical convergence
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criterion on modal estimates is achieved. If the generic sample is classified as fea-
sible by the intelligent core of the i-AOMA method, then the SSI-cov algorithm
is performed, thus saving computational resources when the RF predicts a poorly
informative governing parameters set. Finally, stable modal results are distilled
from gathering all the computed stabilization diagrams and relevant statistics are
computed to provide an uncertainty measure of the modal estimates due to the
variability of the SSI-cov control parameters.

The present chapter is organized as follows. In the next section 3.1, the iAOMA
method is described in detail. Afterward, in section 3.3 the potentials of iAOMA
are demonstrated on a synthetic numerical benchmark represented by an MDOF
system which simulates a five-story bi-dimensional shear type frame.

In section 3.4, the proposed i-AOMA method has been applied to identify the
modal features of a 1380 m long-span suspension bridge located in Norway, i.e. the
Hardanger bridge. Another real-world iconic case study is addressed in section 3.5
by considering the Al-Hamra Firduos Tower, a 412.6 m high twisted tall building
located in Kuwait City (Kuwait). In the real-world case studies herein discussed,
the final results provide extraordinary agreement with the previous experimental
literature studies, demonstrating the effectiveness of the iAOMA method in deal-
ing with large-scale civil engineering structures. It is noteworthy to remark that
the implemented iAOMA open-source Python code has been made freely available
at the following GitHub repository https://github.com/marco-rosso-m/i-AOMA
for contributing to an Open-Science perspective philosophy.

3.1 Automatic Operational Modal Analysis
The growing use of SHM requires efficient solutions that aim at automatizing the
extraction of the modal parameters (viz., natural frequencies, mode shapes, and
damping ratios) from the recorded dynamic response of the structures. This need
originated the development of some strategies able to facilitate the identification of
the modal parameters under free or ambient vibrations, in such a way to mitigate
the influence of analyst’s decisions on the whole elaboration process [149, 150].
Within this framework, the SSI algorithm [96, 117] is often considered for the
automatic operational modal analysis (AOMA) of linear structures subjected to
ambient vibrations. Specifically, the automatic identification via SSI algorithm is
commonly performed either from the covariances of the outputs (SSI-cov) [151,
152, 153, 154, 155, 156, 114, 157, 158] or directly from time series collected at the
tested structure by means of projections (SSI-dat) [159, 160, 161, 162, 163, 164].
Regardless the specific version, the implementation of proper strategies is required
to make fully automatic each elaboration phase of the general workflow of the SSI
algorithm, namely:

• definition of the set of control parameters;
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• estimation of the system poles by means of the SSI algorithm;

• interpretation of the stabilization diagram (SD);

• confidence level assessment of the results.

Although the proper operation of the SSI algorithm largely depends on several
control parameters, few efforts have been spent hitherto to avoid a manual selection.
In fact, these control parameters are often fixed a priori as constant values or are
obtained after a sensitivity analysis within given intervals, and their definition is
ultimately based on subjective evaluations or personal experiences [e.g. 152, 153,
154, 159, 165, 166, 167, 168, 141]. However, there are also some recent works
that attempted to provide rationale guidelines for tuning automatically the control
parameters of the SSI algorithm. For example, Priori et al. [169] proposed some
rules to select the optimal values of the number of block rows and columns of the
Hankel matrix collecting the output data as well as those for the number of block
rows of the past output subpartition and the number of block rows of the future
output subpartition in the SSI-dat algorithm. Particularly, the minimum number
of block rows of the Hankel matrix has been related to the number of cycles of
the fundamental frequency. Next, the minimum number of block rows of the future
output subpartition is associated with the modal characteristics of the structure and
the sampling frequency. The proper setting of the lower bounds of the remaining
control parameters is finally based on the amount of information that the algorithm
takes into account for identifying the system (upper and lower bounds of the model
order are instead assigned a priori, and the final value is defined as the minimum
order at which the largest number of modes appear to be stable). Recently, Zini et
al. [114] proposed a procedure to define the number of block rows in the Hankel
matrix gathering all the output data and the range of variation of the model order in
the SSI-cov algorithm. Herein, the minimum model order is first assumed as twice
the number of modes estimated from a preliminary spectral analysis, and further
increased by means of an amplifying coefficient. The maximum model order is
calculated as the product between the minimum model order and an overmodelling
coefficient. The maximum model order is then employed to estimate the upper and
lower bounds of the number of block rows of the Hankel matrix. The final number
of block rows in the Hankel matrix is obtained from a sensitivity analysis, and the
maximum model order is also validated.

Once the control parameters are selected, the poles of the identified linear sys-
tem are computed for each model order using the SSI algorithm (e.g., either SSI-cov
or SSI-dat). The estimated poles of the system are usually presented in a stabi-
lization diagram (SD). Some poles will represent stable (i.e., physical) modes while
others will correspond to spurious (i.e., numerical) modes. Indeed, spurious modes
will inevitably appear owing to the fact that parametric models attempt to fit the
noisy data as best as possible for an imposed conservative over-specification of the
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model order [96]. Since the amount of collected data from continuous monitoring
can be very large, the manual interpretation of estimated poles is unfeasible and
automatic procedures are required. Most of the recent approaches for the auto-
mated interpretation of the SD are mainly based on a clustering technique that
joints together stable poles with similar properties. This is by far the most in-
vestigated aspect within AOMA. Hierarchical clustering and partition clustering
methods are the most common in the current literature. The hierarchical cluster-
ing technique considers all stable modes as separate clusters, and then groups two
adjacent clusters in order to produce a new one. This procedure is repeated until
the distances between the rest clusters are larger than a user-specified threshold.
Partition clustering techniques tend to divide the stable modes into several clusters
[170]. On the one hand, a critical issue in the application of hierarchical clustering
methods is the selection of the threshold value of the distances between the rest
clusters for which the iterative procedure is stopped. On the other hand, a critical
issue in the application of partition clustering techniques is attributable to the fact
that the number of clusters must be assigned in advance.

For instance, the clustering-based approach proposed by Reynders et al. [153]
for the automated interpretation of the SD consists of the following steps: 1. a pre-
cleaning stage by means of a classification of all the identified modes as possible
physically or certainly spurious; 2. hierarchical clustering of the possible physical
modes for the automatic detection of vertical lines in the SD; 3. final classification
of the formed clusters. Some applications of the hierarchical clustering method
for the automatic interpretation of the SD have been reported by Magalhaes et
al. [152], de Almeida Cardoso et al. [161], Zonno et al. [171], and Garcia-Macias
and Ubertini [172], among the others. Zini et al. [114] also proposed a statistical
approach to define the cut-off threshold in the hierarchical clustering technique.
As regards the partition clustering techniques, the 𝑘-means clustering (where the
clusters are mutually exclusive) [153] and the fuzzy 𝑐-means clustering (where the
clusters overlap) [173, 174, 151, 155, 164] have been adopted. For the sake of
completeness, it is pointed out that hybrid clustering approaches have been also
proposed [175, 156]. For example, Mugnaini et al. [176] proposed the application
of the 𝑘-means clustering to separate the poles that exhibit high stability from
those that show low stability. Subsequently, hierarchical clustering was used to
create clusters of poles with similar features. The 𝑘-means clustering was then
applied once again to discern between highly and sparsely populated clusters, and
the latter are discarded. Short reviews about clustering techniques for AOMA have
been presented by Hasan et al. [177] as well as Chauhan and Tcherniak [178]. As a
matter of fact, all these works that implement a clustering algorithm are instances
of machine learning applications in AOMA. A different way to integrate machine
learning and AOMA has been presented recently by Liu et al. [179]. It is based on
two neural networks [94]: while the first neural network is employed to determine
the model order, the second one is used to identify the modal parameters.
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Whichever way the identification is performed, the uncertainties at the origin
propagate throughout the workflow and affect the final evaluation of the modal
parameters as pointed out by Reynders et al. [180], who also provided a partial
list of the sources of uncertainty. Some uncertainties are somehow irreducible, such
as those due to nonlinearities and nonstationarity. The uncertainties due to the
control parameters setting are reducible, but cannot be removed at all. Since the
identification of the exact modal parameters is utopistic, it is thus important to as-
sess the confidence in the final estimates (e.g., in terms of bounds, distributions, or
statistical moments). Pintelon et al. [181] as well as Reynders et al. [180, 182] are
among the few who addressed this issue. To this end, they employ the first-order
perturbation analysis to quantify how uncertainties propagate into the final results
of the output-only modal analysis of structures. These studies, however, are not
intended for automated applications. In this regard, because of the high influence
of the control parameters on the final modal estimates, it would be especially im-
portant to also evaluate how the uncertainty inherent to their definition propagates
in the AOMA.

During the current Ph.D. program, a new paradigm have been proposed for
the automatic output-only identification of the modal features of structures and
infrastructures subjected to ambient vibrations, called the intelligent operational
modal analysis (i-AOMA). The proposed methodology is extensively illustrated in
the next sections and it implements the SSI-cov algorithm for modal identifica-
tion and the overall procedure is basically divided into two steps. Quasi-random
samples of the control parameters for the SSI-cov algorithm are generated during
the first Phase 1 of i-AOMA. The SSI-cov algorithm is then performed for each
sample and the corresponding SDs are elaborated in order to prepare a database
for training the intelligent core of the i-AOMA method. This is a machine learning
technique, specifically a random forest (RF) classifier, that predicts which combi-
nation of the control parameters for the SSI-cov algorithm is able to provide good
modal estimates. In the second Phase 2 of the i-AOMA, new quasi-random sam-
ples of the control parameters for the SSI-cov algorithm are generated repeatedly.
If the generic sample is classified as feasible by the intelligent core of the i-AOMA
method, then the SSI-cov algorithm is performed. Once a convergence criterion
is achieved, final stable modal results of interest are distilled from the SDs, and
relevant statistics are computed to evaluate their confidence level.

3.2 Intelligent automatic operational modal anal-
ysis

The survey about the SSI-cov algorithm discussed in Chapter 2 section 2.2.3.4,
highlighted that it is governed by the following control parameters:
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• the number of block rows 𝑖 (also known as time shift);

• the length of the data time windows 𝑗;

• the model order 𝑛.

Ultimately, the efficiency and accuracy of the SSI-cov algorithm depend on the
proper selection of 𝑖, 𝑗, and 𝑛. Furthermore, it is noted that these control pa-
rameters are not independent of each other. Particularly, recalling Eq.2.96, below
reported for the sake of clearness, a feasible system of order 𝑛 can be identified as
far as the following condition is fulfilled [96]:

𝑖𝑙 ≥ 𝑛.

Moreover, it has been shown [183] that the variance of the estimates initially de-
creases when 𝑖 increases because a larger amount of noise is rejected. Conversely,
splitting phenomena occur for too high values of 𝑖, and the resulting mathematical
modes lead to a bias in the physical pole estimates. Such evidence implies that the
value of 𝑖 cannot be set as large as possible. Finally, it is theoretically required that
𝑗 −→ ∞. In reality, this requirement can be only approximated since the output
signals are always finite in length. Indeed, the reliable and efficient execution of
the SSI-cov algorithm requires that 𝑖 and 𝑗 are fixed consistently with 𝑛 by taking
also into account computational effort and memory usage. A machine-learning-
based strategy has been conceived in the present work to deal with the output-only
automatic modal identification of linear structures under ambient vibrations via
SSI-cov.

The proposed approach for the intelligent automatic operational modal analysis
(i-AOMA) moves from a recent study by Zhou et al. [184, 185], who introduced
a Monte Carlo (MC) simulations-based construction of the SD for SSI algorithms.
Specifically, MC simulations are performed by sampling randomly the length of the
data time window 𝑗 ∈ [𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥] and the maximummodel order 𝑛 ∈ [𝑛𝑚𝑖𝑛,𝑛𝑚𝑎𝑥].
The time window 𝑗 is centered symmetrically with respect to a randomly generated
time instant 𝑡 ∈ [0, 𝑗𝑚𝑎𝑥]. The underlying assumption by Zhou et al. [184, 185]
is that, in a statistical sense, spurious modes occur occasionally while physical
modes occur recurrently. Accordingly, a stability check is performed in order to
discriminate the poles denoting the physical modes from those representing spurious
modes over 𝑠 simulations (it is noted that each simulation corresponds to one
application of the SSI-cov algorithm). The resulting SD is finally processed via the
𝑘-means clustering technique to determine the structural modal parameters.

The methodology proposed by Zhou et al. [184, 185] is attractive, but the
following issues can also be recognized.

• The time shift 𝑖 is still considered a user-defined parameter. Given the rele-
vance of such control parameter, the manual tuning of its value is an imped-
iment towards accurate automatic applications.
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• The number of MC simulations 𝑠 is a new user-defined parameter that plays
a somehow important role. However, neither motivations nor guidelines are
given about its selection.

• The intervals of the control parameters for Monte Carlo simulations must
be defined carefully. Otherwise, several random samplings might result into
an ill-conditioned application of the SSI algorithm, also leading to numerical
failures or excessive elaboration time. This, in turn, also reflects on the final
results, which can actually be carried out from a too low number of samples.

• The MC simulations-based construction of the SD is analyzed in order to
derive a deterministic estimation of the modal parameters. So doing, any in-
formation about the confidence level of the final estimates due to the different
combinations of the control parameters is lost.

The proposed novel approach relies on the MC simulations-based construction
of the SD for SSI algorithms presented by Zhou et al. [184, 185], which is largely
revised by means of a machine-learning-driven strategy designed to overcome all
these limitations. In its essence, it is organized as follows.

• Database preparation and training of the intelligent core (i-AOMA Phase 1).
Quasi-random samples of the control parameters for the SSI-cov algorithm
are generated. The SSI-cov algorithm is then performed for each sample
and the corresponding SDs are elaborated in order to prepare a database
for training the intelligent core of the i-AOMA method. This is a machine
learning technique that predicts which combination of the control parameters
for the SSI-cov algorithm is able to provide good modal estimates.

• Machine-learning-driven automatic identification and uncertainty propagation
(i-AOMA Phase 2). New quasi-random samples of the control parameters
for the SSI-cov algorithm are generated repeatedly. If the generic sample is
classified as feasible by the intelligent core of the i-AOMA method, then the
SSI-cov algorithm is performed. Once a convergence criterion is achieved,
final stable modal results of interest are distilled from the SDs, and relevant
statistics are computed to evaluate their confidence level.

3.2.1 i-AOMA Phase 1a: stabilization diagram processing
through kernel density estimation

The Halton technique [186, 187] is adopted to generate quasi-random samples of
the control parameters for the SSI-cov algorithm within the corresponding ranges.
They are the maximum model order 𝑛, the time window length 𝑗, the time target
𝑡 with respect to which the time window is centered [185], and the time shift
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parameter 𝑖. Taking into consideration the existing literature [185, 188, 183], the
bounded ranges for {𝑛, 𝑗, 𝑡, 𝑖} are defined as follows:

𝑛 ∈ [𝑛𝑚𝑖𝑛,𝑛𝑚𝑎𝑥] = [2 ⋅ 𝑙, 𝑖𝑚𝑎𝑥 ⋅ 𝑙] , (3.1)

𝑗 ∈ [𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥] = [⌊ 2
max{𝑓𝑓,1}

⌉, 𝑗𝑚𝑎𝑥 ⋅ 𝑙] , (3.2)

𝑡 ∈ [𝑡𝑚𝑖𝑛; 𝑡𝑚𝑎𝑥] = [0, 𝑗𝑚𝑎𝑥] , (3.3)

𝑖 ∈ [𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥] = [⌊ 𝑓𝑠
2max{𝑓𝑓,1}

⌉,10⌊ 𝑓𝑠
2max{𝑓𝑓,1}

⌉] , (3.4)

where ⌊⋅⌉ is the rounding operation to the nearest integer, 𝑙 is the number of
monitored degrees of freedom (DOFs), and 𝑓𝑓 the fundamental frequency (which
is estimated by means of the singular value decomposition of the power spectral
density as suggested by Zhou and Li [185]).

A database is then prepared for training the intelligent core of i-AOMA. To this
end, 𝑠 successful quasi-MC simulations are performed: each simulation corresponds
to an application of the SSI-cov algorithm using a sample of control parameters gen-
erated according to the bounds listed in Eqs. (3.1)-(3.4) by means of the Halton
technique. This database is prepared by assuming 𝑠 ≥ 100 as suggested by Zhou
and Li [185]. It is pointed out that the user’s intervention is limited to roughly
defining the ranges of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}, even if their reasonable
definition as per Eqs. (3.1)-(3.4) is useful to enhance the efficiency of the i-AOMA.
After the training stage, in fact, the intelligent core of i-AOMA will detect the
combinations of the control parameters {𝑛, 𝑗, 𝑡, 𝑖} that are likely to produce sat-
isfactory results by means of the SSI-cov algorithm. Similarly, the combinations
of the control parameters that cause the premature stop of the SSI-cov algorithm
because of numerical failure or excessive elaboration time (herein assumed equal to
30 s) are not discarded since they will serve to train the intelligent core of i-AOMA
in recognizing unuseful combinations of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}. Further-
more, only a reasonable value for 𝑠 is required in such a way to properly train
the intelligent core of i-AOMA, but an automatic procedure will be introduced to
determine how many quasi-MC simulations must be carried out in order to get the
final modal estimates and to calculate the corresponding confidence level.

The SDs resulting from the 𝑠 successful quasi-Monte Carlo simulations are then
overlapped. So doing, a single comprehensive SD is obtained and, for each pole,
a stability check is performed in terms of frequency, damping ratio, and mode
shapes, in such a way to identify those corresponding to possibly physical modes.
Specifically, the HVC and SVC stability criteria illustrated in Eqs.(2.111)-(2.115)
have been herein considered. The extraction of certainly physical poles (i.e., the
identification of the most recurrent modes having physical meaning) from possibly
stable poles (i.e., the poles that fulfill all stability criteria in Eqs. (2.111)-(2.115))
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is not performed as most common by means of a traditional clustering procedure.
Instead, this is accomplished via Kernel Density Estimation (KDE).

The KDE aims at providing a nonparametric estimation of probability density
functions (PDFs) directly from data [189]. Specifically, the KDE is an evolution of
any naive estimator because it is based on a symmetric kernel function 𝐾(−𝑧) =
𝐾(𝑧) that satisfies the following conditions [190, 51]:

∫
+∞

−∞
𝐾(𝑧)d𝑧 = 1, (3.5)

𝐾(𝑧) ≥ 0. (3.6)

The most common kernel is the Gaussian one [190, 51]. In this context, the data
consists of all the possible stable poles 𝑁𝑝 within the comprehensive SD, which are
considered as a univariate dataset along the frequency axis only. Therefore, the
univariate KDE based on a Gaussian kernel can be written as follows:

�̂� = 1
𝑁𝑝ℎ

𝑁𝑝

∑
𝑝=1

𝐾(
𝑧 − 𝑧𝑝

ℎ
) , (3.7)

where
𝐾(

𝑧 − 𝑧𝑝
ℎ

) = 1√
2𝜋ℎ

e−
(𝑧−𝑧𝑝)2

2ℎ . (3.8)

The parameter ℎ in Eqs. (3.7)-(3.8) is known as bandwidth (BW) or smoothing
parameter, and it is normally fixed across the entire sample [190]. The optimal
choice of the BW is challenging because it rules the spread of the kernel, and
thus the complexity of the resultant density estimate. Its optimal value represents
a variance-bias trade-off between over-smoothed densities at high values of BW
(which are not able to capture multi-modality properties) and excessively noisy
densities at low values of BW (which present useless spurious fine structures [190,
191]). Since the BW definition has a significant impact, a user-dependent definition
of its value should be avoided in automatic applications. Therefore, the improved
Sheather-Jones (ISJ) algorithm [191, 192] is performed to facilitate the automatic
definition of the BW. This method is especially suitable when data are expected
to be multimodal and far from Gaussian normality. Moreover, in order to analyze
the performance of any KDE, error criteria are usually set to verify both punctual
and global convergence to the real density 𝜑(⋅) of the density estimation �̂�(⋅; ℎ).
An appropriate global indicator of their ℒ2 distance is represented by the mean
integrated squared error (MISE), which is defined as follows [191]:

MISE [�̂�(⋅,ℎ)] = 𝔼∫(�̂�(𝑧; ℎ) − 𝜑(𝑧))2 d𝑧, (3.9)

where 𝔼 denotes the expected value.

137



Machine-learning-aided operational modal analysis

Frequency

Selected peaks

Discarded peaks

Normalized KDE

1

Beta PDF

Prominence threshold
↓

Beta 99% percentile

0

qu

qm

q1 mode 1

mode u

mode m

q

Figure 3.1: Statistical-based criterion for the automatic definition of the prominence
threshold and the detection of significant peaks from the normalized KDE.

The ISJ algorithm is mainly based on the minimization of the asymptotic MISE,
which recursively produces sequences of BW estimates [192]. It is highlighted that
the direct implementations of the KDE algorithms might be computationally expen-
sive in the magnitude of 𝒪(𝑁2

𝑝 ) or even larger [189]. This evidence motivated the
development of some approximated implementations in the past years. Specifically,
the adopted KDE algorithm relies on the discrete convolution workflow provided
by the Fast Fourier Transform (FFT-KDE). This is implemented by exploiting the
symmetry of the chosen Gaussian kernel function to reduce the computational ef-
fort [193]. Particularly, a uniform discrete grid of 𝑀 points is used to bin the 𝑁𝑝
stable poles, thus achieving an overall complexity of 𝒪(𝑁𝑝21+𝑀log𝑀) [191]. For
better controlling the granularity of the grid, in the current study, 𝑀 is set equal
to ⌊1000 ⋅ 𝑓𝑠/2⌉, being 𝑓𝑠 the sampling frequency of the signals.

The KDE plays a crucial role in post-processing the overlapped SDs. In fact, it
allows detecting recurrent and significant patterns of stable poles’ alignments only
(i.e., certainly physical modes) from possibly stable poles, thus acting as a filter for
the actual modal parameters. Indeed, the actual natural frequencies are located at
the 𝑚 peaks of interest in the normalized KDE (which is obtained by scaling the
KDE in such a way that its largest value is equal to one). In order to automatize
the extraction of certainly physical modes, only those stable poles around the 𝑚
peaks of the normalized KDE within a distance equal to 𝑏𝑤 times the BW ℎ are
retained, being 𝑏𝑤 a factor governing the severity of the filtering effect of the poles
of interest. The retaining bands are thus defined as follows:

[𝑓𝑢 − 𝑏𝑤 ⋅ ℎ, 𝑓𝑢 + 𝑏𝑤 ⋅ ℎ]𝑢 (with 𝑢 = 1,… ,𝑚), (3.10)

where 𝑚 is the total number of peaks of interest and 𝑓𝑢 is the natural frequency
associated with the 𝑢-th peak. The value of 𝑏𝑤 is the minimum integer number for
which all the 𝑚 groups of certainly stable poles are not empty.

A prominence-based criterion is employed to detect the 𝑚 peaks of interest
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within the normalized KDE. Specifically, only the peaks above a prominence thresh-
old are considered because they are attributable to physical modes. Conversely, the
peaks below the prominence threshold are discarded. A statistical approach is pro-
posed to setup automatically the prominence threshold value. By observing that
the values of the normalized KDE lie within the bounded range [0,1], all the peak
values are fitted through the Beta distribution with parameters 𝛼 and 𝛽, denoted
as ℬ(𝛼,𝛽). The maximum likelihood estimation algorithm is here employed for
this task. It is noted that the normalized KDE will exhibit a few spiky peaks due
to highly recurrent physical modes while it is equal to or close to zero otherwise:
therefore, the fitted ℬ(𝛼,𝛽) is expected to be very squashed towards the zero of
the normalized KDE (i.e. 𝛼 ≪ 𝛽). The adopted statistical-based criterion for the
selection of the prominence threshold is illustrated in Fig. 3.1.

It is worth highlighting that such prominence-based criterion implies a statistically-
based discrimination between physical modes and spurious modes. In fact, let 𝑞
be the generic peak value of the normalized KDE and 𝑞𝑢 the corresponding value
associated to a certainly physical mode 𝑢 (where 1,… ,𝑚 is the set of all the labels
associated to the physical modes of interest of the structure). Then, the proposed
prominence-based criterion is equivalent to the application of the following condi-
tion:

𝑢(𝑞𝑢) ∈ {1, ...,𝑚} ⟺ ∫
𝑞𝑢

0
𝑓ℬ(𝑞; 𝛼,𝛽) d𝑞 ≥ 1 − 𝑝𝑓, (3.11)

where 𝑓ℬ denotes the Beta distribution probability density function. The promi-
nence threshold is ruled by 𝑝𝑓, which defines the threshold probability of failure
(i.e., the acceptable probability of extracting a spurious mode rather than a phys-
ical mode). In the present work, it is assumed 𝑝𝑓 = 1%, which means that the
prominence threshold is the value corresponding to the 99th percentile in the fitted
Beta distribution. This, in turn, implies that the chance of considering a spurious
mode within the final set of the physical modes of interest {1, ...,𝑚} is required
to be no larger than 1%. It is evident that the larger 𝑝𝑓, the larger is 𝑚, but the
larger is also the probability of considering spurious modes within the final set of
𝑚 modes. The vice versa holds for low values of 𝑝𝑓.

3.2.2 i-AOMA Phase 1b: the random forest intelligent core
The number of successful quasi-MC simulations 𝑠 has been defined arbitrarily. Al-
though this value can be assumed very large to achieve a predefined convergence
criterion, this strategy would be a waste of computational effort because some com-
binations of the control parameters are likely to produce poor results. Hence, the
outcomes of all the previous simulations (i.e., successful and aborted simulations)
are considered to fill a training database for a random forest (RF) algorithm, which
acts as an intelligent core of the proposed i-AOMA method. Specifically, the RF
algorithm will be required to predict whether a new combination of the control
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parameters is able to provide enough useful modal information by producing as
many certainly stable poles as possible within the retaining bands defined in Eq.
(3.10).

A suitable metric must be associated with each previous 𝑘-tuple of the control
parameters within the database in order to quantify objectively its goodness. To
this end, an information content index IC is thus computed for each previous 𝑘-
tuple of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘. It is defined as the ratio between the
number of certainly stable poles 𝑁 ∗

𝑝,𝑘 (i.e., the number of stable poles falling within
the retaining bands in Eq. (3.10)) and the total number of stable poles of the 𝑘-th
SD 𝑁𝑝,𝑘, that is:

IC𝑘 =
𝑁 ∗

𝑝,𝑘

𝑁𝑝,𝑘
. (3.12)

So doing, it is possible to associate a quality index IC𝑘 to each previous 𝑘-tuple
of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘. In fact, IC𝑘 is equal to one if the 𝑘-th
set of control parameters provides a SD where all the stable poles are retained
because they fall within the KDE-based retaining bands in Eq. (3.10). Conversely,
it is equal to zero if the set of 𝑘-th control parameters provides a SD where no
stable pole falls within the KDE-based retaining bands in Eq. (3.10) (IC𝑘 is also
equal to zero by default for the combinations of the control parameters that lead
to a numerical failure or an excessive elaboration time). The main advantage of
the metric in Eq. (3.12) is attributable to its simplicity since the implementation
does not require further control parameters and is based on a simple counting
procedure. This avoids growing the computational burden. However, other metrics
(or a combination thereof) can possibly be adopted.

It is evident that the optimum computational effort is achieved when the anal-
ysis is performed for those combinations of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 that
corresponds to a high value of IC𝑘 while those for which IC𝑘 ≈ 0 are almost use-
less. It is assumed that if IC𝑘 is less than a threshold value IC𝑡ℎ = 0.10, then
the corresponding set of control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 is unfeasible because it is
non-informative of the actual modal properties of the structure. Conversely, if IC𝑘
is equal to or larger than a threshold value IC𝑡ℎ = 0.10, then the corresponding
set of control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 is feasible because it provides enough informa-
tion about the actual modal properties of the structure. The RF algorithm is thus
trained to classify each freshly generated set of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘
as either feasible or unfeasible, without performing the SSI-cov algorithm. Boolean
discrimination is adopted such that the 𝑘-tuple of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘
is labeled with 1 if IC𝑘 > IC𝑡ℎ (feasible set of control parameters) and 0 otherwise
(unfeasible set of control parameters). Boolean labeling improves the diversity
among the most and the less informative sets of control parameters. The RF algo-
rithm is one of the most powerful and robust, yet simple, machine learning algo-
rithms for classification problems [43]. Briefly, RF is an ensemble machine learning
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technique based on the simultaneous training of a group of various decision trees
(weak learners), whose predictions are finally aggregated with a majority voting
method [61]. The RF algorithm adopts an initial bagging procedure (also known
as bootstrap), which is performed by randomly drawing a number of samples with
replacements from the training set. A subset of input features is then used to train
each decision tree component [43]. The usual size of this subset is

√
𝑑, where 𝑑 is the

dimension of the features vector. Each decision tree component is trained in order
to maximize the information gain [61], in such a way to look for the best features
among the selected subset, thereby improving the tree diversity. The greatest ad-
vantage of any ensemble method is based on the adoption of a final majority voting
system, which ensures a consistent level of accuracy and robustness in contrast to
any single weak learner alone. The aggregation provides, in general, better results
and reduces both bias and variance. This, in turn, improves the generalization
capabilities and drastically mitigates any possible overfitting issue [43]. The use
of the RF is especially attractive to enhance the automation level of the i-AOMA
because it does not require careful tuning of its hyperparameters value by virtue
of the intrinsic robustness due to its ensemble nature [61]. The only significant
control parameter of the RF algorithm is the number of decision trees composing
the forest: if it is high, then it would provide better results, with the side-effect of
increasing the computation cost. In the present study, the RF algorithm is imple-
mented by considering 100 trees, an information gain measure based on the Gini
impurity index, no depth tree pruning, and a maximum number of features for the
bootstrap subset equal to

√
𝑑 = 2 (being 𝑑 = 4 the size of the each 𝑘-tuple of the

control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘).

3.2.3 i-AOMA Phase 2: intelligent-guided automatic modal
identification and uncertainty propagation

The Halton technique is employed to sample new 𝑘-tuples of the control parameters
{𝑛, 𝑗, 𝑡, 𝑖}𝑘 within the bounds listed in Eqs. (3.1)-(3.4). Then, the trained RF
applies as an intelligent core in order to classify the newly generated 𝑘-tuple of
the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘: if it is classified as unfeasible, then the SSI-
cov does not apply and a new set is considered. This allows to save elaboration
time since only feasible 𝑘-tuples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 are processed
henceforth. This intelligence-driven procedure is reaped until a suitable convergence
criterion is achieved. The convergence check is performed periodically considering
a batch size of successful quasi-MC simulations 𝑏 (i.e., convergence check of i-
AOMA is performed every successful 𝑏 runs of the SSI-cov algorithm). The selected
convergence criterion depends on the uncertainty associated with the estimated
mode shapes 𝝓𝑢 = [𝜙𝑢,1 … 𝜙𝑢,𝑙]

⊤, which are carried out for 𝑢 = 1,… ,𝑚 from
the selected poles within the retaining bands defined in Eq. (3.10) on the basis of the
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normalized KDE. The mode shape vectors 𝝓𝑢 are thus considered as multivariate
random vectors, and the overall uncertainty is assessed by means of the generalized
sample variance matrix 𝑺𝑢 (i.e, a covariance matrix of the components of the 𝑢-th
mode shape vector 𝝓𝑢), which is defined as follows [194]:

𝑺𝑢 =
⎡
⎢
⎢
⎣

𝕍ar [𝜙𝑢,1] ℂov [𝜙𝑢,1,𝜙𝑢,2] … ℂov [𝜙𝑢,1,𝜙𝑢,𝑙]
𝕍ar [𝜙𝑢,2] … ⋮

⋱ ℂov [𝜙𝑢,𝑙−1,𝜙𝑢,𝑙]
Sym. 𝕍ar [𝜙𝑢,𝑙]

⎤
⎥
⎥
⎦

. (3.13)

This is a symmetric matrix collecting the sample variances (𝕍ar[⋅]) of the 𝝓𝑢’s
components on the main diagonal, whereas the sample covariances (ℂov[⋅, ⋅]) outside
of the main diagonal are computed among pairs of 𝝓𝑢’s components. A suitable
measure of the overall variability of a multivariate random vector is the total sample
variance, which corresponds to the trace of the matrix 𝑺𝑢 [194], namely tr(𝑺𝑢).
Hence, the traces of the sample covariance matrices given by Eq. (3.13) for 𝑢 =
1,… ,𝑚 are computed, and the acceptable shifting convergence band rule (ASCBR)
[195, 196] is employed to limit the subjective judgment of the convergence condition.
The batch size is taken 𝑏 = 50 [196] whereas the intelligence-driven procedure
is stopped (i.e., new samples of the control parameters are no longer generated)
once the relative total sample variance for each mode of interest {Δtr(𝑺𝑢)}𝑚𝑢=1 is
restricted to ±2% [197].

Once the convergence is achieved, the SDs carried out from all the applica-
tions of the SSI-cov algorithm are overlapped, and the stability criteria in Eqs.
(2.111)-(2.115) apply to identify possibly physical modes. Thereafter, the normal-
ized KDE-based filtering procedure is performed once again to retrieve the final
estimates of the modal parameters, and basic statistics are determined. These
statistics allow quantifying the epistemic uncertainty in the final modal estimates
due to the variability of the control parameters. As far as the uncertainty quantifica-
tion for the estimated mode shapes, a boxplot-based representation is recommended
[198, 199]. So doing, the boxplot’s whiskers represent the distance between the first
quartile or the third quartile of the modal displacement with respect to the lower
and upper fence, respectively. The fences, in turn, are located at an additional
distance of 1.5 times the interquartile range. The whiskers-based representation
is deemed appropriate since it provides a robust and not necessarily symmetric
measure of the uncertainty level.

3.2.4 i-AOMA recap and Python implementation
The workflows recap for both Phase 1 and Phase 2 of the i-AOMA method are
depicted in Fig. 3.2.
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Algorithm 1 Pseudocode of i-AOMA Phase 1 – Database preparation and training
of the intelligent core

Define 𝑠 ▷ Successful runs of the SSI-cov for training the RF algorithm
Define 𝑛𝑚𝑎𝑥, 𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥, 𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 ▷ Reasonable control parameters bounds
Generate quasi-random samples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘=1,…
while 𝑠 successful runs of SSI-COV are not completed do

try
@check execution time ≤ 30 s ▷ Admissible elaboration time
SSI-cov({𝑛, 𝑗, 𝑡, 𝑖}𝑘) ▷ Compute the SD via SSI-cov
Normalize mode shapes

except ▷ Numerical failure, execution time larger than 30 s
Set IC𝑘 = 0 ▷ Unfeasible set of control parameters

end while
Overlap all the SDs
Check the poles stability ▷ Detect possibly stable poles
Perform KDE ▷ Perform FFT-KDE with ISJ algorithm
Recognize certanly stable poles from the normalized KDE
Calculate IC𝑘
Set IC threshold IC𝑡ℎ, if IC𝑘 ≥ IC𝑡ℎ then IC𝑘 = 1 else IC𝑘 = 0
Classifier training RF.fit(inputs= {𝑛, 𝑗, 𝑡, 𝑖}𝑘=1,…,targets= {IC𝑘}𝑘=1,…)

Algorithm 1 and Algorithm 2 provides the pseudocode for Phase 1 and Phase 2
of the i-AOMA method, respectively. The proposed i-AOMA method has been im-
plemented by means of the Python programming language. Particularly, the imple-
mentation of i-AOMA relies on PyOMA [117], which is a suite of Python libraries for
standard output-only modal identification of linear structures. The code implemen-
tation is based on the extensive use of the object-oriented programming paradigm
in order to make the elaboration as fast as possible. The elaboration time can be
dramatically reduced by means of a suitable parallelization of the elaboration tasks.
The code is available at the following Google Colab notebook link: https://colab.
research.google.com/drive/1D6z1zM7lqJavI6yyMCI8BMnEqV9zw7kW?usp=sharing.
It can also be freely downloaded from the following GitHub repository: https:
//github.com/marco-rosso-m/i-AOMA.

3.3 i-AOMA validation: numerical shear-type pla-
nar frame benchmark case study

The proposed i-AOMA method is initially tested on a numerical benchmark prob-
lem following Pasca et al. [117]. A five degrees-of-freedom (DOF) shear-type planar
frame under white noise excitation is considered, with lumped mass at each floor
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3.3 – i-AOMA validation: numerical shear-type planar frame benchmark case study

Algorithm 2 Pseudocode of i-AOMA Phase 2 – Machine-learning-driven auto-
matic identification and uncertainty propagation

Set the batch size 𝑏 = 50 ▷ Convergence check every 50 runs of the SSI-cov
Set a large number 𝑠𝑚𝑎𝑥
Generate quasi-random samples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑠𝑚𝑎𝑥

𝑘=1
while 𝑘 ≤ 𝑠𝑚𝑎𝑥 and {Δtr(𝑺𝑢)}𝑚𝑢=1 ≥ ±2% do

try
if RF.predict(inputs= {𝑛, 𝑗, 𝑡, 𝑖}𝑘) = 1 then ▷ RF classification

@check execution time ≤ 30 s ▷ Admissible elaboration time
SSI-cov({𝑛, 𝑗, 𝑡, 𝑖}𝑘) ▷ Compute the SD via SSI-cov
Normalize mode shapes
if 𝑘 reaches multiples of 𝑏 then

Overlap all the SDs up to 𝑘 runs
Check the poles stability ▷ Detect possibly stable poles
Perform KDE ▷ Perform FFT-KDE with ISJ algorithm

end if
else

Set IC𝑘 = 0 ▷ Unfeasible set of control parameters
end if

except ▷ Numerical failure, execution time larger than 30 s
Set IC𝑘 = 0 ▷ Unfeasible set of control parameters

end while
Overlap all the SDs
Check the poles stability ▷ Detect possibly stable poles
Perform KDE ▷ Perform FFT-KDE with ISJ algorithm
Select certainly stable poles from the normalized KDE
Compute basic statistics of the physical modal parameters of interest

equal to 25.91 Ns2/mm and story stiffness equal to 10,000 N/mm for every floor
level. The damping matrix is computed by assuming a constant damping ratio
equal to 2% for every mode. System frequencies and mode shapes (normalized
with respect to the largest value) are the following:

𝒇 =
⎡
⎢
⎢
⎢
⎣

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0.88995
2.59776
4.09511
5.2607
6.0001

⎤
⎥
⎥
⎥
⎦

Hz, (3.14)
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Figure 3.3: Numerical benchmark case: synthetic monitoring data (a) and singular
value decomposition of the power spectral density (b).

𝜱 = [𝝓1 𝝓2 𝝓3 𝝓4 𝝓5]

=
⎡
⎢
⎢
⎢
⎣

0.28463 −0.763521 1 0.918986 −0.5462
0.5462 −1 0.28463 −0.763521 0.918986

0.763521 −0.5462 −0.918986 −0.28463 −1
0.918986 0.28463 −0.5462 1 0.763521

1 0.918986 0.763521 −0.5462 −0.28463

⎤
⎥
⎥
⎥
⎦

.
(3.15)

Vibration response data at every DOF corresponding to 1 h recordings have
been generated with a sampling frequency of 𝑓𝑠 = 100 Hz. The response data have
been polluted by adding a white noise with a signal-to-noise ratio equal to 10% in
order to reproduce real-world monitoring conditions. Following Pasca et al. [117],
synthetic monitoring data have been decimated with a factor equal to 5 after the
application of a finite impulse response anti-aliasing low-pass filter with a 30 points
Hamming window. Fig. 3.3 illustrates synthetic monitoring data and the singular
value decomposition of the power spectral density.

The singular value decomposition of the power spectral density shows that the
fundamental frequency is 𝑓𝑓 = 0.890 Hz. Hence, the bounds of the control pa-
rameters are roughly defined according to Eqs. (3.1)-(3.4). A total of 𝑠 = 100
quasi-random samples of the control parameters have been generated according to
the Halton technique for the present benchmark case during the i-AOMA Phase 1.
To this end, 220 sets of control parameters have been sampled to gather 𝑠 = 100
successful applications of the SSI-cov algorithm, thus resulting in a success rate
of about 45%. Numerical failure or excessive elaboration time occurred for the
remaining 120 samples. Once the SDs corresponding to 𝑠 = 100 successful appli-
cations of the SSI-cov algorithm have been overlapped, stability checks have been
performed according to Eqs. (2.111)-(2.115) and possibly stable poles are then
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Figure 3.4: Numerical benchmark case i-AOMA Phase 1: normalized KDE together
with the identified peaks (a) and certainly stable poles falling within the retaining
bands (b) obtained from the sets of control parameters generated for training the
intelligent core of i-AOMA.

identified. The FFT-KDE algorithm has been next applied on these possibly stable
poles, delivering an estimate of the BW equal to 0.0015 Hz with the ISJ algorithm.
The statistical value of the prominence threshold for the peaks’ identification from
the normalized KDE (99th percentile in the fitted Beta distribution) is equal to
0.066. A factor of 𝑏𝑤 = 1 has been automatically identified to successfully col-
lect non-empty groups of stable poles around the peaks of the normalized KDE
according to Eq. (3.10). Subsequently, the database consisting of all the generated
control parameters and the corresponding IC values is prepared in order to train
the intelligent core of the i-AOMA method, i.e. the RF algorithm. Figs. 3.4-3.5
illustrate the main results obtained from the 𝑠 = 100 sets of control parameters
generated during the i-AOMA Phase 1.

Henceforth, new quasi-random samples of the control parameters are generated
with the Halton technique. However, the SSI-cov analysis is now performed only
for those samples that are classified as feasible by the RF algorithm. In total, the
algorithm generated new 2,105 samples, but only 600 new samples were actually

147



Machine-learning-aided operational modal analysis

0 20 40 60 80 100

Simulation number

0.0

0.2

0.4

0.6

0.8

1.0
IC

[-
]

Completed analyses: 100

IC values

IC threshold

Figure 3.5: Numerical benchmark case: numerical values of IC obtained from the
sets of control parameters generated for training the intelligent core of i-AOMA.

analyzed with the SSI-cov algorithm, demonstrating the filtering effect provided by
the i-AOMA intelligent core based on the RF algorithm. Therefore, after collecting
600 new SDs, the convergence criterion based on Eq. (3.13) has been fulfilled. Figs.
3.6-3.8 illustrate the final results of the i-AOMA.

It is worth noting in Fig. 3.6 that a lower estimate of the BW equal to 0.00096
Hz has been obtained with the ISJ algorithm. The reduction of the BW value in
the i-AOMA Phase 2 is due to the selection pressure provided by the RF algorithm,
which reduces the uncertainty of the modal estimates attributable to the control
parameters by driving the selection of their most appropriate values. Furthermore,
Fig. 3.8 demonstrates that the trained RF algorithm drives intelligently the control
parameters sampling, since most of the points are above the IC threshold value.
Fig. 3.9 illustrates the joint (bidimensional) probability density functions of the
control parameters that have been classified as feasible from the intelligent core of
i-AOMA. These plots provide interesting interpretative maps that illustrate where
the best values of the control parameters were actually sampled for this benchmark
case study.

The estimates of the natural frequencies for the present benchmark case are
0.89 Hz, 2.60 Hz, 4.09 Hz, 5.25 Hz, and 6.00 Hz. The corresponding estimates
of the damping ratios are 1.97%, 1.99%, 2.12%, 2.13%, and 1.95%. The identified
mode shapes are shown in Fig. 3.10. By resorting to a boxplot-type representation,
this figure also highlights the uncertainty level related to the selected poles in Fig.
3.6, as it emerges from the corresponding combinations of the control parameters
adopted for the SSI-cov algorithm.

Although the final stable poles are relatively close to each other, it is worth
noting in Fig. 3.10 that the uncertainty due to the control parameter values prop-
agates and possibly amplifies through the identification procedure. Notably, the
uncertainty level in the final mode shapes is not constant. On the contrary, it is

148



3.3 – i-AOMA validation: numerical shear-type planar frame benchmark case study

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz]

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

K
D

E
[-

] 0.89Hz

2.60Hz
4.09Hz 5.25Hz 6.00Hz

Normalized KDE, h = 0.00096

Peaks with prominence > 0.039

(a)

(b)

Figure 3.6: Numerical benchmark case i-AOMA Phase 2: the normalized KDE
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retaining bands (b) obtained at the end of the i-AOMA.
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Figure 3.7: Numerical benchmark case: convergence analysis of the relative total
sample variance for each mode.

very low in some cases but it can be also quite large, depending on the considered
DOF and the mode number.

Eventually, Figs. 3.11-3.12 illustrate the convergence of average and standard
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Figure 3.8: Numerical benchmark case: numerical values of IC obtained from all
the feasible sets of control parameters generated during i-AOMA.
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Figure 3.9: Numerical benchmark case: joint probability density functions of the
control parameters samples that have been classified as feasible from the intelligent
core of i-AOMA.

deviation for natural frequencies and damping ratios, respectively, over all the feasi-
ble samples of the control parameters. The final standard deviation values in Figs.
3.11-3.12 show that the uncertainty level about the natural frequencies due to the
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Figure 3.10: Numerical benchmark case: median mode shapes and corresponding
uncertainty level in terms of boxplot’s whiskers.

variability of the control parameters is generally lower than that observed for the
mode shapes. A significant uncertainty level is also observed for the estimation of
the modal damping ratios.

It is pointed out that the original MC simulations-based construction of the
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Figure 3.11: Numerical benchmark case: average (a) and standard deviation (b) of
natural frequencies over the feasible samples of the control parameters.
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Figure 3.12: Numerical benchmark case: average (a) and standard deviation (b) of
damping ratios over the feasible samples of the control parameters.
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SD has been applied for the sake of validation by considering all the quasi-random
samples of the control parameters (i.e., without restricting the application of the
SSI-cov algorithm to those control parameters that have been classified as feasible
from the intelligent core of the i-AOMA). So doing, practically identical results
have been obtained on average whereas narrow confidence bounds are obtained
by means of the proposed i-AOMA. This is attributable to the selection pressure
exerted by the RF algorithm, which allows reducing the uncertainties related to the
variability of the control parameters. This demonstrates that the proposed i-AOMA
methods allow for achieving more accurate results with no significant influence of
the analyst’s decisions while dramatically reducing the whole computational effort.

3.4 i-AOMA application: the Hardanger Bridge
case study in Norway

3.4.1 Long-term monitoring system description and open
database

SHM is one of the main critical aspects of bridge engineering among others, since
it aims to ensure the safety and longevity of these vital communication infrastruc-
tures. This is particularly important for less common typologies such as slender,
long-span, and relatively lightweight steel-made suspended bridges. Unlike other
more conventional bridges, which often have bulkier designs and shorter spans,
suspended bridges feature streamlined configurations with expansive lengths, often
surpassing a kilometer. These strong dissimilarities in the stiffness-to-weight ratio
pose unique challenges for dynamic monitoring, demanding specialized attention.
To begin with, even in still air and default ambient conditions, their dynamic behav-
ior is markedly different, with much lower natural frequencies. Furthermore, this
inherent slenderness introduces complexities in their behavior under varying oper-
ational and environmental conditions, including wind, traffic, and thermal loads.
Consequently, monitoring systems for these bridges must adapt to account for their
sensitivity to dynamic forces, ensuring precision in detecting potential structural
changes. Therefore, the application of ambient vibration testing by OMA and
AOMA systems is particularly challenging for these infrastructures. Many tech-
niques that can be considered a viable option for RC bridges being scarcely affected
by wind and other conditions, besides their relatively high and well-spaced natural
frequencies, could not probably withstand these increased difficulties.

The real-world compelling case study herein analyzed to test the effectiveness
of the i-AOMA method is the Hardanger Bridge [200, 201, 202, 203]. As illustrated
in Fig. 3.13, it is located in Norway, precisely in the Eidfjorden branch off of the
main Hardangerfjorden in Vestland county, about 120 km inland from the open
North Sea. This position is peculiar for its strong winds blowing from European
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Figure 3.13: The Hardanger Bridge (Norway), picture courtesy of Sami Haidar (CC
BY-NC 2.0).
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Figure 3.14: Illustration of the Hardanger Bridge and its long term monitoring
sensors layout.

windstorms. Indeed, the surrounding orographic landscape with mountains up to
1,000÷1,600 m altitude contributes to generating complex wind patterns around
the bridge, affecting the dynamic response of this very slender case study bridge.
The Hardanger Bridge represents Norway’s longest suspension bridge, spanning
1,308 meters with short spans on both sides. The road continues over the bridges
with two road tunnels crossing surrounding mountains on both sides of the bridge.
Despite the slender design of the steel box deck, the bridge was designed for carrying
two traffic lanes and a lateral cycle lane (bikeway). The girder is supported by 130
hangers with lengths ranging between 2÷128 m, connected to two main cables
hanging to two extreme 200-meter-high pylons.
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Table 3.1: Hardanger Bridge: location of the accelerometers.

Accelerometer X [m] Y [m] Z [m]
H1E/H1W 480.00 6.33/-6.64 -8.38

H2W 360.00 -6.64 -6.41
H3E/H3W 240.00 6.33/-6.64 -4.45
H4E/H4W 120.00 6.33/-6.64 -2.48
H5E/H5W -7.00 6.33/-6.64 -0.4
H6E/H6W -120.00 6.33/-6.64 -2.25
H7E/H7W -240.00 6.33/-6.64 -4.22

H8E -360.00 6.33 -6.18
H9E/H9W -480.00 6.33/-6.64 -8.15

H10E/H10W -655.00 4.50/-4.50 120.50
H11E/H11W 655.00 4.50/-4.50 120.50

Afterward its construction, thus since 2013, the bridge is equipped with a con-
tinuous long-term monitoring system depicted in Fig. 3.14. Implemented by the
Norwegian University of Science and Technology (NTNU), the SHM system is com-
posed of 20 triaxial accelerometers with a sampling rate of 200 Hz placed on the
deck and pylons, together with 9 sonic anemometers. These latter are placed 8
meters from the girder to avoid disrupting wind flow. For all sensors, the channel
orientations followed the global reference frame, with the x-axis oriented longitu-
dinally along the bridge (positive direction from Vallavik to Bu), the y-axis being
transversal to the bridge (positive towards East), and the z-axis following the pos-
itive upwards vertical direction. The accelerometer positions are detailed in Tab.
3.1. However, in September 2018, wind speed monitoring ceased at the tower tops
following the removal of one sensor from the Vallavik tower. The local geographical
context involves strong wind loads whose effects make the dynamic identification
process challenging [200, 201]. Both raw and organized long-term wind and acceler-
ation data for SHM purposes have been published in an open-access repository by
[202] which can be accessed and downloaded freely. Thanks to this openly accessi-
ble database, this case study suspension bridge has been already studied in depth
in the existing scientific literature, e.g. referring to [200, 201, 202, 203], and there-
fore it represents a very compelling experimental benchmark, both for structural
and environmental reasons. On the one hand, its fundamental vibrational modes
of main interest are all very closely-spaced and clustered at very low frequencies
(below 1 Hz). On the other hand, its specific building material, structural configu-
ration, and location make it very susceptible to environmental effects (wind speed
and pattern, specifically).

All these concomitant aspects further emphasize that this case study choice is
a very interesting stress test for the i-AOMA proposed procedure having the possi-
bility to compare the modal results with the ones already published and validated
in existing literature. Nevertheless, in order to produce results directly comparable
to [200, 201, 202, 203, 204], the following precautions have been followed for the
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Figure 3.15: Wind speed recordings of the A6 anemometer located in the midspan
for the three selected cases under investigation.

sake of consistency during the i-AOMA analyses: 1. The original data, sampled at
𝑓𝑠 = 200 Hz, have been used; 2. The acceleration data have been decimated by
a factor of 20, thus focusing only on the 0÷10 Hz range, further reduced to 5 Hz
because of Nyquist’s theorem; 3. All natural frequencies appearing higher than 5
Hz have been discarded; 4. In order to further speed up the i-AOMA algorithm
and for a more consistent stabilization diagram overview with the existing litera-
ture studies, the range of model orders 𝑛 has been limited from 20 to 200, thus not
making use of the first relation proposed in (3.1).

3.4.2 Dynamic identification under sustained wind condi-
tions

The case study represents a compelling experimental benchmark for the i-AOMA
method, both for structural and environmental reasons. It is noteworthy that most
of the literature modal results on the Hardanger Bridge [201, 205, 206, 207] are
referred to a sustained wind environmental condition, being a condition in which the
wind speed exceeds the level of 15 m/s at any of the deployed anemometers. Indeed,
referring to these sustained wind conditions is reasonable because this operational
load situation is able to adequately excite all modes of the bridge, especially the
lateral ones, thus making them much easier to identify. Therefore, in [206] the
authors explicitly explained that the measurement system was set for both periodic
and event recordings, the latter triggered when a wind speed of at least 15 m/s is
exceeded at any of the anemometers.

Consequently, to ensure fair comparability between the current i-AOMA anal-
ysis and the literature works [201, 205, 206, 207], similar wind conditions must be
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(a) (b)

Figure 3.16: Hardanger Bridge: accelerations recorded on November 12th, 2015 at
midspan accelerometer on the west side H5W (a) and singular value decomposition
of the power spectral density limited to the first ten singular values (b).

considered, with an average speed of 15 m/s. Nonetheless, in order to further inves-
tigate the main remarkable different scenarios among the well-documented effects
of wind speed on the modal parameters of this structure [201, 205, 206, 200, 202,
203, 204, 207], the following three wind conditions have been herein considered:

• case 1, an almost still air condition (very low wind speed, below 2 m/s),
referring to recordings on November 14th, 2015 (2015-11-14 at 03:52:21 local
time) characterized by a wind speed of 1.86 ± 0.38 m/s;

• case 2, a sustained wind condition representing the average typical situation
considering the recording on November 12th, 2015 (2015-11-12 at 23:54:31
local time) characterized by a wind speed of 14.02 ± 2.28 m/s;

• case 3, an extreme sustained wind storm situation (Tina storm event of Jan-
uary 2015), referring to the recording on January 10th, 2015 (2015-01-10 at
16:22:08 local time) characterized by a wind speed of 24.26 ± 4.27 m/s.

To visualize these three wind speed conditions, Fig. 3.15 reported wind speed
recordings obtained from the sonic anemometer sensor A6 located in the midspan
of the bridge.

It is worth underlining that during the extreme Tina storm event case 3, only
12 accelerometers (namely, H2W, H4E, H4W, H5E, H5W, H6E, H6W, H7E, H7W,
H8E, H10E, and H10W, with E indicating east side and W for west side) out of the
all 20 deployed sensors on the bridge were active. Therefore, to uniform the results
and make them consistent and fully comparable among the three analyzed cases,
only those 12 accelerometers for a total of 36 output channels have been considered
even in cases 1 and 2, as already depicted in Fig. 3.14.
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(a)

Figure 3.17: Hardanger Bridge: overlapped stabilization diagram at the end of
Phase 1 of the i-AOMA method.

The results demonstrated that the i-AOMA resulted in similar findings in all
three analyzed cases, therefore only the average sustained wind speed case 2 has
been hereafter reported and extensively discussed, whilst details are omitted to
conserve space for cases 1 and 3. Specifically, the case 2 acceleration data for
the 12 considered accelerometers were downloaded from the open database [202],
referring to an event of duration 31 min sampled at 200Hz under the environmental
conditions of sustained wind recorded on November 12th, 2015 at 23:54:31 with a
wind speed of 14.02 ± 2.28 m/s. The data have been decimated with a factor of
20, and following Nyquist’s theorem, the maximum observable natural frequency
reaches 5 Hz, determining a dynamic range of investigation in the 0-5 Hz frequency
interval.
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Figure 3.18: Hardanger Bridge: i-AOMA Phase 1, normalized KDE together with
the identified peaks (a) and certainly stable poles falling within the retaining bands
(b) obtained from the sets of control parameters generated for training the intelli-
gent core of i-AOMA.

It is preliminary interesting to visualize the recorded data both to become aware
of the order of magnitude involved, evidencing the presence of any measurement
error, and even to qualitatively assess the stationarity hypothesis at the basic foun-
dations of traditional OMA methods. Therefore, the three directions accelerations
recorded in the midspan accelerometer on the west side H5W have been reported
in Fig. 3.16 (a). Furthermore, the SVD of the PSD of the recorded signals for the
12 accelerometers considered have been computed delivering the graph reported in
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Figure 3.19: Hardanger Bridge: i-AOMA Phase 1, numerical values of IC obtained
from the sets of control parameters generated for training the intelligent core of
i-AOMA.

Fig. 3.16 (b). From the analysis of the latter graph, the fundamental frequency
appears very low, below 0.1 Hz, therefore the bounds of the control parameters are
roughly defined according to Eqs. (3.1)-(3.4) setting 𝑓𝑓 = 1 Hz. Nevertheless, in
order to further speed up the i-AOMA algorithm and for a more consistent stabi-
lization diagram overview with the existing literature studies, the range of model
orders 𝑛 has been limited from 20 to 200, thus not making use of the first relation
proposed in Eq. (3.1).

The i-AOMA method started with Phase 1 until a total number of feasible con-
trol parameters set equal to 𝑠 = 100 have been collected. Specifically, through the
quasi-Monte Carlo Halton sampling technique, only 3 out of the total 103 generated
samples have not been completed with the SSI-cov algorithm execution, showing
that a properly imposed tailored limitation of the model order space can actually
provide substantial improvements in the algorithm’s initial sampling exploration
phase. This case is particularly important when the fundamental frequency is con-
siderably lower than 1 Hz, because the suggested automatic range relationship in
Eq. (3.1) may provide an unrealistic excessive upper bound and thus possibly
dispersing the search for most informative control parameters sets. Anyway, the
automatic choice in Eq. (3.1) is always a viable option, but paying attention that
it may require increasing the number of arbitrary feasible simulations to collect
in order to guarantee enough exploration of the search space. The overlapped SD
obtained at the end of Phase 1 afterward the stability checks according to Eqs.
(2.111)-(2.115) has been reported in Fig. 3.17. Stable poles only have been re-
tained, and the FFT-KDE algorithm has been executed and reported in Fig. 3.18
(a) delivering an estimate of the BW equal to 0.00058 Hz by means of the ISJ
algorithm.
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Figure 3.20: Hardanger Bridge: convergence analysis of the relative total sample
variance for each mode.

(a)

Figure 3.21: Hardanger Bridge: overlapped stabilization diagram at the end of
Phase 2 of the i-AOMA method.

The statistical value of the prominence threshold for the peaks’ identification
from the normalized KDE (99th percentile in the fitted Beta distribution) is equal
to 0.2139, and 𝑏𝑤 = 1 has been determined. In total, about 29 modes have been
identified by the i-AOMAmethod within the observable dynamic frequency range of
0-5 Hz. Nevertheless, for further improving the convergence of the next Phase 2, and
even considering the modal results regarding the Hardanger Bridge observed in the
existing literature with proven physical evidence, the authors limited the retained
modes focusing only on the already consistent number of modes lying below 1 Hz,
in particular limiting the results extraction to only the first 18 i-AOMA founded
modes. Afterward, the database consisting of all the generated control parameters
and the corresponding IC values is prepared in order to train the RF algorithm.
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Figure 3.22: Hardanger Bridge: i-AOMA Phase 2, normalized KDE together with
the identified peaks (a) and certainly stable poles falling within the retaining bands
(b) obtained from the sets of control parameters generated for training the intelli-
gent core of i-AOMA.

Figs. 3.18-3.19 illustrate the main results obtained from the 𝑠 = 100 feasible sets
of control parameters generated for training the intelligent core of i-AOMA.

Subsequent to the training of the RF intelligent core, the i-AOMA Phase 2
started by generating new quasi-random samples of the control parameters gener-
ated by means of the Halton technique, and the SSI-cov algorithm is performed
only for those that are classified as feasible from the trained RF intelligent core.
The convergence criterion based on Eq. (3.13) has been fulfilled after generating
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Figure 3.23: Hardanger Bridge: i-AOMA Phase 2, numerical values of IC obtained
from the sets of control parameters generated for training the intelligent core of
i-AOMA.

961 further simulations, thus collecting a total of 800 useful results and intelligently
discarding 261 control parameters set, whereof 700 newly control parameters sets
from Phase 2 only. Therefore, the RF algorithm discarded about 27% of newly
generated simulations because they were predicted to be poorly informative. The
convergence graph which testifies the ASCBR criterion fulfilled on the mode shape
estimates of the 18 considered modes is reported in Fig. 3.20.

Stability checks according to Eqs. (2.111)-(2.115) has been performed on the
overlapped SD obtained at the end of Phase 2, as depicted in Fig. 3.21. Retaining
only fully stable poles, the results of the FFT-KDE algorithm have been reported in
Fig. 3.18 (a) evidencing a reduction of one order of magnitude of the estimate of the
BW obtained through the ISJ algorithm, i.e. becoming equal to 0.00034 Hz. The
99th percentile in the fitted Beta distribution defines the value of the prominence
threshold for the peaks’ identification from the normalized KDE, becoming now
equal to 0.2202. A factor 𝑏𝑤 = 2 has been determined in order to avoid empty
clusters of stable poles within the 18 natural frequencies of interest. The final
results regarding the stable poles’ alignments of the 18 founded modes obtained
through the i-AOMA method for wind case 2 are reported in Figs. 3.22 3.23. In
the latter graph of the ICs, it is worth noting that after the first 100 explorative
simulations of Phase 1, the IC values under the IC threshold of 0.10 have been
substantially reduced, confirming the effectiveness of the i-AOMA RF intelligent
core in discarding those control parameter sets predicted to be poorly informative.
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Figure 3.24: Hardanger Bridge: joint probability density functions of the control
parameters that have been classified as feasible from the intelligent core of i-AOMA.

Even in this case study, the joint (bidimensional) probability density functions
of the sampled control parameters set that have been classified as feasible from
the intelligent core of i-AOMA have been computed and depicted in Fig. 3.24.
Once again, the interpretation of these bidimensional density maps evidences the
need for an automatic procedure for the selection of the SSI-cov control parameters
because all of these different combinations together contributed to identifying the
same modal results of actual interest. Since the optimal tuning of a unique control
parameter always valid set is hardly achievable, an automatic exploration of differ-
ent combinations of them likewise in the i-AOMA is advisable for obtaining more
reliable physical modal results whilst attenuating the spurious solutions due to the
random nature of the dynamic excitation.
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Figure 3.25: Hardanger Bridge: i-AOMA Phase 2, simplified geometrical mode
shape visualization for modes from 1 to 9.
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Figure 3.26: Hardanger Bridge: i-AOMA Phase 2, simplified geometrical mode
shape visualization for modes from 10 to 18.

166



3.4 – i-AOMA application: the Hardanger Bridge case study in Norway

The 18 modes of the Hardanger Bridge founded for the sustained wind case 2
have been identified corresponding to natural frequencies value equal respectively
to 0.052 Hz, 0.105 Hz, 0.119 Hz, 0.143 Hz, 0.185 Hz, 0.206 Hz, 0.213 Hz, 0.278 Hz,
0.319 Hz, 0.333 Hz, 0.370 Hz, 0.400 Hz, 0.417 Hz, 0.472 Hz, 0.527 Hz, 0.547 Hz,
0.625 Hz, 0.713 Hz. The related estimates of the damping ratios are 2.10%, 0.91%,
4.50%, 2.22%, 0.72%, 1.09%, 1.41%, 1.26%, 0.61%, 0.75%, 0.64%, 0.60%, 0.39%,
0.71%, 0.59%, 0.55%, 0.38%, and 0.51%. The corresponding mode shapes are shown
in Figs. 3.25-3.26, which are depicted considering a simplified geometrical model
derived from the sensor network layout by imposing mode shapes displacements
as imposed deformation in the monitored nodes whilst interpolating the deformed
shape elsewhere. The i-AOMA delivered modal results which exhibit a very good
agreement with the literature results in terms of natural frequencies as reported
in Tab. 3.2, but apparently overestimating the damping ratios. Nevertheless, it
is worth noting that the damping ratios retrieved from [205, 201] have been com-
puted from a numerical model in still-air conditions, therefore in weakly dynamic
excitation enviroment, more consistent with wind case 1 (November 14th, 2015
at 03:52:21 local time characterized by a wind speed of 1.86 ± 0.38 m/s) rather
than current sustained wind case 2. Besides the evident damping ratios differences
on which it is normal in the literature evidencing such uncertain values [208], it
is worth noting that the most complete modal identification results through SSI
were reported in [207] providing the first 30 observed modes. Relative differences,
expressed in percentages, have been computed for both natural frequencies and
damping ratios, computed as

Δ𝑓 =
𝑓ref,𝑘 − 𝑓i-AOMA,𝑘

𝑓ref,𝑘
⋅ 100, Δ𝜉 =

𝜉ref,𝑘 − 𝜉i-AOMA,𝑘

𝜉ref,𝑘
⋅ 100, (3.16)

in which 𝑓ref,𝑘 and 𝜉ref,𝑘 are the 𝑘-th natural frequencies and damping ratios respec-
tively referred to literature references by Petersen et al. [207, 205, 201], whilst the
symbols 𝑓i-AOMA,𝑘 and 𝜉i-AOMA,𝑘 indicate respectively the 𝑘-th natural frequencies
and damping ratios retrieved from i-AOMA algorithm. With a deeper overview of
the Tab. 3.2, mode 8 indicated as cable/horizontal in [207] unfortunately didn’t
have any match in the other literature references [205, 201], and on the other hand
modes 15 and 19 were not founded by the i-AOMA method. Nonetheless, these
modes have less physical interest with respect to the first modes, which generally
mainly govern the dynamic behavior of the system under investigation. Further-
more, the lack of evidence of mode 17 in the current i-AOMA results is actually
reasonable on a physical basis, since no sensors have been considered on the pylon
on the southern Bu side because of the restriction to only 12 sensors out of 20 in
this specific analysis (for being fully consistent with wind case 3).

Furthermore, the similarity among the founded median mode shapes have been
analyzed using the cross-MAC matrix. Fig. 3.27 illustrates the MAC indicators
among the first 11 modes obtained by the i-AOMA. Generally, all the mode shapes
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Table 3.2: Hardanger Bridge: comparison between the modal results reported by
Petersen et al. [207, 205, 201] and those obtained in the present study by means of
the i-AOMA algorithm for sustained wind case 2 (November 12th, 2015 at 23:54:31
with a wind speed of 14.02 ± 2.28 m/s). Note that 𝑓 is the natural frequency,
whereas 𝜉 indicates the damping ratio.

Mode Mode Ref. [207] Ref. [205, 201] i-AOMA Relative Diff.

No Type 𝑓 [Hz] 𝜉 [%] 𝑓 [Hz] 𝜉 [%] Δ𝑓 [%] Δ𝜉 [%]

1 Horizontal 0.052 0.65 0.052 2.10 0.73 -223.08
2 Vertical 0.105 0.77 0.105 0.91 -0.35 -18.18
3 Vertical 0.119 1.77 0.119 4.50 0.40 -154.24
4 Vertical 0.142 0.65 0.143 2.22 -0.46 -241.54
5 Mixed vertical/horizontal 0.183 0.77 0.185 0.72 -1.33 6.49
6 Vertical 0.206 0.27 0.206 1.09 -0.13 -303.70
7 Mixed vertical/torsion 0.212 0.35 0.213 1.41 -0.40 -302.86
8 Cable/horizontal 0.230 - - - - -
9 Mixed vertical/torsion 0.276 0.26 0.278 1.26 -0.56 -384.62
10 Horizontal 0.318 0.63 0.319 0.61 -0.39 3.17
11 Mixed vertical/torsion 0.333 0.25 0.333 0.75 -0.15 -200.00
12 Torsion 0.374 0.41 0.370 0.64 1.15 -56.10
13 Mixed vertical/torsion 0.401 0.24 0.400 0.60 0.15 -150.00
14 Mixed horizontal/torsion 0.418 0.15 0.417 0.39 0.28 -160.00
15 Horizontal 0.464 1.56 - - - -
16 Mixed vertical/torsion 0.471 0.26 0.472 0.71 -0.14 -173.08
17 Pylon 0.516 0.16 - - - -
18 Mixed horizontal/pylon 0.529 0.22 0.527 0.59 0.47 -168.18
19 Mixed vertical/torsion 0.547 0.31 0.547 0.55 -0.07 -77.42
20 Torsion 0.560 0.65 - - - -
21 Mixed vertical/torsion 0.628 - 0.625 0.38 0.44 -
22 Mixed vertical/torsion 0.715 - 0.713 0.51 0.28 -

appear to be uncorrelated (MAC below 20%, as reported in section 2.2.3.6) or
with a weak correlation (MAC below or around 50%), except for the vertical mode
shapes 2 (0.105 Hz) and 3 (0.119 Hz) showing a MAC of 71%, or considering modes
5 (0.185 Hz) and 6 (0.206 Hz) with a MAC of 66%. These evidenced similarities
are reflected in the mode shapes illustrations of Figs. 3.25-3.26.
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Figure 3.27: Hardanger Bridge: MAC matrix of the median mode shapes finally
retrieved by i-AOMA, with a special focus on the first 11 modes.

In order to graphically visualize the uncertainty associated with the mode shape
based on the use of various control parameters sets explored in the i-AOMAmethod,
Fig. 3.28 depicts the uncertainties around the median components 𝝓𝑖 of three
mode shapes based on the boxplot’s whiskers definition. Specifically, the Fig. 3.28
illustrate separately the longitudinal (𝝓𝑖,𝑥), transversal (𝝓𝑖,𝑦), and vertical (𝝓𝑖,𝑧)
components of median modes and their respectively uncertain regions for every
monitored DOF separating between the active sensors located on the west side of
the bridge (H2W, H4W, H5W, H6W, H7W, H10W) and the active sensors placed
on the east side of the bridge (H4E, H5E, H6E, H7E, H8E, H10E), whose longi-
tudinal coordinates were reported in Tab. 3.1. It is noteworthy that these shaded
regions reflect how uncertainty due to different control parameters propagates and
sometimes it is amplified throughout the output-only identification process, despite
the final stable poles’ alignments distilled from the final overlapped SD appearing
relatively close to each other. Moreover, it has been also proven that the uncer-
tainty level is not constant. While it is very low in some cases, it results very large
in others. Indeed, the uncertainty degree depends on which DOF and mode number
is the current focus. For instance, considering that mode 1 is mainly horizontal,
the uncertainties associated with transversal components exhibited a significantly
greater region rather than vertical or longitudinal ones, similar conclusions can be
drawn from the other depicted modes’ uncertainties.
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Figure 3.28: Hardanger Bridge: i-AOMA uncertainty level in terms of boxplot’s
median components and whiskers for the horizontal mode 1 (a), for the vertical
mode 2 (b), and for the torsion mode 11 (c) of the bridge.
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Figure 3.29: Hardanger Bridge: i-AOMA average (a) and standard deviation (b)
of natural frequencies over the feasible samples of the control parameters.

The convergence of average and standard deviation for natural frequencies and
damping ratios over all the feasible samples of the control parameters are reported
in Figs. 3.29-3.30, respectively.
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Figure 3.30: Hardanger Bridge: i-AOMA average (a) and standard deviation (b)
of damping ratios over the feasible samples of the control parameters.

The entire so-far conducted discussion for sustained wind case 2 could be po-
tentially repeated for wind cases 1 and 3 since these analyses delivered similar
findings. However, all the i-AOMA cases 1 and 3 steps, details, and graphs have
been omitted to conserve space, and only the final Phase 2 modal results have been
summarized in Tab. 3.3. From this final comparison, it is worth noting that the
case most close to still air condition, i.e. weak wind case 1, was the most diffi-
cult case since fewer modes were found rather than the other cases within the first
22, following the same numbering used in Tab. 3.2. This outcome appears very
sensible from a physical standpoint. Indeed, this is probably due to the vibration
response which derives from the low dynamic excitation level associated with wind
case 1, likely able to adequately excite fewer structural modes rather than the other
considered sustained wind scenarios. Furthermore, it is worth noting that in this
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Table 3.3: Hardanger Bridge: comparison between the modal results of the i-AOMA
method for wind cases 1, 2 and 3. Note that 𝑓 is the natural frequency, whereas 𝜉
indicates the damping ratio.

Mode Mode i-AOMA wind case 1 i-AOMA wind case 2 i-AOMA wind case 3

No Type 𝑓 [Hz] 𝜉 [%] 𝑓 [Hz] 𝜉 [%] 𝑓 [Hz] 𝜉 [%]
1 Horizontal - - 0.052 2.10 0.052 3.32
2 Vertical 0.108 0.78 0.105 0.91 0.106 1.38
3 Vertical 0.125 1.31 0.119 4.50 0.112 8.21
4 Vertical 0.142 0.25 0.143 2.22 0.146 4.01
5 Mixed vertical/horizontal - - 0.185 0.72 0.184 1.00
6 Vertical 0.206 0.10 0.206 1.09 0.207 3.00
7 Mixed vertical/torsion 0.213 0.25 0.213 1.41 0.215 2.46
8 Cable/horizontal - - - - - -
9 Mixed vertical/torsion 0.276 0.14 0.278 1.26 0.279 1.97
10 Horizontal - - 0.319 0.61 0.320 0.91
11 Mixed vertical/torsion 0.334 0.15 0.333 0.75 0.338 1.39
12 Torsion - - 0.370 0.64 0.367 1.10
13 Mixed vertical/torsion 0.401 0.26 0.400 0.60 0.405 1.34
14 Torsion - - 0.417 0.39 - -
15 Horizontal - - - - - -
16 Mixed vertical/torsion 0.472 0.30 0.472 0.71 0.477 1.18
17 Pylon - - - - - -
18 Mixed horizontal/pylon - - 0.527 0.59 0.538 1.91
19 Mixed vertical/torsion 0.549 0.55 0.547 0.55 0.552 1.22
20 Torsion - - - - - -
21 Mixed vertical/torsion 0.627 0.35 0.625 0.38 - -
22 Mixed vertical/torsion 0.690 0.48 0.713 0.51 0.717 1.25

weak wind, case 1 the damping ratios seem more in agreement with the literature
numerical reference values, reminding that those latter have been retrieved from
model updating procedures of the still air bridge model. On the other hand, strong
wind case 3 is in good agreement with wind case 2 in terms of natural frequencies,
but it generally exhibits a further increase in damping ratios. These results lead
to the assumption that, for strong excitation wind conditions, the bridge tends to
activate higher damping ratios. Indeed, for wind-sensitive structures likewise long-
span suspension bridges, the preponderant part of damping ratios is mainly related
to aeroelastic effects, as reported in [209]. Indeed, it was demonstrated in [210]
that the higher values of damping ratios found by output-only OMA procedures
for Hardanger bridge during strong wind conditions such as in a storm reached peak
values around 6.77%, thus in accordance or with a slight over-estimation comparing
with the damping ratios founded in wind case 2 and 3 herein analyzed and reported
in Tab. 3.3.
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3.5 i-AOMA application: the Al-Hamra Firduos
Tower case study in Kwait

3.5.1 General description, sensor network for dynamic mon-
itoring and finite element analysis

The proposed i-AOMA is finally applied to perform the modal identification of
the Al-Hamra Firduos Tower (hereafter named Al-Hamra Tower for the sake of
compactness), which is a sculptured skyscraper located in the center of Kuwait
City, Kuwait. Started in 2005 and completed in 2011, this iconic high-rise building
is composed of about 80 floors with a total height of 412.6 m, thus resulting the
tallest building in Kuwait [211, 212, 213]. The skyscraper mainly hosts offices,
whereas the first five floors are devoted to commercial uses. This commercial area
extends beyond the planar footprint of the tower and merges with a multi-level
car park area. However, this latter portion is structurally independent from the
tower due to the presence of a decoupling expansion joint [211, 212], and thus it is
neglected in the current analysis.

From the architectural standpoint, the tower presents an approximately square
sectional plan from the top view, with a removed slice on the southern edge and with
an internal open void that creates a counter-clockwise facade twisting movement
along the full height as shown in Fig. 3.31. The south-faced wall is made of concrete
and has numerous openings with glass windows. East, west, and north-faced walls
are made of glass curtain walls. Several technical challenges were faced during
construction works, such as pumping concrete at high elevations. The concrete
grade varies from C40 (toward top levels) to C70 (at low levels) [211]. The average
inter-storey height is 4 m high, and the typical floor is entirely built with reinforced
concrete beams and slabs.

From a structural standpoint, starting from the base, the Al-Hamra Tower is
connected to the foundation level with a web-like concrete lamella structure visible
at the lobby entrance level [211, 212] in order to avoid buckling of the base columns.
A 4 m depth raft foundation is placed above 289 cast-in-situ bored piles, which have
a diameter equal to 1.2 m and extend up to 27 m inside the ground [212]. The high-
rise building internal structural system relies on core shear walls with thicknesses
varying between 1.20 m and 0.30 m along the height [212]. On the southern side of
the building, perimeter curved shear walls provide further stability to the structural
system [211]. Due to its twisting shape and thus variable floor plan shape, the center
of mass shifts for each floor diaphragm along the height [211].

The Al-Hamra Tower was equipped with a sensor network consisting of 24 bi-
axial force balance accelerometers to record its horizontal dynamic response in the
north and east directions, which are labelled as X and Y directions, respectively, as
illustrated in Fig. 3.32. Particularly, Fig. 3.32 shows that the typical instrumented
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(a) (b)

Figure 3.31: Al-Hamra Tower: general view (a) and finite element model adopted
for the modal analysis (b).
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Figure 3.32: Al-Hamra Tower: typical monitored floor of the Al-Hamra Tower (left)
and view of the biaxial accelerometers (right).

floor is monitored by means of three accelerometers placed at three extreme cor-
ners, so as to capture the torsional motion of the tower. The full-scale range of the
accelerometers is ±4 g, the dynamic range is larger than 155 dB (DC to 10 Hz), and
the sensitivity is 2.5 V/g. The sensors’ position is detailed in Tab. 3.4. It is worth
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Table 3.4: Al-Hamra Tower: location of the accelerometers.

Sensor ID X [mm] Y [mm] Z [mm] Floor number
FL76A1 15,150 1,320

344,000 76FL76A2 -700 19,935
FL76A3 15,150 34,050
FL65A1 7,955 -600

295,075 65FL65A2 -700 12,835
FL65A3 16,295 35,300
FL54A1 40,475 2,645

246,602 54FL54A2 -800 20,975
FL54A3 16,525 46,125
FL42A1 15,450 -800

194,375 42FL42A2 -900 14,235
FL42A3 20,390 35,250
FL29A1 36,018 -9,247

137,360 29FL29A2 -900 14,575
FL29A3 32,332 35,360
FL16A1 15,385 -800

80,975 16FL16A2 -900 13,865
FL16A3 29,685 35,350
FL06A1 22,235 -11,870

38,975 6FL06A2 -900 13,775
FL06A3 38,600 29,675
FLB2A1 45,100 -12,050 -4,400

B2FLB2A2 -1,200 14,200 -6,220
FLB2A3 35,285 45,480 -7,090

noting that the sensors at the B2 floor are actually located at slightly different el-
evations due to technical installation reasons [211]. However, the elevation change
within the B2 level compared to the elevation variations between the monitored
floors is negligible. All the sensors are connected to the data loggers by means of
cables. The multi-channel centralized data loggers are installed in the refuge area
located on the 54th floor. The sensors are synchronized by a GPS installed on the
top of the roof.

Modal properties of the tower have been preliminarily obtained from the high-
fidelity finite element model [211] illustrated in Fig. 3.31. Details about the finite
element model of the tower can be found in the paper by Sun et al. [211]. Numerical
results of the modal analysis for the first 15 modes are reported in Tab. 3.5. It is
evident from Tab. 3.5 that the first 15 modes mobilize almost the entire cumulative
mass participating ratio (about 90%), except for the rotational mass in X and Y
directions (about 82%). The first five modes are characterized by very close natural
frequencies and are lower than 1 Hz.
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Table 3.5: Al-Hamra Tower: numerical values of the modal properties estimated
from finite element analysis (𝑇 is the natural period; 𝑓 is the natural frequency; UX
and UY represent the participating mass ratio along X direction and Y direction,
respectively; RX, RY and RZ denote the participating rotational mass ratio along
X direction, Y direction and vertical direction, respectively; the symbol Σ stands
for cumulative sum of the participating mass ratios up to that mode number).

Mode 𝑇 [s] 𝑓 [Hz] UX [-] UY [-] RX [-] RY [-] RZ [-]
1 6.441 0.155 0.467 0.152 0.091 0.285 0.020
2 4.705 0.213 0.141 0.483 0.280 0.101 3.54E-05
3 2.761 0.362 0.009 0.004 2.00E-04 0.002 0.686
4 1.459 0.685 0.173 0.003 0.016 0.199 0.001
5 1.178 0.849 0.010 0.156 0.217 0.009 6.00E-04
6 0.938 1.066 0.001 8.00E-04 0.003 4.00E-04 0.114
7 0.692 1.446 0.062 0.003 0.002 0.097 1.00E-04
8 0.559 1.789 0.003 0.004 0.006 0.005 0.047
9 0.535 1.870 0.002 0.054 0.082 0.005 0.003
10 0.399 2.509 0.038 0.001 0.002 0.076 2.00E-04
11 0.355 2.814 2.00E-04 2.53E-05 1.00E-04 3.00E-04 0.035
12 0.33 3.026 0.001 0.036 0.067 0.003 2.95E-05
13 0.264 3.784 0.018 3.00E-04 4.00E-04 0.040 0.003
14 0.256 3.911 0.004 1.00E-04 1.00E-04 0.009 0.023
15 0.228 4.392 1.08E-05 0.028 0.055 1.61E-05 1.00E-04

Mode 𝑇 [s] 𝑓 [Hz] ΣUX [-] ΣUY [-] ΣRX [-] ΣRY [-] ΣRZ [-]
1 6.441 0.155 0.467 0.152 0.091 0.285 0.020
2 4.705 0.213 0.609 0.634 0.370 0.385 0.020
3 2.761 0.362 0.617 0.639 0.370 0.388 0.706
4 1.459 0.685 0.791 0.642 0.386 0.586 0.707
5 1.178 0.849 0.800 0.798 0.603 0.595 0.708
6 0.938 1.066 0.802 0.799 0.606 0.596 0.821
7 0.692 1.446 0.864 0.802 0.608 0.693 0.821
8 0.559 1.789 0.867 0.806 0.614 0.698 0.868
9 0.535 1.870 0.869 0.860 0.695 0.702 0.871
10 0.399 2.509 0.907 0.861 0.698 0.778 0.871
11 0.355 2.814 0.908 0.861 0.698 0.778 0.905
12 0.33 3.026 0.909 0.897 0.765 0.781 0.905
13 0.264 3.784 0.927 0.898 0.765 0.820 0.908
14 0.256 3.911 0.931 0.898 0.765 0.829 0.931
15 0.228 4.392 0.931 0.925 0.820 0.829 0.931

3.5.2 Identification under ambient vibrations
The experimental data for the present application were collected from the sensor
network on May 2, 2022. One-hour monitoring data with a sampling frequency
𝑓𝑠 = 200 Hz are analyzed. The monitored data were decimated with a factor equal
to 40 in order to investigate accurately the low frequency modes of the structure.
According to the Nyquist’s theorem, the upper bound of the observable frequency
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range is thus equal to 2.50 Hz. Fig. 3.33 illustrates the time-histories of the
recorded accelerations at three different floors and the singular value decomposition
of the power spectral density limited to the first six higher singular values. The
Welch’s method has been adopted by setting the Hann window length and the
overlap percentage equal to 500 points and 50%, respectively [214]. Furthermore,
the stationarity of the recorded dynamic responses have been verified through the
augmented Dickey-Fuller test [215, 216].
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Figure 3.33: Al-Hamra Tower: accelerations recorded on May 2, 2022 at 6th, 42th,
and 76th floor (a) and singular value decomposition of the power spectral density
limited to the first six singular values (b).

The inspection of the singular value decomposition of the power spectral density
shows that 𝑓𝑓 = 0.16 Hz. Hence, the bounds of the control parameters are roughly
defined according to Eqs. (3.1)-(3.4). The number of quasi-random samples of the
control parameters generated by means of the Halton technique for the present case
study is set to 𝑠 = 200. Specifically, 631 applications of the SSI-cov algorithm out of
831 total generated samples have not been completed because of numerical failure or
excessive elaboration time (success rate about 24%). Once the SDs corresponding
to 𝑠 = 200 successful applications of the SSI-cov algorithm have been overlapped,
stability checks have been performed according to Eqs. (2.111)-(2.115) and possibly
stable poles are then identified. The FFT-KDE algorithm has been next performed
considering these possibly stable poles. So doing, an estimate of the BW equal to
0.0002 Hz is obtained by means of the ISJ algorithm. The statistical value of the
prominence threshold for the peaks’ identification from the normalized KDE (99th
percentile in the fitted Beta distribution) is equal to 0.1585, and 𝑏𝑤 = 3 has been
calculated. Next, the database consisting of all the generated control parameters
and the corresponding IC values is prepared in order to train the RF algorithm.
Figs. 3.34-3.35 illustrate the main results obtained from the 𝑠 = 200 sets of control
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Figure 3.34: Al-Hamra Tower: normalized KDE together with the identified peaks
(a) and certainly stable poles falling within the retaining bands (b) obtained from
the sets of control parameters generated for training the intelligent core of i-AOMA.
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Figure 3.35: Al-Hamra Tower: numerical values of IC obtained from the sets of
control parameters generated for training the intelligent core of i-AOMA.

parameters generated for training the intelligent core of i-AOMA.
Afterward, new quasi-random samples of the control parameters are generated
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Figure 3.36: Al-Hamra Tower: the normalized KDE together with the identified
peaks (a) and certainly stable poles falling within the retaining bands (b) obtained
at the end of the i-AOMA.

by means of the Halton technique and the SSI-cov algorithm is performed only for
those that are classified as feasible. The convergence criterion based on Eq. (3.13)
has been fulfilled when the trained RF algorithm has enabled the application of the
SSI-cov algorithm for 500 newly samples out of 2,311 quasi-random combinations of
the control parameters. Figs. 3.36-3.38 illustrate the final results of the i-AOMA.
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Figure 3.37: Al-Hamra Tower: convergence analysis of the relative total sample
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Figure 3.38: Al-Hamra Tower: numerical values of IC obtained from all the feasible
sets of control parameters generated during i-AOMA.

It is noted in Fig. 3.36 that the ISJ algorithm now provides an estimate of
the BW equal to 0.00016 Hz whereas it results in 𝑏𝑤 = 4. Therefore, the BW has
reduced while 𝑏𝑤 increased. Once again, therefore, the selection pressure provided
by the RF algorithm has reduced the dispersion of the final certainly stable poles,
thereby lowering the uncertainty level about the modal estimates attributable to the
control parameters. Moreover, Fig. 3.38 confirms the effectiveness of the trained RF
algorithm in selecting feasible sets of control parameters for modal identification,
given the small number of events for which the IC value is lower than the threshold.

Fig. 3.39 illustrates the joint (bidimesional) probability density functions of the
control parameters that have been classified as feasible from the intelligent core
of i-AOMA. The comparison between Fig. 3.39 and Fig. 3.9 demonstrates, as
expected, that the most appropriate combinations of the control parameters of the
SSI-cov algorithm change on a case-by-case basis. This, in turn, confirms the need
for an automatic procedure for their optimal tuning.
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Figure 3.39: Al-Hamra Tower: joint probability density functions of the control
parameters that have been classified as feasible from the intelligent core of i-AOMA.

Ten modes of the tower have been identified corresponding to natural frequen-
cies value equal to 0.14 Hz, 0.17 Hz, 0.29 Hz, 0.59 Hz, 0.63 Hz, 0.79 Hz, 1.18
Hz, 1.25 Hz, 1.46 Hz, and 1.79 Hz. The related estimates of the damping ratios
are 1.08%, 0.54%, 0.66%, 0.76%, 0.58%, 0.62%, 0.82%, 1.11%, 0.75%, and 1.05%.
The corresponding mode shapes are shown in Figs. 3.40-3.49, which are depicted
considering a simplified wireframe geometrical model derived from the sensor net-
work layout. The uncertainty level of the mode shapes due to the variability of
the control parameters adopted for the SSI-cov algorithm is highlighted by means
of a boxplot-type representation. Numerical mode shapes obtained from the finite
element analysis are also shown in Figs. 3.40-3.49.
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Figure 3.40: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the first mode of the tower.
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Figure 3.41: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the second mode of the tower.
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Figure 3.42: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the third mode of the tower.
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Figure 3.43: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the fourth mode of the tower.
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Figure 3.44: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the fifth mode of the tower.
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Figure 3.45: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the sixth mode of the tower.
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Figure 3.46: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the seventh mode of the tower.
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Figure 3.47: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the eighth mode of the tower.
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Figure 3.48: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the ninth mode of the tower.
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Figure 3.49: Al-Hamra Tower: numerical mode shape (a), median experimental
mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the tenth mode of the tower.

A satisfactory matching can be observed between the estimated mode shapes
and the corresponding numerical predictions. The first eight modes are also in very
good agreement with previous experimental results reported by Sun et al. [211].
The last two modes shapes identified in the present study were never detected
before, and they are in good agreement with numerical predictions obtained from
the finite element model (modes number 9 and 10 in Tab. 3.5). Table 3.6 provides
a synthetic comparative assessment between the results reported by Sun et al. [211]
and those obtained in the present study.

Table 3.6: Al-Hamra Tower: comparison between the results reported by Sun et al.
[211] and those obtained in the present study by means of the i-AOMA algorithm
(𝑓 is the natural frequency, whereas 𝜉 indicates the damping ratio).

Mode No. Mode type Sun et al. [211] This study
𝑓 [Hz] 𝑓 [Hz] 𝜉 [%]

1 NS flexural (1) 0.14 0.14 1.08
2 EW flexural (1) 0.18 0.17 0.54
3 Torsional (1) 0.31 0.29 0.66
4 NS flexural (2) 0.61 0.59 0.76
5 EW flexural (2) 0.66 0.63 0.58
6 Torsional (2) 0.84 0.79 0.62
7 NS flexural (3) 1.24 1.18 0.82
8 EW flexural (3) 1.30 1.25 1.11
9 Torsional (3) - 1.46 0.75
10 NS flexural (4) - 1.79 1.05

Once again, it is evident from Figs. 3.40-3.49 that the uncertainty due to the
control parameter values propagates and possibly amplify through the identification
procedure, even if the final stable poles are relatively close each other. It is also
confirmed that the uncertainty level is not constant. While it is very low in some
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Figure 3.50: Al-Hamra Tower: average (a) and standard deviation (b) of natural
frequencies over the feasible samples of the control parameters.

cases, it results very large in others. The uncertainty level depends on which DOF
and mode number is considered, and, as expected, higher modes are often associated
with a higher uncertainty.
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Figure 3.51: Al-Hamra Tower: average (a) and standard deviation (b) of damping
ratios over the feasible samples of the control parameters.

Finally, the convergence of average and standard deviation for natural frequen-
cies and damping ratios over all the feasible samples of the control parameters are
reported in Figs. 3.50-3.51, respectively.

3.6 i-AOMA conclusive remarks
The present chapter mainly focused on automatic operational modal analysis (AOMA)
systems for output-only vibration analysis, especially useful for continuous struc-
tural health monitoring (SHM). Specifically, the limitations of the existing AOMA
methods have been identified, and during the current Ph.D. program, a new data-
driven and artificial-intelligent-based framework has been formulated to attempting
overcoming some of the main issues still existing in the automatic covariance-driven
stochastic state-space identification (SSI-cov). Therefore, the intelligent automatic
operational modal analysis (i-AOMA) attempted to overcome the arbitrary choice
of the SSI-cov control parameters, permitting the exploration of various sets in
reasonable ranges via a quasi-Monte Carlo sampling scheme. Moreover, the ma-
chine learning (ML) part has been effectively integrated within the proposed frame-
work to save the computational burden traditionally associated with a Monte Carlo
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scheme in order to guess the quality of the modal results associated with a spe-
cific set of SSI-cov control parameters. This permitted discarding in advance those
sets that were predicted to be poorly informative, and just earmarking computa-
tional resources on those likely informative ones. Furthermore, all the stabilization
diagrams associated with the various SSI-cov analyses are overlapped and com-
prehensively processed in one step. The nonparametric kernel density estimation
(KDE) algorithm in the automatic version based on the improved Sheather-Jones
(ISJ) algorithm and Fast Fourier Transform (FFT-KDE) has been consequently
adopted to process the overlapped stabilization diagram for distilling those most
recurrent stable poles’ alignments associated with physical modes of actual interest.
The use of KDE appeared quite attractive, especially for the lower computational
burden of the current FFT-KDE implementation rather than standard clustering
techniques nowadays adopted in the AOMA field, and even for its proven precision
in automatically locating the most recurrent stable poles’ alignments. In summary,
the proposed i-AOMA framework has been formulated to increase the actual au-
tomation level of the existing AOMA methods, requiring a minimum intervention
for the user to only setup the procedure the first time, and leveraging the AI and
ML learning process, the system is able to autonomously recursively execute anal-
ysis automatically choosing the SSI-cov control parameters afterward this initial
training phase. It is noteworthy that considering all the modal results associated
with all the conducted analysis it is possible to compute statistical indicators to
evaluate how the uncertainty on the control parameters propagates in the final
modal estimates. The effectiveness of the proposed i-AOMA approach has been
herein validated on a numerical benchmark case, and two compelling real-world
case studies, i.e. the long-span Hardanger suspension bridge in Norway, and the
Al-Hamra Firdus Tower in Kuwait City in Kwait.

The output-only dynamic identification problem has been discussed hitherto,
both referred to the traditional OMA strategies incorporated in the PyOMA soft-
ware, and to the AI-based ones with the release of the i-AOMA. The focus in the
next chapter of the present Thesis document moves toward the damage detection
field, with special emphasis on the research studies conducted during the current
Ph.D. program, also discussing other indirect non-destructive testing (NDT) meth-
ods besides the vibration-based ones, both with a certain degree of machine learning
integration.
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Chapter 4

Machine-learning-aided damage
detection strategies for civil
structures

Existing structural heritage is nowadays widely approaching the end of its nominal
life, and often the emergence of critical degradation phenomena further reduces
their safety levels and threatens their structural integrity. However, a complete
replacement with their demolition and reconstruction is often not economically
sustainable and/or a viable option. This practical consideration promoted the
adoption of continuous monitoring systems such as SHM paradigms to evaluate the
long-term degradation process and provide an uninterrupted evaluation of struc-
tural safety and performance. This aids structural prevention mindset, i.e. timely
prioritizing maintenance interventions to optimally intervene on existing structures
and infrastructures heritage in order to diffusely extend their nominal life [7]. The
term prevention means that via continuous monitoring it should be theoretically
possible to identify any damage in its initial stages, and therefore restore it with
light and economic interventions before damage becomes seriously critical or irre-
versible, thus when instead it requires significantly expensive restoration costs [15].
Intuitively, the very first imperative step to accomplish these goals is understanding
if any structural damage is emerging or not in the structure under investigation.
The term damage generally refers to any defect or imperfection that may occur in
a structure, potentially harming its functionality or performances [217]. Referring
to the combined system schematically represented in Fig. 2.1 belonging to the sys-
tem analysis field, damage can be modeled as an additional excitation resulting in
energy dissipation flow modifying the expected output response signal [217]. This
definition reveals inverse problem nature of the damage detection procedure, which
translates in identifying the changes to structural physical parameters such as ma-
terial properties that unfavorably affect the output response during operational
loading conditions.
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The present chapter is therefore dedicated to the research studies conducted
during the current Ph.D. program in the direction of damage detection strategies,
combining the potentials offered by visionary artificial intelligence and machine
learning tools with traditional existing methodologies. Specifically, the herein con-
ducted studies have examined not only OMA-related and vibration-based methods,
but also some other indirect and non-destructive testing (NDT) methodologies,
most appropriate and effective for some specific structural typologies. The next
section starts by introducing the damage detection approach, and how it configures
within the SHM paradigm, also mentioning the related maintenance philosophies
existing within our engineering sector.

4.1 Structural damage detection
Structural damage can be defined as any change occurring in material, geometric
properties, boundary conditions, mass, stiffness, energy dissipation characteristics,
etc. producing negative effects on current or future safety levels or structural perfor-
mances [7]. Different terminology is adopted according to length scale, i.e. cracks,
defects, imperfections, or failure, and it can be denoted as accumulated damage
when referring to the time scale, e.g. involving fatigue or corrosion phenomena.
In the context of the current Thesis, the damage detection (DD) procedure is the
inverse problem of identifying the modifications that are occurring in the structural
system due to degradation effects by analyzing the output response of the structure
[217]. This absolute definition of DD task is an ends-in-itself formula, unless it is
expressed in relative terms [7]. Indeed, the occurring damage can be revealed and
quantified when a comparison among two or more structural health states is per-
formed and evaluated in different moments of the operational in-service life. Two
main paradigms have been identified in the DD field. Model-based DD strategies
grounded in using various mathematical models or representations of the behavior
of the structural system under investigation. Afterward an update procedure [116],
it is possible to identify the differences in the response output or in the model’s
parameter to evidence with the residues the degradation effects occurred, viz. the
level of damage relevant to the model’s changes. To achieve more representative and
accurate modeling, this approach sometimes also requires information from mea-
suring the input acting loads [217]. On the other hand, data-driven signal-based
DD strategy inspects the output response signals accounting for e.g. structural
response vibrations, noise signals, etc. Features are therefore extracted from these
signals, attempting to establish some relationship connecting them to the possible
damaging scenario. In any case, both procedures leverage various signal processing
tools. For instance, as reported in [217], the signature analysis is based on pro-
cessing information obtained by simple features which are e.g. statistical indicators
of the monitored output response and/or physical/modal parameters. Instead,
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advanced signature procedures leverage multi-dimensional vectors or matrices of
features collectively, attempting to evidence more complex hidden patterns and re-
lationships useful for fulfilling DD tasks. The observations about signature methods
highlighted the pattern recognition nature of the DD problem [7]. Pattern recogni-
tion (PR) is a machine learning branch dealing with mathematical and statistical
concepts for automatic classification tasks and possibly considering the involved
uncertainties. For instance, in the current civil structures monitoring context, the
PR task should learn and distinguish between healthy and damaged states. ML
procedures are indeed expected to learn the hidden existing relationships or estab-
lish new ones between damage-sensitive features extracted from vibration data and
the various health states. A statistical PR framework is usually structured in the
following steps [7]: 1. Evaluation of in-service operational conditions; 2. Vibration
data acquisition, cleansing, and pre-processing; 3. Damage-sensitive feature selec-
tion and extraction; 4. Statistical PR phase with ML model training and testing.
At the early beginning of this workflow, a feasibility study is required involving all
the necessary preliminary evaluations, such as defining a proper monitoring plan,
i.e. choosing the type of sensing solution by understanding operational and/or
environmental loading conditions [95]. From an SHM perspective, besides the life-
safety concerns of the monitored structure, the social functions and the importance
aspects are also non-negligible factors to justify the economical effort of implement-
ing an integrated SHM system which must be maintained functional over the years.
Last but not least, the monitoring system can be locally optimized if delimiting it
to the most likely occurring damaged parts only. For instance, monitoring systems
can be placed in half-joint bridges focusing specifically on the most critical parts,
i.e. usually the dapped end parts of the supporting girders [218]. In the optics of
a bridge assessment management system, an SHM system can be designed to aim
toward different goals as stated in [36], one of them is the early identification of
damage for operational safety purposes. It is worth reminding that the DD task
represents the very first phase of the subsequent steps of an ideal SHM framework.
Specifically, Rytter in 1993 initially proposed five different levels for classifying the
various SHM paradigms, based on the knowledge depth of the entire damage iden-
tification process [219]. These five levels soon become the formalization of the SHM
paradigms [7, 217, 219]. As illustrated in Fig. 4.1, Level 0 is represented by the
SHM implementation with the data collection and feature extraction phases. Sub-
sequently, Level 1 is the DD problem to understand if any structural damage has
emerged and become physically identifiable or not. When any damage has emerged,
Level 2 of inspection aims to localize its position, e.g. for virtually permitting a
direct visual inspection of the damaged area. Level 3 deals with the assessment of
the type of damage that is occurring, whilst Level 4 is related to an evaluation of
the extent and size of damage, related to its severity with respect to the induced
safety level reduction. These latter three levels (Levels 2-4) are usually denoted as
the damage diagnosis phase of the monitored structure, adopting a nomenclature
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Figure 4.1: Levels of SHM paradigms based on the knowledge depth of damage
identification process, with Levels 1-5 based on Rytter (1993) [219].

borrowed from the medical field. The last Level 5 instead is mainly related to es-
timating the remaining life in operation of the structure given the current health
state, i.e. aiming to perform a prognosis evaluation of the structural system. This
last level can be associated with reliability analysis, fracture mechanics, fatigue life
estimation, and statistical analyses, because it also requires a careful prediction of
the degradation velocity over time. Considering nowadays existing built heritage,
this latter phase is mainly a prerogative of smart structures with self-diagnostic and
self-evaluating systems, even with some additional control capacities through actu-
ators [217]. Nevertheless, to this day, no market-ready solutions are commercially
available, and this is still relegated to the research field, which is actively work-
ing especially on data fusion and heterogeneous information processing leveraging
modern AI-based solutions. Next-future monitored smart structures may possibly
identify a new Level 6 of the SHM paradigms, for better distinguishing between the
traditional-knowledge-based prognosis scenarios (Level 5) and the innovative smart
structure with AI-assisted prognosis predictions. According to [220], reliable and
efficient damage prognosis in practical applications still requires extensive and mul-
tidisciplinary research efforts to mature enough the current approaches. As stated
in [7], the monitoring system may also functioning as a protective setup for the
structural systems, because it may trigger a warning alert to possibly avoid catas-
trophic and unsafe failures before they happen, e.g. with immediate traffic closure
considering a strategic bridge infrastructure. These triggers should activate when
damage sensitive features reaches some predefined threshold levels. Furthermore,
in a prevention mindfulness, these triggers give the possibility to restore the safety
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levels with appropriate and dedicated maintenance interventions before any critical
failure occur.

4.1.1 Maintenance philosophies
As illustrated in [36], an SHM system may aim toward fulfilling different goals.
Foremost, it could be able to detect the emergence of structural damage in its early
stages, thus making a prevention-based approach with light and economic mainte-
nance interventions, rather than extraordinary maintenance actions and expensive
restoration operations with severe damage conditions. In addition, an SHM system
could be useful to validate design assumptions and verify the actual structural per-
formances under operating conditions. Furthermore, when natural extreme events
occur, a still-operating SHM system may provide real-time monitoring in immedi-
ate post-disaster scenarios. OMA and SHM can be used also afterward extreme
events, such as earthquakes, to provide relatively rapid screening of the residual
health state and the integrity of the non-collapsed structures [7]. In this regards,
SHM play a crucial role in post-earthquake damage assessment with both economics
and social impacts, e.g. focusing on the reoccupation of buildings or for gather
enough reconstruction funding required in post-emergency conditions. In addition,
the near-future smart infrastructures would possibly provide reliable estimations of
their prognosis, i.e. information regarding the remaining useful in-service life and
the residual loading-carrying capacities. A deeper knowledge of the evolution of
the health state in time may foster optimal decision tools for effective maintenance,
periodical inspection, and rehabilitation planning. In addition, prospecting a dif-
fuse network of monitored smart infrastructures in the future, the SHM paradigm
may also provide a collection of massive databases of structural information for
developing novel artificial-intelligence-based research to improve data management
and infrastructural decision process, from the design specifications to management
guidelines [36].

Despite these visionary goals, nowadays, the actual limitations to a widespread
SHM installation are mainly still related to the relatively high installation and
management costs, requiring periodic maintenance to ensure the sensing system is
working for the entire service life [36]. To progressively shift toward a diffuse SHM
network system at a regional or national scale can be promoted by quantifying the
real benefits of SHM massive installation, e.g. by evaluating the earmarked capi-
tals and associated costs shifting from time-based maintenance programs toward an
SHM-related condition-based maintenance strategy. Indeed, different maintenance
philosophies have evolved over the years [7]. In origins, engineering systems were
kept in service until any failure of a critical component was reached, denoting the
so-called run-to-failure perspective. No maintenance plans were established in or-
der to guarantee the functionality of the structure, without any anticipated warning
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alert system and without spending any resources until failure was reached. How-
ever, besides the high costs suddenly required at the failure moment, this approach
is unreasonable when life-safety aspects are involved. For instance, especially in
aeronautic fields, a time-based maintenance philosophy took place. Every strategic
component is totally replaced at a predefined moment regardless of its actual con-
dition. This more proactive strategy replaces every component before any critical
degradation failure occurs due to its normal operating life. Nonetheless, it requires
higher costs and a pre-defined maintenance plan actuated during the nominal life of
the system. Since this latter maintenance philosophy ensures higher safety levels, its
integration with SHM delivered the new condition-based maintenance philosophy.
Therefore, the maintenance interventions are prioritized by periodically inspecting
through SHM the actual evolution of the health state and the degradation levels
of the structure, allowing a better relocation of the economic resources both in
time and on the territorial scale. Warning systems can be jointly implemented
to preserve life-safety conditions when serious adverse deviations toward unsafe
conditions occur.

Predicting the degradation evolution during the entire life-cycle is essential for
optimizing the rationale behind aging structures’ successful management plans.
This is especially crucial considering the limited financial resources that can be
earmarked yearly, insufficient to improve the safety levels of all structures and
infrastructures heritage simultaneously. Nevertheless, the degradation evolution
predictions for damage prognosis can not be performed deterministically, because
of the high levels of epistemic uncertainties associated with the multidisciplinary
nature of damage and degradation evolution phenomena over the entire life-cycle
assessment [220]. The reliability of a structure can be expressed according to a state
function 𝑔(𝑿), being 𝑿 = 𝑿(𝑡) a vector of multi-variate random variables involved
in the degradation evolution phenomena over time 𝑡. This state function is defined
as the limit state function when 𝑔(𝑿) = 0, because it represents the separation
frontier between a safe state (𝑔(𝑿) > 0) and an unsafe one (𝑔(𝑿) < 0). As illus-
trated in Fig. 4.2 (a), the structural reliability can be virtually observed over time
according to a performance index, e.g. defined as the expected value calculated
for 𝑔(𝑿) > 0 of the joint probability density function 𝑓𝑿[𝑥(𝑡)] associated to the
random variables 𝑿 [220]. The performance index is practically constant after the
construction era until structural damages may occur at an uncertain time instant,
setting off the degradation initiation point with the progressive deterioration of its
reliability level. If no maintenance interventions are performed over time, the relia-
bility will decrease with a degradation rate until reaching the last acceptable limit
threshold of the structural reliability, i.e. associated with the failure probability of
the limit state function. This latter point denotes the service life of the structure
𝑡life,0. However, maintenance actions can improve the structural performance, and
therefore its reliability, thus extending its service life. The quantification of the
reliability improvement depends on the type and the time instant of maintenance
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Figure 4.2: Schematic visualization of the time-dependent behavior of a perfor-
mance index (such as the reliability index) during the life-cycle of a structure,
evidencing preventive and essential maintenance interventions effects on extending
the in-service lifetime (a); illustration of the two possible updating cases for time-
dependent behavior of a performance index leveraging SHM monitoring data (b).

intervention. Two kinds of maintenance interventions can roughly be distinguished.
Preventive maintenance involves light and economic interventions, thus occurring
with early stages of structural damage evolution, i.e. prior to reaching the perfor-
mance index threshold. Conversely, essential maintenance involves urgent, heavy,
and typically expensive restoration actions because it occurs with advanced dam-
aged conditions, i.e. being in proximity to the reliability threshold value. For
instance, in the schematic representation of Fig. 4.2 (a), following a preventive
maintenance action, the performance index increased to a certain mean value due
to its uncertain nature. Therefore, starting from this new value, the degradation

197



Machine-learning-aided damage detection strategies for civil structures

rate mean law could possibly change, but it is expected that the new service life
value 𝑡life,1 is greater than the initial one without any maintenance intervention
𝑡life,0. Furthermore, conceiving to virtually reaching the threshold level at 𝑡life,1, an
essential maintenance intervention has been depicted in the graph, which extended
one more time the service life to the new value 𝑡life,2. It is noteworthy to observe
the shapes of the uncertain distributions associated with the service life predictions
𝑡life,0, 𝑡life,1, and 𝑡life,2, which are progressively more dispersed around their mean
value. This is mainly due to the obvious increasing uncertainties over time for
progressively farther future forecasts with respect to the current time of analysis.
In summary, considering the general schematization proposed in Fig. 4.2 (a), an
optimization procedure should be performed to identify the optimum types and
acting time instants minimizing the expected life-cycle total cost 𝑐𝐸𝑇, formalized
in [220] as below:

𝑐𝐸𝑇 = 𝑐𝐼𝑁𝐼 + 𝑐𝐼𝑁𝑆 + 𝑐𝑀 + 𝑐𝐹𝐴𝐼𝐿, (4.1)

in which 𝑐𝐼𝑁𝐼 is the initial design and construction cost, 𝑐𝐼𝑁𝑆 indicates the periodic
inspections cost, 𝑐𝑀 denotes the maintenance intervention cost. The expected cost
of failure, denoted as 𝑐𝐹𝐴𝐼𝐿, is defined as the product of the expected monetary loss
due to structural failure 𝑐failure and the associated probability of failure 𝑝𝐹 computed
as the cumulative density function of the joint probability density function 𝑓𝑿[𝑥(𝑡)]
when 𝑔(𝑿) < 0 [220].

So far, only the maintenance effects have been considered on the reliability
evolution over time due to degradation effects, but the presence of an SHM system
can be advantageous for various aspects. Considering the levels of SHM paradigms
of Fig. 4.1, the damage diagnosis phase should provide periodically or continuously
updated information about the health status of the monitored structure, therefore
this information should help in reducing the high levels of uncertainties associated
with the degradation rate predictions. Furthermore, identifying critical locations for
damage initiations at its early stages should permit preventive maintenance action
planning, with optimized management of the financial resources. These aspects
could potentially represent valid evaluation elements for the decision process at the
design phase, for assessing the actual benefits provided by implementing or not an
SHM system and justifying its initial high implementation costs. Focusing on Fig.
4.2 (b), after the degradation initiation point, the performance index decreasing
law is uncertain, evidenced by its gray shadowed region. Considering a periodic
monitoring SHM system, at a time instant 𝑡mon the performance index is directly
observed thanks to the collected monitoring data. Considering the blue line the
expected value of the performance index at time instant 𝑡mon, two possible cases can
be potentially observed after the monitoring session. In the worst-case scenario, the
mean observed performance value is lower than the one initially predicted with the
blue line, therefore the updated degradation law may probably deliver an estimated
service life 𝑡life,update 1 lower than 𝑡life,0. On the other hand, the mean observed
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performance index may be greater than the one initially predicted with the blue
line and, in this second case, the updated degradation law may probably deliver
an estimated service life 𝑡life,update 2 greater than 𝑡life,0. In any case, it is worth
noting that the shape of the distributions associated with the service life instants
𝑡life,update 1 and 𝑡life,update 2 are basically sharper than the one associated to 𝑡life,0,
because they are conditioned on the new observed information at 𝑡mon delineating
a new and less uncertain situation at an intermediate time period. Instead, the
information used for computing the blue line was referred to as the initial zero time
instant in this case. This clarifies why the monitoring-based maintenance programs
are denoted as condition-based maintenance strategies, in contrast with the obsolete
run-to-failure time-based maintenance approach (the one used for the blue line).
Therefore, the expected life-cycle total cost in Eq. (4.1) can be accordingly modified
considering the presence of an SHM system [220]:

𝑐′𝐸𝑇 = 𝑐′𝐼𝑁𝐼 + 𝑐′𝐼𝑁𝑆 + 𝑐′𝑀 + 𝑐′𝐹𝐴𝐼𝐿 + 𝑐𝑀𝑂𝑁. (4.2)

The new term 𝑐𝑀𝑂𝑁 stands for the monitoring costs, whilst the other terms re-
main the same of Eq. (4.1), but they assume different values than before, thus
indicated with the apostrophe superscript. As already mentioned, these aspects
could potentially represent valid elements for assessing the real benefits of imple-
menting or not an SHM system on a specific structure. From a simple economic
consideration, for justifying the SHM initial high implementation costs, it should
be demonstrated that the SHM benefits computed as 𝐵SHM = 𝑐𝐸𝑇 − 𝑐′𝐸𝑇 is a posi-
tive quantity [220]. These aspects should aid in evidencing the economic feasibility
of asset management strategies at regional or national scale, providing tangible
evaluations for justifying high capital investments for progressively transitioning
from a time-based maintenance approach toward a condition-based maintenance
strategy, with a damage-tolerance design concept [217]. Indeed, despite the eco-
nomical aspects, the nowadays modern technologies adopted for the SHM systems
may provide overwhelming advantages to the condition-based maintenance method.
For instance, today’s continuous and almost real-time health monitoring may sup-
port asset management board in the decision-making process with always new and
updated information. The quality of this information will improve in the next
years thanks to the current research activities for collecting and inspecting hetero-
geneous data, and creating integrated and more sophisticated monitoring systems
with data science and AI-assisted tools. This may virtually reduce the uncertain-
ties associated with the structural performance evaluations and damage prognosis
predictions, with a virtual elimination of over-maintenance useless interventions, or
lack of structural maintenance when urgently required [36].
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4.1.2 Nondestructive Testing and Evaluation, SHM, and
OMA for damage detection

As illustrated in Fig. 4.1, SHM paradigms’ deeper levels are progressively oriented
toward a full understanding of the structural damage from its identification, moving
through its diagnosis, and potentially delivering some prognosis information [219].
To pursue this aim, a structure is observed over time by monitoring certain phys-
ical quantities of interest, in order to periodically extract and statistically analyze
damage-sensitive features, and perform effective damage detection policies, e.g. for
timely acting repairing interventions for preserving structural integrity [7]. The
long-term SHM indicates an automatic continuous or periodic monitoring of the
structural performance during its entire operating lifetime, similar to the AOMA
context, but mainly focusing on the damage accumulation perspective rather than
the solely dynamic identification task.

Damage detection and SHM are often confused and misunderstood as synonyms
in engineering scenarios, despite DD involves many specialist areas, and one of them
is the SHM itself [217]. Several other disciplines strongly related to the SHM field
can be mentioned. For instance, condition monitoring (CM) is the name assumed
by the SHM strategies in the mechanical field, i.e. when rotating machinery is
involved [7, 217]. In the CM, since the monitored structures are at the laboratory
scale, DD is an approximately well-established topic, in which also the influence
of environmental conditions on measured data has been well investigated. There-
fore, CM procedures posed the basis for many worldwide standards of monitoring
of rotating machines [217]. Statistical process control (SPC) is another discipline
mainly derived from the industry field [7, 217]. The main goals are not only de-
tecting the emergence of any structural damage, but also processing its diagnostic,
recognizing how the structural performance process variations are within normal
conditions over time or when reaches some warning upper or lower control limits.
Direct testing (DT) approach is another discipline useful for DD tasks. It involves
the study of mechanical properties of in-situ structural materials by extracting
specimens that are subsequently analyzed in the laboratory via destructive tests.
The characteristic cylindrical compression strength of concrete specimens or tensile
strength tests for steel reinforced bars are examples of direct tests for RC existing
structures. Furthermore, specific laboratory tests can be also performed to charac-
terize the aging conditions, e.g. the carbonation tests for concrete specimens with
a phenolphthalein-based solution. Despite the higher quality of retrieved informa-
tion useful for DD purposes, the high costs in terms of both monetary and spent
time often limit a widespread direct testing campaign. Moreover, their local and
punctual nature limits the mechanical or aging results to a quite restricted area sur-
rounding the specimen extraction locations, rarely directly expandable to the entire
structural system. Therefore, another key specialist field involved in DD and often
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preferred or used in conjunction with some direct tests is related to nondestruc-
tive evaluation (NDE), also denoted as nondestructive testing (NDT). NDT/NDE
indirect techniques have been successfully included in cost-effective diagnosis and
maintenance plans to reduce existing structures surveying costs. Likewise, for all
the indirect testing methods, their main shortcoming is the need for an accurate
calibration to rely on their outcomes entirely. Therefore, the indirect approaches
are not a substitute for the direct ones. Still, they support direct investigations,
mainly when these latter are limited in number due to budget restrictions [59].
Not all the NDT techniques are only limited to single point measurements [217],
but some of them may allow for scanning large areas of the structure, virtually
giving a global evaluation of the mechanical properties. For instance, vibration-
based OMA techniques are comprised within the NDT methods. Vibration-based
NDE and SHM evaluate incipient damage at the macro or global scale of the struc-
ture, differentiating its scope from e.g. the fracture mechanics which relates to the
micro-scale on the contrary. Continuous SHM is often carried out online during the
operational life, delivering a global overview of the structural system, whereas NDT
is often carried out offline, and based on the specific technique can be both a local
or global method. As suggested in [217], global SHM can be useful to understand
the presence and a rough location of an emerging structural damage, and thereafter
NDT can be efficiently adopted to better characterize the precise location and its
severity without requiring disassembly or sacrificing some parts of the structural
system as a direct testing approach would require. Another difference between SHM
and NDT can be found in the hardware architectures [217]. Indeed, SHM sensors
and actuators can be directly integrated into the design before the construction
of new buildings and infrastructures, thus providing an embedded electronic sys-
tem e.g. with power supply already connected to the external power grid lines.
Conversely, NDT usually adopts an external sensing system independent from the
specific structure under investigation.

As affirmed by [7], some fundamental axioms should be reminded when dealing
with SHM for DD strategies. Foremost, structural materials are not perfect and
have intrinsic flaws that can trigger the beginning of damage at that point, e.g. due
to stress concentration phenomena or crack coalescence. DD should be expressed al-
ways in relative terms, e.g. establishing a comparison between various health states
of the system in different moments of the in-service life. DD can be performed by
choosing appropriate damage-sensitive features, which can be extracted using a
proper sensing system. An optimized SHM system plan should be designed and
tailored for the specific damage length and time scale. However, sensors themselves
hardly ever directly measure the defects, but the discriminating capabilities of the
chosen damage-sensitive features also depend on the algorithm’s sensitivity or noise
rejection capabilities. Anyway, generally speaking, the presence of any damage and
its localization can be usually performed in a successful way. However, a full under-
standing of the damage type and its severity may require much deeper insights, thus
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requiring special expeditions with direct visual inspections or proper NDT/direct
testing campaigns. Indeed, a typical problem for acquiring specific SHM data from
a damaged structure is the limited accessibility of its damaged components during
operation [217], e.g. directly inspecting the status of bearing systems in a bridge
when missing a proper accessible way. To overcome this issue, the understand-
ing the damaged structure’s behavior require detailed multiscale and multi-physics
modeling and simulation strategies. Nevertheless, damage growth phenomena may
involve nonlinear effects, which in turn increase the complexity of the physical prob-
lem. SHM for DD can be executed with a physics-informed model-based approach
or a data-driven-based method. The foremost mainly regards the finite element
model-updating procedure [116]. However, a critical aspect is the necessity of re-
liable information to establish the best initial conditions of the model update step
which governs the entire exploration and the effectiveness of the optimization pro-
cedure. A misconception regarding the second data-driven method is the absence
of any model, when in reality a sort of statistical model is always established for
damage diagnosis purposes [7, 221]. It is noteworthy to underline that the main
advantage of vibration-based SHM for DD is its global evaluation nature which
monitors the whole structure without requiring placing accelerometer sensors im-
mediately close to the actually damaged area. However, the main disadvantage of
this approach is the structural vibration wavelength and amplitude are close to the
background noise level, determining its relatively low sensitivity to detecting small
damages, especially for lower vibration modes [217].

Besides the vibration-based approaches, in the field of NDT, acoustic emission
(AE) represents a well-established technique used for damage detection, especially
for concrete structures among others. Introduced in the early 1990s, it is based on
ultrasonic elastic wave propagation with wavelength in the order of kHz or MHz
[222]. For instance, in RC structures, it can be used with two antennas, one emitter,
and one receiver to characterize the presence of cracks that modify the ultrasonic
wave flows in the material. However, AE can be adopted as indirect and passive
monitoring methods for structures that emit ultrasonic elastic waves during cracks
and micro-cracks formation [223]. During the current Ph.D. program, some starting
applications have been investigated using a publicly available dataset collected by
a pencil lead break (PLB) test on the external faces of a monitored concrete bulk
element. The PLB, also known as the Hsu-Nielsen source, is an artificial method of
generating AE signals in a concrete mean knowing the position of the source of AE
damage, i.e. the pencil lead breaking point. In this latter research work conducted
during the current Ph.D. program, AE passive monitoring has been studied with
an interesting application of the DL model for sound event detection (SED) prob-
lems. Indeed, AE signals have been interpreted similarly to acoustic audio data in
clangorous environments with multiple but recognizable sound sources. Temporal-
sequence-based DL models for SED tasks are demanded to recognize and classify
different sounds from the audio data recording, defining the source that produced
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that sound and in which time instants occur. This latter research work has not
been reported in this Thesis document, but for further information, the interested
reader can refer to [224].

Another NDT technique investigated during the current Ph.D program besides
the vibration-based methods is the ground-penetrating radar (GPR) for tunnel
linings’ flaws detection. GPR is a geophysical technique [225] that involves trans-
mitting high-frequency electromagnetic wave impulses inside the material under
study using an antenna with a frequency of 10 to 2600 MHz. The dielectric char-
acteristics of the material influence the propagation of such an impulse. A receiver
antenna collects the reflected signals to inspect the material in-depth [225]. The
GPR provides, therefore, an image as output, evidencing the presence of anomalies,
defects, fractures, etc., overcoming the drawbacks of a direct visual inspection. A
GPR inspection output is an image that presents the progressive longitudinal dis-
tance from the beginning of the tunnel. Three profiles are usually inspected with
two-lane roads to characterize the single tunnel better. In contrast, five profiles are
generally examined for three-lane roads. As shown, notwithstanding two different
GPR testing profile configurations, in both cases, the attention is mainly focused
on the critical segment of the top crown area, which comprises the two lateral
haunches (shoulder joints). This area represents the most dangerous zone for road
drivers if some concrete chunks from the primary concrete layer detachments fall
on the road.

The rest of the current chapter is organized as follows. Section 4.2 is dedicated
to the research studies conducted in the current Ph.D. program integrating deep
learning strategies with GPR monitoring of tunnel linings for automatically detect-
ing lining flaws [59, 226]. Section 4.3 is instead dedicated to the vibration-based
methods for the DD task with an AI-based application using the subspace-based
damage indicators, i.e. damage-sensitive features extracted from subspaces formu-
lated by the SSI algorithms during the formalization of the Hankel matrices.

4.2 Tunnel linings damage detection with ground
penetrating radar

Tunnels are essential underground or underwater infrastructure for setting up new
communication routes and overcoming significant orographic obstacles and/or geo-
morphological constraints [227]. Focusing on underground tunnels, the lining part
represents the perimetral structural supporting elements that stabilize the excava-
tion hole and the surrounding ground. Linings can be continuous elements when
crossing unstable ground formations, whereas they can also be constituted of lim-
ited supports in stable rock conditions. Generally made of RC, linings are often
equipped with bolts and anchors for surrounding ground stabilization purposes, be-
sides grouting concrete injections. Linings constitute primary structural supports
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for tunnels, aiming to stabilize the opening in the ground excavation, denoted
as permanent support when they are demanded to carry long-term linings design
loads, or temporary support when installed only for short periods of time [228, 227].
Furthermore, linings can be composed of different layers. The design of permanent
linings needs to fulfill the main structural requirements given by ground loading
conditions and underground water flow control, e.g. for waterproofing layers [227].
Moreover, linings should meet operational requirements such as durability, function-
ality, and appearance, such as deformation control, cracking opening limitations,
surface textures, etc. Moreover, it is worth reminding that lining design is not only
a structural problem, but it is mainly a geotechnical and structure-ground interac-
tion four-dimensional problem. Indeed, both transverse and longitudinal arching
systems concur to define the tunnel’s stability, considering both time-dependent
effects and even the uncertain nature of acting loads, completely governed by the
surrounding ground [227]. Different technologies are available nowadays for tun-
nel lining construction. Sprayed concrete (shotcrete) is conveyed to the ground
surface via nozzles with high pressure, which immediately ensures also its com-
paction. The double shell of sprayed concrete with a two-pass lining method is
generally used for building permanent linings in a wide range of ground or profile
conditions, i.e. forming a first sacrificial layer followed by the actual permanent
secondary lining layer. Another technology used for linings is combining steel ribs
around the circumference of the excavated tunnel placed at a certain interval with
e.g. sprayed concrete. The gap between steel ribs should be suitably wedged to
prevent excessive deformation, e.g. with steel bar meshes. Segmental linings use a
number of prefabricated interlocking structural blocks for creating the continuous
lining surface, which can be connected with dowels or bolts, or without a physical
connection. Segmental linings are typically used in soft ground conditions, and
can constitute both permanent or temporary linings. This is the typical solution
used when tunnel boring machines (TBM) are used for excavating and immediately
erecting the tunnel. Prefabricated blocks can be made up of unreinforced concrete,
steel or fiber RC, steel, or even spheroidal graphite cast iron. Another alterna-
tive technology for lining erection is the traditional cast in situ method, typically
used in self-supporting rock conditions, or used as a secondary lining layer when a
temporary lining is stabilizing the excavated tunnel.

A complete risk analysis of road tunnels involves several parameters and careful
evaluations. At least the following aspects should be considered: traffic conditions,
management procedures, surroundings, structural plant equipment, and the struc-
tural elements. The nowadays diagnosis paradigm for the health assessment of road
tunnels requires an initial knowledge phase based on original drawings and docu-
mentation. This foremost step characterizes the declared project requirements, the
initial structural testing reports, and the material. This information is usually com-
bined with the results of periodical visual inspections to know the actual as-built
state. Periodic direct testing of specimens (e.g. concrete core drilling) is a reliable
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Figure 4.3: Illustration of the typically surveyed GPR tunnel lining profiles for
different tunnel’s widths (different number of road lanes).

solution to directly assess the quality, mechanical properties, and temporal changes
of the in-situ constitutive structural materials. However, these tests provide punc-
tual, albeit detailed, information, which does not always reflect the actual state of
the entire structure [229]. Moreover, the overall involved direct testing procedures
are often lengthy and costly. Therefore, to increase the productivity and quickness
of periodical inspections, NDE/NDT have become more prominent, reliable, and
adopted methods. Focusing on SHM for road tunnels structures [230], some of the
most adopted NDT techniques are e.g. rebound hammer testing, rebar scanning
with pachometer device, ultrasonic pulse testing, AE passive monitoring for micro-
cracks detection, concrete resistivity, thermal imaging thermography with infrared
cameras, laser scanner and lidar devices to monitoring tunnel linings deformations.
During the current Ph.D. program, research on DD for tunnel linings predomi-
nantly focused on indirect testing with ground penetrating radar (GPR) devices
for concrete linings flaws detection and annotation [231], even if, in the literature,
GPR was often adopted in the past to reveal tunnel lining concrete layer thickness
only. The contents herein reported in the current section are taken from [59, 226],
and the interested reader can refer to them for further deeper insights.

Similarly to other geophysical methods, the GPR device probes the tunnel lin-
ings by propagating high-frequency electromagnetic wave impulses (10-2600 MHz)
and analyzing the reflected signals. The impulses’ penetration level or reflection
rate depends on the dielectric features of the inspected material and the possible
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presence of certain agents (e.g. water, reinforcement bars, the interface between
concrete linings and surrounding ground, linings defects). The architecture of a
GPR system is composed of emitting and receiver units, a single or dual frequency
antenna, display, control, and storage unit. The GPR provides images as output
named profiles, where the abscissa represents the progressive distance from the
beginning of the probing (i.e. progressive kilometer, pk, from the beginning of
the tunnel), whereas the ordinate axis represents the GPR examined lining depth.
Three profiles are usually inspected with two-lane roads to characterize the single
tunnel better. In contrast, five profiles are generally examined for three-lane roads,
as illustrated in Fig. 4.3. As depicted in Fig. 4.4, in a traditional GPR indirect
testing pipeline, specialist staff decodes linings defects from the surveyed profiles
with a manual, lengthy and costly post-processing phase [232]. To improve the
efficiency, reliability, and productivity of the traditional GPR monitoring process,
AI and DL offer innovative tools to accomplish the above-mentioned task by lever-
aging computer vision and image processing-based methods. Therefore, a novel
hierarchical multi-level road tunnel linings defects classification scheme has been
herein proposed. This scheme formalization was effective for implementing a DL-
based automatic flaws classification task, improving the efficiency, reliability, and
productivity of the traditional GPR monitoring process, besides overcoming the ac-
tual existing limitations of the traditional manual GPR profiles interpretation. The
dataset herein adopted is based on a series of NDT campaigns conducted on several
tunnel linings with the GPR device, as illustrated in Fig. 4.5. The data have been
collected on tunnels spread throughout Italy, whose construction era is between the
1960s and 1980s. To provide a proper dataset to feed a subsequent DL classifier,
some basic data preparations were needed after collecting GPR profiles. Firstly,
every long output image generated by the GPR testing was interpreted by special-
ist staff to decode linings defects as the current traditional GPR post-processing
workflow [232]. The long images were subsequently cropped with constant pixels
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Figure 4.5: Data collection, preliminary preparations and the final obtained dataset
with and without Fourier pre-processing.

step along the abscissa, which represents the progressive distance from the begin-
ning to the end of the tunnel lining profile. This constant pixels step was calibrated
in order to provide that each image sample width generally corresponds to about
five meters on the real scale length of the tunnel progressive distance. However, in
order to avoid some defects that were only placed across the cropping line and con-
sequently end up on different images, the cropping line was occasionally manually
adjusted. This latter operation was done on occasion with the minimum invasive
intervention, providing a new defect-centered sample image, acting as a sort of lo-
cal data augmentation. Nevertheless, all the sample images will be subjected to
a resizing operation to homogeneously feed the DL models always with the same
resolution images. In this way, a total number of 8728 GPR sample images were
obtained for the subsequent innovative AI-based paradigm based on DL tunnel
lining defects hierarchical classifiers. To develop this automatic DL-based classifi-
cation, a hierarchical classification tree has been defined as represented in Fig. 4.6.
It is based on a classification pattern in which a single defect may be classified,
adopting a binary approach at each node of the hierarchical graph. This method
resembles the human expert’s mental process while recognizing and classifying each
defect in the GPR profile. In total, 14 classes have been considered, denoted as 𝐶𝑖
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with 𝑖 = 1,2, ...,14, spread over 6 main levels: Level 1 (C1, C2 folders), Level 2a
(C3, C4 folders), Level 2b (C5, C6 folders), Level 3 (C7, C8 folders), Level 4 (C9,
C10 folders), Level 5 (C11, C12 folders), and Level 6 (C13, C14 folders). Level
1 is devoted to locating the completely healthy samples (C1) from the ones with
generic flaws (C2). Level 2a deals with healthy samples (C3) to potentially locate
the ones with the presence of reinforcement bars (C4), characterized by distinctive
narrow hyperbolas patterns. Level 2b, performs an initial defects classification by
a generic warning mix (C5) which may not easily be categorized from other more
specific flaws (C6). The class C6 is further analyzed to locate cracks (C7) in level 3
from other flaws (C8). This latter is further investigated in level 4, to characterize
the anomalies in the concrete linings (C9) from the voids defects (C10). In level 5,
a more detailed classification provides the image categorization with simple voids
(C11) from the others (C12). Finally, this latter class is further analyzed in level 6
to categorize the excavation problems (C13) and the concrete-rock detachments is-
sues (C14). Therefore, seven DL classification models have been trained and tested
to accomplish the GPR tunnel defects classification tasks for SHM purposes.

Furthermore, as illustrated in Fig. 4.5, for the sake of completeness, in an
attempt to improve the current basic technique, a preprocessing phase has been
performed, adopting the bi-dimensional Fourier transform to the GPR sample im-
ages. The generality of the Fourier analysis provides the ability to analyze and
decompose also higher dimensional signals. Any digital image can be interpreted
as a discrete ordered spatial bi-dimensional distribution of tensors of pixels [233].
Considering a digital image in the spatial domain 𝐴 of size 𝑛×𝑚 with components
𝑎𝑟𝑠, with 0 ≤ 𝑟 ≤ 𝑛 − 1, 0 ≤ 𝑠 ≤ 𝑚− 1, the bi-dimensional discrete Fourier trans-
form (2D-DFT) is a matrix 𝐹 in the Fourier domain of size 𝑛×𝑚 with components
[234]:

𝑓(𝑘, 𝑙) =
𝑛−1
∑
𝑟=0

𝑚−1
∑
𝑠=0

𝑎(𝑟, 𝑠)𝑒−2𝜋𝑖(𝑘𝑟
𝑚 + 𝑙𝑠

𝑛 ) (4.3)

where: 0 ≤ 𝑘 ≤ 𝑛 − 1, 0 ≤ 𝑙 ≤ 𝑚 − 1. Consequently, the 2D-DFT provides a
new representation of the digital image as a double sum of the products of the
input spatial image and the sinusoidal basis waveform. The average brightness
of the input image is summarized by the DC component 𝑓(0,0) in the Fourier
domain [235]. On the other hand, the last realization 𝑓(𝑛 − 1,𝑚− 1) corresponds
to the highest retrievable frequency component according to the Nyquist-Shannon
theorem [235]. The inverse mapping is carried out through the bi-dimensional
discrete Fourier transform (2D-IDFT):

𝑎(𝑟, 𝑠) = 1
𝑛 ⋅ 𝑚

𝑛−1
∑
𝑘=0

𝑚−1
∑
𝑙=0

𝑓(𝑘, 𝑙)𝑒2𝜋𝑖(𝑘𝑟
𝑚 + 𝑙𝑠

𝑛 ) (4.4)

The outcomes of digital image Fourier analysis are assembled into a complex matrix,
whose components are usually expressed in terms of phase (𝜙𝑘,𝑙) and modulus
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Figure 4.6: Hierarchical framework for the multi-level tunnel defects GPR profiles
classification.

magnitude (𝑀𝑘,𝑙). Since, this latter assumes extremely dispersed values of several
orders of magnitude, the following logarithmic manipulation is employed:

𝑓(𝑘, 𝑙) = 𝑐 ⋅ log(1 + ∣𝑀𝑘,𝑙∣) (4.5)

in which
𝑀𝑘,𝑙 = √ℜ(𝑓(𝑘, 𝑙))2 + ℑ(𝑓(𝑘, 𝑙))2 (4.6)

The factor 𝑐 of equation (4.5) is a scale parameter, set the to unity in the present
study. Since in many practical applications, the phase 𝜙𝑘,𝑙 is apparently useless,
only the information contained in the magnitude is often retained. However, to
guarantee a successful inverse 2D-IDFT mapping, this information is mandatory
to avoid a corrupted image [235]. Computing the 2D-DFT as a series of 2 ⋅ 𝑛 one-
dimensional DFTs considerably helped to save computational effort leading to an
overall complexity of 𝑂(𝑁2) [235], being 𝑁 the number of operations to compute
computational complexity. To further improve the convergence speed of discrete bi-
dimensional signals Fourier analyses, the efficient fast Fourier transform (2D-FFT)
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algorithm drastically reduces the computational complexity to 𝑂(𝑁 ⋅log2(𝑁)) [235].
The DL models denoted as CNN are essentially based on convolution, correla-

tion, and in general filtering operations. A thorough understating of these opera-
tions within Fourier analysis of digital images revealed the possible advantages of
adopting the bi-dimensional Fourier pre-processing technique. The convolution the-
orem states that convolving two functions ℎ(𝑡) ∗ 𝑥(𝑡) in the input (time or spatial)
domain, this becomes a simple product in the Fourier domain:

ℎ(𝑡) ∗ 𝑥(𝑡) = ∫
+∞

−∞
𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 ⇔ 𝐻(𝜔)𝑋(𝜔) (4.7)

Since the correlation operation is closely related to the convolutional one, a corre-
lation theorem holds:

∫
+∞

−∞
𝑥(𝜏)ℎ(𝑡 + 𝜏)𝑑𝜏 ⇔ 𝐻(𝜔)𝑋∗(𝜔) (4.8)

being 𝑋∗ the transform complex conjugate of 𝑥(𝑡). The convolution operation is
employed for image filtering [235], e.g. to detect edges, smoothing operations, etc.
Digital filter kernel transfer function ℎ(𝑟, 𝑠) correlates with the image 𝑎(𝑟, 𝑠) on a
certain receptive field:

𝑔(𝑟, 𝑠) = ℎ(𝑟, 𝑠) ∗ 𝑎(𝑟, 𝑠) (4.9)
For the duality property, the convolution operation is substantially a correlation in
which the filter mask is rotated with a straight angle, i.e. using a flipped kernel
ℎ(−𝑟,−𝑠). Fundamentally, since the CNNs make extensive use of the discrete con-
volution operations during the initial feature extraction part, the prior adoption
of the bi-dimensional Fourier analysis as an image pre-processing technique may
provide a more efficient convolution operation. As a matter of fact, the Fourier do-
main mapping delivers a synthesized and more compact version of the information
contained in the original image, as illustrated in Fig. 4.7. On the contrary, a pos-
sible drawback may virtually be excessive information compression, which delivers
overly similar images, thus threatening the global accuracy of a data-driven classi-
fier. Moreover, since the Fourier domain enhances the components with the higher
frequency content, the Fourier pre-processing method permits actually removing
the periodic and non-periodic noise or disturbance patterns in the GPR profiles,
which are inherent in the heterogeneous reflectivity properties of the inspected ma-
terial mean with GPR tool.

Therefore, the hierarchical multi-level tunnel lining flaws automatic classifi-
cation have been trained adopting four DL models, as depicted in Fig. 4.8 for
the sake of a more complete classification performance evaluation and a mutual
validation purpose of the generalization capabilities. Another main goal of this
investigation was to compare the effects on the classification performances of the
four DL analyzed models with and without a prior pre-processing phase of the
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Figure 4.7: Resulting magnitude pre-processed images with bi-dimensional Fourier
transform of two samples belonging to class C4 (reinforcement bars) and C13 (ex-
cavation) respectively.

GPR image dataset through the bi-dimensional Fourier transform. Two state-of-
art convolutional architectures have been compared, i.e. ResNet-50 model [236] and
the EfficientNet-B0 model [237]. On the other hand, two state-of-art transformer
models in the version suited for working with image data, i.e. Vision Transformer
(ViT) [238] and Compact Convolutional Transformer (CCT) [239] have been herein
adopted. The chosen hyperparameters reported in Fig. 4.8 for every analyzed DL
model have been obtained by a trial-and-error approach to achieving the best pos-
sible results [59, 226]. A brief description of the four DL adopted models is detailed
below.

The ResNet-50 architecture was developed in 2015 by He et al. [236] and it is
pre-trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
dataset. The main feature of the ResNet model is the presence of skip or residual
connections, see Chapter 1 section 1.2.2. ResNet-50 is composed of 50 layers (only
counting the convolutional layers and the fully connected layers). It comprises a
stack of residual units, each composed of two convolutional layers, without pooling
layers, batch normalization, and rectified linear unit (ReLU) activation function,
using 3x3 kernels with stride 1. Input images are 224x224x3 tensors, considering
the common RGB for coloured image codification. The initial pre-trained ResNet-
50 was able to classify images into 1000 different object categories, but the final
fully connected layer has been modified to accomplish the binary classification
tasks for each hierarchical level presented in Fig. 4.6. Since every level of the
hierarchical classification tree presents an unbalanced number of images, to train a
good classification model, the class forced a balanced approach with the minimum
number of samples.

Firstly presented in 2019 [237], EfficientNet model effectively incorporated mul-
tiple techniques and previous existing strategies in an innovative way. A still ongo-
ing widespread methodology to achieve the best accuracy results and contain the
required computational effort in CNN is the depth network scaling, i.e. varying
the number of layers. Depth network scaling means varying the number of layers.
For instance, the ResNet-152 base model was initially developed with 152 layers,
and then it was scaled to other variants such as ResNet-50, using 50 layers only.
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Figure 4.8: Illustrative representation of the neural models with hyperparameters
herein adopted.

Moreover, scaling up CNN models means enlarging the receptive field of convo-
lutional layers. Alternative possible scaling approaches that aim to capture more
fine-grained features are width scaling, i.e. varying the number of channels, espe-
cially for smaller models, or even scaling the input image resolution. In [237], it was
noticed that the different scaling dimensions are not completely independent, and
the best models were obtained by a compound scaling method, i.e. uniformly scaling
and balancing simultaneously both depth, width, and image resolution according to
constant scaling factors. Herein adopted EfficientNet-B0 relies on 7 building blocks
which employs the inverted residual blocks of mobile inverted bottleneck convolu-
tional building blocks (MobileNetV2) [237], resulting in a less connected network
than ResNet models. Indeed, the residual shortcuts connect only those layers in
which the number of inputs and outputs are the same.
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Neural transformers in 2017 echoed as a revolution in DL, with their first appli-
cations to Natural Language Processing (NLP) tasks [91]. This DL architecture was
born to overcome the problematic of dealing with long data sequences with DL. Its
main peculiarity is the total confidence into the self-attention mechanism, which
provides the network with short and even very long-range relationships among
every element with the others composing the data sequence. With this hidden
information, the network can extract deep knowledge from data and produce no-
ticeably promising results for machine learning tasks, e.g. classification problems.
Moreover, due to their nature, every block of the transformer may be parallelized
to improve computational efficiency. However, since these models are remarkably
computational demanding due to the massive number of learnable parameters, it is
not easy to train a transformer from scratch without possessing a considerably ex-
tended dataset and allocating computational resources for days or, more probably,
for weeks. For this reason, transfer learning approaches have proved to be the most
promising way to exploit them effectively. Recently, impactful and fruitful stud-
ies have been conducted, such as, e.g., the introduction of Bidirectional Encoder
Representations from Transformers (BERT) model which exploits only the encoder
part of the transformers, or the adaptation of neural transformers to deal with im-
ages data types. In 2020, in [238], a novel architecture to deal with image data,
i.e. the Vision Transformer (ViT), was released. ViT is based solely on the neural
transformer architecture’s encoder network part, similarly to the BERT model for
natural language processing [91]. The model architecture of the ViT adopted for
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the current automatic defects classification for road tunnel GPR indirect testing is
depicted in Fig. 4.9. To deal with image data, it was necessary to rethink the image
data as a sequence of data. This was realized by producing a partitioning of the
input image, which is subdivided into a finite number 𝑛 of patches. These patches
may overlap or not, and each one is a tensor with shape 𝑑1 × 𝑑2 × 𝑑3, this latter
corresponding to the RGB digital colored image encoding. However, it is always
required to define an exact and suitable finite number 𝑛 of resulting patches con-
sidering the resolution of the starting image. To treat these patches as an ordered
sequence of elements, a vectorization procedure involves each 𝑖-th patch provide a
column vector 𝒙𝑖, with 𝑖 = 1,2, ...,𝑛, of dimension 𝑑1𝑑2𝑑3 ×1, resulting at the end
into 𝑛 vectors. These vectors of flattened patches are fed into a dense layer with
shared parameters and linear activation function, producing the hidden embedded
representation typical of the transformer architectures denoted as 𝒛𝑖. The shared
weights of this dense layer, which are learned from training data during the training
phase, act as the flattening operation using a linear projection matrix [238]. Since
in a sequence, the comparison ordering is extremely important, to maintain the
information of the actual position of each patch within the initial image, a posi-
tional encoding [91] should be applied. The positional encoding is usually referred
to sine and cosine functions at high frequency, which adds spatial information into
the network. Then, they are simply summed to the embedding representations 𝒛𝑖.
In this way, the new representation of the input information 𝒛𝑖 captures both the
content and the position of the 𝑖-th patch. Similar to BERT-based architecture,
the ViT relies only on the transformer encoder block, which is repeated 𝑁 times,
and the current transformer encoder block is repeated 𝑁 = 16 times denoting name
ViT-L16 model. However, in order to accomplish the classification task, BERT in-
troduced an additional token denoted as [CLASS] token. Similarly, also in the ViT
model, the [CLASS] token for classification is fed to an embedding layer producing
the vector 𝒛0 of the same shape as other embeddings. The sequence of vectors
{𝒛𝑖}𝑛𝑖=0 are subsequently fed to the neural transformer encoder block, composed of
a stack of a multi-head self-attention and dense fully-connected layer blocks, ac-
tually employing normalization and skip connections, as depicted in detail in Fig.
4.9. The output of the neural transformer encoder is a new representation of the
input vectors {𝒛𝑖}𝑛𝑖=0 mapped to a new representations {𝒄𝑖}𝑛𝑖=0 which integrates
the scaled dot-product attention (the self-attention) [91]. In any case, only the 𝒄0
is considered for the classification task, the one referred to the [CLASS] token, and
the others may usually be neglected. This vector represents the feature vector from
the input image. This vector is thus normally fed to a final multi-layer perceptron
followed by a softmax classifier. This last layer results in a column vector 𝒑 of size
equal to the number of output classes, representing a probability to belong to each
output class.

The last herein DL adopted model is the Compact Convolutional Transformer
(CCT). This model was developed in [239], starting from the baseline model of ViT
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and introducing some substantial modifications. In literature, the transformers
deserved the title of data-hungry models because of their main drawback of almost
prohibitive computational effort for training from scratch in applications with a
limited dataset size. Therefore, the CCT model was developed to alleviate this
issue. In CCT, a convolutional tokenization procedure has been set in place of
the ViT patching method. In this way, it is no more strictly required to set the
specific image resolution size and an appropriate and arbitrary fixed number of
patches. Adopting the right number of conventional convolutional blocks, it is
possible to realize an embedding input to properly feed the subsequent transformer
encoder blocks. This procedure is expected to provide a more efficient compact
image embedding representation [239]. Indeed, on one side, this new embedding
process reflects the desirable properties of CNNs, i.e. hierarchical feature extractor
with local information preservation, weight sharing, and efficiency. On the other
hand, the CTT permits the adoption of the powerful framework of the self-attention
mechanism to process long-range and global dependencies. Another key difference
between CCT and ViT is related to the dropping of the BERT-based class token
while promoting a sequence pooling approach. This latter method leverages the
information of the entire scored output sequence and it does not refer only to a
single class token as in the ViT. The sequence pooling method helped to enhance
the efficiency of the final dense layers accountable for the classification task [239].
The herein CCT model architecture is composed of two convolutional layers and
𝑁 = 2 number of transformer encoder blocks.

The current implementations for CNNs architectures were trained in Matlab
environment, whereas neural transformers relies on the implementations provided
in the Keras python environment [240]. The GPR images dataset at every level
of hierarchical multi-class classification tree have been split with a proportion of
80% for the training set and 20% for the test set for the CNN-based models, and
adopting the k-fold cross-validation method with 𝑘 = 10 folds, representing a good
choice to avoid both significant variance and biased values. Conversely, due to the
greater computational time when dealing with the transformer-based models, this
time the splitting has been set equal to 90%-10% respectively for training and test
set without performing any cross-validation.

Tab. 4.1 reports the confusion matrices of the averaged classification results ex-
pressed in percentages for the models trained with the raw GPR samples dataset.
The table also illustrates the level of overall accuracy values and the class metrics
precision, recall, and f1-score. It is worth noting that every level has revealed a good
accuracy above 90% in all the cases, reaching a peak of 98.30% in level 5 and a mini-
mum value of 90.40% in level 2b. Averaging all the levels of accuracy, the ResNet-50
model trained with the raw dataset, i.e. without any Fourier pre-processing, reached
a global classification accuracy of 94.51%. On the other hand, Tab. 4.2 reports the
confusion matrices of the averaged classification results expressed in percentages
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Table 4.1: Confusion matrices and classification metrics for ResNet-50 model
trained with raw image data.

Level 1 Predicted Accuracy 92.60%
True C1 C2 Class Precision Recall f1-score
C1 93.30% 6.70% C1 92.01% 93.30% 92.65%
C2 8.10% 91.90% C2 93.20% 91.90% 92.55%
Level 2a Predicted Accuracy 97.25%
True C3 C4 Class Precision Recall f1-score
C3 98.40% 1.60% C3 96.19% 98.40% 97.28%
C4 3.90% 96.10% C4 98.36% 96.10% 97.22%
Level 2b Predicted Accuracy 90.40%
True C5 C6 Class Precision Recall f1-score
C5 90.90% 9.10% C5 90.00% 90.90% 90.45%
C6 10.10% 89.90% C6 90.81% 89.90% 90.35%
Level 3 Predicted Accuracy 95.90%
True C7 C8 Class Precision Recall f1-score
C7 92.70% 7.30% C7 99.04% 92.70% 95.76%
C8 0.90% 99.10% C8 93.14% 99.10% 96.03%
Level 4 Predicted Accuracy 91.80%
True C9 C10 Class Precision Recall f1-score
C9 94.90% 5.10% C9 89.36% 94.90% 92.05%
C10 11.30% 88.70% C10 94.56% 88.70% 91.54%
Level 5 Predicted Accuracy 98.30%
True C11 C12 Class Precision Recall f1-score
C11 98.80% 1.20% C11 97.82% 98.80% 98.31%
C12 2.20% 97.80% C12 98.79% 97.80% 98.29%
Level 6 Predicted Accuracy 95.35%
True C13 C14 Class Precision Recall f1-score
C13 96.60% 3.40% C13 94.24% 96.60% 95.41%
C14 5.90% 94.10% C14 96.51% 94.10% 95.29%

for the models trained with the bi-dimensional Fourier pre-processed GPR sam-
ples dataset. In this circumstance, level 2b stands out for its worst accuracy value
stacked to 76.30%. However, in the other levels, the ResNet-50 has revealed a good
accuracy above 85% in virtually all the cases, reaching a peak value of 90.55% in
level 6. Averaging all the levels of accuracies, the ResNet-50 model trained with
the bi-dimensional Fourier pre-processed dataset reached a global classification ac-
curacy of 85.60%, about 8.91% below the global accuracy of the ResNet-50 model
trained with the raw dataset. These results demonstrated that, notwithstanding
the envisaged advantages of adopting the Fourier pre-processing technique on the
GPR sample images for the convolution operation, the ResNet-50 model is not able
to reach the accuracy levels of the previous case, i.e. trained with the raw GPR
dataset. Downstream of the obtained results, it is reasonable supposing that the
Fourier pre-processing probably introduced an exaggerated information compres-
sion, thus providing too similar images with such detrimental effects on the classifi-
cation accuracy. In an effort to demonstrate the contingent presence of overfitting
during the training phase of all the ResNet-50 trained models with and without the
Fourier pre-processed dataset, the convergence curves have been reported in the Ap-
pendix B.1. These graphs show the trend of the loss, the accuracy, the validation
loss, and the validation accuracy during the training epochs or iterations. Since each
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Table 4.2: Confusion matrices and classification metrics for ResNet-50 model
trained with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 88.25%
True C1 C2 Class Precision Recall f1-score
C1 87.90% 12.10% C1 88.52% 87.90% 88.21%
C2 11.40% 88.60% C2 87.98% 88.60% 88.29%
Level 2a Predicted Accuracy 83.15%
True C3 C4 Class Precision Recall f1-score
C3 79.30% 20.70% C3 85.92% 79.30% 82.48%
C4 13.00% 87.00% C4 80.78% 87.00% 83.77%
Level 2b Predicted Accuracy 76.30%
True C5 C6 Class Precision Recall f1-score
C5 73.50% 26.50% C5 77.86% 73.50% 75.62%
C6 20.90% 79.10% C6 74.91% 79.10% 76.95%
Level 3 Predicted Accuracy 85.90%
True C7 C8 Class Precision Recall f1-score
C7 97.80% 22.00% C7 91.57% 81.64% 86.32%
C8 9.00% 91.00% C8 80.53% 91.00% 85.45%
Level 4 Predicted Accuracy 85.15%
True C9 C10 Class Precision Recall f1-score
C9 83.90% 16.10% C9 86.05% 83.90% 84.96%
C10 13.60% 86.40% C10 84.29% 86.40% 85.33%
Level 5 Predicted Accuracy 89.90%
True C11 C12 Class Precision Recall f1-score
C11 85.70% 14.30% C11 93.56% 85.70% 89.46%
C12 5.90% 94.10% C12 86.81% 94.10% 90.31%
Level 6 Predicted Accuracy 90.55%
True C13 C14 Class Precision Recall f1-score
C13 92.40% 7.60% C13 89.10% 92.40% 90.72%
C14 11.30% 88.70% C14 92.11% 88.70% 90.37%

level accounts for 10 different trained models because of the k-fold cross-validation
procedure, the average curves have been depicted among the 10 considered models.
However, for the purpose of not losing the variability information among the ten
different models, the shaded area around the average curve represents the envelope
among the maximum and minimum curves among the 10 considered models. Ex-
cluding level 1 in which a slightly increasing trend of the average validation loss
manifests around iteration 400, the ResNet-50 with raw dataset presents a compre-
hensive excellent behavior without any evidence of overfitting issues. Concerning
the convergence curves of the ResNet-50 model with Fourier pre-processed GPR
images dataset, a noticeable overfitting problem is evidenced in the level 2b from
iteration around 50, thus explaining the poor classification accuracy of that level,
as illustrated in table 4.2. Moreover, slightly overfitting phenomena are tangible in
levels 1 from iteration around 400 and level 4 from iteration around 80.

Tab. 4.3 reports the confusion matrices of the averaged classification results
expressed in percentages of the EfficientNet-B0 models trained with the raw GPR
samples dataset for each binary classification level of Fig. 4.6. As before, the table
also illustrates the level of overall accuracies and the class metrics precision, recall,
and f1-score. It is worth noting that every level has revealed a fairly good accuracy
above 90% in virtually all the cases, except for level 2b in which the worst value of
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Table 4.3: Confusion matrices and classification metrics for EfficientNet model
trained with raw image data.

Level 1 Predicted Accuracy 94.55%
True C1 C2 Class Precision Recall f1-score
C1 95.50% 4.50% C1 93.73% 95.50% 94.60%
C2 6.39% 93.61% C2 95.41% 93.61% 94.50%
Level 2a Predicted Accuracy 91.07%
True C3 C4 Class Precision Recall f1-score
C3 89.24% 10.76% C3 92.63% 89.24% 90.91%
C4 7.10% 92.90% C4 89.62% 92.90% 91.23%
Level 2b Predicted Accuracy 81.01%
True C5 C6 Class Precision Recall f1-score
C5 81.71% 18.29% C5 80.58% 81.71% 81.14%
C6 19.69% 80.31% C6 81.45% 80.31% 80.87%
Level 3 Predicted Accuracy 94.94%
True C7 C8 Class Precision Recall f1-score
C7 99.00% 1.00% C7 91.57% 99.00% 95.14%
C8 9.11% 90.89% C8 98.91% 90.89% 94.73%
Level 4 Predicted Accuracy 90.70%
True C9 C10 Class Precision Recall f1-score
C9 88.56% 11.44% C9 92.52% 88.56% 90.50%
C10 7.16% 92.84% C10 89.03% 92.84% 90.90%
Level 5 Predicted Accuracy 93.47%
True C11 C12 Class Precision Recall f1-score
C11 90.65% 9.35% C11 96.07% 90.65% 93.28%
C12 3.70% 96.30% C12 91.15% 96.30% 93.65%
Level 6 Predicted Accuracy 96.08%
True C13 C14 Class Precision Recall f1-score
C13 96.33% 3.67% C13 95.85% 96.33% 96.09%
C14 4.17% 95.83% C14 96.31% 95.83% 96.07%

81.01% is reported. Level 2b was likewise observed with the lowest accuracy also for
The ResNet-50 model. On the contrary, the best accuracy of 96.08% was obtained
in level 6. Averaging all the levels of accuracies, the EfficientNet-B0 model trained
with the raw dataset, i.e. without any Fourier pre-processing, reached a global clas-
sification accuracy of 91.69%. Conversely, Tab. 4.4 reports the confusion matrices
of the averaged classification results expressed in percentages for the EfficientNet-
B0 models trained with the bi-dimensional Fourier pre-processed GPR samples
dataset. In the present case, level 2b pointed out, once again, the worst accuracy
value stacked to 73.87%, i.e. 7.14% below than the counterpart EfficientNet-B0
trained with the raw dataset. However, in the other levels, the EfficientNet-B0 has
revealed a good accuracy above 80% in virtually all the cases, except for level 2b,
with an average reduction of 5.75% with respect to the counterpart EfficientNet-B0
trained with the raw dataset. The maximum accuracy value of 93.06% was realized
in level 3. Averaging all the levels of accuracies, the EfficientNet-B0 model trained
with the bi-dimensional Fourier pre-processed dataset reached a global classifica-
tion accuracy of 85.94%, about 5.75% below the global accuracy of the same models
trained with the raw dataset. Even in these circumstances, the obtained results
proved that the bi-dimensional Fourier pre-processing provided detrimental effects
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Table 4.4: Confusion matrices and classification metrics for EfficientNet model
trained with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 87.43%
True C1 C2 Class Precision Recall f1-score
C1 87.65% 12.35% C1 87.27% 87.65% 87.46%
C2 12.78% 87.22% C2 87.60% 87.22% 87.41%
Level 2a Predicted Accuracy 84.15%
True C3 C4 Class Precision Recall f1-score
C3 82.75% 17.25% C3 85.14% 82.75% 83.93%
C4 14.44% 85.56% C4 83.22% 85.56% 84.37%
Level 2b Predicted Accuracy 73.87%
True C5 C6 Class Precision Recall f1-score
C5 72.47% 27.53% C5 74.55% 72.47% 73.50%
C6 24.73% 75.27% C6 73.22% 75.27% 74.23%
Level 3 Predicted Accuracy 93.06%
True C7 C8 Class Precision Recall f1-score
C7 98.78% 1.22% C7 88.63% 98.78% 93.43%
C8 12.67% 87.33% C8 98.62% 87.33% 92.63%
Level 4 Predicted Accuracy 0.8215
True C9 C10 Class Precision Recall f1-score
C9 81.95% 18.05% C9 82.29% 81.95% 82.12%
C10 17.64% 82.36% C10 82.02% 82.36% 82.19%
Level 5 Predicted Accuracy 88.66%
True C11 C12 Class Precision Recall f1-score
C11 83.70% 16.30% C11 92.91% 83.70% 88.07%
C12 6.39% 93.61% C12 85.17% 93.61% 89.19%
Level 6 Predicted Accuracy 92.28%
True C13 C14 Class Precision Recall f1-score
C13 94.85% 5.15% C13 90.21% 94.85% 92.47%
C14 10.29% 89.71% C14 94.57% 89.71% 92.07%

in terms of classification accuracy. Both ResNet-50 and EfficientNet-B0 models ex-
hibit a worse classification behavior with the bi-dimensional Fourier pre-processed
dataset despite the envisaged beneficial effects in computing the convolution opera-
tion. To demonstrate any potential presence of overfitting during the training phase
of all the EfficientNet-B0 trained models with and without the Fourier pre-processed
dataset, the convergence curves during the training iterations have been reported in
the Appendix B.1. Although the EfficientNet-B0 models trained with raw dataset
apparently do not manifest any sign of overfitting issue presence, level 2b revealed
a barely noticeable slightly increasing trend of the average validation loss manifests
around iteration 100. Concerning the convergence curves of the EfficientNet-B0
model with the Fourier pre-processed GPR images dataset, slightly overfitting is-
sues are evidenced in level 1 from iteration around 400, in level 2b from iteration
around 80, and in level 4 from iteration around 150.

Tab. 4.5 reports the confusion matrices of the averaged classification results
expressed in absolute terms, i.e. the number of samples from the test set of the raw
GPR samples dataset which has been predicted for each class. The table illustrates
the level of overall accuracies and the class metrics precision, recall, and f1-score.
It is worth noting that every level has revealed excellent accuracy results above
94% in all the cases, even reaching a peak value of 100.00% in level 3 and with
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Table 4.5: Confusion matrices and classification metrics for ViT model trained with
raw image data.

Level 1 Predicted Accuracy 95.42%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score
C1 380 21 C1 408 401 95.24% 94.76% 95.00%
C2 19 453 C2 672 472 95.57% 95.97% 95.77%
Level 2a Predicted Accuracy 99.03%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score
C3 359 0 C3 408 359 98.90% 100.00% 99.45%
C4 4 50 C4 672 54 100.00% 92.59% 96.15%
Level 2b Predicted Accuracy 94.57%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score
C5 45 11 C5 408 56 76.27% 80.36% 78.26%
C6 14 390 C6 672 404 97.26% 96.53% 96.89%
Level 3 Predicted Accuracy 100.00%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score
C7 95 0 C7 408 95 100.00% 100.00% 100.00%
C8 0 308 C8 672 308 100.00% 100.00% 100.00%
Level 4 Predicted Accuracy 99.04%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score
C9 94 2 C9 408 96 98.95% 97.92% 98.43%
C10 1 216 C10 672 217 99.08% 99.54% 99.31%
Level 5 Predicted Accuracy 99.54%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score
C11 115 0 C11 408 115 99.14% 100.00% 99.57%
C12 1 103 C12 672 104 100.00% 99.04% 99.52%
Level 6 Predicted Accuracy 99.07%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score
C13 52 1 C13 408 53 100.00% 98.11% 99.05%
C14 0 55 C14 672 55 98.21% 100.00% 99.10%

a minimum accuracy value of 95.42% in correspondence of level 2b, just like the
worst levels of the above-mentioned convolutional models. Averaging all the levels
of accuracies, the ViT model trained with the raw dataset, i.e. without any Fourier
pre-processing, reached a global classification accuracy of 98.10%. On the other
hand, Tab. 4.6 reports the confusion matrices of the averaged classification re-
sults expressed in percentages for the ViT models trained with the bi-dimensional
Fourier pre-processed GPR samples dataset. In this case, the worst level is the
first one, presenting the worst accuracy value of 86.14%. In the other levels, the
ViT has still revealed a good accuracy greater than 90% in virtually all the cases
nonetheless, still reaching a noticeable maximum accuracy value of 99.07% in level
6. However, averaging all the levels of accuracies, the ViT model trained with
the bi-dimensional Fourier pre-processed dataset reached a less global classifica-
tion accuracy of 93.65%, with an average reduction of 4.45% with respect to the
counterpart ViT trained with the raw dataset. Again, the above-mentioned re-
sults demonstrated that, notwithstanding the envisaged advantages of adopting the
Fourier pre-processing technique on the GPR sample images, also the ViT model
is not able to reach the accuracy levels of the training with the raw GPR dataset.
Since ViT is not essentially based on the convolution operation likewise CNNs, the
obtained results strengthen the hypothesis of an excessive information compression
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Table 4.6: Confusion matrices and classification metrics for ViT model trained with
bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 86.14%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score
C1 302 99 C1 408 401 93.21% 75.31% 83.31%
C2 22 450 C2 672 472 81.97% 95.34% 88.15%
Level 2a Predicted Accuracy 92.98%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score
C3 358 1 C3 408 359 92.75% 99.72% 96.11%
C4 28 26 C4 672 54 96.30% 48.15% 64.20%
Level 2b Predicted Accuracy 90.87%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score
C5 29 27 C5 408 56 65.91% 51.79% 58.00%
C6 15 389 C6 672 404 93.51% 96.29% 94.88%
Level 3 Predicted Accuracy 98.76%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score
C7 95 0 C7 408 95 95.00% 100.00% 97.44%
C8 5 303 C8 672 308 100.00% 98.38% 99.18%
Level 4 Predicted Accuracy 94.57%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score
C9 85 11 C9 408 96 93.41% 88.54% 90.91%
C10 6 211 C10 672 217 95.05% 97.24% 96.13%
Level 5 Predicted Accuracy 93.15%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score
C11 103 12 C11 408 115 97.17% 89.57% 93.21%
C12 3 101 C12 672 104 89.38% 97.12% 93.09%
Level 6 Predicted Accuracy 99.07%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score
C13 52 1 C13 408 53 100.00% 98.11% 99.05%
C14 0 55 C14 672 55 98.21% 100.00% 99.10%

produced with the Fourier pre-processing procedure, resulting in fairly deleterious
effects on the classification capacity of the analyzed DL models. For the purpose
of demonstrating a possible presence of overfitting during the training phase of all
the ViT trained models with and without the Fourier pre-processed dataset, the
convergence curves have been reported in the Appendix B.1. These graphs show
the trend of the loss, the accuracy, the validation loss, and the validation accuracy
during the training epochs. The convergence curves do not always reach the max-
imum of 20 epochs because of the adoption of the early-stopping criterion. This
means that the training phase is early interrupted when no further improvements
occur to both save computational resources and avoid overfitting training. Despite
the validation loss curves appearing quite noisy during the training epochs, their
global descending trends proved that ViT model trained with raw GPR images
dataset does not incur any overfitting phenomena at every level. Focusing on the
ViT models trained with the Fourier pre-processed dataset, the validation curve
trends revealed overfitting occurrence in level 1, level 4, and slight evidence in level
3, besides they appeared to be noisier than the previous case.

Tab. 4.7 reports the confusion matrices of the averaged classification results
expressed in absolute terms, i.e. the number of samples from the test set of the raw
GPR samples dataset which has been predicted for each class. The table illustrates
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Table 4.7: Confusion matrices and classification metrics for CCT model trained
with raw image data.

Level 1 Predicted Accuracy 85.22%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score
C1 324 77 C1 408 401 86.17% 80.80% 83.40%
C2 52 420 C2 672 472 84.51% 88.98% 86.69%
Level 2a Predicted Accuracy 92.74%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score
C3 355 4 C3 408 359 93.18% 98.89% 95.95%
C4 26 28 C4 672 54 87.50% 51.85% 65.12%
Level 2b Predicted Accuracy 89.13%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score
C5 35 21 C5 408 56 54.69% 62.50% 58.33%
C6 29 375 C6 672 404 94.70% 92.82% 93.75%
Level 3 Predicted Accuracy 87.59%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score
C7 64 31 C7 408 95 77.11% 67.37% 71.91%
C8 19 289 C8 672 308 90.31% 93.83% 92.04%
Level 4 Predicted Accuracy 85.62%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score
C9 72 24 C9 408 96 77.42% 75.00% 76.19%
C10 21 196 C10 672 217 89.09% 90.32% 89.70%
Level 5 Predicted Accuracy 75.34%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score
C11 91 24 C11 408 115 75.21% 79.13% 77.12%
C12 30 74 C12 672 104 75.51% 71.15% 73.27%
Level 6 Predicted Accuracy 76.85%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score
C13 32 21 C13 408 53 88.89% 60.38% 71.91%
C14 4 51 C14 672 55 70.83% 92.73% 80.31%

the level of overall accuracies and the class metrics precision, recall, and f1-score.
Notwithstanding the training conditions may appear limited for training the CCT
from scratch, the results in Tab. 4.7 have revealed still fairly good behavior with
accuracy values above 75% in all the cases. The worst accuracy value of 75.34% has
been reached in level 5 whereas the best accuracy value of 92.74% has been recorded
in correspondence of level 2a. Averaging all the levels of accuracies, the CCT model
trained with the raw dataset, i.e. without any Fourier pre-processing, reached a
global classification accuracy of 84.64%. By contrast, Tab. 4.8 reports the confu-
sion matrices of the averaged classification results expressed in percentages for the
CCT models trained with the bi-dimensional Fourier pre-processed GPR samples
dataset. In this case, the worst level is the last one, presenting the worst accuracy
value of 50.93%. Observing in detail the absolute number of predicted samples, it
is evident how the CCT biased learned to classify every sample only toward class
C14. However, the number of images per class and even the test set supports seem
fairly balanced in size. Therefore, it is reasonable to believe that one of the more
probable reasons for this dreadful result may be a consequence of a severely nega-
tive effect of the Fourier pre-processing in level 6, even probably combined with the
under-training of the CCT model. The same explanation could be stated for level
5 in which the accuracy stacked only to 65.30%. In the other remaining levels, the
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Table 4.8: Confusion matrices and classification metrics for CCT model trained
with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 79.84%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score
C1 317 84 C1 408 401 77.51% 79.05% 78.27%
C2 92 380 C2 672 472 81.90% 80.51% 81.20%
Level 2a Predicted Accuracy 88.62%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score
C3 354 5 C3 408 359 89.39% 98.61% 93.77%
C4 42 12 C4 672 54 70.59% 22.22% 33.80%
Level 2b Predicted Accuracy 87.83%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score
C5 0 56 C5 408 56 - 0.00% -
C6 0 404 C6 672 404 87.83% 100.00% 93.52%
Level 3 Predicted Accuracy 84.86%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score
C7 41 54 C7 408 95 85.42% 43.16% 57.34%
C8 7 301 C8 672 308 84.79% 97.73% 90.80%
Level 4 Predicted Accuracy 81.15%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score
C9 55 41 C9 408 96 75.34% 57.29% 65.09%
C10 18 199 C10 672 217 82.92% 91.71% 87.09%
Level 5 Predicted Accuracy 65.30%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score
C11 89 26 C11 408 115 64.03% 77.39% 70.08%
C12 50 54 C12 672 104 67.50% 51.92% 58.70%
Level 6 Predicted Accuracy 50.93%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score
C13 1 52 C13 408 53 50.00% 1.89% 3.64%
C14 1 54 C14 672 55 50.94% 98.18% 67.08%

CCT has still revealed a good accuracy greater than 79% nonetheless, still reaching
an appreciable maximum accuracy value of 88.62% in level 2a. Despite level 2b
presenting an interesting accuracy value of 87.83%, observing in detail the absolute
number of predicted samples, or to the precision, recall, and f1-score metrics of class
C5, also, in this case, the CCT has miserably failed to correctly classify the samples,
with a biased tendency toward the class C6 only. However, in this circumstance, it
appears quite evident that the most probable reason is related to the unbalanced
size of the two classes, and consequently even the test set. For future studies, a
possible solution could be forcing a balanced training approach by the class with the
minimum number of samples. However, averaging all the levels of accuracies, the
CCT model trained with the bi-dimensional Fourier pre-processed dataset reached
a less global classification accuracy of 76.93%, with an average reduction of 7.71%
with respect to the counterpart CCT trained with the raw dataset. Again, the
above-mentioned results demonstrated that, notwithstanding the envisaged advan-
tages of adopting the Fourier pre-processing technique on the GPR sample images,
also the ViT model is not able to reach the accuracy levels of the training with
the raw GPR dataset. In summary, even in the case of CCT models, the Fourier
pre-processing procedure resulted in nefarious effects on the classifiers’ ability. This
is also virtually exacerbated by a combination of underfitting issues, under-trained
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Figure 4.10: Comparative analysis of the various DL models’ classification accuracy
with and without Fourier pre-processing among the classification levels.

Table 4.9: Global average accuracy for the three analyzed neural models.

Neural model Without Fourier With Fourier
ResNet-50 94.51% 85.60%
EfficientNet-B0 91.69% 85.94%
ViT 98.10% 93.65%

models, and even an excessive trivial or compact architecture such as the CCT
base model. Lastly, in order to demonstrate a possible presence of overfitting or
underfitting issues during the training phase of all the CCT trained models with
and without the Fourier pre-processed dataset, the convergence curves have been
reported in the Appendix B.1. These graphs show the trend of the loss, the accu-
racy, the validation loss, and the validation accuracy during the training epochs.
Focusing on the CCT model trained with raw GPR images dataset, the validation
loss curves exhibit global descending trends in all the levels, proving the absence of
any overfitting phenomena. However, these curves manifested a possible underfit-
ting, testifying to the under-training of the CCT models which virtually required
an increase in the training epochs. Conversely, for the CCT models trained with
the Fourier pre-processed dataset, the validation curve trends revealed the total
absence of overfitting occurrences, whilst testifying serious underfitting issues in
virtually all the cases, especially in level 2b, level 5, and level 6.

The results among the various DL trained models. Fig. 4.10 provides a com-
parative overview of the obtained accuracy results. The classification outcomes
have been organized for the various GPR defects classification levels. The graph
is arranged according to the four DL analyzed models, and depicted in two juxta-
posed histogram representations related to the training phase with the raw dataset
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Figure 4.11: Scatter plot of classification accuracy with and without Fourier pre-
processing among the classification levels.

and with the bi-dimensional Fourier pre-processed dataset. At first sight of the
diagram, among the various DL models, the ViT architecture delivered the highest
accuracy values for virtually all the levels of both cases with and without Fourier
pre-processing. However, the ResNet-50 provided an accuracy result of 88.25%
with the Fourier pre-processed dataset, thus providing a higher result than ViT
model. On the contrary, as already anticipated, the CCT model produced the
worst results among all the levels for both two cases under comparison. However,
especially in the case of Fourier pre-processing, the CCT base models were severely
affected by under-fitting issues. These training problems probably arose due to the
under-training of the model or because of the adoption of an excessively simple and
compact architecture. It is worth mentioning that all four DL models struggled to
reach high accuracy vale in level 2b. With a deeper inspection of the various conver-
gence curves reported in the appendix, overfitting issues emerged in ResNet-50 with
Fourier pre-processed dataset, in EfficientNet-B0 in both the two analyzed cases,
and in the ViT model with Fourier pre-processed dataset. The difficulties in level
2b may be related to the critical unbalance in the amount of GPR images samples
between classes C5 and C6. In addition, another possible reason could also be a
quite critical similarity degree among the images of these two specific classes C5
and C6. This may be plausible especially in the Fourier case, which may produce
overly similar images due to excessive data information compression. Fig. 4.11
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illustrates a dispersion graph of the accuracy levels for the four DL models between
the cases with and without Fourier pre-processing. The ViT model appears the
least scattered and even the most concentrated around the best ideal point, located
in the upper-right corner. Similarly, the ResNet-50 model and EfficientNet-B0 are
fairly little dispersed, except for one point, i.e. related to level 2b, and farther from
the ideal point than the ViT model, whereas the CCT model exhibits the most
dispersed behavior. Additionally, considering an ideal bisector diagonal line of the
present graph, the points that belong to the upper diagonal region are positively
affected by the Fourier pre-processing technique, conversely, the lower diagonal area
collects the points for which the Fourier pre-processing induced negative accuracy
reduction effects. Therefore, this graph evidences a global detrimental effect on the
classification accuracy of the analyzed models, because all the points belong to the
lower diagonal region, except for the ViT in level 6 which barely belongs to the
upper diagonal region. Eventually, Tab. 4.9 reports the global average accuracy re-
sults among the various levels. It is worth noting the average accuracy reductions
for the four DL models between the raw dataset case and Fourier pre-processed
dataset. The ViT model recorded the lowest average accuracy reduction equal to
4.45%, whereas the EfficientNet-B0 exhibited a reduction value of 5.75%. The CCT
architecture delivered an average reduction of 7.71%, and the highest reduction of
8.91% was suffered from the ResNet-50 model. Despite the second-best model in
terms of accuracy is the ResNet-50 with the raw dataset, it appeared the least
robust architecture with respect to the induced effects of the Fourier pre-processed
dataset, thus delivering the most consistent average accuracy reduction.

In summary, it is worth noting that in virtually all the analyzed cases, the
dataset with Fourier pre-processed GPR sample images provided a final accuracy
reduction with respect to the raw images dataset. Therefore, despite the possible
envisaged advantages of the Fourier pre-processing technique, it is reasonable con-
cluding that in this case, the Fourier pre-processing procedure may introduce an ex-
aggerated data information compression. This information loss led to overly similar
images, with resultant detrimental effects on the final classification accuracy. Fo-
cusing instead on a different perspective, considering the total number of learnable
parameters of the implemented models, the ResNet-50 contains 25,583,592 parame-
ters whereas the EfficientNet-B0 provided a mobile version characterized by totally
5,309,556 parameters. On the other hand, virtually training the current ViT from
scratch would require optimizing 305,413,122 parameters, whereas the current base
CCT model presents only 407,107 parameters. Although the base CCT model im-
plementation provided the worst accuracy levels with the raw GPR images dataset,
it was able to still reach comparable accuracy levels of the same order of magnitude
with respect to the other extremely heavy models. This suggests that in future
studies, proper tuning and adjustments of e.g. the CCT model may represent a
very promising solution for real-time applications of the proposed NDT with the
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GPR device. Since CCT is a powerful and compact model, it may effectively rev-
olutionize the nowadays GPR traditional pipeline with real-time implementations
and innovative integrations with internet of things (IoT) edge devices.

During the last decades, with the widespread adoption of evermore sophisticated
DL network architectures, in scientific community concerns about interpretability
of the neural models arose, exacerbating the idea of neural networks as merely
black boxes. In fact, it became fairly challenging to provide a clear explanation of
what the network learned to classify an image in a specific certain class rather than
another one. Thus, in [241], the authors pointed out that, leveraging the global
average pooling layer in a certain manner, it is possible to highlight the powerful
localization capabilities of CNN models, even when trained for classification pur-
poses only and not specifically for e.g. object detection tasks. They introduced
the concept of class activation maps (CAM), i.e. a visual representation of those
portions of input images that mainly contributes to the classification score for a
given class. Since the final classification output score is in practice a weighted sum
operation performed by a fully connected layer, similarly, the CAM is actually the
representation of the activation maps following the last convolutional layer weighted
by the weights of the final fully connected layer. Thereafter, other researchers e.g.
[242] formalized a gradient-weighted CAM or e.g. the most recent gradient-free
Score-CAM method [243]. Adopting the Matlab implementation of [244], in B.2
it has been provided a visual inspection of CAM for an example image of the test
set belonging to every single class of the proposed GPR defects’ classification tree.
The CAM are reported both for the models ResNet-50, EfficientNet, and ResNet-50
with Fourier pre-processing technique. The CAM visually pointed out a quite im-
pressive successful learning of the ResNet-50 model with original images to focus on
the more characteristic pattern of the GPR images. On the contrary, EfficientNet
performed moderately worse than ResNet-50, presenting in general more dispersed
activation maps. At first sight, the CAM for ResNet-50 on Fourier pre-processed
images may appear as well quite dispersed, without any apparent consideration
of the main frequency component pattern. However, considering two classes level
by level, e.g. comparing C3 and C4 in level 2a, it seems that the network mainly
focuses on central regions of the image belonging to class C4 and, in a complemen-
tary manner, it focuses on extremum areas of the images for class C3. A similar
pattern of CAM is more evident in C5 and C6 in level 2b, in C7 and C8 in level 3,
and in C9 and C10 in level 4. On the other side, another merit that distinguishes
the neural transformers-based architecture, such as the herein analysed ViT model,
is the adoption of the attention mechanism. Therefore, the transformers models
have already intrinsically incorporated an essential interpretability tool to give the
user the possibility to inspect what the network learned, without requiring any fur-
ther post-processing procedure as before, sometimes time and resources-consuming.
Thus, in the B.2, the attention maps for ViT reveal tremendous localization ca-
pabilities for those parts of the input images which mainly contributed to defining
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the right output classes, crowning the neural transformers models as one of the
nowadays more naturally and reliably interpretable DL models.

4.3 Neural-based damage detection with subspace
features and statistical indicators

The damage detection tasks could be virtually performed by monitoring any change
over time of some meaningful quantities retrieved from the measured output re-
sponse. For instance, experimental modal parameters retrieved from OMA are
representative of the dynamics of the structure under study. However, several
researchers proved that OMA results are not the most informative elements to
directly and unambiguously solve DD tasks effectively [245], since OMA results
also encapsulate uncertainties from unmeasured inputs, as already mentioned re-
ferring to in the combined system concept of Fig. 2.1. Therefore, some most
informative damage indicators (DIs) were proposed and formalized lately, which
do not strictly require OMA. In [246], at least two main advantages of adopting
non-parametric damage detection procedures have been illustrated. Indeed, these
procedures avoid manipulating vibration data, thus no further modeling errors are
introduced. Additionally, these DIs could be easily integrated into automated mon-
itoring systems, such as AOMA or continuous SHM approaches. In particular, some
of these DIs denoted as subspace-based [247, 248], rely on residues calculated by
covariance changes between two different situations: an initial reference condition
and a current, possibly damaged, one [249]. Despite the excitation covariance may
be significantly different among the two acquisition moments, these indicators are
quite robust because they rely on the simple orthonormal factorization property
among different subspaces, i.e. the active space in the reference state and the null
space in the current situation [246]. Their robustness bestows them the capacity
to effectively detect damages and not variations due to very different excitation
inputs. Some scholars even attempted adopting the subspace-based DI to perform
the damage localization  [250], i.e. the level 2 of an ideal SHM paradigm. Dur-
ing the current Ph.D. program, some starting research studies were conducted on
vibration-based subspace DIs combined with artificial neural networks (ANN) in
a supervised classification learning scheme, mainly exploring the potentialities of
AI with these DIs with numerically simulated damaged scenarios and some sim-
ple real-world validation tests. The contents reported in the current section are
inspired from [251, 252] and the interested reader can refer to these related full
papers.

The currently adopted subspace-based DIs definition plunges its roots in [247,
248], and, specifically, the current implementation is mainly referred to the DIs
formulation retrieved from the SSI-cov algorithm approach. It is worth reminding
that, as illustrated in the Appendix , the theoretical output covariance estimates
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�̂�𝑖 from Eq. (2.94) [96] can be equivalently used for setting up a block Hankel
matrix 𝑯𝑹 of the output covariance matrices defined in Eq. (A.9), instead of the
typical Toeplitz matrix of SSI-cov algorithm [111, 108]. As reported in Eq. (A.9), in
this Hankel-based version of the SSI-cov algorithm, the modal structural intrinsic
properties are still retrieved via the factorization property of the Hankel matrix
which allows decomposing it in an observability matrix 𝑶𝑖 and a controllability
matrix 𝜞𝑖, given a user-defined time shift (number of block rows) parameter 𝑖. The
observability matrix can be numerically estimated adopting the linear algebra SVD
method applied to the output covariances Hankel matrix 𝑯𝑹:

𝑯𝑹 = 𝑼𝜮𝑽 𝑇 = [𝑼1 𝑼2] [
𝜮1 𝟎
𝟎 𝟎] [

𝑽1
𝑽2

] ≈ 𝑼1𝜮1𝑽 𝑇
1 (4.10)

In the above equation, 𝜮1 collects the non-neglectable singular values in a diag-
onal matrix sorted in descending order. 𝑼1 represents the left active subspace of
the independent column vectors of the Hankel matrix, whereas 𝑼2 denotes the
null subspace of the independent column vectors of the Hankel matrix. Simi-
lar definitions are provided for 𝑽1 and 𝑽2 for row vectors of the Hankel matrix.
These singular vector matrices maintain orthonormal properties, of key importance
in the subspace-based DIs definition. Therefore, similarly to the approximation
𝜮1 ≈ 𝑼𝑇

1 𝑯𝑹𝑽1, an exact zero matrix should be theoretically obtained when con-
sidering 𝟎 ≈ 𝑼𝑇

2 𝑯𝑹𝑽2. Furthermore, considering the orthonormal property of
singular vector matrices, multiplying the Hankel matrix on the right by the row
singular vectors of the null space, or multiplying the Hankel matrix on the left by
the column singular vectors of the null space, should theoretically deliver exact zero
matrices. However, the results of these products are residues denoted as 𝜺𝑉 and 𝜺𝑈
respectively.

𝑯𝑹𝑽2 ≈ 𝜺𝑉 (4.11)
𝑼𝑇

2 𝑯𝑹 ≈ 𝜺𝑈 (4.12)

These residual matrices can be significantly different from zero vectors because of
noise effect or neglected weakly excited high modes. Therefore, the singular vector
are not the ideal candidates for tracking relative changes for damage detection
purposes [253]. The amplitude of the residues, resulting from the definition of the
system order or the amplitude excitation, may mask the residues variation due
to minor structural damages. Instead, the above property can be exploited by
comparing two different states, since Basseville et al. [254] originally proposed a
residual function obtained by comparing the system reference state (undamaged)
with the current one (damaged or undamaged):

𝑯𝑹,ref ≈ 𝑼1,ref𝜮1,ref𝑽 𝑇
1,ref (4.13)

𝑯𝑹,cur ≈ 𝑼1,cur𝜮1,cur𝑽 𝑇
1,cur (4.14)
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In practice, the above orthonormal property can be exploited when comparing two
different states. Instead of using the null space on the parameterized observability
matrix, an empirical (nonparametric) null space and active subspaces are computed
via SVD on an estimated block Hankel matrix from data in both reference and
current states. Therefore, the conventional residue 𝜺𝑐 between two different state
can be expressed as the product of an empirical non-parametric null subspace 𝑼2,ref
in the reference state and the Hankel matrix 𝑯𝑹,cur in the current state [254, 255]:

𝜺𝑐 = 𝑼𝑇
2,ref𝑯𝑹,cur (4.15)

However, the excitation covariance may vary between different measurement ses-
sions of the system because of random environmental factors. Therefore, in [253,
256], a new residue definition robust to variations of excitation 𝜺𝑟 was formulated,
i.e. considering the product of the null subspace 𝑼2,ref in the reference state and the
active subspace 𝑼1,cur in the current state, thus leveraging the noise attenuation
properties of SVD:

𝜺𝑟 = 𝑼𝑇
2,ref𝑼1,cur (4.16)

These subspace-based DIs definitions allow geometrical interpretations of the residue
matrix concept, such as the expression of a loss of orthonormality between reference
subspace and another current state [253]. Therefore, these kind of DIs are related
to the rotation angle arising between the two subspaces when any structural dam-
age occurs. Despite based on the same theoretical framework, different practical
alternatives were proposed in the literature for computing the DI value [254]. In
the current implementation, the work of Yan et al. [253] have been considered,
in which the DI has been established as the spectral norm of the conventional or
robust residue matrix:

DI𝑐,Yan = norm(𝜺𝑐) , DI𝑟,Yan = norm(𝜺𝑟) (4.17)

where norm(⋅) ∶ ℝ𝑚×𝑛 → ℝ is the matrix spectral norm operator, i.e. the maximum
singular value of the residual matrices.

To leverage at most all the potentialities of AI-based techniques, particular care
must be dedicated to the dataset collection, which plays a crucial role in determin-
ing accurate and reliable final results. Therefore, after placing the accelerometer
sensors on the structure under investigation, the first critical phase is collecting
output-only vibration data response. Specifically, as discussed in the previous sec-
tion, the subspace-based damage indicators rely on comparing two different states.
Indeed, the very first measurement session is assumed as the reference state. On
the other hand, any subsequent measurement session should be considered as a cur-
rent state (undamaged or potentially damaged). Since the availability of real-world
recorded data may be strongly limited in general, the current method relies on a
data augmentation procedure based on numerical simulations. Specifically, a FE
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model calibrated on the reference state measurements may be dynamically excited
imposing various damage conditions in order to collect a sufficiently comprehensive
dataset of vibration responses related to different and likely damaged current states.
After collecting these structural responses dataset, three different methodologies re-
spectively named (A), (B), and (C) have been proposed as schematically illustrated
in Fig. 4.12. Precisely, these three methods share a common artificial intelligence
core, i.e. an ANN model with a MLP architecture, and thereafter also tested with
a 1D-CNN model. A classification task is entrusted to the neural model with the
final goal of recognizing the health status of the current state of the structure un-
der investigation. Nevertheless, to fulfill this task, the authors have identified three
possible different sets of input features to feed the MLP model, thus formalizing
three different methodologies.

Some previous attempts have been conducted by in Finotti et al. [257], in which
both a support vector machine model and an MLP architecture have been trained
on a numerical pinned-pinned beam model to perform the damage classification
task. The ANN has been trained on statistical parameters directly calculated on
the raw time series vibration data. Therefore, inspired by Finotti et al. [257],
method (A) involves a supervised damage classification scheme based on statistical
features only. Specifically, some basic statistics have been computed directly on the
raw time-histories vibration response data. These synthetic descriptors are used to
feed the MLP model since they represent potentially time-domain discriminating
indicators between the undamaged reference state and a damaged current state.
In particular, only the most significant and discriminative statistical features have
been herein considered according to results retrieved in [257]. Specifically, the
computed statistical features are the peak value, the mean square value, the root
mean square, the variance, the standard deviation, and the K-factor.

Nonetheless, despite the promising idea of method (A), in [257] the accuracy
classification performance was demonstrated being decent but not outstanding. The
reasons may be probably lie in the limited scattering interval of some statistics even
though passing from an healthy status to a very seriously damaged one. Therefore,
the latter consideration was the main motivation to attempt further improvements
of the method (A) thus investigating another set of more discriminating input fea-
tures. As depicted in Fig. 4.12, in method (B), the MLP network is fed with the
previous statistical features jointly with the most discriminative Yan’s et al. [253]
subspace-based damage-sensitive feature DI𝑟,Yan, see Eq. (4.17). It is worth noting
that some previous attempts have been already conducted by Saeed et al. [258],
in which a MLP has been adopted in a supervised learning scheme combined with
subspace DIs to perform classification tasks among a healthy and two other damage
states. Despite their promising results, they evidence how the main subspace-based
DIs drawback is related to the arbitrary choice of the time shift considered in the
construction of the Hankel matrix and the truncation order to define the active and
null subspaces, to detect damage and not the excitation variation noise effectively.
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Figure 4.12: Flowchart of the various data-driven damage detection proposed
strategies based on statistical information and subspace-based DIs.

Therefore, to overcome this limitation of these two governing parameters, a possi-
ble more reliable and systematic method to define the most informative, and thus
the most discriminative subspace-based feature, can be handled with an empirical
sensitivity analysis. The final aim of the latter is to detect the optimal combination
of these two governing parameters in order to achieve the most damage-sensitive
subspace-based indicator. However, this kind of analysis may be sometimes quite
tricky, depending on the specific modal identification problem, and rather compu-
tationally expensive. Nevertheless, a certain degree of arbitrary still remains within
the choice of these two governing parameters. Consequently, a third method (C)
has been proposed, as illustrated in Fig. 4.12. In this latter case, to fully leveraging
the potentialities offered by the AI solutions, the MLP network has been fed with a
set of input features entirely represented by the solely Yan’s et al. [253] subspace-
based damage-sensitive features DI𝑟,Yan, see Eq. (4.17). The objective of method
(C) is thus removing the remaining user’s arbitrary degree in the choice of the gov-
erning parameters affecting the computation of the subspace-based indicators, i.e.
the time shift and the truncation order. Indeed, an entire set of Yan’s et al. DIs
only can be computed by varying both the time shift and the truncation order val-
ues within certain reasonable intervals respectively. Each time shift and truncation
order pair determines a specific Yan’s et al. DI value. In this way, in addition to
the advantage of reducing the arbitrary level of the previously proposed methods,
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Figure 4.13: Numerical beam model studied for testing damage detection proce-
dures proposed in Fig. 4.12.

method (C) allows considering those hidden patterns of the various subspace-based
indicators given by the governing parameters for the same raw time series. More-
over, this third method is expected to be associated with a higher classification
accuracy due to the higher sensitivity of these indicators to structural damages.

An initial numerical beam problem presented in Fig. 4.13 have been analyzed
for testing the classification scheme proposed in Fig. 4.12. Specifically, the nu-
merical model involves a planar simply supported beam with 𝑥, 𝑦, 𝑧 denoting the
Cartesian global coordinates reference system under the gravity action of its self-
weight producing a static deflection 𝑣(𝑧). The symbol b in Fig. 4.13 indicates
the square cross section side, whilst 𝐿 is the span length. A Gaussian white noise
acceleration input (�̈�𝑦(𝑡)) is adopted as dynamic input to the simply supported
beam. The output-only vibration dataset has been obtained by a FE modeling
implemented with OpenSeesPy software [259], using elasticBeamColumn elements
a square cross-section of 0.10 m and a span length of 2.00𝑚. The structural uni-
axialMaterial properties is steel characterized by Young’s modulus 𝐸 = 210 GPa
and a mass density of 𝜌 = 7850 kg/m3. This structural model has been chosen
as simply as possible for the main purpose of avoiding some uncontrolled modeling
errors will affect the outcomes. This permitted both testing and analyzing in depth
the proposed procedures, and also studying the effects of the sensors’ noise on the
entire classification procedure. As illustrated in Fig. 4.13, the beam element has
been discretized with a uniform mesh by assuming to divide the beam domain into
six finite elements. In this way, seven nodes labelled from 0 to 6 are identified in the
model. The constraint conditions of the hinged beam are applied to the extremity
nodes 0 and 6, which are thus considered fixed in the vertical direction. In the
central nodes, 1 to 5, the time history acceleration responses have been collected,
simulating a realistic monitoring system with accelerometers placed in correspon-
dence with the nodes. Although there are several ways to model structural damage,
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Table 4.10: Modes in the undamaged case of the numerical beam under study
retrieved from an eigenvalue analysis and an OMA analysis conducted with the
PyOMA module.

Mode

Undamaged
OMA Eigenvalue An.

f 𝜉 f
[Hz] [%] [Hz]

1 1.871 0.44 1.872
2 7.501 1.46 7.479
3 16.440 3.71 16.722
4 28.031 3.69 20.583

in the present study the damage has been introduced in the model as a percentage
reduction of the cross-section area corresponding to the damaged elements. The
completely undamaged situation has been set as a reference state. The natural
frequencies of the undamaged beam model computed by an eigenvalue analysis and
by an OMA method using the PyOMA module have been reported in Tab. 4.10.
Then, the current damage state has been represented by considering three possible
different situations. In the foremost current state, the structure may be still com-
pletely undamaged, thus the current state corresponds to the reference state. In the
second case, a slight damage is introduced by reducing the cross-sectional area by
25%. Finally, in the last case, a 50% reduction of the cross-sectional area is intro-
duced to represent a sever damage condition. It is worth noting that in real-world
scenarios with conventional standard environmental exposure conditions, severe
damages have been reported reaching up to 30% of cross section losses at the end
of the structure’s nominal life [260, 261]. Nonetheless, with specific environmen-
tal exposure conditions, chloride attacks, pitting corrosion, and crevice corrosion
may lead to dramatic cross section losses of up to 50% [262, 263]. Therefore, in
the current preliminary study, the authors analyzed cross section losses up to 50%,
still representing a sort of reasonable boundary thus reflecting real-world advanced
corrosion scenarios. Although the herein introduced damage may appear far higher
than the actual values measured on real structures, e.g. for real-world corrosion
attacks, at this stage it was decided to study extreme damage cases on a simplified
model. Nevertheless, the presented method can be applied to configurations char-
acterized by different levels of damage without loss of generality. For the sake of
generality, the number of damaged sections and their location on the beam domain
has been randomly selected. The dynamic analysis was carried out by exciting
one support of the structure by a Gaussian random white noise acceleration with
a sampling frequency of 50 Hz. The white noise process has been generated by a
random sampling of a standard normalized zero-mean normal distribution 𝒩(0, 1),
and rescaled up to 0.01𝑔 of peak acceleration. The input acceleration has been
limited to the vertical direction since a plane beam model is considered. The time

234



4.3 – Neural-based damage detection with subspace features and statistical indicators

Y
an

 D
am

ag
e 

In
di

ca
to

r

1.2

1.0

0.8

0.6

0.4

0.2

0.0

20 40 60 80 100
Time shift parameter value

Active Space Dim.: 1
Active Space Dim.: 2
Active Space Dim.: 3
Active Space Dim.: 4
Active Space Dim.: 5
Active Space Dim.: 6
Active Space Dim.: 7

Figure 4.14: Sensitivity analysis on active space dimensions and, consequently the
complementary null space dimensions, compared with the time shift user’s defined
choice.

history analyses have been conducted with OpenSeesPy python module. The col-
lected acceleration histories response data simulate a monitoring setup composed
of accelerometers with a sampling frequency of 500 Hz. Five-minute acquisition du-
ration sessions have been performed on damaged and undamaged models. Because
of the randomness of Gaussian distribution, to ensure that all data can be obtained
repeatedly, the authors controlled the random seeds. In particular, to improve the
result’s accuracy and ensure that enough data is generated to train the DL models,
the seed of the random sampling was set from 1 to 5000 to obtain 5000 time history
runs.

As already mentioned, one of the main advantage of working with subspace-
based DIs is not strictly requiring to perform a prior OMA. However, to further
explore the potentials of the proposed DD methods, specifically focusing on method
(C), an empirical sensitivity analysis was conducted to build a numerical dataset
of damage-sensitive features that will consider many different damage situations
and different white noise Gaussian random processes as input. This latter aided
defining the user’s choice parameters to get the most informative subspace-based
DI features, permitting to study in detail the influence of the choice of the active
space dimension, and consequently the null space dimension, combined with the
entirely arbitrary user’s selection of the time shift. As depicted in Fig. 4.14, there
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is a great variation among the Yan et al. subspace-based DIs with different choices
of both active subspace dimension and time shift. Focusing on the first aspect,
the active space dimension is related to the space whose base is represented by
the left singular column vectors associated with the singular values which are quite
different from zero. Since the singular values decomposition provides a diagonal
matrix with singular values in ascending order, it is quite easy to evidence where
there is a great relative difference between the first singular values and the last
ones. As a matter of fact, a consistent discontinuous step between singular values
and orders of magnitude has been recorded at the fifth singular value (passing from
10−6 to 10−16). Nevertheless, Fig. 4.14, demonstrated that, with a constant time
shift, even with different subspace dimensions the Yan et al. DIs presented quite
scattered values. Specifically, with an active space dimension equal to five which
corresponds to the watershed among the DIs’ order of magnitude, the Yan et al. DI
does not provide any information. On the other hand, regarding the choice of the
time shift, this is related to the block rows considered in the block Toeplitz matrix
assembling. According to [96], for identification of a system of order 𝑛, the time
shift 𝑖, i.e. the number of block rows, must respect the condition in Eq. (2.96),
i.e. 𝑙𝑖 ≥ 𝑛, where 𝑙 is the number of monitoring sensors applied on the structure.
Since for practical applications on continuous systems, the 𝑛 is theoretically infinite
and, in practice, unknown, different rules of thumb and practical approaches have
been proposed in the literature to identify a good choice for the time shift, often
based on power spectral density matrix [96]. Trying to provide a quite concrete
interpretation of this user-defined parameter, the longer the time shift is, the greater
time window inter-dependencies will be considered in the correlation matrices of
the raw data but in the face of a greater computational effort. Therefore, when
dealing with SSI-cov, the time shift is chosen in an empirical way until e.g. the
stabilization diagram provides a good resolution to a first-sight identification of the
vertical alignments related to stable poles with progressively increasing system’s
order. It is worth noting that Fig. 4.14 pointed out that results related to active
space dimension 1 were virtually the same as active space dimension 6, whereas
results associated with dimension 2 were coincident with dimension 7, and these
latter reached Yan DI maximum absolute values around time shift equal to 88.
Indeed, the results of this initial sensitivity analysis suggested adopting in this case
an active space dimension equal to two which is consistent with the higher non-
zero singular values, and, in order to mitigate the computational effort, employing
a time shift equal to 23. Thereafter the above-mentioned parameters have been
identified, in [251], another subsequent sensitivity analysis has been conducted in
order to show the influence of the damage level percentage on the Yan et al. DI value
considering increasing discrete damaged conditions from 0% to 50% of cross-section
reduction with 5% constant step size. Results in [251] evidenced that even for low
levels of damage after the undamaged case, Yan et al. DIs assume non-zero values,
highlighting the presence of structural performance degradation. The indicators
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Table 4.11: Summary of the properties of the implemented MLP. None means
variable dimension, depending on the batch chosen size (in this case empirically set
to 200). In this case, input units are referred to method (B).

Layer Output Shape Activation Function Parameters Number
Input Layer [(None, 61)] - 0

Hidden Layer (None, 10) ReLU 620
Output Dense Layer (None, 3) Softmax 33
Total Trainable parameters: 653
Epochs: 1000 (also with Early Stopping)
Loss: Categorical Cross-entropy (Optimizer: Adam)

assume a monotonic behavior with progressively increasing values for a higher level
of damage, showing a virtually constant state around 0.8 when approaching 50%
cross-section reduction. Further empirical sensitivity analysis were conducted in
[251], regarding the acquisition time duration demonstrating that 5 minutes of
acquisition time represented the best trade-off between computational efficiency
effort and damage identification resolution, and even representing a critical case in
which Yan et al. DIs presented a significant scattered behavior, whilst for longer
acquisition up to 30 minutes Yan’s et al. DIs seem to be no more influenced by the
measurement session duration.

Afterward, the empirical sensitivity analysis has been performed, the numerical
test was carried out considering two main situations: the reference undamaged state
and a current, possibly damaged, one. For this latter, the algorithm was able to
randomly choose among three possible cases: a further undamaged situation which,
in combination with the reference one, it would virtually lead to a nil Yan et al.
DI value; a low damage situation, considering a cross-section reduction percentage
of 25%; an high damage situation, characterized by a cross-section reduction per-
centage of 50%. In order to further increase the generality of the results of the
present study, for every run, the algorithm randomly selected how many and which
elements are considered damaged with the three above-mentioned possible dam-
aged statuses. Under these conditions, 5000 numerical simulations were executed,
collecting 5 minutes long acceleration time history acquisitions for each structural
node of the FE model which simulates the presence of a realistic monitoring sys-
tem placed on that beam. For each acceleration record, the statistical features
were computed. Since the number of accelerometers inside the beam domain is 5
(excluding the extreme support restraint points), for each simulation acquisition,
6 statistical features have been extracted from each accelerometer producing, in
total, 30 extracted features. Recalling that for each simulation, two cases have
been considered (undamaged status and a possible damaged one), altogether, 60
features have been produced from each algorithm run in method (A). Method (A)
presented in Fig. 4.12, adopts as input these 60 features. Furthermore, these 60
features, in addition to the most informative Yan et al. DI, have been considered as
the input to the MLP method (B) as illustrated in Fig. 4.12. The most informative
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subspace-based DI was defined through the previous sensitivity analysis by setting
a time shift of 23 and an active space dimension of 2. Finally, method (C) of Fig.
4.12 has also been implemented with the same MLP architecture but considering
in input many Yan’s et al. DIs only. They have been calculated considering all the
time shifts from 5 to 25 and truncation orders which define active space dimen-
sions from 1 to 4, collecting in total 80 input features for every one of the 5000
simulations. The first MLP adopted in the current study presents a single hidden
layer, with 10 units, which have been empirically found to be the best trade-off
between accuracy performances and computational effort avoiding typical machine
learning issues such as overfitting and underfitting [60, 61]. The summary of the
current MLP properties model is reported in Tab. 4.11. It is worth noting that
the trainable weights are not usually considered in the input layer because it only
transmits the information to the next layer [60]. The activation function for the
hidden layer is the ReLu function in order to avoid negative values reaching the
output layer, which instead incorporates a softmax activation function suitable for
classification tasks [60, 61]. The multiclass classification MLP adopts the strategy
one-versus-the-rest, or also acknowledged as one-versus-all [61], since after collect-
ing the probability of belonging to one of the three output classes, the one which
presents the highest score is denoted as the selected class [43]. The loss adopted in
the current problem is the categorical cross-entropy which has been solved by the
Adam optimizer algorithm [60, 61].

To assess the performance of the AI-based models for the proposed multi-class
classification methods, the dataset has been subdivided into a training and test set
with 80% and 20% proportions respectively. Moreover, a validation set with 10%
of the training set have been used for constructing training curves and evaluating
the performances during training. For instance, Fig. 4.15 (a) depicts the (A)
proposed method MLP performances during the training phase. In particular, the
loss function both for the training and the validation sets is depicted over the
epochs, reporting also on the same graph the accuracy for both sets. It is worth
noting that when the validation loss starts to increase after a monotonic decreasing
behavior, at that point the overfitting of the model is reached. In the current
plot, the validation loss is still decreasing and only in the very last epochs start
to flatten out, without reaching yet the overfitting point and evidencing also a
constant overall accuracy from epoch 600 until the end. The performance of the
trained model (A) has been validated with the test set, whose classification results
have been condensed in the confusion matrix illustrated in Fig. 4.15 (b). The overall
accuracy obtained is about 92.20% and it measures the portion of the validation
set which has been correctly classified (the sum of main diagonal terms) out of
the entire validation set size (1000 samples). Two other metrics are presented in
the confusion matrix: precision and recall. The precision measures the number of
samples correctly classified in a certain class over the total number of samples which
have been associated with that class, whereas the recall represents the number of
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Figure 4.15: MLP multiclass classification results for method (A). (a) MLP con-
vergence curves; (b) MLP confusion matrix on the test set.
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Figure 4.16: MLP multiclass classification results for method (B). (a) MLP conver-
gence curves; (b) MLP confusion matrix on the test set.

samples correctly classified to a certain class over the number of samples which
actually belongs to that class [61]. Therefore, considering the position of the true
values along the vertical axis and the predicted values along with the horizontal one,
summing the elements of the confusion matrix along the rows for a certain column,
it is possible to get the number of samples associated with that column. On the
other hand, by summing the elements of the confusion matrix along the column
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Figure 4.17: MLP multiclass classification results for method (C). (a) MLP con-
vergence curves; (b) MLP confusion matrix on the test set.

for a certain row, it is possible to get the number of samples that actually belong
to that row. In other words, focusing on a certain class (column), the precision
evaluates how the predictor performs well, concerning when it associates always
that class even if in reality the true class was another one (false positives). Instead,
focusing on a certain true class (row), the recall evaluates the predictor performance
in terms of correctness of classification with respect to the ground truth, i.e. the
actual number of elements which have supposed to belong to that class and even
considering the so-called false negative. In this case, both the precision values
and the recall values are quite high, above 87% for all the classification possible
outcomes. Fig. 4.16 (a) depicts the (B) proposed method MLP performances
during the training phase, evidencing the absence of overfitting issues. From a
deeper insight into the loss and accuracy trends, it would virtually be possible
to stop the training to epoch 850, in order to save computational cost and obtain
almost the same performances. The performance of the trained model (B) has been
validated with the test set, whose classification results have been condensed in the
confusion matrix illustrated in Fig. 4.16 (b). The overall accuracy obtained is about
95.10% and it measures the portion of the validation set which has been correctly
classified (the sum of main diagonal terms) out of the entire validation set size
(1000 samples). As expected, the presence of the most informative Yan’s et al. DI
with the statistical feature inputs provides better classification performance to the
trained model. The higher classification of method (B) with respect to method (A)
proves that this most informative subspace-based feature improves the classification
performances of the ANN model in Level 1 of the SHM task. Afterward, Fig.
4.17 (a) depicts the (C) proposed method MLP performances during the training
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Figure 4.18: MLP with dropout regularization multiclass classification results for
method (B). (a) MLP convergence curves; (b) MLP confusion matrix on the test
set.

phase, evidencing, even in this case, the absence of any overfitting issues. From a
deeper insight into the loss and accuracy trends, it would virtually be possible to
stop the training downright to epoch 150, in order to greatly save computational
cost and obtain almost the same performances. The performance of the trained
model (C) has been validated with the test set, whose classification results have
been condensed in the confusion matrix illustrated in Fig. 4.17 (b). The overall
accuracy obtained is about 97.40% and it measures the portion of the validation
set which has been correctly classified (the sum of main diagonal terms) out of the
entire validation set size (1000 samples). As expected, the presence of Yan’s et
al. DIs only provides better classification performance to the trained model with
respect to the previous cases. The outstanding higher classification performance of
method (C) with respect to methods (A) and (B) proves that considering an entire
set of informative subspace-based features remarkably improves the classification
performances of the ANN model for the damage detection task. Furthermore, the
advantage of method (C) is that removes the arbitrary choice of the user about
governing parameters in the subspace-based DI calculations.

Some further regularization techniques have also been adopted in method (B) of
Fig. 4.12, attempting to improve the model accuracy and reduce the computational
effort. The early stopping criterion may even be regarded as a form of regulariza-
tion because it stops the algorithm when the error on a part of the training set
begins to rise. Thus, it may actually restrict the parameter search space [60]. A
dropout regularization has been even applied to the hidden layer in an attempt to
improve the performance of the MLP, with a dropout probability of each unit of
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Figure 4.19: MLP multiclass classification results for method (B)-worsened. (a)
MLP convergence curves; (b) MLP confusion matrix on the test set.

40% [43]. However, as shown in Fig. 4.18 (a), it required a greater computational
effort and a longer training phase (2000 epoch) to reach barely 93.70% of overall
accuracy, as reported in the confusion matrix depicted in Fig. 4.18 (b). Focusing
on the history diagram, it is possible to see that the main effect of the dropout
regularization is slowing the learning rate, but this reflects a more regular training
behavior considering both the loss and the accuracy trends compared with Fig.
4.16. Furthermore, the random dropout of some units provides a more resilient
ANN model, in which the weights are learned to work even when some neurons are
completely ignored [43].

Finally, another variant of method (B) has been implemented, denoted as (B)-
worsened. In this case, the (B)-worsened method adopts as input the statistical
features joined with a bad choice of subspace-based DI governing parameters, which
leads to a poorly informative Yan’s et al. indicator. In particular, considering all
previously calculated DIs for method (C), it has been empirically identified that a
bad choice could be virtually associated with a time shift equal to 10 for an active
space of dimension 1 for all of the 5000 simulations. Fig. 4.19 (a) depicts the vari-
ant (B)-worsened method MLP performances during the training phase, evidencing
also here the absence of overfitting issues. From a deeper insight into the loss and
accuracy trends, it would be virtually possible to stop the training to epoch 400, in
order to save computational cost and obtain almost the same performances. The
performance of the trained model (B)-worsened have been validated with the test
set, whose classification results have been condensed in the confusion matrix il-
lustrated in Fig. 4.19 (b). The overall accuracy obtained is about 94.30% and it
measures the portion of the validation set which has been correctly classified (the
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sum of main diagonal terms) out of the entire validation set size (1000 samples).
As demonstrated in this last example, even with a poor choice of a less informa-
tive subspace-based DI, since it is still more sensitive to structural damage, this
always improves the classification accuracy performances with respect to method
(A), which relies on statistical features only. This demonstrates the robustness of
the proposed method because, even considering a less informative but still more
sensitive DI, this further improves the model capacities to effectively fulfill the Level
1 of SHM. In conclusion, the current MLP is able to provide quite interesting mul-
ticlass classification results considering the statistical time series features coupled
with Yan’s et al. subspace DI, extending the capabilities of the MLP model trained
in [257]. Furthermore, a good generalization of the current deep learning model is
related to the fact that the 5000 numerical simulations randomly considered both
how many damaged elements to take into account (even none) and the level of
damage to associate with those selected elements. This produced time-series sig-
nals which cover many different cases, which were anyway successfully traced back
to three possible classification results: undamaged situation, low damage status
(cross-section reduction of about 25%), and high damage condition (cross-section
reduction of about 50%).

To further testing the effectiveness of proposed methods, a real-world monitoring
setup was arranged, being composed of a simply supported steel I-beam with a span
length of 𝐿 = 3.540 m. The cross section is characterized by a depth equal to 80mm
and a base width of 40mm, with a flange width of 5mm and a web width of 4mm.
As illustrated in Fig. 4.20, four uni-axial velocimeter sensors have been adopted in
the current case, placed every 0.708 m on the beam length, in order to collect the
vertical vibration response of the beam. The acquisition system of the measured
signals was composed of an oscilloscope with 200 MHz of bandwidth (-3 dB) at 50
Ω input impedance and 4 analog channels. The velocimeter sensors consist of a
spring-suspended wire coil moving inside a magnetic field, thus capturing voltage
deviations with respect to their baseline response. This latter is defined by the
sensor’s natural frequency, in this case, equal to 10± 3.5% Hz. This kind of sensor
represents the ideal cost-effective and high-sensitivity solution for SHM able to
capture the natural frequency of structures above the sensor natural frequency [95].
Thus, before adopting the proposed MLP-based damage detection methodologies,
the authors conducted the OMA analysis on the signals acquired with 1000 Hz of
sampling frequency from the steel I-beam for undamaged conditions, to verify that
the first vertical mode of the experimental beam was greater than 10 Hz. Since the
natural environmental vibration excitation alone was not enough to identify any
modal parameter, the authors caused environmental excitation able to activate at
least the first four vertical modes of the beam by indirectly exciting the surrounding
ground with a rubber-headed hammer. Fig. 4.21 (a) demonstrated that the rubber-
headed permitted to avoid spikes in the acquired vibration signals, and avoided
excessive deviations from the output-only OMA base hypotheses. Fig. 4.21 (b)

243



Machine-learning-aided damage detection strategies for civil structures

(a)

(b) (c) (d)

Figure 4.20: Experimental steel beam beam case study. (a) Beam monitoring
setup with measures; (b) Beam cross section dimensions; (c) Damage induced with
a localized cross section reduction. (d) Velocimeter sensors.

illustrates the relative stabilization diagram, computed with time shift equal to 15,
in which apparently five alignments of stable poles are evidenced. All the pole
alignments at 16.92 Hz, 74.27 Hz, 139.05 Hz, and 248.05 Hz appear stables from
lower orders up to higher orders, whereas the alignment around 43 Hz appears
noisier along the orders. To validate the OMA results, a FEM modal analysis
with OpenSeesPy software has been conducted. With a preliminary FEM modal
analysis, the authors were able to exclude the alignment around 43 Hz, since it
does not represent an actual vertical mode of the structural system. However, the
existing steel beam needs a calibration of the flexural rigidity parameter 𝐸𝐼, which
can be conducted by solving an unconstrained optimization problem leveraging the
OMA results according to objective function in Eq. (2.140) [126, 116], but limiting
to only the first part of equation and performing the square operation to magnify
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Figure 4.21: OMA analysis for undamaged conditions of the experimental beam.
(a) Monitored signals expressed in Volt [V]; (b) Resulting stabilization diagram.

the relative differences, i.e.:

min
𝜽∈Ω

ℱ(𝜽 = 𝐸𝐼) =
𝑚
∑
𝑢=1

𝛾𝑢 (
𝑓 (𝑒)
𝑢 − 𝑓 (𝑐)

𝑢 (𝜽 = 𝐸𝐼)
𝑓 (𝑒)
𝑢

)
2

(4.18)

where 𝑚 = 4 is the number of considered modes, 𝛾𝑢 = 1 factors have been all
set to unity, 𝑓 (𝑒)

𝑢 are the experimental frequency obtained from the OMA and the
𝑓 (𝑐)
𝑢 are obtained analytically based on the dynamics formulation of a continuous
simply supported beam [264]:

𝑓 (𝑐)
𝑢 (𝜽 = 𝐸𝐼) = 𝑚2𝜋

2𝐿2 √
𝐸𝐼
𝜌𝐴

(4.19)

in which 𝜌 is the material density equal to 7850 kg/m3 for structural steel, and
𝐴 is the cross-section area of the steel I-beam, whose dimensions are reported in
Fig. 4.20 (b). The FEM mode shapes retrieved from OpenSeesPy modal analysis
evidenced a good agreement with the experimental ones. Afterward, the numerical
FEM model in OpenSeesPy was adjusted with the OMA-calibrated flexural rigidity
in order to simulate five-minutes time-histories vibration responses database under
various white noise Gaussian excitation with PGA of 0.01 g and with different
damage scenarios. To collect the vibration response of the simulated I-beam, the
nodes of the model have been placed accordingly to the actual sensors’ placement
along the beam, see Fig. 4.20 (a). As depicted in Fig. 4.20 (c), in this realistic
scenario, the damage has been introduced as punctual damage, by locally reducing
the cross-section. Therefore, in total 5000 FEM simulations have been conducted
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Table 4.12: Summary of the properties of the implemented MLP for the experi-
mental case study. None means variable dimension, depending on the batch chosen
size (in this case empirically set to 200). In this case, input units are referred to
method (A).

Layer Output Shape Activation Function Parameters Number
Input Layer [(None, 48)] - 0

Hidden Layer (None, 10) ReLU 490
Output Dense Layer (None, 2) Softmax 22
Total Trainable parameters: 512
Epochs: 300
Loss: Categorical Cross-entropy (Optimizer: Adam)

both in a reference (undamaged) state and in a current (possibly damaged) state,
with different punctual damages randomly located along the beam and with a pos-
sible entity of 0%, 5%, 10%, 15%, or 20% of cross section reduction. With a deeper
insight into these 5000 FEM simulations, it was possible to notice an unbalanced
number of undamaged scenarios, randomly occurring only in 965 simulations. De-
spite the unbalance between the two healthy and damaged classes may produce
biased training toward the damage scenario with respect to the undamaged one,
the authors leveraged this fact to show if the damage-sensitive features are effec-
tive and discriminative enough to ensure a good training of the MLP models even
with a biased dataset, a condition which usually occurs in real-world situations.
In order to show a realistic application of the three proposed intelligent damage
detection methods, the authors trained the neural models with only two output
classes, i.e. healthy or damaged, acting therefore as an anomaly detection proce-
dure. The numerical FEM model of the experimental beam permitted training the
neural models, which have been finally tested on real vibration acquisitions from
the experimental setup thereafter. The MLP has been chosen with a hidden layer
with 10 units as reported in Table 4.12. As before, to effectively train the MLP
models, datasets of damage-sensitive features have been collected from the 5000
simulated time history responses for each of the three proposed methods (A), (B),
and (C). Afterward, every dataset of features has been subdivided into two parts:
the 80% composed the training set, whereas the remaining 20% is the test set. The
validation set size has been set equal to 10% of the training set.

Six statistical features are computed for Method (A) for both reference and
current state, and considering the adoption of four velocimeter sensors on the steel
experimental I-beam setup, the input vector has a dimension of 48. The results of
the training of the MLP for method (A) are reported in Fig. 4.22. The convergence
curves over 300 epochs highlighted overfitting issues occurring from around epoch
number 20 due to the increasing trend of validation loss. Therefore, the early stop-
ping procedure was employed by limiting the training over 20 epochs, as reported
in Fig. 4.22 (a). Nevertheless, with punctual damage, statistical features of the
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Figure 4.22: MLP training performances for method (A) on simulated I-beam. (a)
20 epochs due to early stopping to avoid overfitting; (b) Confusion matrix on the
test set.
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Figure 4.23: MLP training performances for method (B) on simulated I-beam. (a)
300 epochs without any evidence of overfitting; (b) Confusion matrix on the test
set.

time series responses were not sufficiently discriminative between damaged and un-
damaged cases. Indeed, as depicted in Fig. 4.22 (b), the confusion matrix on the
test set revealed a biased behavior of the MLP for method (A) toward the damaged
class, reflecting the biased unbalance of the 5000 simulations. Method (B) relies
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Figure 4.24: MLP training performances for method (C) on simulated I-beam. (a)
20 epochs due to early stopping to avoid overfitting; (b) Confusion matrix on the
test set.

on the calculation of the same six features of method (A) for every sensor for both
reference and current states, whilst additionally considering the most informative
subspace-based Yan’s et al. [253] DI feature, delivering an input features vector
with dimension of 49. The results of the training of the MLP for method (B) are
reported in Fig. 4.23. The convergence curves over 300 epochs evidenced that no
overfitting issues occurred because of a monotonic decreasing trend of the valida-
tion loss. Therefore, the confusion matrix on the test set for method (B) reported
in Fig. 4.23 (b) demonstrated the benefits of considering a subspace-based DI in
addition to the statistical features. Actually, the additional information carried
with Yan’s et al. DI substantially improved the training performance of method
(A), and now the trained MLP for method (B) does not reflect anymore the bi-
ased unbalance of the 5000 simulations. The Yan’s et al. subspace indicator thus
provided more discriminative features which substantially helped the MLP model
to correctly classify damaged and undamaged samples. Eventually, method (C)
relies on the calculation of an entire dataset composed of subspace-based Yan’s
et al. damage sensitive feature only. In accordance with the previous numerical
case study analyzed, these DIs have been calculated considering all the time shifts
from 5 to 25 and truncation orders which define active space dimensions from 1 to
4. Thus, the input feature vector to the MLP for method (C) has a dimension of
80. The results of the training of the MLP for method (C) are reported in Fig.
4.24. Again, the convergence curves over 300 epochs highlighted overfitting issues
occurring from around epoch number 20 due to the increasing trend of validation
loss. Therefore, the early stopping procedure was employed by limiting the training
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Figure 4.25: After training MLP predictions on experimental measurements col-
lected from the steel-I beam for one undamaged and four damaged scenarios. (a)
predictions of MLP trained with method (A); (b) predictions of MLP trained with
method (B); (c) Predictions of MLP trained with method (C).

over 20 epochs, as reported in Fig. 4.24 (a). Since the benefits of Yan’s et al DIs
have been already demonstrated before, even with small and punctual damages
their informative content is very effective and discriminative between damaged and
undamaged cases. Fig. 4.24 (b) illustrates that the confusion matrix on the test
set revealed the outstanding behavior of the MLP for method (C) by correctly
classifying all the samples of the so far unseen simulated test set.

In conclusion, the authors tested the numerically trained MLP for the three
methods (A), (B), and (C) with vibration responses collected from the experimen-
tal setup in five different scenarios, denoted as 1 to 5. The first scenario is referred
to as the undamaged situation and was identified as the reference situation, whereas
all the scenarios from 1 to 5 taken individually have been considered as the current
state. The scenarios from 2 to 5 represent the steel I-beam with induced punctual
damage introduced in the midspan, as depicted in Fig. 4.20 (c). Specifically, the
scenarios from 2 to 5 represent progressively increasing damage level situations with
a local cross-section reduction of about 5.9%, 11.8% 23.5% 25.7% respectively. In
each of the 5 experimental scenarios, the authors collected a few minutes of vibra-
tion responses from the four velocimeter sensors placed on the steel I-beam and
calculated the input features vector to feed the after-training MLP neural models
for the three proposed methods. The prediction results of the trained MLP models
have been reported in terms of the confusion matrix in Fig. 4.25. As shown in
Fig. 4.25 (a), the poor training performances on numerical simulations of method
(A) reflected also on the experimental measurements, whereas methods (B) and
(C), Figs. 4.25 (b)-(c) respectively, provided outstanding results correctly classify-
ing the four damage scenarios and the remaining undamaged one. Obviously, it is
worth noting that due to the very reduced number of samples, these results serve as
an initial validation of the proposed method. However, the current results should
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be deeply extended with more data, and further future studies and extensions to
understanding the robustness of the proposed DD methods to more complex struc-
tural systems, aiming to further generalize and also simplify the adoption of our
approach. Indeed, the main limitation of our proposed model is requiring the imple-
mentation of a FEM of the structure to accurately train the AI-based models, which
can be probably unfeasible when dealing with very complex structural systems.

4.3.1 Effects of noise on the proposed subspace-based dam-
age detection strategies

Regardless of the methodology, the quality of SHM outcomes is strongly affected by
the characteristics of the sensors employed to collect the vibration response of the
structural system of interest. Different factors and the noise source may affect and
corrupt the structural response, e.g. changes in the input excitation (e.g. stochastic
nature of traffic load conditions), environmental and climatic agents such as wind,
temperature, or even humidity and moisture which may cause sensors damaging
and failures, and imperfect intrinsic nature of the sensing system e.g. reading or
calibration errors (systematic effects). Furthermore, when dealing with output-only
OMA, operational conditions deliver very low amplitude vibrations and a reliable
modal estimation requires high-quality and low-noise sensors [96]. Therefore, to
further analyze the robustness of the previously proposed DD strategies, the simu-
lated numerical beam system have been studied to realistically simulate real-world
accelerometer sensors. Many types of sensors are used for SHM purposes [265, 252],
and today’s most common tendencies are fiber optic sensors (FOS), piezoelectric
sensors (PZT), micro-electro-mechanical systems sensors (MEMS). To plausibly
simulate noise coming from a real-world sensors array, an additive random noise
process usually contaminates the structural time series response collected from each
sensor, whose level is quantified by the SNR in dB [96]. The SNR values were herein
calibrated attempting to faithfully reproduce MEMS accelerometers available on
the market, whose characteristics have been retrieved from a market survey and a
literature review conducted by the authors of the most widely adopted sensors for
SHM purposes. For instance, considering the Italian context, the ANAS agency has
recently fixed some rules for new SHM monitoring system design, totally embracing
the MEMS technology for its low costs, but setting some minimum requirements
imposing to use only some good-quality MEMS models and avoiding extremely low-
cost devices typically associated with noisy or low-quality measures, insufficient for
the SHM purposes. Specifically, allowed MEMS accelerometers should present an
output signal of 4-20 mA direct current or differential voltage signal, able to record-
ing with a full-scale range of at least ±2 g and a dynamic range bandwidth of 0-500
Hz, characterized by a noise floor lower than 25 𝜇g/(Hz0.5) and a standard sen-
sitivity of at least 2000 mV/g, guaranteeing an environmental protection at least
with IP67 class for hardware components, with a temperature operative range of
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Table 4.13: Summary of the properties of the implemented 1D-CNN for studying
noise effects.

Layer Output Shape Activation Function Parameters
Number

Input and reshape layer [(None,80,1)] - 0
Conv1D_1 (None,77,15) ReLU 75
Conv1D_2 (None,74,15) Batch Normalization +ReLU (915+60)
Max Pooling (None,24,15) - 0
Conv1D_3 (None,21,40) Batch Norimalization +ReLU (2440+160)
Global Average Pooling (None,40) Drop out 0
Output Dense Layer (None,3) Softmax 123

Total Trainable parameters: 3773
Trainable parameters:3663
Epochs: 1000
Loss: Categorical Cross-entropy (Optimizer: Adam)

Table 4.14: Summary of the properties of the implemented MLP for studying noise
effects.

Layer Output Shape Activation Function Parameters Number

Input and reshape layer [(None,80)] - 0
Hidden layer (None,15) ReLU 930

Output Dense Layer (None,3) Softmax 48

Total Trainable parameters: 3773
Trainable parameters:3663
Epochs: 1000
Loss: Categorical Cross-entropy (Optimizer: Adam)

-20 ÷ +60 ∘C and temperature stability lower than 0.01 %/∘C, and a phase angle
variation lower than 15∘ in the 0-50 Hz domain. In typical real-case data acqui-
sition scenarios, recorded signals are characterized by the presence of background
noise. The noise effect in SHM is also related to intrinsic sensor errors, including
sampling frequency, time, and systematic errors of calibration. All these errors can
be eliminated to a certain degree [266]. However, some noise components cannot be
removed but only attenuated. According to Rahaman [267], the current state-of-
the-art MEMS sensors can guarantee an SNR that ranges between 27dB and 67dB
under real-world working conditions. Therefore, three different level of SNR are
herein chosen to simulate MEMS performance on real-case data collecting: 20dB
(low quality), 40dB (medium quality), and 60dB (good quality). Considering the
previously methods (A), (B), and (C), illustrated in Fig. 4.12, and the three SNR
values, two ANN architecture have been adopted this time on the simulated beam
case study illustrated in Fig. 4.13. In particular, a 1D-CNN and an MLP have
been trained, whose architecture and hyperparameters information are reported in
Tabs. 4.13-4.14 respectively, in which input dimensions are referred to the method
(C). The 1D-CNNs are used in this work because of their effectiveness in obtaining
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Figure 4.26: Classification results of the MLP models exploring varying noise ef-
fects.

a feature maps from a short segment of the overall dataset, especially in the case
in which the feature’s location in that data segment is not highly correlated. The
CNN model has been implemented in python through the TensorFlow module with
the Keras front-end. Before training the neural models, the dataset is divided into
two parts: a training set and a test set, with proportions of 80% (4000 simulations)
and 20% (1000 simulations) respectively, and a further partition of 10% inside the
training set defined the validation set for assessing accuracy performance online
during the training phase among the epochs.

The performance of the best trained MLP model on different SNR levels has
been validated with the test set, whose classification results have been condensed in
the confusion matrix illustrated in Fig. 4.26. On the other hand, Fig. 4.27 shows
the results from the best CNN model on the same datasets. The accuracy levels

252



4.3 – Neural-based damage detection with subspace features and statistical indicators

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

362
36.20%

1
0.10%

0
0.00% 99.72%

12
1.20%

245
24.50%

43
4.30% 81.67%

9
0.90%

107
10.70%

221
22.10% 65.58%

94.52% 69.41% 83.71% Acc.
82.80%

A20dB CNN Conf.Mat.

(a)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

366
36.60%

0
0.00%

0
0.00% 100.00%

10
1.00%

292
29.20%

18
1.80% 91.25%

4
0.40%

54
5.40%

256
25.60% 81.53%

96.32% 84.39% 93.43% Acc.
91.40%

B20dB CNN Conf.Mat.

(b)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

370
37.00%

0
0.00%

0
0.00% 100.00%

12
1.20%

307
30.70%

0
0.00% 96.24%

9
0.90%

1
0.10%

301
30.10% 96.78%

94.63% 99.68% 100.00% Acc.
97.80%

C20dB CNN Conf.Mat.

(c)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

323
32.30%

0
0.00%

0
0.00% 100.00%

9
0.90%

289
28.90%

29
2.90% 88.38%

10
1.00%

87
8.70%

253
25.30% 72.29%

94.44% 76.86% 89.72% Acc.
86.50%

A40dB CNN Conf.Mat.

(d)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e
343

34.30%
0

0.00%
0

0.00% 100.00%

13
1.30%

266
26.60%

41
4.10% 83.12%

5
0.50%

53
5.30%

279
27.90% 82.79%

95.01% 83.39% 87.19% Acc.
88.80%

B40dB CNN Conf.Mat.

(e)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

377
37.70%

0
0.00%

0
0.00% 100.00%

5
0.50%

293
29.30%

4
0.40% 97.02%

11
1.10%

2
0.20%

308
30.80% 95.95%

95.93% 99.32% 98.72% Acc.
97.80%

C40dB CNN Conf.Mat.

(f)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

352
35.20%

0
0.00%

0
0.00% 100.00%

10
1.00%

277
27.70%

47
4.70% 82.93%

3
0.30%

85
8.50%

226
22.60% 71.97%

96.44% 76.52% 82.78% Acc.
85.50%

A60dB CNN Conf.Mat.

(g)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

354
35.40%

0
0.00%

0
0.00% 100.00%

12
1.20%

268
26.80%

37
3.70% 84.54%

11
1.10%

68
6.80%

250
25.00% 75.99%

93.90% 79.76% 87.11% Acc.
87.20%

B60dB CNN Conf.Mat.

(h)

UD LD HD Rec.
Predicted

U
D

LD
H

D
P

re
.

T
ru

e

329
32.90%

0
0.00%

0
0.00% 100.00%

7
0.70%

324
32.40%

0
0.00% 97.89%

7
0.70%

0
0.00%

333
33.30% 97.94%

95.92% 100.00% 100.00% Acc.
98.60%

C60dB CNN Conf.Mat.

(i)

Figure 4.27: Classification results of the CNN models exploring varying noise ef-
fects..

are all above 90% for MLP models but decrease to 82.80% for CNN models in the
cases (A) and (B). Accuracy measures the portion of the test set which has been
correctly classified.

The precision measures the number of samples correctly classified in a partic-
ular class over the total number of samples which have been associated with that
class. In contrast, the recall represents the number of samples correctly classified
into a specific class over the number of samples which belongs to that class [61].
The precision and recall values are quite high, being above the 87.69% for all the
classification possible outcomes in MLP models. Instead, there is a significant de-
crease on CNN, even to 65.58%. Considering CNN models in 60dB SNR levels, in
Fig. 4.27 (g), the overall accuracy for method (A) is 85.50%. Fig. 4.27 (h) shows
that the accuracy for method (C) is around 87.20%, and the higher classification
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Figure 4.28: 60-dB noise level CNN training performances history during the
epochs.

of the method (B) with respect to method (A) proves that this most informative
subspace-based feature improves the classification performances of both CNN and
ANN model for every noise levels. In Fig. 4.27 (i), the final accuracy for the trained
model in method (C) is 98.60%. The outstanding higher classification performance
of method (C) to methods (A) and (B) proves that considering an entire set of in-
formative subspace-based features improves the classification performances of the
DL models for the damage detection task.

Best weights and models should be saved for prediction. The loss function both
for the training and the validation sets is depicted over the epochs, for the CNN
model in 60dB SNR levels is reported in Fig. 4.28. When the validation loss starts
to increase after a monotonic decreasing behavior, the overfitting of the model is
reached. In Fig. 4.28 (a), the validation loss increases gradually while the loss
on the training set decreases, reaching the overfitting point at around 400 epochs.
The same situation appears in Fig. 4.28 (b), while the overfitting point is around
450 epochs. The validation accuracy continues to increase a little even when the
overfitting point is reached. In Fig. 4.28 (c), the loss is relatively low. From a
deeper insight into the loss and accuracy trends, it would virtually be possible to
stop the training to epoch 150 to save computational cost and obtain almost the
same performances.
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Figure 4.29: Classification results of the 20dB CNN models on other SNR levels in
all three methods.

The robustness of the deep-learning is affected by the noise. Figure 4.29 (a),
(d), and (g) respectively show the performance of the best CNN models in methods
(A), (B), and (C). In method (A), the performances of the CNN model trained
with the 20dB SNR level have been validated with the test set from 40dB SNR
level, as illustrated in Figure 4.29 (b). The overall accuracy obtained results to be
81.80%. In Figure 4.29 (c), accuracy is 80.50% for the test set with the 60dB SNR
level. The same outcomes can be drawn even for methods (B), and (C). Figure
4.30 shows the results for 60dB noise levels. Even if the noise level has changed
significantly, the previously trained model gives good predictions.
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Figure 4.30: Classification results of the 60dB CNN models on other SNR levels in
all three methods.

The current MLP and CNN models can provide quite interesting multiclass
classification results considering the statistical time series features coupled with
the Yan et al. subspace damage indicator [253]. This allows extending the ca-
pabilities of the MLP model. Furthermore, a good generalization of the current
DL models is related to the fact that the 5000 numerical simulations randomly
considered both how many damaged elements to consider and the level of dam-
age to associate with those selected elements. This produced a time-series signal
which covers many different cases, which was anyway successfully traced back to
the three possible classification results: undamaged situation, low damage status
(cross-section reduction of about 25%) and high damage condition (cross-section
reduction of about 50%). The influence of noise is further reduced. DL models are
robust to noise.
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4.4 Damage detection conclusive remarks
In the present chapter, the studies conducted during the current Ph.D. program
within the damage detection (DD) field were reported and discussed. Specifically,
the DD represents the starting point in the study of how structural damage oc-
curs and evolves under operating and in-service conditions. DD is indicated as the
level 1 of the structural health monitoring (SHM) paradigm initially formalized by
Rytter et al. [219]. For the sake of completeness, two further levels have been
herein added to the SHM ideal paradigm, as reported in Fig. 4.1. Level 0 is a
necessary condition because it refers to all the operations of the design and instal-
lation of any SHM monitoring system. On the other hand, the prognosis level 5
has been further detailed adding a new level 6 for adjusting this last level to the
innovations and trends of the latest periods. Indeed, the novel emerging sensing
technologies combined with artificial-intelligence-based solutions are paving a new
road for rethinking smart structures of the next future, configuring new and intelli-
gent structures within the smart city concept and environments with auto-diagnosis
features, integrated early warning alert systems, and even with auto-prognosis pre-
dictions features. Therefore, for the crucial importance of the identification of
structural damage, in the current Ph.D. program, the research studies were mainly
focused on level 1 of the SHM paradigm, proposing some effective integration of AI
solutions to improve existing methodologies. Besides vibration-based DD strate-
gies, other nondestructive testing or evaluation (NDT/NDE) alternatives have been
also studied. Specifically, some starting efforts were dedicated to acoustic emission
(AE) passive monitoring strategies for crack identification and localization, see e.g.
[224]. Another AI-based integration with NDT has been herein addressed focusing
on tunnel linings’ flaws detection via ground penetrating radar (GPR) monitoring
systems. The current proposed approach for GPR indirect tunnel monitoring prin-
cipally treated the problem as a multi-class defects classification problem arranged
as a set of hierarchical binary classification schemes, as illustrated in Fig. 4.6.
Immediate future research efforts should be geared towards the other three SHM
paradigm remaining levels, i.e. the damage localization task, the damage severity
quantification, and the actual safety health state assessment. The main purpose
of all deeper levels formalized in the ideal SHM paradigm is to provide a reliable
and exhaustive diagnosis, of existing structures and infrastructures, and possibly
also with prognosis insights [219]. A promising research path for continuing the
current research studies in that direction may be leveraging the deep learning (DL)
model’s interpretability tools in innovative ways, for instance exploiting attention
maps which are naturally provided by the outputs of transformer models for defects’
localization and severity assessment.

On the other hand, mainly focusing on the vibration-based approaches, dur-
ing the current Ph.D. program special attention was dedicated to subspace-based
damage indicators. Their definition is derived from the theoretical background of
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the stochastic subspace identification (SSI) algorithm. In particular, the Yan et al.
subspace-based DIs [253] herein adopted are formalized from the SSI-cov version
based on the Hankel formulation of the output covariance estimates, see Appendix .
The greatest advantage of dealing with subspace-based DIs is not strictly requiring
to perform a prior complete OMA, and damage can be evidenced when comparing
a reference state and a current, possibly damaged one. However, these indicators
may exhibit poor informative value if their governing parameters are not properly
selected. Therefore, to fully leverage all the potentials offered by innovative AI-
based solutions, and even attempting reducing the arbitrary choice of governing
parameters, and potentially poorly informative, an artificial neural network (ANN)
solution was proposed to learn hidden patterns in a bunch of damage indicators
computed for a reasonable range of values of governing parameters. The valida-
tions herein conducted on a numerical simple beam problem are promising, and
an initial experimental real-world beam laboratory test appears as an encouraging
assessment of the proposed methodology. Nonetheless, this initial study presents
some limitations, such as requiring a representative finite element model to create
the training database, which plays a crucial role in the effectiveness of the entire
procedure. However, with very complex structural systems this approach seems
quite unfeasible. Therefore, future studies should be mainly oriented on overcoming
these limitations, rethinking the AI-assisted methodology whilst further exploring
the potentialities offered by the subspace-based signature methods for all the levels
in an ideal SHM paradigm [219].
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Chapter 5

Future developments and
conclusions

The main research topics conducted during the current Ph.D. program and dis-
cussed hitherto in the present Thesis document were mainly dedicated to the
world of output-only vibration-based operational modal analysis (OMA) for struc-
tural health monitoring (SHM) purposes. Special attention was deserved to their
branches of automatic operational modal analysis (AOMA) and damage detection
(DD), pursuing the main goal of integrating artificial intelligence (AI), data-driven
machine learning (ML), and deep learning (DL) solutions for further improving the
conventional approaches, attempting to overcome some of the still existing limita-
tions of the traditional methods.

It is worth reminding that one of the main fundamental underlining assump-
tions of conventional output-only OMA techniques is that the subject of the dy-
namic identification process is the whole combined system, as illustrated in Fig.
2.1. This implies the characterization of modal parameters, viz. natural frequen-
cies, damping ratios, and mode shapes, related not only to the actual structural
system of interest, but also to those harmonic components inherently present in the
unmeasured input excitation [96]. In particular, the actual random operating loads
causing vibration responses are conceived as the results of a loading filter fed with
a stationary Gaussian white noise process in origin. This basic assumption actually
restricted the OMA methods’ validity scope to linear-time-invariant (LTI) struc-
tures under operating conditions in which their input vibration can be assumed as
stationary and ergodic zero mean Gaussian white noise processes. In detail, the
LTI property implies that the parameters governing the dynamic behavior of the
structure under investigation are constant over time. Another advantage of vibra-
tion analysis of LTI systems is the validity of the modal superposition principle
which allows reconstructing the dynamic response of a linear structure by super-
posing the harmonics which do not depend on any external force or load but only
depend intrinsically on the stiffness and mass properties (eigenvalue analysis). On
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the other hand, the acting in-service loads can be quite far from stationary condi-
tions, reflecting their effects in the monitored vibration response. Therefore, this
latter observation justifies the usual adoption of long vibration measurement acqui-
sition duration in OMA. Indeed, the final goal is to mitigate instantaneous random
effects of input excitation by averaging them over long observation time windows,
thus approaching the stationary condition hypothesis [95]. Nevertheless, acquiring
very long acquisitions to average the nonstationary effects is not always a feasi-
ble option. For instance, considering a structure under earthquake excitation or a
bridge under very low traffic conditions (e.g. few train passages per day), the moni-
tored vibration responses are typically short in time due to the very short duration
of input excitation. The recorded time series usually exhibit an initial transient
period in which nonstationary loads are acting, usually followed by a quite short
free-decay response. Therefore, the impossibility of acquiring in-situ long vibration
measurements being representative of these quite short input excitations typically
prevents the adoption of conventional OMA methods, since they are often signif-
icantly far from their validity scope. Furthermore, in these latter special cases, it
is not uncommon that structural systems are damaged during strong excitations
like earthquakes. This implies the variation of their modal parameters during the
transient period, especially with stiffness reductions, without respecting anymore
the LTI condition. Another example in which the LTI hypothesis is lost is with
mass-varying systems. Especially, focusing on civil engineering systems, in [7] it was
mentioned that vibration-based monitoring of off-shore platforms can exhibit mass
variation for various possible causes. For instance, salinity jointly with continuous
dry and wet cycles at sea level may induce both corrosion on one side or marine
growth on the other side. Moreover, even a simple water ingress may vary mass
and damping dissipating properties of the off-shore platform. A further different
example of a civil structure with mass-varying properties can be represented by
cables of suspension or stayed bridges in arctic regions, which undergo ice accretion
issues [268, 269].

All the above observations suggested that a completely different branch of study
is instead devoted to nonstationary and/or nonlinear OMA procedures since a com-
pletely different mathematical framework is required. In this last chapter, a possi-
ble future promising research path is briefly mentioned dedicated to nonstationary
OMA methods for analyzing time-varying structural systems. This specific subject
represents frontier research within the civil engineering SHM-broad-range solutions.
This is especially true from the perspective of effectively integrating innovative AI-
aided tools aiming to overcome the still-existing analytical or methodological lim-
itations in this field. This research area represents the most natural attaining for
the topics currently addressed in the present Thesis document. Only some basic
aspects of nonstationary OMA are mentioned in the remaing part of the chapter
whilst progressively moving to the final conclusion section, unpretentious of being
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completely exhaustive of this wide multidisciplinary discipline. It is worth under-
lining that no new case studies and/or new author’s research papers are reported
in the current and following sections. Indeed, the material herein reported should
be interpreted as a brief literature review conducted in the last weeks of the cur-
rent Ph.D. program. The final aim of this last chapter is therefore highlight some
promising future research paths regarding the nonstationary OMA methods, which
will be developed after the end of the current Ph.D. program, being probably the
most natural research topic continuation.

5.1 Notes about nonstationary operational modal
analysis

The structural system’s nonlinearities may arise from several different sources [270],
such as friction, gyroscopic effects, kinematic effects such as backslash phenomena
[271], structural materials hysteresis, geometric constraints, and second-order de-
formation effects. These nonlinear effects further increase the difficulties of the
dynamic behavior characterization due to the rise of multiple equilibrium points,
bifurcation phenomena, resonance jump, and chaos among others [270]. Moreover,
it is worth reminding that in dynamics and vibration control, it is fundamental to
analyze stability conditions, thus investigating if the system returns to the same
equilibrium point or if it maintains its original steady state of motion under small
oscillations and perturbations. The most complete approach for the study of sta-
bility can be found in the study entitled “The General Problem of the Stability
of Motion” by the Russian mathematician Lyapunov in the late 1900s [270]. Its
direct method states that a system is in a stable equilibrium state if it is possible to
formulate a positive-definite function of the state coordinates, called the Lyapunov
function, and it is always negative or zero for small perturbations around the equi-
librium point. Since its specific formulation depends on the analyzed system, the
Lyapunov function has been studied for a number of classes of nonlinear dynamical
systems, and it serves as a generalized norm of the dynamical system solution. An-
other popular method to study nonlinear random vibrations is to approximate the
solutions of nonlinear systems according to statistical linearization or equivalent
linearization techniques [272]. Besides nonlinearities, the nonstationarity of vibra-
tion responses of a system means that their statistical moments are time-dependent
[272], and consequently their governing modal parameters are time-varying quan-
tities [273]. The vibration solution can still be approximated to be Gaussian if the
system is weakly nonlinear. In this case, the Duhamel integral equivalent to linear
impulse response function still holds [272]. Otherwise, modal parameters exhibit
time-varying properties, and an acknowledged method to visualize their changes
over time is representing them according to time-frequency analysis methods [273].
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Despite the concepts of amplitude and frequency spectrum being intuitive in sta-
tionary conditions, when dealing with nonstationary signals it is necessary to intro-
duce the concept of instantaneous amplitude (IAs) and instantaneous frequencies
(IFs), due to the intrinsic difficulties of characterizing these time-varying properties.
Indeed, due to the nonperiodic nature of nonstationary involved signals, spectral
base Fourier methods are inadequate. Therefore, a new starting technique was ini-
tially developed moving from Fourier transform concepts, called short-time Fourier
transform (STFT) [273]. In STFT, nonstationary or transient signals are studied
simultaneously in the time and frequency domain. This method relies on diving
the signal 𝑥(𝑡) into several short time blocks, separated or overlapped, according
to a family of translating windowing functions 𝑤(𝑡 − 𝜏) formulated for ensuring a
certain frequency modulation, see e.g. Eqs. (2.19)-(2.20), and finally performing
FT on each block:

𝑋(𝜏, 𝑓) = ∫
∞

−∞
𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡, (5.1)

Analyzing the time-frequency spectrogram, i.e. a graphical representation of the
magnitude spectrum |𝑋(𝜏, 𝑓)|2 versus time instants, the STFT is able to identify
when and which frequencies are varying over time. However, the quality of spectral
information retrievable is determined by the window length size. Being this latter
the same for every frequency, in STFT it is important to choose the window size
as a trade-off between computational efficiency and frequency resolution quality.

Adaptive STFT and multi-resolution STFT have been also formulated, i.e.
when certain frequency bands are of special interest rather than others [273]. How-
ever, to systematically overcome the window limitation definition of the STFT
method, the continuous wavelet transform (CWT) technique [7, 273] was devel-
oped, establishing its success in dealing with non-stationary signal analysis. CWT
of a signal 𝑥(𝑡) can be expressed as follows:

𝑋(𝑎, 𝑏) = ∫
∞

−∞
𝑥(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡 , where 𝜓𝑎,𝑏(𝑡) =

1√
𝑎
𝜓(𝑡 − 𝑏

𝑎
) (5.2)

in which the symbol 𝜓(𝑡) represents a prototype of window called mother wavelet,
and the scaling factor 1√

𝑎 ensures energy normalization. The main advantage of
CWT is determining correlations of the signal 𝑥(𝑡) at any time and scale changes,
for a given mother wavelet function [273]. Therefore, CWT is able to detect chaotic
behavior, and the resulting frequency resolution varies based on the window adopted
with respect to the center frequency.

Another example of a most recent and widespread approach to studying the IFs
is the Hilbert-Huang transform (HHT) technique. HHT adopts a two-step method.
The foremost part is denoted as the empirical mode decomposition (EMD), also
acknowledged as the sifting process. In this first part, the signal is decomposed into
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𝑛 intrinsic mode functions (IMFs) 𝑐𝑗(𝑡), representing a set of base functions [274,
275, 276]:

𝑥(𝑡) =
𝑛
∑
𝑗=1

𝑐𝑗(𝑡) + 𝑟𝑛, (5.3)

being 𝑟𝑛 the residue. The IMFs are narrow-band time signals extracted from the
mother signal and are respectful of two conditions. Firstly, the number of zero
crossings and its extremes must be the same, or at a limit different by one in all
data. The second condition claims that the envelope delineated by the local mini-
mum and maximum, usually interpolated by a cubic spline, must be symmetrical,
thus delivering a zero average everywhere. Iterative repeating this sifting proce-
dure, all the IMFs are found until an ending condition is met, e.g. based on a
deviation limit between two consecutive IMFs [273]. Thereafter, the second part of
the HHT algorithm relies on the adoption of the Hilbert transform (HT) technique
for obtaining the time-frequency domain representation for each IMF in terms of
time-dependent IAs and IFs. Denoted by the operator 𝐻[•], the Hilbert transform
𝑑𝑗(𝑡) of the 𝑗-th IMF 𝑐𝑗(𝑡) is given by

𝑑𝑗(𝑡) = 𝐻[𝑐𝑗(𝑡)] =
1
𝜋
P [∫

∞

−∞

𝑐𝑗(𝜏)
𝑡 − 𝜏

𝑑𝜏] , (5.4)

in which P[•] denotes the Cauchy principal value, since this convolution integral of
a function type (1/𝑡) does not always converge being not integrable in zero [276]. It
was observed that the results of the HT method and the original signal given as the
input argument of the HT are complex conjugate pairs. Therefore, leveraging this
aspect in the HHT method, an analytic complex form 𝑧𝑗(𝑡) can be reconstructed by
combining the IMFs acting as the real part and interpreting its HT as the imaginary
part, i.e.

𝑧𝑗(𝑡) = 𝑐𝑗(𝑡) + 𝑖 𝑑𝑗(𝑡) = 𝑎𝑗(𝑡)𝑒𝑖𝜃𝑗(𝑡). (5.5)

As highlighted in Eq. (5.5), the analytical signal can be expressed in polar form
according to an IA function 𝑎𝑗(𝑡) and an instantaneous phase angle function 𝜃𝑗(𝑡),
from which obtaining the IFs 𝑓𝑗(𝑡) for the 𝑗-th IMF component:

𝑎𝑗(𝑡) = √[𝑐𝑗(𝑡)]
2 + [𝑑𝑗(𝑡)]

2
, 𝜃𝑗(𝑡) = arctan [

𝑑𝑗(𝑡)
𝑐𝑗(𝑡)

] , 𝑓𝑗(𝑡) =
d𝜃𝑗(𝑡)
d𝑡

. (5.6)

After performing the HT part for all IMFs, it is possible to substitute the results
in Eq. (5.3). Specifically, maintaining only the real parts and dropping the residue
term 𝑟𝑛, the original signal 𝑥(𝑡) can be approximated as

𝑥(𝑡) = ℜ{
𝑛
∑
𝑗=1

𝑎𝑗(𝑡)𝑒
[𝑖 ∫𝑡

0
𝑓𝑗(𝜏)d𝜏]} , (5.7)
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The residue term 𝑟𝑛 has been left out on purpose, since this term is usually a con-
stant or a monotonic term [275]. Indeed, despite HT can also simply treat constant
or monotonic terms as a component for longer oscillation, the energy involved in
the residual trend represents a mere mean offset, but its uncertainty over a longer
trend is not of actual interest when the main focus is on oscillatory components.
Comparing Eq. (5.7) with the classical Fourier Transform in Eq. (2.1) it is clear
that HT represents a generalization of the classical FT. Indeed, whilst the FT allows
decomposing any signal in a linear combination of sinusoidal components at differ-
ent frequencies called harmonics, the amplitude coefficients are constant over time.
On the other hand, HT permits overcoming this limitation allowing to account
for time-varying IAs and IFs, enabling the analysis of nonlinear and nonstation-
ary vibration signals. Specifically, the frequency-time distribution of the amplitude
𝐻(𝑓, 𝑡) is called Hilbert amplitude spectrum, or simply Hilbert spectrum. If the
IAs are squared, this quantity is energy-related, thus denoting the so-called Hilbert
energy spectrum. The marginal Hilbert spectrum ℎ(𝑓) is given by integrating the
Hilbert spectrum𝐻(𝑓, 𝑡) over time, similar to the marginalization operation in joint
probability distributions. ℎ(𝑓) provides the accumulated amplitude over time in
the probabilistic sense, representing a measure of the total energy contribution from
each frequency value [275]. Similarly, instantaneous energy 𝐼𝐸(𝑡) can be defined
as the integral of the Hilbert spectrum over frequency variable, giving information
about the time-variation of energy.

The HHT validity and superiority to other methods for time-frequency anal-
ysis dealing with nonstationary and nonlinear data have been demonstrated in
literature [275], confirming its adaptive basis, i.e. do not require using additional
spurious harmonics to represent non-stationary and nonlinear components [273].
Despite the gained recognition in the scientific and engineering community in the
last decades, the HHT theoretical basis is still controversial and debated nowadays,
motivating the topical frontier research perspective. The greater concerns are es-
pecially related to the definition of meaningful IFs, which often require imposing
restrictive conditions otherwise negative IAs may appear as an outcome of the HT
process [276]. Moreover, regarding system identification tasks, time-frequency anal-
ysis methods like HHT have been adapted to the cases where both input and output
data are known, e.g. in the vibration control engineering sector. Conversely, deal-
ing with unknown systems typical of civil engineering structures and just focusing
on output-only data may provide very complex and possibly ill-posed problems. A
priory knowledge of the skeleton of the mathematical framework involved in the
physical process that generated the nonlinear vibration (e.g. damaging structure
under extreme loading conditions such as seismic scenarios) may aid in setting up
an identification framework based on the HHT method [275].

Finally, as observed in STFT or CWT, nonstationary vibration analysis often
involves local analysis methods over small time windows. This permits tracking
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the time-varying modal properties of interest. In contrast, in LTI and station-
ary systems spectral analyses are typically global methods, acting on the entire
vibration duration. Starting from this locality consideration usually involved in
nonstationary vibration analysis methods, some attempts have been proposed in
the literature to re-adapt the conventional OMA approaches, such as the SSI-dat
method for dealing with nonstationary signals. In particular, as the conclusions of
the present chapter, and even of the current Ph.D. program, a brief description of
the recursive SSI (RSSI) algorithm have been discussed in the next subsection.

5.1.1 Recursive stochastic subspace identification
Among the first attempts to re-adapt conventional OMA techniques for nonstation-
ary output-only vibration analysis, some scholars attempted to use SSI algorithms
by imposing a recursive analysis framework over short time sliding windows [277,
278, 279, 280]. The main goal they aspired to was developing an online modal pa-
rameters tracking system, e.g. serving for damage detection (DD) purposes in the
civil engineering sector, for instance under earthquake shaking conditions. In the
existing literature, two main different subspace identification branches were delin-
eated for nonstationary data. The recursive subspace identification (RSI) identifies
those methods based on the input-output state space formulation, thus with the
disadvantage of requiring acquiring also the input excitation. One of the most re-
current solving algorithms for RSI in the literature is defined as the Multivariable
Output-Error State Space (MOESP) algorithm. On the other hand, the recursive
stochastic subspace identification (RSSI) method is based on output-only measure-
ments, thus being of greater interest in the current Thesis document and for OMA
purposes. Its mathematical framework directly moves from SSI formulations previ-
ously discussed in Chapter 2. Specifically, the attention is herein mainly focused on
the RSSI mainly provided by Weng et al. [277] and Loh et al. [278, 279]. The schol-
ars derived the RSSI formalization starting from the SSI-dat framework, implying
the basic assumption that all input sources are white noise processes. To truly
attempting approaching this stringent assumption even for nonstationary systems,
it is necessary to avoid a one-batch analysis of the entire vibration time history
recordings. Instead, it is necessary to make a recursive calculation over very short
sliding time windows of analysis. Indeed, besides abrupt changes in structural stiff-
ness and/or mass properties suddenly occurring, the system can be reasonably still
approximated to an instantly LTI structure in every short time window separately.

As illustrated both in Chapter 2 and in Appendix A, the measured data from
𝑙 sensors with a sampling frequency 𝑓𝑠 are gathered in vectors 𝒚𝑟 ∈ ℝ𝑙 for every
𝑟-th time instant, with 𝑟 = 0, 1, ...,𝑁𝑡. According to the SSI-dat formulation,
the output measurement vectors are then arranged in a Hankel matrix 𝒀0|2𝑖−1 ∈
ℝ2𝑙𝑖×𝑗 according to Eq. (2.116), given a user-defined integer number of block-
rows called time shift parameter 𝑖. Consequently, the resulting Hankel matrix
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is characterized by a fixed number of block rows equal to 2𝑙𝑖 and, considering all
output-only measurement data equal to𝑁𝑑 = 𝑁𝑡+1, a resulting number of columns
equal to 𝑗 = 𝑁𝑑 − 2𝑖 + 1. This Hankel matrix 𝒀0|2𝑖−1 can be partitioned into two
submatrices denoted as past data matrix 𝒀𝑝 and future data matrix 𝒀𝑓, both with
dimensions 𝑙𝑖×𝑗. The Kalman state sequence matrix 𝑺𝑖 can be estimated according
to linear algebra geometric orthogonal projection of the row space of future data
matrix 𝒀𝑓 toward the row space of past data matrix 𝒀𝑝, defining the so-called
projection matrix 𝜫𝑖, see Eq. (2.117): The SSI fundamental theorem states that
when the system is fully controllable and observable [96], and if the chosen time
shift parameter 𝑖 is fulfilling the condition in Eq. (2.96), 𝜫𝑖 can be decomposed
as the product of the extended observability matrix 𝑶𝑖 and the Kalman filter state
sequence estimates 𝑺𝑖 [101], as in Eq. (2.118).

𝒀0|2𝑖−1 = [ 𝒀𝑝
𝒀𝑓

] , 𝜫𝑖 = 𝒀𝑓/𝒀𝑝 = 𝑶𝑖𝑺𝑖 =
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

[𝒔𝑖 𝒔𝑖+1 ... 𝒔𝑖+𝑗−1] .

To avoid the expensive direct computation of the projection matrix according to
Eq. (2.117) requiring the matrix inversion operation, alternatively, 𝜫𝑖 can be
numerically estimated more efficiently starting from the LQ decomposition of the
output measurement Hankel matrix, thus delivering a lower triangular matrix𝑳 and
an orthogonal matrix 𝑸 (𝑸𝑸𝑇 = 𝑸𝑇𝑸 = 𝑰). It is worth reminding that, the LQ
decomposition of a long rectangular matrix likewise the output measurement Hankel
matrix 𝒀0|2𝑖−1 ∈ ℝ2𝑙𝑖×𝑗 with 𝑗 > 2𝑙𝑖, generally deliver a long lower triangular
matrix 𝑳 ∈ ℝ2𝑙𝑖×𝑗 which present the right 𝑗 − 2𝑙𝑖 columns of entire zeros, whereas
it has an orthogonal matrix 𝑸 ∈ ℝ𝑗×𝑗. Therefore, it is possible to further simply
the LQ decomposition of the 𝒀0|2𝑖−1 matrix with the approach denoted thin LQ
decomposition, i.e. defining a lower triangular partition 𝑳1 ∈ ℝ2𝑙𝑖×2𝑙𝑖 and the
related sub-matrices derived from the orthogonal one, being 𝑸𝐿1

∈ ℝ2𝑙𝑖×𝑗 and
𝑸𝐿2

∈ ℝ(𝑗−2𝑙𝑖)×𝑗, still having orthogonal rows:

𝒀0|2𝑖−1 = [𝑳1 𝟎] [𝑸𝐿1
𝑸𝐿2

] = 𝑳1𝑸𝐿1
(5.8)

When output measures Hankel matrix has full rank 2𝑙𝑖, then the matrices 𝑳1 and
𝑸𝐿1

are unique matrix, but not 𝑸𝐿2
in general [277]. Therefore, similarly to Eq.

(2.119), thereafter performing the thin LQ decomposition of Eq. (5.8), the block-
row nature of the output data Hankel matrix permits a further partitioning of
the square lower triangular matrix 𝑳1 into block sub-matrices, i.e. partitioning
𝑳1 ∈ ℝ2𝑙𝑖×2𝑙𝑖 into 𝑳11, 𝑳21, 𝑳22 ∈ ℝ𝑙𝑖×𝑙𝑖 and splitting the related 𝑸𝐿1

∈ ℝ2𝑙𝑖×𝑗
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into 𝑸11, 𝑸22 ∈ ℝ𝑗×𝑙𝑖, finally obtaining [277]:

𝒀0|2𝑖−1 = [ 𝒀𝑝
𝒀𝑓

] = 𝑳1𝑸𝐿1
= [𝑳11 𝟎

𝑳21 𝑳22
] [𝑸

𝑇
11

𝑸𝑇
22
] ⇒ 𝜫𝑖 = 𝒀𝑓/𝒀𝑝 = 𝑳21𝑸𝑇

11

(5.9)
The extended observability matrix 𝑶𝑖 is of special interest because it provides
the chased modal properties, encoded in the state transition matrix 𝑨 and the
output influence matrix 𝑪. In the traditional SSI-dat version, the matrix 𝑶𝑖 can
be retrieved using the SVD of the projection matrix 𝜫𝑖, see Eq. (2.121).

𝜫𝑖 = 𝑶𝑖𝑺𝑖 = 𝑼𝜮𝑽 𝑇 ≈ 𝑼1𝜮1𝑽 𝑇
1 , ⇒ 𝑶𝑖 = 𝑼1𝜮

1/2
1 𝑻,

where 𝑻 is a transformation matrix that can be considered as an identity matrix.
Nevertheless, as demonstrated in Eq. (5.9), the columns space of𝑶𝑖 can be obtained
directly from the columns space of the matrix 𝑳21, demonstrating that only 𝑳21
is needed for system identification purposes. Therefore, as evidenced in [277], it is
possible to deal with an economic matrix size rather than computing the complete
projection matrix by Eq. (2.117), directly obtaining the extended observability
matrix 𝑶𝑖 from the left singular vectors of matrix 𝑳21:

𝑳21 = 𝑼𝐿21
𝜮𝐿21

𝑽 𝑇
𝐿21

= [𝑼1,𝐿21
𝑼2,𝐿21

] [𝜮1,𝐿21
𝟎

𝟎 𝟎] [
𝑽 𝑇
1,𝐿21

𝑽 𝑇
2,𝐿21

]

≈ 𝑼1,𝐿21
𝜮1,𝐿21

𝑽 𝑇
1,𝐿21

,

(5.10)

⇒ 𝑶𝑖 = 𝑼1,𝐿21
. (5.11)

Now it would be virtually possible to estimate the state matrices 𝑨 and 𝑪, e.g.
according to Eqs. (2.105)-(2.106), to get the modal parameter of interest by solving
the EVD problem of state transition matrix 𝑨 using Eq. (2.109), and making use
of Eqs. (2.30)-(2.33), and Eq. (2.110) to get natural frequencies, damping ratios,
and mode shape respectively.

However, these latter observations have not solved yet the recursive problem
of using SSI-dat on different sliding time windows of analysis. Indeed, an efficient
procedure almost real-time has been formulated in Weng et al. [277] and Loh et
al. [278, 279], conceived as a two-step procedure attempting to avoid recursively
executing the computational demanding SVD decomposition process. Considering
overlapping time windows, there is a part of shared data in common between two
consecutive time windows of analysis. Therefore the first step of the two-step RSSI
procedure is updating the LQ decomposition by dropping a portion of old data
and adding an equivalent portion of new data, whilst leveraging already processed
information of remaining data to efficiently perform this updating step. The second
step of the RSSI procedure instead is demanded to update the column space of the
extended observability matrix, again for providing a more efficient estimation of
modal parameters of interest.
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Preliminary observations on the LQ decomposition of the Hankel matrix in Eq.
(5.9) permit to deal with an “economic-size” of the output measurement Hankel
matrix. Indeed, Hankel matrix 𝒀0|2𝑖−1 is generally a rectangular matrix belonging
to ℝ2𝑙𝑖×𝑗, however, as evidenced in Eq. (5.9) only 𝑙𝑖 columns of the LQ decomposi-
tion are necessary, since the key information of interest for estimating the projection
matrix are carried only by 𝑳21 ∈ ℝ𝑙𝑖×𝑙𝑖 and 𝑸𝑇

22 ∈ ℝ𝑗×𝑙𝑖. Therefore, the Hankel
matrix 𝒀0|2𝑖−1 can be truncated to a square matrix 𝒀1|𝑗 ∈ ℝ𝑗×𝑗, thus imposing
a block column number 𝑗 being equal to the total number of block rows 2𝑙𝑖, and
indicating each column of this matrix as 𝒉𝑘 with 𝑘 = 1, 2, ..., 𝑗. It is worth noting
that truncating the Hankel matrix to this square dimension implies that the sliding
time window of analysis for every recursive step of the RSSI has a fixed length of
𝑤 = 𝑗 + 2𝑖 − 1 in terms of number of considered samples of the measured data, or
equivalently 𝑊 = 𝑤/𝑓𝑠 if expressed in seconds. Therefore, the choice of time shift
parameter 𝑖 plays a crucial role in imposing the resolution of the analysis signal,
directly affecting the dimension of the time window length of analysis [279]. The
LQ decomposition of this new square matrix 𝒀1|𝑗 is denoted as

𝒀1|𝑗 = [𝒉1 𝒉2 … 𝒉𝑘 … 𝒉𝑗] = 𝑳1𝑸1 with 𝑳1,𝑸1 ∈ ℝ𝑗×𝑗 (5.12)

In the recursive step, a user-defined time window shifting timeΔ𝑡 should be defined,
or equivalently the number of samples 𝑝 to be considered as the stride parameter
of the sliding window. For ensuring overlapping sliding windows, 𝑝 must be chosen
lower than 𝑗, i.e. 𝑝 < 𝑗 [277]. Therefore, in the first initial window dataset of
samples in the range [1, 𝑗], the squared Hankel matrix can be partitioned in the
first 𝑝 data that will be dropped 𝒀1|𝑝 and in the remaining 𝑗−𝑝 data which will be
useful for estimating the next window of analysis. Compute the next window LQ
decomposition 𝑳2𝑸2 leveraging information in the remaining 𝑗 − 𝑝 data is crucial
for the success of the RSSI algorithm. The method of the Givens rotations has
been adopted to compute the LQ decomposition of a matrix. Indeed, as reported
in [277], to better understand the recursive passage a deeper insight into how LQ
decomposition is computed is necessary. Indeed, one of the methods that can be
used for computing LQ decomposition is using the Givens rotations transformation
method. A Givens rotation is a square transformation matrix 𝑚×𝑚 defined as an
identity unitary diagonal matrix with zeros elsewhere, except for four elements at
position respectively (𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑏), with 𝑎, 𝑏 ≤ 𝑚, 𝑎 ≠ 𝑏:

𝒈(𝑎, 𝑏, 𝜃) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 … 0 … 0 … 0
⋮ ⋱ ⋮ ⋮
0 … cos(𝜃) … sin(𝜃) … 0
⋮ ⋱ ⋮ ⋮
0 … − sin(𝜃) … cos(𝜃) … 0
⋮ ⋱ ⋮ ⋮
0 … 0 … 0 … 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.13)
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A Givens rotation is an orthogonal matrix since 𝒈(𝑎, 𝑏, 𝜃)[𝒈(𝑎, 𝑏, 𝜃)]𝑇 = 𝑰 When
the Givens rotation is multiplied to a column vector 𝒛 ∈ ℝ𝑚×1, it performs a
counterclockwise rotation of 𝜃 radians in the (𝑎, 𝑏) coordinate plane. Therefore,
with a suitable definition of the 𝜃 angle, the Givens rotation can be used for zeroing
the 𝑧𝑏 entry when multiplied to the column vector 𝒛, i.e.

𝒈(𝑎, 𝑏, 𝜃)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑧1
𝑧2
⋮
𝑧𝑎
⋮
𝑧𝑏
⋮

𝑧𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑧1
𝑧2
⋮
𝑧𝑎
⋮
0
⋮

𝑧𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, with cos(𝜃) = 𝑧𝑎
𝑧𝑎

, sin(𝜃) = 𝑧𝑏
𝑧𝑎

, 𝑧𝑎 = √𝑧2𝑎 + 𝑧2𝑏 .

(5.14)
Indeed, applying series of appropriate Givens rotations 𝒈1 𝒈2 … 𝒈𝑡 with 𝒈𝑘 ∈ ℝ𝑛×𝑛

to the right side of a generic rectangular matrix 𝑴 ∈ ℝ𝑚×𝑛 with 𝑛 > 𝑚, it is
possible to transform it into a lower triangular matrix 𝑳 ∈ ℝ𝑚×𝑛 coherent with the
LQ decomposition method. Since every 𝒈𝑘 component has the same dimensions
of the number of columns 𝑛, the same reasoning of Eq. (5.14) should be applied
to deliver a lower triangular matrix, but the column vector 𝒛 should represent the
generic row of the matrix 𝑴. The resulting right product of the Givens rotations
𝒈1 𝒈2 … 𝒈𝑡 is denoted as 𝑮𝑇. Therefore, the LQ decomposition is thus obtained as
in Eq. (5.15), noting that 𝑮 is equal to the orthogonal matrix 𝑸. From Eq. (5.15),
the same reasoning of thin LQ decomposition in Eq. (5.8) can be done once again.

𝑴 = (𝑴𝑮𝑇)𝑮 = 𝑳𝑮 = 𝑳𝑸. (5.15)
Recalling the Eq. (5.12), the Givens rotations method is used to transform

the first 𝑝 columns of 𝑸1 of squared output measurement Hankel matrix 𝒀1|𝑗 into
an upper triangular matrix by multiplying 𝑮1 to the left of 𝑸1. In [277] it was
demonstrated that this upper triangular matrix in reality appears as a block diag-
onal matrix as follows:

𝑮1𝑸1 = [𝑰𝑝 𝟎
𝟎 𝑸1

] , (5.16)

in which the identity matrix associated to the first 𝑝 columns is 𝑰𝑝 ∈ ℝ𝑝×𝑝, whereas
the matrix𝑸1 ∈ ℝ(𝑗−𝑝)×(𝑗−𝑝) is an orthogonal matrix. Therefore, in the first dataset
time window, leveraging the Givens rotation 𝑮1, it is possible to rewrite Eq. (5.12)
partitioning Hankel matrix columns associated with the first 𝑝 data which will be
dropped and the remaining data after the window sliding process:

𝒀1|𝑗 = 𝑳1𝑸1 = (𝑳1𝑮𝑇
1 )(𝑮1𝑸1) = [𝒀1|𝑝 𝑳1] [

𝑰𝑝 𝟎
𝟎 𝑸1

]

= [𝒀1|𝑝 𝑳1𝑸1] = [𝒀1|𝑝 𝒀𝑝+1|𝑗] ,
(5.17)
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Response 
Amplitude

Data string1

Window 1 Window 2

p
p+1

j
j+p

Y1| 𝑗 = L1Q1 = Y1|𝑝 L1Q1 = Y1|𝑝 Y𝑝+1|𝑗Window 1

Window 2 Y𝑝+1|𝑗+𝑝 = Y𝑝+1|𝑗 Y𝑗+1|𝑗+𝑝 = L1Q1 Y𝑗+1|𝑗+𝑝 = Y𝑗+1|𝑗+𝑝 L1
0 I𝑝

Q1 0
= L2Q2

...

Figure 5.1: RSSI recursive updating procedure with sliding windows of analysis.

in which matrices 𝑳1 and 𝑸1 can be estimated via the first Givens rotations of 𝑳𝟏
and 𝑸1. 𝑳1 is an almost lower triangular matrix, resulting from the first Givens
rotations of this quasi-LQ decomposition, also denoted as temporary decomposition
[279].

After the first window sliding, the situation is the one illustrated in Fig. 5.1.
New 𝑝 < 𝑗 columns of the complete Hankel matrix 𝒀0|2𝑖−1 should be added to 𝒀1|𝑗.
However, in order to maintain the same square size of the Hankel matrix, the first
𝑝 columns of the squared Hankel matrix 𝒀1|𝑗 must be dropped. This delivers a new
LQ decomposition of the updated block Hankel matrix:

𝒀1+𝑝|𝑗+𝑝 = 𝑳2𝑸2 with 𝑳2,𝑸2 ∈ ℝ𝑗×𝑗 (5.18)

The goal is to compute this new LQ decomposition efficiently, i.e. using new in-
coming data and leveraging the already computed information on the overlapped
part of past (𝑗 − 𝑝) data, reminding that from Eq. (5.17) it was demonstrated
that 𝑳1𝑸1 = 𝒀𝑝+1|𝑗 ∈ ℝ𝑗×(𝑗−𝑝). Appending the new data of the current window of
analysis, it is possible to obtain a second temporary decomposition as follows:

𝒀1+𝑝|𝑗+𝑝 = [𝒀1+𝑝|𝑗 𝒀𝑗+1|𝑗+𝑝] = [𝑳1𝑸1 𝒀𝑗+1|𝑗+𝑝]

= [𝒀𝑗+1|𝑗+𝑝 𝑳1] [
𝟎 𝑰𝑝
𝑸1 𝟎 ] = 𝑳2𝑸2,

(5.19)

in which the resulting block matrix 𝑳2 is almost a lower triangular matrix defined
as

𝑳2 = [𝒀𝑗+1|𝑗+𝑝 𝑳1] (5.20)

whereas 𝑸2 is an orthogonal matrix defined as

𝑸2 = [ 𝟎 𝑰𝑝
𝑸1 𝟎 ] (5.21)
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Starting from this quasi-LQ decomposition estimate, in order to retrieve the com-
plete decomposition of Eq. 5.18, a second Givens rotations method is adopted to
transform the almost lower triangular matrix 𝑳2 into the chased 𝑳2 matrix:

𝒀1+𝑝|𝑗+𝑝 = (𝑳2𝑮2)(𝑮𝑇
2𝑸2) = 𝑳2𝑸2 (5.22)

In conclusion, the Givens rotations transformation is thus recursively used twice
for every RSSI sliding window. The first Givens rotations 𝑮1 are used for decou-
pling the old LQ decomposition in order to drop the old 𝑝 columns. The second
Givens rotation 𝑮2 is instead used after new 𝑝 data columns have been added for
transforming back the temporary decomposition into a complete LQ decomposition.
The advantage is that the terms 𝑳1 and 𝑸1 are not computed again, thus reducing
the overall computational burden [277]. Some adjustments have been proposed to
further reduce the influence of older data whilst giving greater importance to newly
appended data. Indeed, in Eq. (5.20), it is possible to consider a forgetting factor
𝜇 acting on the 𝑳1 term, which can aid to better detect sudden abrupt changes in
modal parameters tracking over the sliding time windows of analysis [277].

5.2 Final remarks
The current Ph.D. program has been primarily dedicated to analyzing and improv-
ing the conventional operational modal analysis (OMA) framework and procedures,
integrating innovative artificial intelligence solutions. The PyOMA module, and its
graphical user interface (GUI) version, are the first main achievements of the cur-
rent research program referring to the study of traditional and well-established
OMA methods. Gratefully to an international collaboration with other two in-
stitutions, i.e. the University of L’Aquila (Italy) and the Norwegian Institute of
Wood Technology in Oslo (Norway), this new Python-based package provided both
researchers and practitioners worldwide with an all-in-one convenient tool for the
dynamic identification of civil structures and infrastructures. PyOMA encompasses
a quite complete suite of the most widespread techniques, working both in time and
in frequency domains, fundamental instruments for anyone working in the sector of
dynamic identification of systems.

Furthermore, considering the advances within the digital revolution of the last
decades, artificial intelligence (AI) and machine learning (ML) tools are signifi-
cantly opening new ground-breaking frontiers and innovations in all the scientific
and engineering disciplines. Therefore, the greatest efforts of the current Ph.D. pro-
gram research studies were mainly devoted to understanding existing limitations
in conventional OMA approaches, and effectively integrating AI-assisted solutions
for attempting to overcome some of those still existing shortcomings. In particular,
the current most remarkable research achievement was the formulation of a novel
intelligent automatic operational modal analysis (i-AOMA) framework. Perfectly
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contextualized within the current growing demand for continuous and automatic
structural health monitoring (SHM) systems, the proposed i-AOMA attempted to
increase the automation level of the existing AOMA alternatives, whilst combining
in an original way some ML-based techniques for improving the reliability of dy-
namic identification results. Just to mention some of the main features offered, the
i-AOMA method combines quasi-Monte Carlo sampling to reduce the impacts of
the user’s arbitrary choice of OMA control parameters, and postprocessing the iden-
tification results with effective ML-based data-driven solutions. This methodology
can reliably identify actual physical recurrent modal properties whilst discarding
those spurious ones. Moreover, it also provides an uncertainty evaluation of the
modal parameter results.

Moving to a broader perspective besides the output-only vibration-based dy-
namic identification of modal parameters, many research efforts have been also
dedicated during the current Ph.D. program to the damage detection problem. In-
deed, a comprehensive SHM ideal paradigm can be formalized into different levels
based on the level of detail and depth of understanding of the occurring struc-
tural damage diagnosis and prognosis. The damage detection task represents the
first level of the ideal SHM paradigm, playing a crucial role in determining the
amount of economic and time resources to be earmarked for further deeper damage
diagnosis and/or prognosis evaluations, and even for optimizing and prioritizing
maintenance activities and safety restoration interventions at regional or even na-
tional scale. In particular, the herein-conducted research investigations aimed to
introduce ML and deep learning (DL) data-driven methods for supporting the iden-
tification of flaws and structural damages based on indirect nondestructive testing
and evaluation (NDT/NDE) approaches. Computer vision applications for tunnel
lining monitoring and vibration-based damage indicators for bridges derived from
the mathematical OMA framework have been explored. Nevertheless, considerable
research work should be still spent in this field to provide in future for further
deeper insights into the above-mentioned aspects.

In conclusion, this last chapter presented a mini-review of the topic that can
be probably considered the most natural progression of the currently analyzed top-
ics. Specifically, since the scope of applicability of conventional OMA approaches
is limited to linear time-invariant (LTI) structures under operational stationary
white noise excitation, future promising research paths should additionally explore
the field of nonlinear and nonstationary OMA methods. For instance, exploring
vibration-based identification methods even transient under earthquake conditions,
especially with a progressively damaging of the structural system during the anal-
ysis, it is still challenging nowadays and requires a more sophisticated mathemat-
ical framework to adapt the OMA method to nonstationary scenarios. Therefore,
a promising future research path may be the analysis of time-varying structural
systems and their SHM-oriented techniques for tracking the evolution of dynamic
behavior governing modal parameters. In particular, for continuously growing and
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expanding the nowadays research boundaries, pioneering novel cutting-edge integra-
tions with AI-assisted tools may represent an essential step for overcoming existing
analytical or numerical limitations. This must be achieved always without forget-
ting about the knowledge and already gained experience from the existing scientific
literature and past studies, as well as considering already available information
and physics-based considerations, for better controlling growing complex AI-based
smart systems.
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Appendix A

Output block Hankel matrix in
stochastic subspace identification

The block output Hankel matrix (a matrix which is constant along the anti-diagonals)
of measured data represents the true starting point of both covariance-driven and
data-driven stochastic subspace identification methods [101, 96]. Specifically, con-
sidering 𝑙 measurement channels from the sensor layout deployed on a structure, the
discrete-time sampled recordings are a collection of arrays {𝒚0,𝒚1, ...,𝒚𝑟, ...,𝒚𝑁𝑡

},
with 𝒚𝑟 ∈ ℝ𝑙. The subscripts refers to the time instant in which those samples
have been recorded, i.e. 0, 1, ..., 𝑟, ...,𝑁𝑡, thus determining an experimental vibra-
tion recording session with a total duration in time 𝑁𝑡 or with a total number of
data arrays equal to 𝑁𝑑 = 𝑁𝑡 + 1. In subspace identification methods, the user
must set in advance a positive integer time lag parameter 𝑖, respectful of the condi-
tion in Eq. (2.96). Afterward, the output data can be rearranged in a output block
Hankel matrix 𝒀0|2𝑖−1 by imposing a number of block rows equal to 2𝑖, i.e. with a
total rows size of 2𝑙𝑖, and considering a one-time shift for two subsequent columns
until using all available data. As a consequence, the number of columns 𝑗 of output
block Hankel matrix is automatically defined once known the total recording length
𝑁𝑑 or 𝑁𝑡, and the time shift parameter 𝑖, i.e.

𝑗 = 𝑁𝑑 − 2𝑖 + 1 or 𝑗 = 𝑁𝑡 − 2𝑖 + 2 (A.1)
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Therefore output block Hankel matrix 𝒀0|2𝑖−1 ∈ ℝ2𝑙𝑖×𝑗 can be split into two sub-
matrices denoted as past outputs 𝒀𝑝 and future outputs 𝒀𝑓 as follows:

𝒀0|2𝑖−1 = 1√
𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒚0 𝒚1 𝒚2 … … 𝒚𝑁𝑡−2𝑖+1
𝒚1 𝒚2 𝒚3 ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+2
𝒚2 𝒚3 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+3
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖−1

𝒚𝑖−1 𝒚𝑖 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖
𝒚𝑖 𝒚𝑖+1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+1
𝒚𝑖+1 𝒚𝑖+2 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+2
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝒚2𝑖−2 𝒚2𝑖−1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−1
𝒚2𝑖−1 𝒚2𝑖 … … 𝒚𝑁𝑡−1 𝒚𝑁𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [ 𝒀𝑝
𝒀𝑓

] (A.2)

𝒀𝑝 = 1√
𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝒚0 𝒚1 𝒚2 … … 𝒚𝑁𝑡−2𝑖+1
𝒚1 𝒚2 𝒚3 ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+2
𝒚2 𝒚3 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−2𝑖+3
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖−1

𝒚𝑖−1 𝒚𝑖 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.3)

𝒀 𝑇
𝑝 = 1√

𝑗

⎡
⎢
⎢
⎢
⎢
⎣

𝒚0 𝒚1 𝒚2 … … 𝒚𝑖−1
𝒚1 𝒚2 𝒚3 … … 𝒚𝑖
𝒚2 𝒚3 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝒚𝑁𝑡−2𝑖+1 𝒚𝑁𝑡−2𝑖+2 𝒚𝑁𝑡−2𝑖+3 … 𝒚𝑁𝑡−𝑖−1 𝒚𝑁𝑡−𝑖

⎤
⎥
⎥
⎥
⎥
⎦

(A.4)

𝒀𝑓 = 1√
𝑗

⎡
⎢
⎢
⎢
⎣

𝒚𝑖 𝒚𝑖+1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+1
𝒚𝑖+1 𝒚𝑖+2 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−𝑖+2
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝒚2𝑖−2 𝒚2𝑖−1 ⋱ ⋱ ⋱ 𝒚𝑁𝑡−1
𝒚2𝑖−1 𝒚2𝑖 … … 𝒚𝑁𝑡−1 𝒚𝑁𝑡

⎤
⎥
⎥
⎥
⎦

(A.5)

The subscript in 𝒀0|2𝑖−1 indicates the indices of the first column of the matrix [101].
Under the hypothesis of ergodicity, and considering an infinite long data sequence
(𝑁𝑡 → ∞), it is possible to demonstrate that the output covariance Toeplitz matrix
of SSI-cov approach provided in section 2.2.3.2 in Eq. (2.95) is derived from the
output block Hankel submatrices 𝒀𝑝 and 𝒀𝑓 [281, 101]:

𝑻1|𝑖 = 𝔼[𝒀𝑓𝒀 𝑇
𝑝 ] (A.6)

It is possible to demonstrate the above relationship by firstly reminding the the-
oretical general definition of the output covariance matrices with finite time lag 𝑖
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already provided in Eq. (2.72), i.e.

𝑹𝑖 = 𝔼 [𝒚𝑟+𝑖𝒚𝑇
𝑟 ] .

To demonstrate the validity of Eq. (A.6), it possible noticing that computing it
term-by-term as below, each of them can be traced back to output covariance
definition of Eq. (2.72). For instance, the term in position (1,1) can be written as
the row-column product rule from linear algebra matrices multiplication, i.e.

𝑻1|𝑖(1,1)
= 𝔼[𝒀𝑓(1,∶)

𝒀 𝑇
𝑝 ∶,1)

]

= 𝔼
⎡
⎢
⎢
⎣

1√
𝑗
1√
𝑗
[𝒚𝑖 𝒚𝑖+1 ⋱ … 𝒚𝑁𝑡−𝑖+1] ⋅

⎡
⎢
⎢
⎣

𝒚0
𝒚1
⋮

𝒚𝑁𝑡−2𝑖+1

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

= 1
𝑗
𝔼 [𝒚𝑖𝒚0 + 𝒚𝑖+1𝒚1 +⋯+ 𝒚𝑁𝑡−𝑖+1𝒚𝑁𝑡−2𝑖+1]

= 1
𝑗
(𝔼 [𝒚0+𝑖𝒚0] + 𝔼 [𝒚1+𝑖𝒚1] + +⋯+ 𝔼[𝒚𝑁𝑡−𝑖+1+𝑖−𝑖𝒚𝑁𝑡−2𝑖+1])

= 1
𝑗
(𝔼 [𝒚0+𝑖𝒚0] + 𝔼 [𝒚1+𝑖𝒚1] + +⋯+ 𝔼[𝒚(𝑁𝑡−2𝑖+1)+𝑖𝒚𝑁𝑡−2𝑖+1])

= 1
𝑗
(𝑹𝑖 +𝑹𝑖 + ... + 𝑹𝑖)

= 1
𝑗
𝑗𝑹𝑖

= 𝑹𝑖

(A.7)

Noting that all terms of the row-column product refer to different time instants
which span always about a finite lag 𝑖. Similarly, the term in position (1,2) can be
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obtained as below:

𝑻1|𝑖(1,2)
= 𝔼[𝒀𝑓(1,∶)

𝒀 𝑇
𝑝 ∶,2)

]

= 𝔼
⎡
⎢
⎢
⎣

1√
𝑗
1√
𝑗
[𝒚𝑖 𝒚𝑖+1 ⋱ … 𝒚𝑁𝑡−𝑖+1] ⋅

⎡
⎢
⎢
⎣

𝒚1
𝒚2
⋮

𝒚𝑁𝑡−2𝑖+2

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

= 1
𝑗
𝔼 [𝒚𝑖𝒚1 + 𝒚𝑖+1𝒚2 +⋯+ 𝒚𝑁𝑡−𝑖+1𝒚𝑁𝑡−2𝑖+2]

= 1
𝑗
(𝔼 [𝒚0+𝑖+1−1𝒚1] + 𝔼 [𝒚1+𝑖+1−1𝒚2] + +⋯+ 𝔼[𝒚𝑁𝑡−𝑖+1+𝑖−𝑖+1−1𝒚𝑁𝑡−2𝑖+2])

= 1
𝑗
(𝔼 [𝒚1+(𝑖−1)𝒚1] + 𝔼 [𝒚2+(𝑖−1)𝒚2] + +⋯+ 𝔼[𝒚(𝑁𝑡−2𝑖+2)+(𝑖−1)𝒚𝑁𝑡−2𝑖+2])

= 1
𝑗
(𝑹𝑖−1 +𝑹𝑖−1 + ... + 𝑹𝑖−1)

= 1
𝑗
𝑗𝑹𝑖−1

= 𝑹𝑖−1
(A.8)

Similarly, all the other terms can be computed, demonstrating that the output
covariance Toeplitz matrix of SSI-cov method can be found by the expected value
of the product between future measurements and past data matrices, eventually
finding again the definition reported in Eq. (2.95), i.e.

𝑻1|𝑖 = 𝔼[𝒀𝑓𝒀 𝑇
𝑝 ] =

⎡
⎢
⎢
⎢
⎣

𝑹𝑖 𝑹𝑖−1 … 𝑹2 𝑹1
𝑹𝑖+1 𝑹𝑖 ⋱ ⋱ 𝑹2
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑹2𝑖−1 𝑹2𝑖−2 … 𝑹𝑖+1 𝑹𝑖

⎤
⎥
⎥
⎥
⎦

Theoretically, the output covariance matrices are related to the state matrices
as in Eq. (2.75), i.e.

𝑹𝑖 = 𝑪𝑨𝑖−1𝑮.

Therefore, the Toeplitz matrix defined as in Eq. (2.95) making explicit the factor-
ization according to the observability matrix 𝑶𝑖 and reversed controllability matrix
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𝜞𝑖, i.e.

𝑻1|𝑖 =
⎡
⎢
⎢
⎢
⎣

𝑹𝑖 𝑹𝑖−1 … 𝑹2 𝑹1
𝑹𝑖+1 𝑹𝑖 ⋱ ⋱ 𝑹2
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹𝑖−1

𝑹2𝑖−1 𝑹2𝑖−2 … 𝑹𝑖+1 𝑹𝑖

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑪𝑨𝑖−1𝑮 𝑪𝑨𝑖−2𝑮 … 𝑪𝑨𝑮 𝑪𝑮
𝑪𝑨𝑖𝑮 𝑹𝑖 ⋱ ⋱ 𝑪𝑨𝑮

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑪𝑨𝑖−2𝑮

𝑪𝑨2𝑖−2𝑮 𝑪𝑨2𝑖−3𝑮 … 𝑪𝑨𝑖𝑮 𝑪𝑨𝑖−1𝑮

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

[𝑨𝑖−1𝑮 … 𝑨𝑮 𝑮]

= 𝑶𝑖𝜞𝑖.

Nevertheless, the state matrices 𝑨, 𝑪, and 𝑮 are not know in advance because
they are comprised within the target of the parametric dynamic identification ap-
proach through the stochastic state space formulation. Additionally, considering
that the monitored data sequence are not infinite (𝑁𝑡 < ∞), the Toeplitz matrix
should be constructed numerically using output-only data by estimating the output
covariances as reported in Eq. (2.94) [96], i.e.

�̂�𝑖 =
1

𝑁𝑑 − 𝑖
𝒀1∶𝑁𝑑−𝑖𝒀 𝑇

𝑖∶𝑁𝑑
,

Alternatively, instead of setting up a Toeplitz matrix from reasoning based
output data Hankel matrices, it is possible to set a block Hankel matrix of the
theoretical output covariance matrices as below [111, 108]. This alternative for-
mulation provides a similar factorization because the same observability matrix 𝑶𝒊
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appear, whilst a new controllability matrix 𝜞𝑖 is obtained.

𝑯𝑹 =
⎡
⎢
⎢
⎢
⎣

𝑹1 𝑹2 𝑹3 … 𝑹𝑖
𝑹2 𝑹3 ⋱ ⋱ 𝑹𝑖+1
𝑹3 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑹2𝑖−1
𝑹𝑖 𝑹𝑖+1 … 𝑹2𝑖−1 𝑹2𝑖

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑪𝑮 𝑪𝑨𝑮 𝑪𝑨2𝑮 … 𝑪𝑨𝑖−1𝑮
𝑪𝑨𝑮 𝑪𝑨2𝑮 ⋱ ⋱ 𝑪𝑨𝑖𝑮
𝑪𝑨2𝑮 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 𝑪𝑨2𝑖−2𝑮
𝑪𝑨𝑖−1𝑮 𝑪𝑨𝑖𝑮 … 𝑪𝑨2𝑖−2𝑮 𝑪𝑨2𝑖−1𝑮

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤
⎥
⎥
⎦

[𝑮 𝑨𝑮 … 𝑨𝑖−1𝑮]

= 𝑶𝑖𝜞𝑖.

(A.9)

Therefore, now it is clear the reason why 𝜞𝑖 is called reversed controllability matrix,
in contrast to the controllability matrix 𝜞𝑖.
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Appendix B

Tunnel linings damage detection:
training curves and interpretable
maps

B.1 Training curves

B.1.1 Convergence curves for ResNet-50

(a) (b) (c) (d)

(e) (f) (g)

Figure B.1: (a-g) ResNet-50 trained with raw images: loss versus accuracy during
the training iterations.
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(a) (b) (c) (d)

(e) (f) (g)

Figure B.2: (a-g) ResNet-50 trained with Fourier pre-processed images: loss versus
accuracy during the training iterations.

B.1.2 Convergence curves for EfficientNet-B0

(a) (b) (c) (d)

(e) (f) (g)

Figure B.3: (a-g) EfficientNet-B0 trained with raw images: loss versus accuracy
during the training iterations.
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B.1 – Training curves

(a) (b) (c) (d)

(e) (f) (g)

Figure B.4: (a-g) EfficientNet-B0 trained with Fourier pre-processed images: loss
versus accuracy during the training iterations.

B.1.3 Convergence curves for ViT

(a) (b) (c) (d)

(e) (f) (g)

Figure B.5: (a-g) ViT trained with raw images: loss versus accuracy during the
training epochs.
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(a) (b) (c) (d)

(e) (f) (g)

Figure B.6: (a-g) ViT trained with Fourier pre-processed images: loss versus accu-
racy during the training epochs.

B.1.4 Convergence curves for CCT

(a) (b) (c) (d)

(e) (f) (g)

Figure B.7: (a-g) CCT trained with raw images: loss versus accuracy during the
training epochs.
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B.1 – Training curves

(a) (b) (c) (d)

(e) (f) (g)

Figure B.8: (a-g) CCT trained with Fourier pre-processed images: loss versus ac-
curacy during the training epochs.

307



Tunnel linings damage detection: training curves and interpretable maps

B.2 Interpretable class activation maps and at-
tention maps
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Figure B.9: Class activation maps for ResNet-50 and EfficientNet, and attention
maps for ViT compared to original images for each class.
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Figure B.9: Class activation maps for ResNet-50 and EfficientNet, and attention
maps for ViT compared to original images for each class.
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Figure B.9: Class activation maps for ResNet-50 and EfficientNet, and attention
maps for ViT compared to original images for each class.
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Figure B.9: Class activation maps for ResNet-50 and EfficientNet, and attention
maps for ViT compared to original images for each class.
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Original Image

Class C1

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C2

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C3

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C4

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C5

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C6

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C7

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C8

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Figure B.9: Class activation maps for ResNet-50 with Fourier pre-processing com-
pared to Fourier pre-processed images for each class.

312



B.2 – Interpretable class activation maps and attention maps

Original Image

Class C9

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C10

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C11

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C12

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C13

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Original Image

Class C14

Activation Map

ResNet-50 (Fourier)

0

0.5

1

Figure B.9: Class activation maps for ResNet-50 with Fourier pre-processing com-
pared to Fourier pre-processed images for each class.
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