
18 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Balancing Energy Efficiency and Infrastructure Knowledge in Cloud-to-Edge Task Distribution Systems / Galantino,
Stefano; Pinto, Andrea; Esposito, Flavio; Manzalini, Antonio; Risso, Fulvio. - (2024), pp. 28-34. (Intervento presentato al
convegno EuroSys '24: Nineteenth European Conference on Computer Systems tenutosi a Athens (GRC) nel 22 April
2024) [10.1145/3642975.3678965].

Original

Balancing Energy Efficiency and Infrastructure Knowledge in Cloud-to-Edge Task Distribution Systems

Publisher:

Published
DOI:10.1145/3642975.3678965

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992348 since: 2024-09-10T12:34:03Z

ACM

Balancing Energy Efficiency and Infrastructure Knowledge in
Cloud-to-Edge Task Distribution Systems

Stefano Galantino
Dept of Control and Computer

Engineering, Politecnico di Torino
Torino, Italy

stefano.galantino@polito.it

Andrea Pinto
Computer Science Department, Saint

Louis University
Saint Louis, MO, US

andrea.pinto.1@slu.edu

Flavio Esposito
Computer Science Department, Saint

Louis University
Saint Louis, MO, US

flavio.esposito@slu.edu

Antonio Manzalini
Innovation Labs, Telecom Italia

Mobile (TIM)
Torino, Italy

antonio.manzalini@telecomitalia.it

Fulvio Risso
Dept of Control and Computer

Engineering, Politecnico di Torino
Torino, Italy

fulvio.risso@polito.it

ABSTRACT
In the rapidly evolving landscape of distributed computing, main-
taining energy efficiency in edge and data center infrastructures has
become critical. While the problem has been faced with centralized
approaches assuming knowledge of the available underlying infras-
tructure resources, this paper introduces a distributed task alloca-
tion framework emphasizing energy awareness without requiring
infrastructure knowledge. The framework is designed to optimize
energy consumption in heterogeneous computing environments,
leveraging a distributed consensus algorithm that allows nodes to
maximize individual or global goals. Each private custom utility
function enables a node to carefully determine whether executing
a task is efficient, thus ensuring flexibility in the task allocation
process based on local preferences. While showcasing the energy ef-
ficiency of our framework, we also illustrate that it is not necessary
to disclose the underlying infrastructure resources status, ensuring
the preservation of potentially sensitive local resources informa-
tion. Experimental results demonstrate the framework’s ability to
achieve optimal power consumption outcomes while maintaining
privacy, offering a significant advancement over traditional central-
ized allocation policies and Kubernetes-like scheduling algorithms.

CCS CONCEPTS
•Hardware→ Impact on the environment; • Information sys-
tems→ Computing platforms; •Computer systems organization
→ Cloud computing; Heterogeneous (hybrid) systems.

ACM Reference Format:
StefanoGalantino, Andrea Pinto, Flavio Esposito, AntonioManzalini, and Ful-
vio Risso. 2024. Balancing Energy Efficiency and Infrastructure Knowledge
in Cloud-to-Edge Task Distribution Systems. In 1st International Workshop
on MetaOS for the Cloud-Edge-IoT Continuum (MECC ’24), April 22, 2024,

This work is licensed under a Creative Commons Attribution International 4.0
License.
MECC ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0543-4/24/04
https://doi.org/10.1145/3642975.3678965

Athens, Greece. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3642975.3678965

1 INTRODUCTION
In recent years, containerization has become increasingly popular
as a lightweight method for packaging applications in a format that
can be used interchangeably, regardless of the underlying infras-
tructure [1]. This common foundation has spurred the cloud-native
revolution, shifting focus from individual servers to entire data
centers. Additionally, with the advent of edge and fog comput-
ing [2–4], which prioritize geographical proximity, reduced latency,
and enhanced privacy, these methods are being adapted for smaller
data centers at the network’s edge, using consistent principles to
promote service flexibility.

Such technological advancement paved the way for the comput-
ing continuum (also referred to as edge-to-cloud continuum) [5],
in which devices coming from different layers of the computing
substrate (i.e., edge, fog, cloud) share computing resources with the
other members of the continuum federation in the attempt to host
user workloads. Still, despite the development of standard interfaces
for application orchestration [6, 7], standard industry practices treat
each infrastructure as a series of connected but isolated silos rather
than as a single virtual space.

Within the context of the European project FLUIDOS 1, we ar-
gued that the effective utilization of resources within a continuum
is contingent upon their recognition and exposure as a unified pool.
Indeed, the possibility of having heterogeneous and geographically
distributed computing resources allows for enhanced allocation
policies, including the device location as an additional dimension
to the problem. This new spatial awareness fosters enhanced allo-
cation policies that are related to the power consumption of the
entire computing infrastructure [8–11]: (i) the workload character-
istics can be exploited to identify, among the heterogeneous set
of devices in the infrastructure, the most suitable (i.e., the most
energy-efficient) to host the workload and (ii) workloads can be
shifted in time and space based on the availability of renewable
sources to promote sustainable computing.

1https://www.fluidos.eu/

28

https://doi.org/10.1145/3642975.3678965
https://doi.org/10.1145/3642975.3678965
https://doi.org/10.1145/3642975.3678965
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642975.3678965&domain=pdf&date_stamp=2024-08-01

MECC ’24, April 22, 2024, Athens, Greece Stefano Galantino, Andrea Pinto, Flavio Esposito, Antonio Manzalini, and Fulvio Risso

Such goals can be achieved both by centralized and distributed
allocation policies. From a functionality perspective, the former can
guarantee the best allocation scheme for the submitted workloads
but, at the same time, requires a constantly updated knowledge
of the infrastructure. The latter, instead, reduces or, in some cases,
eliminates the non-trivial need to share the infrastructure nodes
utilization status leading to an (sub)optimal allocation. Therefore,
we identify the protection of sensitive node utilization metrics
as one of the main concerns when choosing the most suitable
approach.

To this end, this paper proposes a distributed allocation frame-
work, which relies on a distributed consensus algorithm to allocate
tasks using private utility functions. The algorithm operates in two
phases: (i) a task dispatching during which each node decides how
green it is to execute that task on its available resources using the
local private utility function and (ii) a consensus during which the
nodes communicate to each other the output value of the function,
deciding for an optimal task allocation. The framework allows each
node within the infrastructure to employ a utility function, indicat-
ing its willingness to accept (and allocate) a particular task. Later
in this paper, we propose a utility function for energy-awareness,
still, each node can implement a custom one, reducing the need to
disclose information and enhancing its privacy with the infrastruc-
ture. Eventually, for each task, the framework will converge on the
unique optimal task allocation.

The rest of the paper is organized as follows. Section 2 details
the state of the art for distributed energy-aware task allocation.
Section 3 provides a high-level overview of the system architecture.
Sections 4 and 5 describe the main contribution of this paper, i.e.,
the model description. Finally, Section 6 validates our proposal, and
Section 7 concludes the paper.

2 RELATEDWORK
Recent advancements in distributed task allocation have signifi-
cantly improved mobile edge computing, multi-robot systems, and
distributed computing environments. In the realm of multi-robot
systems [12] presented a distributed task allocation and sched-
uling algorithm for missions with tight coupling between tasks,
emphasizing the importance of addressing temporal and precedence
constraints through a distributed metaheuristic algorithm. General-
izing the scenario, [13] proposed a load-balancing technique that
randomly probes two nodes in edge-clouds and selects the one with
the less load to place the tasks to provide a QoE guarantee. Finally,
focusing on the distributed algorithm, [14] presented an allocation
policy based on the CBBA consensus algorithm that, differently
from other distributed algorithms like RAFT [15] and Paxos [16, 17],
have a convergence guarantee. Still, while being able to provide
privacy guarantees, none of the above proposals included energy
consumption in the problem formulation.

Including energy into the allocation problem, [18–20] tackled
the problem of task offloading in mobile computing. However, they
primarily focused on offloading techniques to reduce power con-
sumption for battery-constrained end-user devices, neglecting ad-
ditional energy requirements on servers. [11] further extended
the problem, including an online joint offloading and resource
allocation framework to prevent edge devices from exceeding a

Figure 1: Each nodemaintains a utility function to determine
its suitability for executing a specific task, and the underlying
framework analyzes the outputs from these utility functions
to converge on an optimal task allocation.

specified energy budget. Cloud-to-edge infrastructures are typi-
cally shared among multiple users thus requiring both to correctly
model user mobility[21], and balance between energy-awareness
while providing delay-guarantees in task execution [22]. Authors
in [23] extended the problem formulation with a time-division
multiple-access system for minimizing the weighted sum of mobile
energy consumption under the constraint of computation latency.
Finally, the energy-aware workload re-distribution has also been
addressed, including heterogeneous edge devices in the problem
formulation [24], and evaluating the applicability on vehicular net-
works [25].

In the present study, we have examined several works related to
task allocation in edge-to-cloud infrastructures. However, all of the
works presented thus far require varying degrees of knowledge on
infrastructure status, compromising the privacy of certain nodes un-
willing to share sensitive information. We, therefore, assert that the
joint allocation of tasks in distributed edge-to-cloud infrastructures,
which considers both energy and privacy requirements, remains
largely unexplored.

3 SYSTEM ARCHITECTURE
The edge-to-cloud approach follows a decentralized and peer-based
model similar to the Internet. This approach allows diverse partici-
pants, including large cloud providers, smaller enterprises linked
to specific territories, and even small offices or homeowners, to
independently and dynamically determine with whom they want
to share resources by choosing who to peer with. After joining this
edge-to-cloud infrastructure, each participant in this continuum
may pursue individual goals (e.g., maximize resource usage, or prof-
its) or share some common objective (e.g., minimize the overall
infrastructure power consumption). It is worth mentioning that if
the nodes in the continuum pursue a common goal, some level of
information disclosure is required.

On top of this continuum infrastructure, applications must be
efficiently allocated (i.e., satisfying all the execution requirements),
and nodes should compete to identify the most suitable location to
host the execution. In this regard, each node is equipped with its
utility function that maps how much a given node is willing to host
one application or a part thereof in the case of microservice-based
applications. Customizable utility functions can include metrics

29

Balancing Energy Efficiency and Infrastructure Knowledge in Cloud-to-Edge Task Distribution Systems MECC ’24, April 22, 2024, Athens, Greece

such as resource usage and power consumption; however, the out-
put value must fall within a predefined range to ensure fairness in
allocation. Nonetheless, multiple nodes can share the same utility
function to pursue global objectives or opt for a custom one in the
case of local objectives.

We then use a distributed consensus-based RAFT-like algorithm
to reach a consensus among the participants in the continuum to
select the node with the highest utility value. The RAFT protocol
allows the creation of a compute node mesh (see Fig. 1) to exchange
the output of the utility functions consistently. This can be achieved
through an automatic leader election process that selects the node
that is fully responsible for managing log replication on the other
servers of the cluster. 2 Our distributed protocol operates in two
phases: task dispatching and consensus. First, each node receives
the allocation request of an application. To secure the hosting of
the job or part of it (e.g., a subset of constituent microservices),
the node shares the output value of its utility function. Specifically,
each node checks the value of the current highest utility with
the other cluster members, overriding it if higher. At the end of
the consensus phase, the information of the node with the highest
utility is replicated among all the nodes in the continuum to perform
the actual allocation.

4 PROBLEM FORMULATION
We now describe the resource allocation protocol designed to guar-
antee w.r.t. the optimal allocation. Such a mechanism is designed
to clear the resource allocation problem when competing jobs must
be concurrently run on the hosting physical infrastructure, partici-
pating in what we call a federation F while minimizing the overall
power consumption of the computing infrastructure.

We assume a collection ofN physical nodes, potentially hosting
one or more jobs, and we index such nodes with 𝑛 ∈ N , where
N = {1, . . . , 𝑁 }, with 𝑁 being the total number of nodes partici-
pating in the federation F . Each node is then equipped with com-
puting resources (i.e., CPU), denoted as 𝑐𝑛 . It is worth mentioning
that most Cloud-based solutions typically describe computing re-
sources in terms of CPU and memory resources; however, since the
highest correlation occurs mostly between CPU usage and power
consumption, memory requirements will be omitted in the problem
formulation without losing generality.

Furthermore, physical nodes are also described using the transfer
function 𝑃 (𝑥), which correlates the CPU usage 𝑥 with the energy
required to sustain such load (the exact formulation of 𝑃 (𝑥) will be
detailed Section 5).

We assume that each hosting node 𝑛 has a (private) utility func-
tion𝑈𝑛 , and we are seeking an allocation solution that maximizes
the sum of the utilities of all nodes. Such utility function is a pol-
icy of our resource allocation mechanisms and can be tuned to be
engineered for various application and infrastructure goals. In the
scope of this work, we design the utility function for a generic node
𝑛 to be as follows:

𝑈𝑛 (𝑥) =
1

𝑃𝑛 (𝑥) − 𝑃𝑛 (𝑥0)
(1)

2In the RAFT terminology, a cluster comprises the set of nodes involved in the dis-
tributed consensus.

where𝑈𝑛 (𝑥) is a function of the CPU usage 𝑥 . Specifically, upon
receiving the request to allocate a task that would increase the
resource usage of the node to a value of 𝑥 , the value of utility is
the reciprocal of the difference between the power consumption
of the node 𝑛 at the expected usage 𝑥 , and the power consumption
computed for the prior resource usage 𝑥0 (i.e., the step increase in
power consumption). Intuitively, the lower the increase in power
consumption to host the requested job, the higher the utility value.

Our primary objective is to determine an allocation of a set of
jobs, referred to as 𝑗 ∈ J , where J = {1, . . . , 𝐽 } onto the nodes in
N of the federation ensuring a conflict-free assignment, i.e., satis-
fying the computing requirements of the job without exceeding the
available computing capability 𝑐𝑛 of each node 𝑛. Indeed, every job
𝑗 has particular resource needs that must be met during allocation
to ensure optimal execution across the nodes’ resources. To this
end, following the microservice-based approach, we represent each
job 𝑗 as a set of loosely coupled componentsM 𝑗 , and we index such
components for each job 𝑗 with𝑚 𝑗 ∈ M 𝑗 , whereM 𝑗 = {1, . . . , 𝑀 𝑗 }.
We assume that each component𝑚 𝑗 of the job 𝑗 has a specific com-
puting resource demand, and we denote it with 𝑟𝑚 𝑗

. Given such
notation, a conflict-free assignment is an assignment in which each
component𝑚 𝑗 of the job request 𝑗 is mapped to one and only one
of the hosting nodes 𝑛 (note that multiple valid mappings of a job
over the topology are possible).

Based on the above notation, we model the (NP-hard) constrained
graph matching resource allocation problem upon the arrival of the
job 𝑗 with the following:

max
𝑥

∑︁
𝑛∈N

∑︁
𝑗∈J

∑︁
𝑚∈M 𝑗

𝑈𝑛 (𝑦 𝑗) (2)

s.t.
∑︁
𝑗∈J

∑︁
𝑚∈M 𝑗

𝑦 𝑗𝑟𝑚 𝑗
≤ 𝑐𝑛 ∀𝑛 ∈ N (3)∑︁

𝑛∈N

∑︁
𝑚∈M 𝑗

𝑦 𝑗 = 𝑀𝑗 ∀𝑗 ∈ J (4)∑︁
𝑚∈M 𝑗

𝑦 𝑗 ≤ 1 ∀𝑛 ∈ N ,∀𝑗 ∈ J (5)

where the allocation variable 𝑦 𝑗 ∈ {0, 1}𝑁×𝑀𝑗 is intended to
assign job 𝑗 (i.e., the set of its components) on the node 𝑛. Eq. (2)
seeks to maximize the node utilities as a function of the allocation
variable 𝑦 𝑗 under the constraint (Eq. (3)), which enforces that the
sum of resources assigned to the node𝑛 does not exceed the physical
capacity 𝑐𝑛 for the same node. Finally, the conflict-free assignment
is enforced with (Eq. (4)) and (Eq. (5)), respectively stating that all
the components of the job 𝑗 are allocated (i.e., we don’t consider a
partial allocation as valid) and the same component is not assigned
to multiple nodes.

5 SYSTEM MODEL
Beyond performance, CPU architectures vary significantly in terms
of power consumption, with some chips being optimized for en-
ergy efficiency (for instance, Raspberry Pis) and others prioritizing
processing power (like those used in servers). Therefore, it is essen-
tial for this study to first establish a baseline for comparing both
performance and power consumption across various CPUs.

30

MECC ’24, April 22, 2024, Athens, Greece Stefano Galantino, Andrea Pinto, Flavio Esposito, Antonio Manzalini, and Fulvio Risso

Table 1: Infrastructure setup.

Device type CPU model Count # CPUs 𝛼 𝛽 𝛿

SERVER Intel Xeon Gold 5120 5 28 1-7 150-180 0.5-𝛼
DESKTOP Intel Core i7-6700 5 8 10-20 10-20 0.2-6
RASPBERRY ARM Cortex-A72 5 4 0.5-1 2.5-4.5 NA

We started by conducting real measurements to evaluate the
power consumption of the devices and then extrapolated the re-
sults to obtain an accurate mathematical model. To assess power
consumption, the study uses a smart plug connected to a wall outlet
and monitors the total power usage of the device as the number
of CPU cores allocated gradually increases (following the work in
[26]). Using such experimental results, we can define a mathemati-
cal model to represent devices’ power consumption as a function
of the CPU usage 𝑥 as follows:

𝑃 (𝑥) =
{
𝛼𝑥 + 𝛽, if 0 < 𝑥 ≤ 𝜌

𝛿𝑥 + (𝛼𝜌 + 𝛽 − 𝛿𝜌), if 𝜌 < 𝑥 ≤ 2𝜌
(6)

where 𝜌 represents the number of physical cores of the system.
In detail, devices experience different power consumption patterns,
depending on whether or not the current CPU usage 𝑥 exceeds
the number of physical cores (i.e., logical cores are also required
to sustain the load). Specifically, with a CPU usage = 0 all devices
experience an idle power consumption 𝛽 , which is typically more
prominent in the case of servers. Until all the physical cores are
reserved, the power consumption typically follows a linear increase
with a slope value of 𝛼 . Then, the power consumption keeps increas-
ing linearly but with a lower gradient value (𝛿 < 𝛼). The values
of 𝛼, 𝛽, 𝛿 are device-specific, but the values for devices belonging
to the same class (e.g., server, workstation, Raspberry PI) fall into
predefined class ranges.

Next, in the consensus phase, the optimal job energy-aware
allocation described in Eq. (2) can be achieved by weighting the
components𝑚 𝑗 of each job 𝑗 based on the individual computing
requirements 𝑟𝑚 𝑗

and prioritizing the ones with the lowest demands
for the bidding process. As a result, this approach drastically reduces
resource fragmentation, allowing the most energy-efficient devices
to maximize their efficiency.

6 EXPERIMENTAL EVALUATION
Using a simulation-driven approach, this section details the ex-
perimental evaluation of the proposed solution, further validated
within the software framework provided by the FLUIDOS project.

6.1 Setup
The simulated infrastructure is composed of 15 devices in total, 5
Desktops, 5 Servers, and 5 Raspberry PIs. TABLE 1 summarizes the
main characteristics of the devices and the ranges for the 𝛼 , 𝛽 , and 𝛿
values used to represent devices’ power consumption based on the
model described in Eq. (6). Fig. 2 depicts the resulting correlation
between the CPU usage and the expected power consumption of
the different classes of devices in the infrastructure.

As discussed in the introduction, we aim to achieve the best allo-
cation for infrastructure power consumption while preserving the

2 4 6 8

40
60
80
100

Desktop

0 5 10 15 20 25 30
150

200

250

300

Po
w
er

Co
ns
um

pt
io
n
(W

) Server

1 1.5 2 2.5 3 3.5 4
4

5

6

7

CPU cores

Raspberry

Figure 2: Correlation between CPU usage and power con-
sumption of the different classes of devices included in the
simulated infrastructure.

privacy of devices unwilling to share any internal metrics. To this
end, throughout the simulation, we tested different configurations,
namely DA-n (i.e., distributed-allocation-n), representing scenarios
in which all the nodes participate in the process using the utility
function described in Eq. (1) (i.e., DA-0), and scenarios in which
some of the nodes are not willing to share sensitive information and,
instead, rely on custom utility functions (i.e., DA-[2,4,6,8] in which
the number represents the number of devices not participating in
the energy-aware process, thus introducing noise in the process).
Specifically, such nodes implement a random utility function to
represent the maximum possible unpredictability.

Results are then compared with the well-known Kubernetes
scheduling algorithm (shortened in k8s in the following figures),
which is not energy-aware and accounts only for available com-
puting resources in the nodes, and a brute force allocation policy
(shortened in BF), which has the full knowledge of the infrastruc-
ture and can thus perform the best allocation concerning power
consumption.

The submitted workloads consist of 500 tasks, arriving at a rate
of one task per second, with CPU needs varying within a specified

31

Balancing Energy Efficiency and Infrastructure Knowledge in Cloud-to-Edge Task Distribution Systems MECC ’24, April 22, 2024, Athens, Greece

0 5 10 15
0

0.5

1

Number of CPUs

CD
F

Figure 3: Distribution of the CPU demand of the submitted
workloads.

range as shown in Fig. 3. As we can see, the majority of tasks
require approximately 2 CPU cores, but a conspicuous set of jobs
has a much higher resource demand (up to 15 CPU cores). 3 Instead
of each task’s CPU demand being uniformly distributed across its
components, it is randomly divided in a non-uniformmanner across
1 to 6 components (i.e., microservices). This means that for a task
with six components, the CPU requirement for each component
isn’t simply one-sixth of the total demand, but rather, the demands
of all components together equal the overall task requirement. Each
task is defined by its execution time, and resources are freed up
immediately upon completion. To evaluate how the system handles
different demand levels, we conducted simulations using varied
execution times, ranging from 1 second to 140 seconds.

6.2 Energy-aware allocation
Fig. 4 depicts the power consumption of the different configurations
previously detailed, along with the brute force and Kubernetes-like
allocation policies as a reference. Specifically, Figs. 4a to 4c represent
the result of the allocation varying the duration of the submitted
jobs, respectively, with 60, 100, and 140 seconds. Intuitively, increas-
ing the task duration while keeping the same arrival rate results in
different pressures for the computing infrastructure.

The results show that if all nodes use the energy-aware utility
function presented in this paper (DA-0), it is possible to obtain
almost the same results as the optimal brute force approach for the
overall power consumption of the infrastructure. The difference
with respect to the optimal allocation is always << 5%, demonstrat-
ing that we can always achieve a near-optimal allocation. Instead, if
we increase the number of devices not actively participating in the
energy-aware allocation, we notice that the gap with the optimal
allocation keeps increasing. Still, even with eight devices not par-
ticipating in the energy-aware allocation (i.e., more than 50% of the
devices of the infrastructure), we can always obtain better results
than the Kubernetes-like allocation policy. Overall, we can say that,
on average, an energy un-aware allocation policy like k8s always
requires between 5% and 20% more energy than our energy-aware
allocation policy.

It is worth noting that the possible benefits derived from energy-
aware allocation strictly depend on the amount of workload submit-
ted to the infrastructure. With highly saturated infrastructures, as

3The dataset has been characterized starting from the Alibaba’s public trace available
at https://github.com/alibaba/clusterdata.

the scenario depicted in Fig. 4c, the possible solutions for the alloca-
tion problem are extremely limited, resulting in almost comparable
results for all the configurations. In fact, if the infrastructure is
overloaded with job requests, the allocation problem becomes a
simplified version of the knapsack problem (i.e., fit as many jobs
as possible with the few available resources). Still, both the brute
force approach and our allocation policy could allocate all the jobs
in less time than k8s, resulting in the outliers in Fig. 4c (in those
time instants, the consumption is = 0𝑊).

Such results can motivated by the fact that the energy-aware
allocation policy can preemptively select only the most efficient
nodes for the job execution while leaving the less efficient ones
only in case of saturation of resources. In fact, Fig. 5 details the CPU
utilization of the different classes of devices in the infrastructure for
the case of DA-0 configuration. As we can see, with low saturated
infrastructures as in Fig. 5a, our proposal relies almost entirely on
servers and Raspberry PIs to host the submitted tasks (being the
most energy-efficient devices of the lot). Instead, if we increase the
load submitted to the infrastructure as in Figs. 5b and 5c, the system
has to select less energy-efficient nodes to host the workload.

As a final comment on the results, although our approach proved
some interesting results on this specific setup, the same consider-
ations and benefits can be achieved on any infrastructure with
heterogeneous devices, in which it is important to consider not
only the processing capability of the different devices but also the
energy required to obtain such computation.

7 CONCLUSION
This study presents a distributed framework to optimize energy con-
sumption in heterogeneous computing environments for cloud-to-
edge computing environments. Leveraging custom utility functions,
the framework demonstrates a promising approach to optimizing
task allocation while minimizing energy consumption across the
network, bypassing the need to share private resource informa-
tion. Compared to traditional centralized allocation policies and
Kubernetes-like scheduling algorithms, our method offers signifi-
cant improvements in energy efficiency without compromising the
privacy of the compute nodes participating in the federation.

In the forthcoming works, the temporal shifting of workloads
shall be evaluated alongside the present geographical shifting to
enhance the already encouraging outcomes further. This shall be
accomplished by incorporating information on the proportion of
energy utilized by various devices (green versus brown energy) to
encourage the development of sustainable cloud and edge comput-
ing infrastructure. In addition, a trade-off between QoE and energy
consumption should be evaluated to provide execution guarantees
for high-priority applications.

ACKNOWLEDGMENT
This work was partly supported by European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101070473, project FLUIDOS (Flexible, scaLable, secUre, and
decentralIseD Operating System).

This work has been partially supported by NSF awards 1908574
and 2201536.

32

MECC ’24, April 22, 2024, Athens, Greece Stefano Galantino, Andrea Pinto, Flavio Esposito, Antonio Manzalini, and Fulvio Risso

BF DA-0 DA-2 DA-4 DA-6 DA-8 k8s
0.9

1

1.1

1.2

1.3

1.4

Po
w
er

Co
ns
um

pt
io
n
(k
W
)

(a) Duration range 1-60s.

BF DA-0 DA-2 DA-4 DA-6 DA-8 k8s

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Po
w
er

Co
ns
um

pt
io
n
(k
W
)

(b) Duration range 1-100s.

BF DA-0 DA-2 DA-4 DA-6 DA-8 k8s

0

0.25

0.5

0.75

1

1.25

1.5

1.75

Po
w
er

Co
ns
um

pt
io
n
(k
W
)

(c) Duration 1-140s.

Figure 4: Power consumption of the infrastructure varying the duration of the submitted jobs (i.e., the load on the infrastructure)
for the different configurations.

DESKTOP SERVER RASPBERRY
0

0.5

1

cp
u
us
ag
e

(a) Duration range 1-60s.

DESKTOP SERVER RASPBERRY
0

0.5

1

cp
u
us
ag
e

(b) Duration range 1-100s.

DESKTOP SERVER RASPBERRY
0

0.5

1

cp
u
us
ag
e

(c) Duration range 1-140s.

Figure 5: CPU consumption of the infrastructure varying the duration of the submitted jobs (i.e., the load on the infrastructure)
for the different classes of devices included in the simulation.

REFERENCES
[1] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2,

no. 3, pp. 24–31, 2015.
[2] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” pp. 37–42, 2015.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, 2012, pp. 13–16.

[5] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini, “Computing
without borders: The way towards liquid computing,” IEEE Transactions on Cloud
Computing, 2022.

[6] D. Milojicic, “The edge-to-cloud continuum,” Computer, vol. 53, no. 11, pp. 16–25,
2020.

[7] L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and G. Quattrocchi, “A uni-
fied model for the mobile-edge-cloud continuum,” ACM Transactions on Internet
Technology (TOIT), vol. 19, no. 2, pp. 1–21, 2019.

[8] A. A. Alahmadi, T. E. El-Gorashi, and J. M. Elmirghani, “Energy efficient pro-
cessing allocation in opportunistic cloud-fog-vehicular edge cloud architectures,”
arXiv preprint arXiv:2006.14659, 2020.

[9] M. Avgeris, D. Spatharakis, D. Dechouniotis, A. Leivadeas, V. Karyotis, and
S. Papavassiliou, “Enerdge: Distributed energy-aware resource allocation at the
edge,” Sensors, vol. 22, no. 2, p. 660, 2022.

[10] E. Al-Masri, A. Souri, H. Mohamed,W. Yang, J. Olmsted, and O. Kotevska, “Energy-
efficient cooperative resource allocation and task scheduling for internet of things

environments,” Internet of Things, vol. 23, p. 100832, 2023.
[11] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading and resource

allocation for energy-constrained mobile edge computing,” IEEE Transactions on
Mobile Computing, 2022.

[12] B. A. Ferreira, T. Petrović, M. Orsag, J. R. Martínez-de Dios, and S. Bogdan,
“Distributed allocation and scheduling of tasks with cross-schedule dependencies
for heterogeneous multi-robot teams,” arXiv preprint arXiv:2109.03089, 2021.

[13] L. Lin, P. Li, J. Xiong, and M. Lin, “Distributed and application-aware task sched-
uling in edge-clouds,” in 2018 14th International Conference on Mobile Ad-Hoc and
Sensor Networks (MSN). IEEE, 2018, pp. 165–170.

[14] J. Turner, Q. Meng, G. Schaefer, and A. Soltoggio, “Fast consensus for fully
distributed multi-agent task allocation,” in Proceedings of the 33rd annual ACM
symposium on applied computing, 2018, pp. 832–839.

[15] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algo-
rithm,” in 2014 USENIX annual technical conference (USENIX ATC 14), 2014, pp.
305–319.

[16] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, no. 2,
p. 133–169, may 1998. [Online]. Available: https://doi.org/10.1145/279227.279229

[17] ——, “Paxos made simple,” ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pp. 51–58, 2001.

[18] S. Cao, X. Tao, Y. Hou, and Q. Cui, “An energy-optimal offloading algorithm of
mobile computing based on hetnets,” in 2015 International Conference on Connected
Vehicles and Expo (ICCVE). IEEE, 2015, pp. 254–258.

[19] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application offloading policy
in cloud-enhanced small cell networks,” in 2016 IEEE International Conference on
Communications Workshops (ICC). IEEE, 2016, pp. 638–643.

33

https://doi.org/10.1145/279227.279229

Balancing Energy Efficiency and Infrastructure Knowledge in Cloud-to-Edge Task Distribution Systems MECC ’24, April 22, 2024, Athens, Greece

[20] Y. Zhao, S. Zhou, T. Zhao, and Z. Niu, “Energy-efficient task offloading for mul-
tiuser mobile cloud computing,” in 2015 IEEE/CIC International Conference on
Communications in China (ICCC). IEEE, 2015, pp. 1–5.

[21] W. Hua, P. Liu, and L. Huang, “Energy-efficient resource allocation for heteroge-
neous edge-cloud computing,” IEEE Internet of Things Journal, 2023.

[22] M. Guo, L. Li, and Q. Guan, “Energy-efficient and delay-guaranteed workload
allocation in iot-edge-cloud computing systems,” IEEE Access, vol. 7, pp. 78 685–
78 697, 2019.

[23] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation
for mobile-edge computation offloading,” IEEE Transactions on Wireless Commu-
nications, vol. 16, no. 3, pp. 1397–1411, 2016.

[24] M. Avgeris, D. Spatharakis, D. Dechouniotis, A. Leivadeas, V. Karyotis, and
S. Papavassiliou, “Enerdge: Distributed energy-aware resource allocation at the
edge,” Sensors, vol. 22, no. 2, p. 660, 2022.

[25] A. A. Alahmadi, T. E. El-Gorashi, and J. M. Elmirghani, “Energy efficient pro-
cessing allocation in opportunistic cloud-fog-vehicular edge cloud architectures,”
arXiv preprint arXiv:2006.14659, 2020.

[26] S. Galantino, F. Risso, V. C. Coroamă, and A. Manzalini, “Assessing the potential
energy savings of a fluidified infrastructure,” Computer, vol. 56, no. 6, pp. 26–34,
2023.

34

	Abstract
	1 Introduction
	2 Related Work
	3 System architecture
	4 Problem Formulation
	5 System Model
	6 Experimental evaluation
	6.1 Setup
	6.2 Energy-aware allocation

	7 Conclusion
	References

