
19 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PyARC the Python Algorithm for Residential load profiles reConstruction / Giannuzzo, Lorenzo; Schiera, DANIELE
SALVATORE; Minuto, FRANCESCO DEMETRIO; Lanzini, Andrea. - In: SOFTWAREX. - ISSN 2352-7110. -
ELETTRONICO. - 28:(2024). [10.1016/j.softx.2024.101878]

Original

PyARC the Python Algorithm for Residential load profiles reConstruction

Publisher:

Published
DOI:10.1016/j.softx.2024.101878

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992436 since: 2024-09-13T12:55:05Z

Elsevier

PyARC the Python Algorithm for Residential load profiles reConstruction

Lorenzo Giannuzzo a,b,*, Daniele Salvatore Schiera a,b, Francesco Demetrio Minuto a,b,
Andrea Lanzini a,b

a Energy Center Lab, Polytechnic of Turin, via Paolo Borsellino 38/16, 10152 Turin, Italy
b Department of Energy (DENERG), Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

A R T I C L E I N F O

Keywords:
Load profiles reconstruction
Python-based software
Non-intrusive methodology
Machine-learning
Data scarcity

A B S T R A C T

Load profiling for residential aggregates encounters challenges due to data scarcity and the inadequacy of
standard profiles obtained from statistical analyses. In the absence of hourly data, many methods rely on stan-
dard profiles, which could lead to significant errors in consumption estimation, especially for evaluating specific
aggregates. This article presents PyARC, a Python-based algorithm trainable with customizable consumption
data, which addresses the problem related to evaluating the energy consumption of specific aggregates by using
typological profiles extracted from similar users, thereby improving accuracy. The algorithm’s innovative
approach uses Association Rule Mining and Random Forest Classification to reconstruct the load profiles of
aggregates, providing a more robust solution for estimating the electrical load with limited data.

Metadata
Nr. Code metadata description Please fill in this column
C1 Current code version v0.9
C2 Permanent link to code/

repository used for this code
version

https://github.com/LorenzoGiannuzzo/
PyARC.git

C3 Permanent link to reproducible
capsule

C4 Legal code license GNU Lesser General Public License version
3 (LGPL 3.0)

C5 Code versioning system used git
C6 Software code languages, tools

and services used
Python

C7 Compilation requirements,
operating environments and
dependencies

Python 3.12.1, joblib 1.3.2, matplotlib
3.8.2, numpy 1.26, pandas 2.2.0,
scikit_learn 1.4.0, seaborn 0.13.2.

C8 If available, link to developer
documentation/manual

C9 Support email for questions lorenzo.giannuzzo@polito.it

1. Motivation and significance

Reconstructing electrical load profiles is pivotal in the energy sector
as it provides a detailed understanding of how electricity is consumed
over time. This information helps utilities and energy providers optimize
grid management, improve demand forecasting, and increase energy

efficiency. Moreover, accurate load profiles also typically enable better
integration of renewable energy sources, such as solar and wind, by
balancing supply and demand. However, One of the major challenges
that can arise during a load profiling process is the availability of hourly
or sub-hourly consumption data, especially for the residential sector [1].
Many studies have been carried out on load profiling techniques, as
shown in [2], but most of them provide software and models that require
high-resolution data and additional information such as user habits,
appliances, building structure, and occupant behavior to perform load
profiling [3–5]. For example, Chuan et al. [6] aimed to establish a model
to reconstruct and describe the load profile of different types of users
using electrical consumption data enriched with additional information
on appliances and building structure. Similarly, in [7] a novel approach
was proposed to generate synthetic load profiles with realistic vari-
ability and demand peaks using very high-resolution data (15 min res-
olution). In [8], a study was conducted to investigate the electricity
consumption habits of occupants, which is generally a pre-requisite for
training load profile reconstruction models, using sub-hourly resolution
data. Furthermore, in the article by Piscitelli et al. [9], an imple-
mentation of a non-intrusive approach was carried out to reconstruct the
electrical load profiles in the building domain using monthly energy bills
data, enriched with additional information collected through a tele-
phone survey related to the appliances and habits of the users. In
contrast, the article by Lazzeroni et al. [10] proposed a data-driven
approach to reconstruct and predict load profiles of single end-users

* Corresponding author at: Via Paolo Braccini 29, 10141 Turin, Italy.
E-mail address: lorenzo.giannuzzo@polito.it (L. Giannuzzo).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

https://doi.org/10.1016/j.softx.2024.101878
Received 11 March 2024; Received in revised form 2 September 2024; Accepted 2 September 2024

SoftwareX 28 (2024) 101878

Available online 13 September 2024
2352-7110/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/LorenzoGiannuzzo/PyARC.git
https://github.com/LorenzoGiannuzzo/PyARC.git
mailto:lorenzo.giannuzzo@polito.it
www.sciencedirect.com/science/journal/23527110
https://www.elsevier.com/locate/softx
https://doi.org/10.1016/j.softx.2024.101878
https://doi.org/10.1016/j.softx.2024.101878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101878&domain=pdf
http://creativecommons.org/licenses/by/4.0/

with minimal input data. They created a model that is the combination
of clustering and classification processes to predict typical load profiles
based on monthly energy bills, obtaining encouraging results compared
to other load profile reconstruction techniques, emerging as a solid
alternative to load profiling methodologies based on clustering and
classification processes.

In summary, load profiling methodologies in the literature have
generally used high-resolution data, often enriched with additional in-
formation such as information on appliances, habits and occupational
activities, with some exceptions such as [10], which however aimed at
reconstructing the electrical load profiles only of individual users. This
leaves a gap in the literature for methodologies that can reconstruct load
profiles at an aggregate level without the need for high-resolution data
or extensive user-specific information. In order to fill this gap, this
research work presents the PyARC algorithm, which makes use of the
methodology described in [1]:

• Propose a practical way to use a data-driven methodology, trainable
using datasets from different geographical areas, that can be used to
reconstruct the hourly electricity consumption of residential users at
an aggregate level;

• Reconstruct the hourly electricity consumption of residential users
using non-intrusive machine learning techniques in a simple way
that relies only on easily available data, such as monthly consump-
tion data, without any additional information about the users’ work
activities, habits, or appliances.

2. Software description

PyARC is a Python-developed algorithm designed for the recon-
struction of residential aggregate electrical load profiles. It leverages an
algorithm for Association Rule Mining to model relationships between
Time-of-Use (ToU) data and electrical consumption profiles. The algo-
rithm uses a non-intrusive machine learning methodology that can be

used to generate residential electrical consumption profiles at an hourly
resolution level using only monthly consumption data (i.e., electrical
energy bills). The methodology used to reconstruct the aggregated
electrical load profile is mainly composed of three phases: first, identi-
fying the typical load patterns of residential users through k-Means
clustering performed on hourly electrical consumption data, supported
by evaluation metrics to identify the optimal number of clusters such as
Davies-Boudin Index, Elbow Method, and Silhouette Score, then
implementing a classification model (Random Forest), to identify, on a
monthly basis and for each user, the typical load pattern choosing from
the cluster centroids obtained during the clustering process based on
features extracted from monthly energy bills and, finally, reconstructing
and aggregating the electrical load profile through user-specific rescal-
ing factor based on monthly bills.

2.1. Software architecture

The software provides two main modes of operation: Model Training
and Profile Reconstruction, as depicted in Fig. 1.

The Model Training process involves executing the method used to
train the classification model and extract the normalized cluster cen-
troids. The input data of this process is the hourly electrical consumption
measures and the ToU. The outputs of Model Training are the normal-
ized cluster centroids and the classification model, followed by sec-
ondary outputs such as plots and documentation files containing the
performance of the classifier during its training and testing phase.
Moving on to the Profile Reconstruction, the software provides two
different features: the Pre-trained Model and the User-trained Model.
For the first option, the Profile Reconstruction method is employed using
the pre-trained model, which was previously trained and saved in the
software’s directory. For the second method, the user-trained model is
used instead. To perform the second option, the Model Training process
is required to be executed first, to train and store the user-trained model
in the software’s directory.

Fig. 1. PyARC features and functionalities.

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

2

2.2. Software implementation

The algorithm can be divided into several key components, each
playing a specific role in the analysis and reconstruction of consumption
profiles, as shown in Fig. 2.

■ Data – This folder is populated by the required input data which is
necessary to run the software. Data is divided into:
- Input Training Data – Folder that contains the hourly electrical

consumption measures and ToU required to train the user-trained
model, in .csv format;

- Input data – folder containing the monthly electrical energy bills
and ToU required to perform the profile reconstruction method, in .
csv format;

- Default Training Data – Folder that contains the data previously
used to create the pre-trained model;

- Centroids – Folder containing the normalized centroids obtained
from the clustering process of the Model Training;

- Output Data – Folder containing the output generated from the
Profile Reconstruction process, namely the hourly aggregated
electrical consumption in .csv format.

■ Docs – This folder contains information related to the performance
metrics of the pre-trained and user-trained classification models;

■ PyARC – This folder is populated by Python scripts containing soft-
ware’s functionalities.

■ Pre-trained Model – Folder containing the pre-trained classification
model obtained using the joblib package;

■ User-trained Model – Folder containing the user-trained classifica-
tion model obtained using the joblib package;

■ Plots – This folder contains figurative outputs generated by the
algorithm.

2.3. Software functionalities

The software provides a set of functionalities for training and using
models to reconstruct aggregated electrical load profiles for residential

users. The main operations and functionalities are:

■ Model Training – This process executes the train_model() func-
tion to train the classification model using hourly electricity con-
sumption measurements and ToU data. The function starts by
delving into required input data files, getting both electrical con-
sumption and ToU information through specialized CSV handlers.
The data then undergoes a series of transformations handled by the
“DataFrameProcessor”, which is responsible for validating the ToU
data, normalizing consumption values, dealing with missing or
outlier data, and finally calculating monthly consumption averages.
The process continues with the clustering process, which consists of a
K-means clustering supported by an optimal number of cluster
evaluation metrics. The centroids obtained from the clustering pro-
cess are then saved in the software’s directory. Subsequently, the
function extracts features from monthly electrical bills and ToU to
train and test the classification model, which is then cross-validated
and stored in the software’s directory. In addition, the process of the
creation of the user-trained model is parallelized on the different
cores of the machine used by the software user to speed up the
software execution.

The model hyperparameters are chosen based on an iterative tuning
process handled by the following function:

The function is designed to train a Random Forest Classifier model
with hyperparameter tuning using the “GridSearchCV” method. The
process starts by initializing a Random Forest model with specific initial
hyperparameters, such as using the Gini criterion and allowing trees to
expand without a maximum depth limit. A hyperparameter grid is
defined, outlining different values for parameters such as the number of
estimators, minimum samples to split, minimum samples per leaf, and
maximum features. This grid acts as a set of possible configurations for
the Random Forest model. The “GridSearchCV” object is then used,
incorporating the Random Forest model, the hyperparameter grid, 5-
fold cross-validation, and accuracy as the scoring metric. This allows

Fig. 2. PyARC repository structure.

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

3

exhaustive exploration of hyperparameter combinations, training mul-
tiple Random Forest models, and evaluating their performance using
accuracy. The fitting method is run on the “GridSearchCV” object,
initiating the training process with different hyperparameter combina-
tions on the provided training data. The best-performing model is
identified by extracting the “best_estimator_” attribute from the “Grid-
SearchCV” object. This attribute holds the Random Forest model with
the hyperparameters that gave the highest accuracy during cross-
validation. Finally, the selected best model is stored for future use,
accessible via the “self.model” attribute. This contains the entire process
of hyperparameter tuning and model training, ensuring the optimized
Random Forest model based on the provided dataset. In summary, the
outputs are the Random Forest classifier and the normalized cluster
centroids, followed by other secondary outputs, such as plots and the
classifier’s performance metrics.

■ Reconstruction using User-trained Model – This process uses the
user_trained_model() function to reconstruct load profiles
using the user-trained model. This function uses the user-trained
classification model and the normalized cluster centroids obtained
using the train_model() function. The input data are the monthly
electrical bills and ToU, which are loaded using specific CSV han-
dlers. The function performs feature extraction from the input to
perform the classification task using the pre-trained model to iden-
tify load consumption patterns for each user on a monthly basis.
Subsequently, the function proceeds to rescale the obtained
normalized load profiles using user-specific rescaling factors and
aggregate them obtaining the aggregated electrical consumption
profiles. In detail, the rescaling coefficients are evaluated in two
steps:
- Identify the most recurrent ToU timeframe during daylight hours;
- Calculate user-specific rescaling coefficients.

In the first step, the most recurrent ToU during the central hours of
the day is identified. In the second step, the scaling coefficient is
calculated according to Eq. (1).

si,m =
ToUel. cons., i,m

ci,m ∗ Em
(1)

where:

- ToUel. cons.,i,m is the electrical consumption in the most recurrent ToU
for i th user and the m-th month;

- ci,m is the sum of the centroids value of the i th user in the m-th month,
during the most recurrent ToU timeframe;

- Em is the temporal extension, expressed in hours, of the most recur-
rent ToU in one day.

The rescaling coefficient calculated according to Eq. (1) has been
proven to be highly efficient in [1] and [9], obtaining high-performance
evaluation metrics, such as the Normalized RMSE (NRMSE) and the
Normalized MAE (NMAE). The aggregated load profiles are then
exported in a CSV file and saved in the software’s directory.

■ Reconstruction using Pre-trained Model – This process executes the
reconstruct_profile() function to reconstruct profiles using the
pre-trained model. The process workflow is the same as the
user_trained_model() function, but the pre-trained model is
used instead of the user-trained model. The model is obtained
through a training process made with publicly available data, spe-
cifically the hourly electricity consumption of users located in Lon-
don with a time window of one year [7] and their ToU related to a
weekday, which is summarized in Table 1 and stored in the Default
Training Data directory.

2.4. Software usage

To successfully run the PyARC software, some preliminary actions
are needed.

• Installing Required Libraries – open the terminal in the Python ter-
minal and execute the following command:

pip install -r requirements.txt

This command will automatically install all the dependencies listed
in the requirements.txt file.

def _train_model(self):

rf_model = RandomForestClassifier(criterion = ’gini’,

max_depth = None, random_state = 42)

param_grid = {

’n_estimators’: [50, 500],

’min_samples_split’: [2, 5, 10],

’min_samples_leaf’: [20, 30, 40, 80],

’max_features’: [1, 2, 3, 4, 5]

}

grid_search = GridSearchCV(estimator = rf_model,

param_grid=param_grid, cv=5, scoring=’accuracy’)

grid_search.fit(self.X_train, self.y_train)

self.model = grid_search.best_estimator_

Table 1
ToU frame used for the pre-trained model.

ToU timeframe name Hours

Red 11:00–14:00
16:00–19:00
Amber 07:00–11:00
14:00–16:00
19:00–23:00
Green 00:00–07:00
23:00–24:00

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

4

■ Verification of installed libraries – After executing the installation
command, it is crucial to verify that all the necessary libraries have
been successfully installed. This ensures that the PyARC software
will have access to the required components for seamless execution.

You can confirm the successful installation by checking the list of
installed packages in your Python environment.

■ Input requirements – Input data directories must be populated by
CSV files for each of the software functionalities.
- Reconstruct profiles using the pre-trained model – a CSV file named

“data.csv” must be placed in the Input Data directory. The data
must be structured as follows:

where:

- "User": is a char/string which contains usernames;
- "Year": is a numerical value that represents the year when electrical

energy was measured;
- "Month": is a numerical value that represents the months when

electrical energy was measured;
- "ToU1, ToU2, ToU3": contains the monthly electrical energy bills

expressed in kWh and divided based on the ToU. The column name
must be the same as the name of the ToU frames expressed in the
“tou.csv” file.

Additionally, a CSV file named “tou.csv” must be placed in the Input
Data directory. The data must be structured as follows:

where:

- "Hour": is a numerical value that represents the Hour in which the
ToU is divided;

- "ToU": contains the Time of Use subgroup names expressed as char/
string.

The software is flexible in handling input data that contains more or
less than three ToU frames or that are called with different names.

- Model Training – A CSV file named “train_data.csv” must be placed in
the Input Training Data directory. The data must be structured as
follows:

where:

- "User": is a char/string which contains usernames;
- "Year": is a numerical value that represents the year when electrical

energy was measured;
- "Month": is a numerical value that represents the months when

electrical energy was measured;

- "Day": is a numerical value that represents the number of days when
electrical energy was measured;

- "Hour": is a numerical value that represents the hours when electrical
energy was measured;

- "Consumption": contains electrical energy values expressed in kWh.

Additionally, a CSV file named “train_tou.csv” must be placed in the
Input Data directory. The data must be structured as follows the “tou.
csv” required for the Reconstruct Profiles process.

- Reconstruct profiles using the user-trained model – a CSV file named
“data.csv” must be placed in the Input Data directory, with the same
structures described for the Reconstruct Profiles process using the
pre-trained model.

Finally, to run the algorithm it’s necessary to follow the following
steps:

■ Run `main.py`;

The following message will be shown in the command line.
Welcome to PyARC! What would you like to do?

1. Reconstruct Residential Aggregate Electrical

Load Profiles using the pre-trained model

2. Train a new model

3. Reconstruct Residential Aggregate Electrical

Load Profiles using the user-trained model

■ Choose an option (1, 2, or 3) using the command line based on the
desired action.
1) Reconstruct profiles using the pre-trained model;
2) Train a new PyARC model;
3) Reconstruct profiles using a user-trained model.

After selecting an option, the software initiates, messages tracking
the progress of the software processes are progressively displayed in the
command line, and output files are generated.

2.5. Software applicability

The underlying assumption of our approach is that there are typical
load profiles that describe the hourly consumption patterns of users with
certain characteristics. These typical profiles can be identified and
classified using clustering methods. Employing a clustering process on
normalized load profiles enables the detection and classification of users
with diverse characteristics, even in more heterogeneous datasets. As
user characteristics become more diverse, the clustering process be-
comes more adept at distinguishing between these types of users. In our
previous work we demostrate that these typical profiles can be identified
and classified using clustering methods [1]. However, a challenge when
dealing with highly heterogeneous datasets is that the classifier may
have difficulty effectively recognizing and categorizing a wide range of

User,Year,Month,ToU1,ToU2,ToU3

MAC000016,2012,1,32.27,42.49,9.63

MAC000016,2012,2,7.84,9.50,5.58

MAC000016,2012,4,3.45,4.50,3.31

MAC000016,2012,5,2.83,4.06,3.46

MAC000016,2012,6,3.50,4.82,2.82

…

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

5

user types. Nevertheless, the use of metrics such as the Davies-Bouldin
index and the Silhouette score mitigates the risk of selecting an exces-
sive number of clusters, thereby improving the classifier’s performance
in classification tasks and making it possible to use the software with
heterogeneous data sets as well.

3. Illustrative examples

In this section, the process that was undertaken to obtain the pre-
trained model is described, and the reconstruction of the load profiles
of an aggregate composed by six residential users randomly chosen from
data described in [11] is shown, as an example of the software func-
tionalities application. To obtain the pre-trained model, the train_-
model() function was used running the main and choosing option 2
from the command line (Train a new PyARC model), using the data
described in [11] and the ToU defined in Table 1 by moving the data

from the Default Training Data to the Input Training Data folder, and
correctly renaming the files in “train_data.csv” and “train_tou.csv”.

Welcome to PyARC! What would you like to do?

1. Reconstruct Residential Aggregate Electrical

Load Profiles using the pre-trained model

3. Reconstruct Residential Aggregate Electrical

Load Profiles using the user-trained model

As described in Sections 2.1 and 2.2, a K-means clustering was per-
formed to identify the normalized typical load patterns as centroids of
the obtained clusters. Then, a Random Forest is trained to build a model
capable of detecting the load patterns of residential users based on
features extracted from monthly electricity bills. The obtained cluster
centroids (Fig. 3) are then saved in the software’s folder.

As stated in Section 2, once cluster centroids were obtained, training
features were extracted from the input data, and the classification model

Hour,ToU

0,ToU3

1,ToU3

2,ToU3

3,ToU3

4,ToU3

5,ToU3

6,ToU3

7,ToU2

8,ToU2

9,ToU2

10,ToU2

11,ToU1

12,ToU1

13,ToU1

14,ToU2

15,ToU2

16,ToU1

17,ToU1

18,ToU1

19,ToU2

20,ToU2

21,ToU2

22,ToU2

23,ToU3

User,Year,Month,Day,Hour,Consumption

"MAC000016",2012,1,1,0,0.0275

"MAC000016",2012,1,1,1,0.0735

"MAC000016",2012,1,1,2,0.0395

"MAC000016",2012,1,1,3,0.0305

…

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

6

was trained. The obtained classification model performance is sum-
marised in Table 2. In this work, classification performance metrics are
evaluated as the classifier’s ability to successfully assign a user to its
correct cluster, both for training and testing set (70% and 30% of the
input data respectively). These metrics are exensively described in our
previous work [1]. Feature importance is presented in Fig. 4, where a
ranking of the most useful features used for the classification task is
shown.

The figure shows that among the selected features, the most relevant
for the pre-trained classification model was the total monthly con-
sumption, the consumption in the three different ToU periods, and then
the ratio between these values.

As previously stated, the entire process performed to create the pre-
trained model can be repeated to create the user-trained model from
different input data using the train_model() function, resulting in
different cluster centroids, optimal number of cluster values, and clas-
sification performance metrics. As mentioned above, the user_-
trained_model() function must be used to use the user-trained
model.

After obtaining the pre-trained model, an example of the software
application is made using monthly data extracted from some randomly
selected users from the data described in [11]. The pre-trained model is
used via reconstruct_profiles() to reconstruct the aggregate load
profiles by running the main and choosing from command line option 1
(Reconstruct Residential Aggregate Electrical Load Profiles using the
pre-trained model), and by using the input data correctly named and
placed in the Input Data folder, following data requirements described in
Section 2.

Welcome to PyARC! What would you like to do?

2. Train a new model

3. Reconstruct Residential Aggregate Electrical

Load Profiles using the user-trained model

As previously stated, the aggregate load profiles on a monthly basis
(Fig. 5) are obtained by combining the classification model and the user-
specific rescaling coefficient calculated through Eq. (1).

For this specific example, data corresponding to March are missing
for the reasons given in [1] and [11], namely the maintenance of smart
meters.

4. Impact

As mentioned in the introduction of this research work, most articles
on load profiling rely on high temporal resolution data enriched with
additional information on appliances, the number of occupants, their
characteristics, and habits. In contrast, this research proposes a software
that does not rely on such information-rich datasets, which are often
difficult to obtain in real-world contexts. This topic represents an
emerging novelty in research, as opposed to the abundance of load
profiling methodologies that focus on reconstructing profiles with high
temporal resolution for individual users. Having accurate estimates of
electrical consumption within an aggregate allows for more robust
economic and energy assessments during feasibility studies. For
example, the proposed model could be used to support the feasibility
studies of Renewable Energy Communities (RECs), helping potential
aggregators and stakeholders involved in the promotion and creation of
RECs in local areas, even in countries where the deployment of smart
meters has reached a high penetration rate, as shown in [1], where a
similar code structure was used. Indeed, even in these countries, there is
still a lack of publicly available and accessible data that could be used to
improve the estimation of energy flows and thus the economic assess-
ment within a REC. As an example, in [12,13] and [14] hourly or
sub-hourly data for energy is required for the simulation and optimi-
zation of RECs. PyARC allows for analysis and studies through simula-
tion or optimization methods even in contexts in which hourly or
sub-hourly data are not easily available. In addition, in real-world sce-
narios where hourly or sub-hourly data is typically not available, one of
the most commonly used methods for estimating electrical load profiles
is to use standard profiles, often obtained from large-scale statistical
analyses. These profiles, which typically represent the average behavior
of a large number of users, often do not accurately represent users in
more localized geographic areas. Since aggregates are local aggregations
of users, and therefore not geographically extensive, it is plausible to
expect that the electrical load of users within a generic aggregate will
generally be different (in some cases very different) from the standard
load profiles that might be used. Consequently, the use of such profiles,
which in most cases consist of one or two profiles per user category (e.g.
residential, industrial), would lead to significant errors in the estimation
of electricity consumption. On the contrary, the software uses typolog-
ical profiles, which can be representative of specific users, especially
those directly belonging to the aggregate or similar users. Therefore, the
typological profiles identified by the model are highly representative of
the user behavior within the aggregate and are more numerous than the
standard profiles obtained through statistical analysis. As stated in [1],
where the PyARC methodology is applied in the context of RECs. In this
work, PyARC demonstrated to achieve competitive performances
compared to some similar models, such as [10] which is the model with
the most similar purpose to those of PyARC among the models in the
literature, in terms of Normalized Absolute Mean Error (NMAE) and
Normalized Root Mean Squared Error (NRMSE) evaluated between the

2. Train a new model

Fig. 3. Cluster Centroids were obtained during the pre-trained model training.

Table 2
Classification performance metrics of the pre-trained model.

Classification performance metrics Value

Accuracy (train) 90.44%
Accuracy (test) 89.37%

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

7

Fig. 4. Feature importance ranking for the pre-trained model.

1. Reconstruct Residential Aggregate Electrical Load Profiles using the pre-trained model

Fig. 5. Aggregated electrical load profiles for each month.

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

8

simulated load profiles and the real ones.

5. Conclusions

Load profiling for residential aggregates faces challenges arising
from data scarcity and the limitations of standard profiles derived from
statistical analysis. To address this issue, our research introduces PyARC,
a Python software that can reconstruct the aggregated electrical load
profiles for different residential users through easily obtainable con-
sumption data. Unlike traditional methods that rely on rich data sets,
PyARC offers a practical solution that applies to real-world scenarios and
provides robust estimates of electricity consumption within generic
residential aggregates. The software has promising implications for
supporting feasibility studies, for example in the context of Renewable
Energy Communities (RECs), where accurate energy flow assessments
are critical for economic evaluations. Additionally, PyARC could be a
valuable tool for stakeholders involved in the promotion and creation of
RECs, smart grids, and aggregates in general, offering a way to achieve
more accurate energy estimates for economic assessments, even in
countries with advanced smart meter deployments. Possible future im-
provements to the software could include the ability to customize the
training and testing data rates at the model-building stage, or the ability
to choose from a pool of different alternative models to the proposed
one. In addition, another improvement could be the choice of clustering
type when identifying typical load profiles, so that the optimal cluster
type can be chosen according to the characteristics of the dataset

CRediT authorship contribution statement

Lorenzo Giannuzzo: Writing – review & editing, Writing – original
draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Daniele Salvatore Schiera: Writing –
review & editing, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Formal analysis, Concep-
tualization. Francesco Demetrio Minuto: Supervision, Funding
acquisition, Conceptualization. Andrea Lanzini: Supervision, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the link to my code at the Attach File step

Acknowledgments

A. Lanzini, D.S. Schiera, and L. Giannuzzo carried out this study

within the National Recovery and Resilience Plan (NRRP), Mission 4
Component 2 Investment 1.3 - Call for tender No 1561 of 11.10.2022 of
Ministero dell’Università e della Ricerca (MUR); funded by the Euro-
pean Union – NextGenerationE. Award Number: Project code
PE0000021, Concession Decree No 1561 of 11.10.2022 adopted by
Ministero dell’Università e della Ricerca (MUR), CUP - to be indicated by
each Beneficiary, according to attachment E of Decree No 1561/2022,
Project title “Network 4 Energy Sustainable Transition – NEST.

F.D. Minuto carried out this study within the Ministerial Decree No
1062/2021 and received funding from the FSE REACT-EU - PON Ricerca
e Innovazione 2014–2020.

This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can be
considered responsible for them.

References

[1] Giannuzzo L, Minuto FD, Schiera DS, Lanzini A. Reconstructing hourly residential
electrical load profiles for renewable energy communities using non-intrusive
machine learning techniques. Energy and AI 2024;15:100329. https://doi.org/
10.1016/j.egyai.2023.100329.

[2] Wang Yi, Chen Qixin, Kang Chongqing, Zhang Mingming, Wang Ke, Zhao Yun.
Load profiling and its application to demand response: a Review. Tsinghua Sci.
Technol. 2015;20(2):117–29. https://doi.org/10.1109/tst.2015.7085625.

[3] Tarmanini C, Sarma N, Gezegin C, Ozgonenel O. Short term load forecasting based
on Arima and ann approaches. Energy Rep 2023;9:550–7. https://doi.org/
10.1016/j.egyr.2023.01.060.

[4] Thorve S, Baek YY, Swarup S, Mortveit H, Marathe A, Vullikanti A, Marathe M.
High resolution synthetic residential energy use profiles for the United States. Sci
Data 2023;10(1). https://doi.org/10.1038/s41597-022-01914-1.

[5] Yan L, Tian W, Wang H, Hao X, Li Z. Robust event detection for residential load
disaggregation. Appl Energy 2023;331:120339. https://doi.org/10.1016/j.
apenergy.2022.120339.

[6] Chuan L, Ukil A. Modeling and validation of electrical load profiling in residential
buildings in Singapore. In: 2015 IEEE Power & Energy Society General Meeting;
2015. https://doi.org/10.1109/TPWRS.2014.2367509.

[7] Osman M, Ouf M, Azar E, Dong B. Stochastic bottom-up load profile generator for
Canadian households’ electricity demand. Build Environ 2023;241:110490.
https://doi.org/10.1016/j.buildenv.2023.110490.

[8] Alrawi O, Bayram IS, Al-Ghamdi SG, Koç M. High-resolution household load
profiling and evaluation of rooftop PV systems in selected houses in Qatar. Energies
2019;12:3876. https://doi.org/10.3390/en12203876.

[9] Piscitelli MS, Brandi S, Capozzoli A. Recognition and classification of typical load
profiles in buildings with non-intrusive learning approach. Appl Energy 2019;255:
113727.

[10] Lazzeroni P, Lorenti G, Repetto M. A data-driven approach to predict hourly load
profiles from time-of-use electricity bills. IEEE Access 2023;11:60501–15. https://
doi.org/10.1109/access.2023.3286020.

[11] Schofield J.T., Carmichael R., Tindemans S.H., Bilton M., Woolf M., Strbac G. Low
carbon London project: data from the dynamic time-of-use electricity pricing trial,
2013 2016. https://doi.org/10.5255/ukda-sn-7857-2.

[12] Fina B, Monsberger C, Auer H. Simulation or estimation?—two approaches to
calculate financial benefits of energy communities. J Clean Prod 2022;330:129733.
https://doi.org/10.1016/j.jclepro.2021.129733.

[13] Lazzari F, Mor G, Cipriano J, Solsona F, Chemisana D, Guericke D. Optimizing
planning and operation of renewable energy communities with genetic algorithms.
Appl Energy 2023;338:120906. https://doi.org/10.1016/j.apenergy.2023.120906.

[14] Weckesser T, Dominković DF, Blomgren EMV, Schledorn A, Madsen H. Renewable
energy communities: optimal Sizing and distribution grid impact of photo-voltaics
and Battery Storage. Appl Energy 2021;301:117408. https://doi.org/10.1016/j.
apenergy.2021.117408.

L. Giannuzzo et al. SoftwareX 28 (2024) 101878

9

https://doi.org/10.1016/j.egyai.2023.100329
https://doi.org/10.1016/j.egyai.2023.100329
https://doi.org/10.1109/tst.2015.7085625
https://doi.org/10.1016/j.egyr.2023.01.060
https://doi.org/10.1016/j.egyr.2023.01.060
https://doi.org/10.1038/s41597-022-01914-1
https://doi.org/10.1016/j.apenergy.2022.120339
https://doi.org/10.1016/j.apenergy.2022.120339
https://doi.org/10.1109/TPWRS.2014.2367509
https://doi.org/10.1016/j.buildenv.2023.110490
https://doi.org/10.3390/en12203876
http://refhub.elsevier.com/S2352-7110(24)00248-6/sbref0009
http://refhub.elsevier.com/S2352-7110(24)00248-6/sbref0009
http://refhub.elsevier.com/S2352-7110(24)00248-6/sbref0009
https://doi.org/10.1109/access.2023.3286020
https://doi.org/10.1109/access.2023.3286020
http://doi.org/10.5255/ukda-sn-7857-2
https://doi.org/10.1016/j.jclepro.2021.129733
https://doi.org/10.1016/j.apenergy.2023.120906
https://doi.org/10.1016/j.apenergy.2021.117408
https://doi.org/10.1016/j.apenergy.2021.117408

	PyARC the Python Algorithm for Residential load profiles reConstruction
	1 Motivation and significance
	2 Software description
	2.1 Software architecture
	2.2 Software implementation
	2.3 Software functionalities
	2.4 Software usage
	2.5 Software applicability

	3 Illustrative examples
	4 Impact
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

