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A B S T R A C T

Load profiling for residential aggregates encounters challenges due to data scarcity and the inadequacy of 
standard profiles obtained from statistical analyses. In the absence of hourly data, many methods rely on stan-
dard profiles, which could lead to significant errors in consumption estimation, especially for evaluating specific 
aggregates. This article presents PyARC, a Python-based algorithm trainable with customizable consumption 
data, which addresses the problem related to evaluating the energy consumption of specific aggregates by using 
typological profiles extracted from similar users, thereby improving accuracy. The algorithm’s innovative 
approach uses Association Rule Mining and Random Forest Classification to reconstruct the load profiles of 
aggregates, providing a more robust solution for estimating the electrical load with limited data.
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1. Motivation and significance

Reconstructing electrical load profiles is pivotal in the energy sector 
as it provides a detailed understanding of how electricity is consumed 
over time. This information helps utilities and energy providers optimize 
grid management, improve demand forecasting, and increase energy 

efficiency. Moreover, accurate load profiles also typically enable better 
integration of renewable energy sources, such as solar and wind, by 
balancing supply and demand. However, One of the major challenges 
that can arise during a load profiling process is the availability of hourly 
or sub-hourly consumption data, especially for the residential sector [1]. 
Many studies have been carried out on load profiling techniques, as 
shown in [2], but most of them provide software and models that require 
high-resolution data and additional information such as user habits, 
appliances, building structure, and occupant behavior to perform load 
profiling [3–5]. For example, Chuan et al. [6] aimed to establish a model 
to reconstruct and describe the load profile of different types of users 
using electrical consumption data enriched with additional information 
on appliances and building structure. Similarly, in [7] a novel approach 
was proposed to generate synthetic load profiles with realistic vari-
ability and demand peaks using very high-resolution data (15 min res-
olution). In [8], a study was conducted to investigate the electricity 
consumption habits of occupants, which is generally a pre-requisite for 
training load profile reconstruction models, using sub-hourly resolution 
data. Furthermore, in the article by Piscitelli et al. [9], an imple-
mentation of a non-intrusive approach was carried out to reconstruct the 
electrical load profiles in the building domain using monthly energy bills 
data, enriched with additional information collected through a tele-
phone survey related to the appliances and habits of the users. In 
contrast, the article by Lazzeroni et al. [10] proposed a data-driven 
approach to reconstruct and predict load profiles of single end-users 
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with minimal input data. They created a model that is the combination 
of clustering and classification processes to predict typical load profiles 
based on monthly energy bills, obtaining encouraging results compared 
to other load profile reconstruction techniques, emerging as a solid 
alternative to load profiling methodologies based on clustering and 
classification processes.

In summary, load profiling methodologies in the literature have 
generally used high-resolution data, often enriched with additional in-
formation such as information on appliances, habits and occupational 
activities, with some exceptions such as [10], which however aimed at 
reconstructing the electrical load profiles only of individual users. This 
leaves a gap in the literature for methodologies that can reconstruct load 
profiles at an aggregate level without the need for high-resolution data 
or extensive user-specific information. In order to fill this gap, this 
research work presents the PyARC algorithm, which makes use of the 
methodology described in [1]:

• Propose a practical way to use a data-driven methodology, trainable 
using datasets from different geographical areas, that can be used to 
reconstruct the hourly electricity consumption of residential users at 
an aggregate level;

• Reconstruct the hourly electricity consumption of residential users 
using non-intrusive machine learning techniques in a simple way 
that relies only on easily available data, such as monthly consump-
tion data, without any additional information about the users’ work 
activities, habits, or appliances.

2. Software description

PyARC is a Python-developed algorithm designed for the recon-
struction of residential aggregate electrical load profiles. It leverages an 
algorithm for Association Rule Mining to model relationships between 
Time-of-Use (ToU) data and electrical consumption profiles. The algo-
rithm uses a non-intrusive machine learning methodology that can be 

used to generate residential electrical consumption profiles at an hourly 
resolution level using only monthly consumption data (i.e., electrical 
energy bills). The methodology used to reconstruct the aggregated 
electrical load profile is mainly composed of three phases: first, identi-
fying the typical load patterns of residential users through k-Means 
clustering performed on hourly electrical consumption data, supported 
by evaluation metrics to identify the optimal number of clusters such as 
Davies-Boudin Index, Elbow Method, and Silhouette Score, then 
implementing a classification model (Random Forest), to identify, on a 
monthly basis and for each user, the typical load pattern choosing from 
the cluster centroids obtained during the clustering process based on 
features extracted from monthly energy bills and, finally, reconstructing 
and aggregating the electrical load profile through user-specific rescal-
ing factor based on monthly bills.

2.1. Software architecture

The software provides two main modes of operation: Model Training 
and Profile Reconstruction, as depicted in Fig. 1.

The Model Training process involves executing the method used to 
train the classification model and extract the normalized cluster cen-
troids. The input data of this process is the hourly electrical consumption 
measures and the ToU. The outputs of Model Training are the normal-
ized cluster centroids and the classification model, followed by sec-
ondary outputs such as plots and documentation files containing the 
performance of the classifier during its training and testing phase. 
Moving on to the Profile Reconstruction, the software provides two 
different features: the Pre-trained Model and the User-trained Model. 
For the first option, the Profile Reconstruction method is employed using 
the pre-trained model, which was previously trained and saved in the 
software’s directory. For the second method, the user-trained model is 
used instead. To perform the second option, the Model Training process 
is required to be executed first, to train and store the user-trained model 
in the software’s directory.

Fig. 1. PyARC features and functionalities.
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2.2. Software implementation

The algorithm can be divided into several key components, each 
playing a specific role in the analysis and reconstruction of consumption 
profiles, as shown in Fig. 2.

■ Data – This folder is populated by the required input data which is 
necessary to run the software. Data is divided into:
- Input Training Data – Folder that contains the hourly electrical 

consumption measures and ToU required to train the user-trained 
model, in .csv format;

- Input data – folder containing the monthly electrical energy bills 
and ToU required to perform the profile reconstruction method, in . 
csv format;

- Default Training Data – Folder that contains the data previously 
used to create the pre-trained model;

- Centroids – Folder containing the normalized centroids obtained 
from the clustering process of the Model Training;

- Output Data – Folder containing the output generated from the 
Profile Reconstruction process, namely the hourly aggregated 
electrical consumption in .csv format.

■ Docs – This folder contains information related to the performance 
metrics of the pre-trained and user-trained classification models;

■ PyARC – This folder is populated by Python scripts containing soft-
ware’s functionalities.

■ Pre-trained Model – Folder containing the pre-trained classification 
model obtained using the joblib package;

■ User-trained Model – Folder containing the user-trained classifica-
tion model obtained using the joblib package;

■ Plots – This folder contains figurative outputs generated by the 
algorithm.

2.3. Software functionalities

The software provides a set of functionalities for training and using 
models to reconstruct aggregated electrical load profiles for residential 

users. The main operations and functionalities are:

■ Model Training – This process executes the train_model() func-
tion to train the classification model using hourly electricity con-
sumption measurements and ToU data. The function starts by 
delving into required input data files, getting both electrical con-
sumption and ToU information through specialized CSV handlers. 
The data then undergoes a series of transformations handled by the 
“DataFrameProcessor”, which is responsible for validating the ToU 
data, normalizing consumption values, dealing with missing or 
outlier data, and finally calculating monthly consumption averages. 
The process continues with the clustering process, which consists of a 
K-means clustering supported by an optimal number of cluster 
evaluation metrics. The centroids obtained from the clustering pro-
cess are then saved in the software’s directory. Subsequently, the 
function extracts features from monthly electrical bills and ToU to 
train and test the classification model, which is then cross-validated 
and stored in the software’s directory. In addition, the process of the 
creation of the user-trained model is parallelized on the different 
cores of the machine used by the software user to speed up the 
software execution.

The model hyperparameters are chosen based on an iterative tuning 
process handled by the following function:

The function is designed to train a Random Forest Classifier model 
with hyperparameter tuning using the “GridSearchCV” method. The 
process starts by initializing a Random Forest model with specific initial 
hyperparameters, such as using the Gini criterion and allowing trees to 
expand without a maximum depth limit. A hyperparameter grid is 
defined, outlining different values for parameters such as the number of 
estimators, minimum samples to split, minimum samples per leaf, and 
maximum features. This grid acts as a set of possible configurations for 
the Random Forest model. The “GridSearchCV” object is then used, 
incorporating the Random Forest model, the hyperparameter grid, 5- 
fold cross-validation, and accuracy as the scoring metric. This allows 

Fig. 2. PyARC repository structure.
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exhaustive exploration of hyperparameter combinations, training mul-
tiple Random Forest models, and evaluating their performance using 
accuracy. The fitting method is run on the “GridSearchCV” object, 
initiating the training process with different hyperparameter combina-
tions on the provided training data. The best-performing model is 
identified by extracting the “best_estimator_” attribute from the “Grid-
SearchCV” object. This attribute holds the Random Forest model with 
the hyperparameters that gave the highest accuracy during cross- 
validation. Finally, the selected best model is stored for future use, 
accessible via the “self.model” attribute. This contains the entire process 
of hyperparameter tuning and model training, ensuring the optimized 
Random Forest model based on the provided dataset. In summary, the 
outputs are the Random Forest classifier and the normalized cluster 
centroids, followed by other secondary outputs, such as plots and the 
classifier’s performance metrics.

■ Reconstruction using User-trained Model – This process uses the 
user_trained_model() function to reconstruct load profiles 
using the user-trained model. This function uses the user-trained 
classification model and the normalized cluster centroids obtained 
using the train_model() function. The input data are the monthly 
electrical bills and ToU, which are loaded using specific CSV han-
dlers. The function performs feature extraction from the input to 
perform the classification task using the pre-trained model to iden-
tify load consumption patterns for each user on a monthly basis. 
Subsequently, the function proceeds to rescale the obtained 
normalized load profiles using user-specific rescaling factors and 
aggregate them obtaining the aggregated electrical consumption 
profiles. In detail, the rescaling coefficients are evaluated in two 
steps:
- Identify the most recurrent ToU timeframe during daylight hours;
- Calculate user-specific rescaling coefficients.

In the first step, the most recurrent ToU during the central hours of 
the day is identified. In the second step, the scaling coefficient is 
calculated according to Eq. (1). 

si,m =
ToUel. cons., i,m

ci,m ∗ Em
(1) 

where:

- ToUel. cons.,i,m is the electrical consumption in the most recurrent ToU 
for i th user and the m-th month;

- ci,m is the sum of the centroids value of the i th user in the m-th month, 
during the most recurrent ToU timeframe;

- Em is the temporal extension, expressed in hours, of the most recur-
rent ToU in one day.

The rescaling coefficient calculated according to Eq. (1) has been 
proven to be highly efficient in [1] and [9], obtaining high-performance 
evaluation metrics, such as the Normalized RMSE (NRMSE) and the 
Normalized MAE (NMAE). The aggregated load profiles are then 
exported in a CSV file and saved in the software’s directory.

■ Reconstruction using Pre-trained Model – This process executes the 
reconstruct_profile() function to reconstruct profiles using the 
pre-trained model. The process workflow is the same as the 
user_trained_model() function, but the pre-trained model is 
used instead of the user-trained model. The model is obtained 
through a training process made with publicly available data, spe-
cifically the hourly electricity consumption of users located in Lon-
don with a time window of one year [7] and their ToU related to a 
weekday, which is summarized in Table 1 and stored in the Default 
Training Data directory.

2.4. Software usage

To successfully run the PyARC software, some preliminary actions 
are needed.

• Installing Required Libraries – open the terminal in the Python ter-
minal and execute the following command:

pip install -r requirements.txt

This command will automatically install all the dependencies listed 
in the requirements.txt file.

def _train_model(self):

rf_model = RandomForestClassifier(criterion = ’gini’,

max_depth = None, random_state = 42)

param_grid = {

’n_estimators’: [50, 500],

’min_samples_split’: [2, 5, 10],

’min_samples_leaf’: [20, 30, 40, 80],

’max_features’: [1, 2, 3, 4, 5]

}

grid_search = GridSearchCV(estimator = rf_model,

param_grid=param_grid, cv=5, scoring=’accuracy’)

grid_search.fit(self.X_train, self.y_train)

self.model = grid_search.best_estimator_

Table 1 
ToU frame used for the pre-trained model.

ToU timeframe name Hours

Red 11:00–14:00
16:00–19:00
Amber 07:00–11:00
14:00–16:00
19:00–23:00
Green 00:00–07:00
23:00–24:00
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■ Verification of installed libraries – After executing the installation 
command, it is crucial to verify that all the necessary libraries have 
been successfully installed. This ensures that the PyARC software 
will have access to the required components for seamless execution.

You can confirm the successful installation by checking the list of 
installed packages in your Python environment.

■ Input requirements – Input data directories must be populated by 
CSV files for each of the software functionalities.
- Reconstruct profiles using the pre-trained model – a CSV file named 

“data.csv” must be placed in the Input Data directory. The data 
must be structured as follows:

where:

- "User": is a char/string which contains usernames;
- "Year": is a numerical value that represents the year when electrical 

energy was measured;
- "Month": is a numerical value that represents the months when 

electrical energy was measured;
- "ToU1, ToU2, ToU3": contains the monthly electrical energy bills 

expressed in kWh and divided based on the ToU. The column name 
must be the same as the name of the ToU frames expressed in the 
“tou.csv” file.

Additionally, a CSV file named “tou.csv” must be placed in the Input 
Data directory. The data must be structured as follows:

where:

- "Hour": is a numerical value that represents the Hour in which the 
ToU is divided;

- "ToU": contains the Time of Use subgroup names expressed as char/ 
string.

The software is flexible in handling input data that contains more or 
less than three ToU frames or that are called with different names.

- Model Training – A CSV file named “train_data.csv” must be placed in 
the Input Training Data directory. The data must be structured as 
follows:

where:

- "User": is a char/string which contains usernames;
- "Year": is a numerical value that represents the year when electrical 

energy was measured;
- "Month": is a numerical value that represents the months when 

electrical energy was measured;

- "Day": is a numerical value that represents the number of days when 
electrical energy was measured;

- "Hour": is a numerical value that represents the hours when electrical 
energy was measured;

- "Consumption": contains electrical energy values expressed in kWh.

Additionally, a CSV file named “train_tou.csv” must be placed in the 
Input Data directory. The data must be structured as follows the “tou. 
csv” required for the Reconstruct Profiles process.

- Reconstruct profiles using the user-trained model – a CSV file named 
“data.csv” must be placed in the Input Data directory, with the same 
structures described for the Reconstruct Profiles process using the 
pre-trained model.

Finally, to run the algorithm it’s necessary to follow the following 
steps:

■ Run `main.py`;

The following message will be shown in the command line.
Welcome to PyARC! What would you like to do?

1. Reconstruct Residential Aggregate Electrical 

Load Profiles using the pre-trained model

2. Train a new model

3. Reconstruct Residential Aggregate Electrical 

Load Profiles using the user-trained model

■ Choose an option (1, 2, or 3) using the command line based on the 
desired action.
1) Reconstruct profiles using the pre-trained model;
2) Train a new PyARC model;
3) Reconstruct profiles using a user-trained model.

After selecting an option, the software initiates, messages tracking 
the progress of the software processes are progressively displayed in the 
command line, and output files are generated.

2.5. Software applicability

The underlying assumption of our approach is that there are typical 
load profiles that describe the hourly consumption patterns of users with 
certain characteristics. These typical profiles can be identified and 
classified using clustering methods. Employing a clustering process on 
normalized load profiles enables the detection and classification of users 
with diverse characteristics, even in more heterogeneous datasets. As 
user characteristics become more diverse, the clustering process be-
comes more adept at distinguishing between these types of users. In our 
previous work we demostrate that these typical profiles can be identified 
and classified using clustering methods [1]. However, a challenge when 
dealing with highly heterogeneous datasets is that the classifier may 
have difficulty effectively recognizing and categorizing a wide range of 

User,Year,Month,ToU1,ToU2,ToU3

MAC000016,2012,1,32.27,42.49,9.63

MAC000016,2012,2,7.84,9.50,5.58

MAC000016,2012,4,3.45,4.50,3.31

MAC000016,2012,5,2.83,4.06,3.46

MAC000016,2012,6,3.50,4.82,2.82

…
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user types. Nevertheless, the use of metrics such as the Davies-Bouldin 
index and the Silhouette score mitigates the risk of selecting an exces-
sive number of clusters, thereby improving the classifier’s performance 
in classification tasks and making it possible to use the software with 
heterogeneous data sets as well.

3. Illustrative examples

In this section, the process that was undertaken to obtain the pre- 
trained model is described, and the reconstruction of the load profiles 
of an aggregate composed by six residential users randomly chosen from 
data described in [11] is shown, as an example of the software func-
tionalities application. To obtain the pre-trained model, the train_-
model() function was used running the main and choosing option 2 
from the command line (Train a new PyARC model), using the data 
described in [11] and the ToU defined in Table 1 by moving the data 

from the Default Training Data to the Input Training Data folder, and 
correctly renaming the files in “train_data.csv” and “train_tou.csv”.

Welcome to PyARC! What would you like to do?

1. Reconstruct Residential Aggregate Electrical 

Load Profiles using the pre-trained model

3. Reconstruct Residential Aggregate Electrical 

Load Profiles using the user-trained model

As described in Sections 2.1 and 2.2, a K-means clustering was per-
formed to identify the normalized typical load patterns as centroids of 
the obtained clusters. Then, a Random Forest is trained to build a model 
capable of detecting the load patterns of residential users based on 
features extracted from monthly electricity bills. The obtained cluster 
centroids (Fig. 3) are then saved in the software’s folder.

As stated in Section 2, once cluster centroids were obtained, training 
features were extracted from the input data, and the classification model 

Hour,ToU

0,ToU3

1,ToU3

2,ToU3

3,ToU3

4,ToU3

5,ToU3

6,ToU3

7,ToU2

8,ToU2

9,ToU2

10,ToU2

11,ToU1

12,ToU1

13,ToU1

14,ToU2

15,ToU2

16,ToU1

17,ToU1

18,ToU1

19,ToU2

20,ToU2

21,ToU2

22,ToU2

23,ToU3

User,Year,Month,Day,Hour,Consumption

"MAC000016",2012,1,1,0,0.0275

"MAC000016",2012,1,1,1,0.0735

"MAC000016",2012,1,1,2,0.0395

"MAC000016",2012,1,1,3,0.0305

…
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was trained. The obtained classification model performance is sum-
marised in Table 2. In this work, classification performance metrics are 
evaluated as the classifier’s ability to successfully assign a user to its 
correct cluster, both for training and testing set (70% and 30% of the 
input data respectively). These metrics are exensively described in our 
previous work [1]. Feature importance is presented in Fig. 4, where a 
ranking of the most useful features used for the classification task is 
shown.

The figure shows that among the selected features, the most relevant 
for the pre-trained classification model was the total monthly con-
sumption, the consumption in the three different ToU periods, and then 
the ratio between these values.

As previously stated, the entire process performed to create the pre- 
trained model can be repeated to create the user-trained model from 
different input data using the train_model() function, resulting in 
different cluster centroids, optimal number of cluster values, and clas-
sification performance metrics. As mentioned above, the user_-
trained_model() function must be used to use the user-trained 
model.

After obtaining the pre-trained model, an example of the software 
application is made using monthly data extracted from some randomly 
selected users from the data described in [11]. The pre-trained model is 
used via reconstruct_profiles() to reconstruct the aggregate load 
profiles by running the main and choosing from command line option 1 
(Reconstruct Residential Aggregate Electrical Load Profiles using the 
pre-trained model), and by using the input data correctly named and 
placed in the Input Data folder, following data requirements described in 
Section 2.

Welcome to PyARC! What would you like to do?

2. Train a new model

3. Reconstruct Residential Aggregate Electrical 

Load Profiles using the user-trained model

As previously stated, the aggregate load profiles on a monthly basis 
(Fig. 5) are obtained by combining the classification model and the user- 
specific rescaling coefficient calculated through Eq. (1).

For this specific example, data corresponding to March are missing 
for the reasons given in [1] and [11], namely the maintenance of smart 
meters.

4. Impact

As mentioned in the introduction of this research work, most articles 
on load profiling rely on high temporal resolution data enriched with 
additional information on appliances, the number of occupants, their 
characteristics, and habits. In contrast, this research proposes a software 
that does not rely on such information-rich datasets, which are often 
difficult to obtain in real-world contexts. This topic represents an 
emerging novelty in research, as opposed to the abundance of load 
profiling methodologies that focus on reconstructing profiles with high 
temporal resolution for individual users. Having accurate estimates of 
electrical consumption within an aggregate allows for more robust 
economic and energy assessments during feasibility studies. For 
example, the proposed model could be used to support the feasibility 
studies of Renewable Energy Communities (RECs), helping potential 
aggregators and stakeholders involved in the promotion and creation of 
RECs in local areas, even in countries where the deployment of smart 
meters has reached a high penetration rate, as shown in [1], where a 
similar code structure was used. Indeed, even in these countries, there is 
still a lack of publicly available and accessible data that could be used to 
improve the estimation of energy flows and thus the economic assess-
ment within a REC. As an example, in [12,13] and [14] hourly or 
sub-hourly data for energy is required for the simulation and optimi-
zation of RECs. PyARC allows for analysis and studies through simula-
tion or optimization methods even in contexts in which hourly or 
sub-hourly data are not easily available. In addition, in real-world sce-
narios where hourly or sub-hourly data is typically not available, one of 
the most commonly used methods for estimating electrical load profiles 
is to use standard profiles, often obtained from large-scale statistical 
analyses. These profiles, which typically represent the average behavior 
of a large number of users, often do not accurately represent users in 
more localized geographic areas. Since aggregates are local aggregations 
of users, and therefore not geographically extensive, it is plausible to 
expect that the electrical load of users within a generic aggregate will 
generally be different (in some cases very different) from the standard 
load profiles that might be used. Consequently, the use of such profiles, 
which in most cases consist of one or two profiles per user category (e.g. 
residential, industrial), would lead to significant errors in the estimation 
of electricity consumption. On the contrary, the software uses typolog-
ical profiles, which can be representative of specific users, especially 
those directly belonging to the aggregate or similar users. Therefore, the 
typological profiles identified by the model are highly representative of 
the user behavior within the aggregate and are more numerous than the 
standard profiles obtained through statistical analysis. As stated in [1], 
where the PyARC methodology is applied in the context of RECs. In this 
work, PyARC demonstrated to achieve competitive performances 
compared to some similar models, such as [10] which is the model with 
the most similar purpose to those of PyARC among the models in the 
literature, in terms of Normalized Absolute Mean Error (NMAE) and 
Normalized Root Mean Squared Error (NRMSE) evaluated between the 

2. Train a new model

Fig. 3. Cluster Centroids were obtained during the pre-trained model training.

Table 2 
Classification performance metrics of the pre-trained model.

Classification performance metrics Value

Accuracy (train) 90.44%
Accuracy (test) 89.37%
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Fig. 4. Feature importance ranking for the pre-trained model.

1. Reconstruct Residential Aggregate Electrical Load Profiles using the pre-trained model

Fig. 5. Aggregated electrical load profiles for each month.
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simulated load profiles and the real ones.

5. Conclusions

Load profiling for residential aggregates faces challenges arising 
from data scarcity and the limitations of standard profiles derived from 
statistical analysis. To address this issue, our research introduces PyARC, 
a Python software that can reconstruct the aggregated electrical load 
profiles for different residential users through easily obtainable con-
sumption data. Unlike traditional methods that rely on rich data sets, 
PyARC offers a practical solution that applies to real-world scenarios and 
provides robust estimates of electricity consumption within generic 
residential aggregates. The software has promising implications for 
supporting feasibility studies, for example in the context of Renewable 
Energy Communities (RECs), where accurate energy flow assessments 
are critical for economic evaluations. Additionally, PyARC could be a 
valuable tool for stakeholders involved in the promotion and creation of 
RECs, smart grids, and aggregates in general, offering a way to achieve 
more accurate energy estimates for economic assessments, even in 
countries with advanced smart meter deployments. Possible future im-
provements to the software could include the ability to customize the 
training and testing data rates at the model-building stage, or the ability 
to choose from a pool of different alternative models to the proposed 
one. In addition, another improvement could be the choice of clustering 
type when identifying typical load profiles, so that the optimal cluster 
type can be chosen according to the characteristics of the dataset
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