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Abstract
We perform variational Monte Carlo simulations of the single-band Hubbard model on the
square lattice with both nearest (t) and next-nearest (t′) neighbor hoppings. Our work
investigates the consequences of increasing hole doping on the instauration of stripes and the
behavior of the superconducting order parameter, with a discussion on how the two phenomena
affect each other. We consider two different values of the next-nearest neighbor hopping
parameter, that are appropriate for describing cuprate superconductors. We observe that stripes
are the optimal state in a wide doping range; the stripe wavelength reduces at increasing doping,
until stripes melt into a uniform state for large values of doping. Superconducting pair–pair
correlations, indicating the presence of superconductivity, are always suppressed in the presence
of stripes. Our results suggest that the phase diagram for the single-band Hubbard model is
dominated by stripes, with superconductivity being possible only in a narrow doping range
between striped states and a nonsuperconducting metal.

Keywords: Hubbard model, variational Monte Carlo, high-Tc superconductors,
stripes in cuprates, strongly correlated electron systems

1. Introduction

The concept of a stripe phase is one of the unconventional fea-
tures that emerged over the years when interpreting a broad
range of experimental results on copper oxide superconduct-
ors. Once we allow holes to wander in an antiferromagnetic
background, the creation of striped inhomogeneities can be
a consequence. The reason for the self-organization of local
inhomogeneities can be found in the competition between
the tendency of the electrons to cluster in antiferromagnetic
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regions, hence producing a short-range tendency to phase sep-
aration, and the long-range Coulomb interaction that instead
frustrates it [1–4]. Striped states indeed constitute the best
compromise between these competing phenomena and allow
the doping holes to be delocalized along linear stripes.

From an experimental point of view, the first evidence of
stripes comes from a neutron scattering study on a single crys-
tal of La1.48Nd0.4Sr0.12CuO4 [5]. Since then, a variety of exper-
imental probes, based on neutron scattering, x-ray scattering
and scanning tunneling microscopy, pointed to the presence
of spin and charge orders [6–11]. Nuclear magnetic reson-
ance (NMR) is also a valuable tool to study charge and spin
modulations in cuprates. In particular, NMR measures indic-
ated that cuprates that are not La-based may exhibit charge
order without spin order [12, 13]. Moreover, NMR has been
employed to investigate the nature of the pseudogap critical
point when superconductivity is suppressed [14].

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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The simplest model that has been considered to reproduce
the essential features of the cuprates’ phase diagram is the
single-band Hubbard model, where only the dx2−y2 orbital
of Cu atoms is retained and the impact of oxygen atoms is
neglected. However, despite its simplicity, obtaining accur-
ate approximations for the ground state and for low-energy
excitations is far from being trivial and several states, very
close in energy, have been proposed, obtaining different con-
clusions from different numerical and analytical methods [15].
The model is reported here:

H=−t
∑

⟨R,R ′⟩,σ

c†R,σcR ′,σ

− t ′
∑

⟨⟨R,R ′⟩⟩,σ

c†R,σcR ′,σ +H.c.+U
∑
R

nR,↑nR,↓, (1)

where c†R,σ (cR,σ) creates (destroys) an electron with spin σ on

site R and nR,σ = c†R,σcR,σ is the electron density per spin σ
on site R. In the following, we indicate the coordinates of the
sites with R= (x,y). It is important that the Hubbard model
includes not only the nearest neighbor hopping t and the on-
site electron-electron repulsion U, but also the next-nearest
neighbor hopping t′, that has been shown to be a relevant
feature in all cuprates, as it constitutes an essential material-
dependent parameter, with t ′/t< 0 [16]. The electron density
is given by n= N/L, where N is the number of electrons and
L is the total number of sites. The hole doping is defined as
δ = 1− n.

In the t ′ = 0 case, the presence of stripes in the Hubbard
model originates from density-matrix renormalization group
(DMRG) studies on 6-leg ladders [17, 18] and from further
works supporting the idea that charge and spin inhomogeneit-
ies may pervade the phase diagram of the Hubbard model [19,
20]. Chargemodulations have been also proposed to be present
and to possibly enhance superconductivity by the Dynamic
Cluster Approximation and by determinant Quantum Monte
Carlo [21, 22]. Later, a work which combined a variety of
numerical techniques [23], focused on the representative dop-
ing δ = 1/8 atU/t= 8, settling that the lowest-energy stripe is
a bond-centered one with periodicity λ= 8 (named the stripe
wavelength) in the charge sector and 2λ= 16 in the spin sec-
tor. As a consequence, the enlarged unit cell of length λ con-
tains, on average, one hole, as obtained by previous Hartree–
Fock calculations [24–27]. Electron pairing was not found
in this case and also further studies highlighted the absence
of superconductivity at doping δ = 1/8, the system being
possibly an insulator [28–30]. Away from doping δ = 1/8,
stripes have been proposed to be stable by different numerical
methods, possibly coexisting with superconductivity [28, 31–
33]. Recently, an accurate variational auxiliary field quantum
Monte Carlo study proposed a phase diagram where stripe
phases with no superconductivity are present close to half
filling while a superconductive region emerges around δ ∼
0.2 [29].

In the t ′ ̸= 0 case, stripes emerge already in the Hartree–
Fock approximation, for t ′/t< 0 [34]. Then, their presence
is confirmed by different numerical methods, which agree in

observing a reduction of the stripe wavelength when t ′/t< 0,
while the stripe wavelength increases when t ′/t> 0 [35–38].
There is consensus on the absence of superconductivity at
δ = 1/8, while different outcomes on the existence of super-
conductivity are reported when other dopings are considered.
The debate is still open since, recently, a combined study based
on DMRG and AFQMC indicates that partially filled stripes
coexist with superconductivity in a large doping range of the
t− t ′ Hubbard model [39], while a DMRG study on 6-leg cyl-
inders suggests that superconducting correlations decay expo-
nentially for t ′/t< 0 [40].

Alternatively, it has been suggested that superconductiv-
ity can be enhanced when models less simplified than the
Hubbard one are taken into account. For instance, supercon-
ductivity can be recovered, without clear long-range stripe
order, with an ab-initio approach that highlights the pres-
ence of the realistic off-site interactions [41]. Moreover, the
three-band Hubbard (or Emery) model has been proposed
as a way to enhance superconductivity [42, 43], while hop-
ping modulation in a stripe-like manner has been sugges-
ted to enhance superconductivity even in the pure Hubbard
model [44]. Fluctuating stripes have been also proposed to
coexist with superconductivity, at difference with the static
ones, in the attractive Hubbard model [45].

In this paper, we employ the variational Monte Carlo
method with backflow correlations to investigate the effect of
doping on stripes and superconductivity in the t− t ′ Hubbard
model, for t ′/t=−0.25 and t ′/t=−0.40 at U/t= 8. Our
simulations are performed on 6-leg ladders, with Lx rungs, the
total number of sites being L= Lx× 6. This geometry has been
employed in DMRG calculations and is expected to capture
the properties of truly two-dimensional clusters [23], while it
allows us to accommodate long stripes along the rungs. First
of all, we show that bond-centered and site-centered stripes
have similar energies, the only relevant quantity being the
stripe wavelength λ. Then, we observe that stripes are the
optimal state in a wide doping range: The stripe wavelength
reduces at increasing doping, until stripes melt into a uniform
state for large values of the doping. We show that supercon-
ducting correlations are always suppressed in the presence
of stripes, regardless of their insulating or metallic charac-
ter. Instead, when the stripes melt into a uniform state, a nar-
row region of superconductivity is observed, around δ ∼ 0.30
for t ′/t=−0.25 and around δ ∼ 0.21 for t ′/t=−0.40. We
also report on the effect of the next-nearest neighbor hopping,
showing that a larger value of |t ′/t| induces a faster disruption
of both stripes and superconductivity as a function of doping.
The results discussed here are based on the Master’s thesis of
the first author of the paper [46].

2. Method

Our numerical results are obtained with the variational Monte
Carlo method (VMC), which is based on the definition of cor-
related variational wave functions, whose physical properties
can be evaluated within a Monte Carlo scheme [47]. In par-
ticular, electron-electron correlation is inserted by means of

2



J. Phys.: Condens. Matter 36 (2024) 395602 A Lechiara et al

a density–density Jastrow factor [48, 49] on top of a Slater
determinant or a Bardeen–Cooper–Schrieffer (BCS) state. In
addition, backflow correlations, as described in [50, 51], are
implemented; the latter ingredient is important to get accurate
variational states.

The wave function is defined by:

|Ψ⟩= Jd|Φ0⟩ , (2)

where Jd is the density–density Jastrow factor and |Φ0⟩ is a
state that is constructed from the ground state of an auxili-
ary noninteracting Hamiltonian by applying backflow correla-
tions [50, 51]. The variational wave functions described below
are similar to the ones we built to study the parameter regimes
discussed in references [28, 38].

The Jastrow factor is given by

Jd = exp

−1
2

∑
R,R ′

vR,R ′nRnR ′

 , (3)

where nR =
∑

σ nR,σ is the electron density on site R and vR,R ′

are pseudopotentials that are optimized for every independent
distance |R−R ′| of the lattice.

In the case of stripe states, the auxiliary noninteracting
Hamiltonian is defined as:

Haux =H0 +Hcharge +Hspin +HBCS. (4)

The first one defines the kinetic energy of the electrons:

H0 =−t
∑

⟨R,R ′⟩,σ

c†R,σcR ′,σ − t̃ ′
∑

⟨⟨R,R ′⟩⟩,σ

c†R,σcR ′,σ +H.c.,

(5)

where the value of the nearest neighbor hopping parameter t
is fixed to be equal to the one in the Hubbard Hamiltonian of
equation (1), in order to set the energy scale. Then, the second
and third terms describe linear stripes along the x direction that
can be either bond-centered or site-centered:

Hcharge =∆c

∑
R

cos [Q(x− x0)]
(
c†R,↑cR,↑ + c†R,↓cR,↓

)
, (6)

and

Hspin =∆s

∑
R

(−1)x+y sin

[
Q
2
(x− x0)

]
×
(
c†R,↑cR,↑ − c†R,↓cR,↓

)
. (7)

If x0 = 1/2 the stripes are symmetric with respect to the bond
halfway in between two neighboring lattice sites, hence they
are called bond centered. Conversely, for x0 = 0, the stripes
are called site centered, as the symmetry axis lies exactly on
a lattice site. The periodicity of the charge modulation in both
cases is given by λ= 2π/Q. On the other hand, the spin mod-
ulation has a π-phase shift across the sites with maximal hole
density, resulting in a spin modulation of 2λ= 4π/Q when λ
is even and 2π/Q when λ is odd. The spin modulation along

Figure 1. Top left panel: spin modulation of a bond-centered stripe
with even wavelength. The minimum and the maximum of the local
magnetic momenta are located on bonds, as highlighted by the red
rectangles. Top right panel: spin modulation of a site-centered stripe
with even wavelength. The minimum and the maximum of the local
magnetic momenta are located on sites, as highlighted by the blue
rectangles. Bottom panels: spin modulations of a stripe with odd
wavelength; in the left panel the modulation is bond-centered where
the local magnetic moment is minimal (red rectangle) and
site-centered where the local magnetic moment is maximal (blue
rectangle); in the right panel the situation is reversed.

the y direction is assumed to have Néel order in all cases. For
clarity, we report in figure 1 a sketch of the spin modulation
along the x direction, for bond- and site-centered stripes, in the
case of even and odd wavelengths λ; the length of the arrows
is proportional to the size of the local magnetic moments. The
effect of the π-shift is clearly visible in the figures. The last
term in equation (4) introduces BCS electron pairing:

HBCS =
∑

R,η=x,y

∆R,R+η

(
c†R,↑c

†
R+η,↓ − c†R,↓c

†
R+η,↑

)
+H.c.

−µ
∑
R,σ

c†R,σcR,σ, (8)

where the pairing amplitude is modulated in real space:

∆R,R+x =∆x

∣∣∣∣cos[Q2
(
x+

1
2
− x0

)]∣∣∣∣
∆R,R+y =−∆y

∣∣∣∣cos[Q2 (x− x0)

]∣∣∣∣ . (9)

This modulation has been named ‘in phase’ in [52]. A chem-
ical potential µ is also included inHBCS.

In the case of uniform states, the auxiliary Hamiltonian is
defined as:

Haux =H0 +HBCS +HAF. (10)

The kinetic term H0 is defined as for striped states. The BCS
electron pairing is now defined without modulation in real
space, i.e. ∆R,R+x =∆x and ∆R,R+y =−∆y, for each site R.
In addition, a standard Néel order with pitch vectorK= (π,π)
can be considered in the uniform state:

HAF =∆AF

∑
R

(−1)x+y
(
c†R,↑cR,↑ − c†R,↓cR,↓

)
. (11)

3
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The auxiliary Hamiltonians of equations (4) and (10) can
be diagonalized by standard methods. Its ground state is then
constructed. On top of it, backflow correlations are inserted
to define |Φ0⟩ of equation (2), following our previous works
[50, 51].

All the parameters in the trial wave function are optim-
ized with the stochastic reconfiguration method [53], in order
to minimize the variational energy. In particular, for striped
states, we fix a given stripe wavelength λ and optimize ∆x,
∆y, µ, ∆c, ∆s, and t̃ ′ (as well as all the pseudopotentials in
the Jastrow factor and the backflow parameters). For a uniform
state, we do not have∆c and∆s as parameters and we optim-
ize instead ∆AF. Once the energy and all the parameters con-
verge to stable values, the optimization run can be concluded.
The values of the parameters are fixed to their averages and a
run at fixed parameters is performed to compute the quantum
averages needed for the correlation function or the supercon-
ducting order parameter.

As already discussed in [28, 38], finite values of∆c and∆s

lead effectively to charge and spin modulations, as signaled
by a peak (diverging in the thermodynamic limit) at a givenQ
vector in the static spin and charge structure factors. In order to
assess the metallic or the insulating nature of the ground state,
we can investigate the small-q behavior of the static charge
structure factor N(q), defined as:

N(q) =
1
L

∑
R,R ′

⟨nRnR ′⟩eiq·(R−R ′), (12)

where ⟨. . .⟩ indicates the expectation value over the variational
wave function. Indeed, charge excitations are gapless when
N(q)∝ |q| for |q| → 0, while a charge gap is present whenever
N(q)∝ |q|2 for |q| → 0 [51, 54].

The possible existence of superconductivity is investigated
by computing correlation functions between Cooper pairs at
distance r along the x direction. In particular, we can consider
pairs along the y direction, so that:

D(r) =
1
L

∑
R

⟨PRP
†
R+rx⟩, (13)

where PR = cR+y,↓cR,↑ − cR+y,↑cR,↓ destroys two electrons
at nearest-neighbor sites (along y). Then, superconductivity
exists whenever D(r) does not decay to zero at large values
of r.

Our simulations are performed on ladders with L= Lx× 6
sites and periodic boundary conditions along both the x and
the y directions. In order to fit charge and spin patterns in the
cluster, we take Lx = 2kλ (with k integer). Some analysis of
the dependence of numerical results on Ly and Lx can be found
in [28, 38].

3. Results

In this section, we study the instauration of superconductivity
and stripes of different wavelength λ when changing the hole
doping δ. We consider two typical values of the hopping para-
meter for cuprates (t ′/t=−0.25 and t ′/t=−0.4) in order to

Table 1. Energy per site (in units of t) for the best striped state
Estripe and the uniform state Euniform, along with their relative
difference∆E= Estripe −Euniform, as a function of δ for
t ′/t=−0.25. Data are shown for Lx = 48 at dopings
1/12,1/6,1/4,1/3, for Lx = 45 at doping 1/5, for Lx = 40 at
doping 1/8, and for Lx = 70 at doping 1/10. These values of Lx are
chosen to accommodate the selected dopings, fit charge and spin
patterns of the stripes, and be large enough to have limited size
effects. The error bar on the energy, of the order of 10−4t, takes into
account the weak lattice size dependence of the energies.

δ Estripe Euniform ∆E

1/12 −0.6646 (λ= 8) −0.6572 −0.0074
1/10 −0.6920 (λ= 7) −0.6842 −0.0078
1/8 −0.7322 (λ= 5) −0.7238 −0.0084
1/6 −0.7936 (λ= 4) −0.7847 −0.0088
1/5 −0.8281 (λ= 3) −0.8258 −0.0023
1/4 −0.8749 (λ= 3) −0.8727 −0.0021
1/3 −0.9197 (λ= 3) −0.9197 0

see how the value of t ′/t affects the stripe order. The on-site
Coulomb repulsionU/t= 8, kept fixed throughout the simula-
tions, is chosen to ensure strong enough correlations. Indeed,
in [38], it is shown that for smaller values of U/t, such as
U/t≲ 4, the striped wave functions are not stable and con-
verge to the uniform state with vanishing parameters ∆c and
∆s.

We consider both commensurate and incommensurate dop-
ing values. By ‘commensurate’ doping we refer to the intro-
duction of an integer number of holes every 1/δ lattice sites;
conversely, this number is noninteger for ‘incommensurate’
doping values.

The optimal variational state is found by comparing, for
each considered value of t ′/t and δ, the variational energies of
the striped states for various λ and of the uniform state. The
optimal state is then the one with the lowest energy.

3.1. t ′/t=−0.25

We start by considering the case t ′/t=−0.25. The energy per
site, in units of t, as a function of δ is reported in table 1. Here,
we compare the energy for the best striped state Estripe/t with
that of the uniform state Euniform/t for a broad range of dop-
ing values. The striped state is almost always energetically
favorable. As δ increases, the wavelength λ decreases more
and more until, at doping δ = 1/3, the striped state and the
uniform state become energetically indistinguishable. When
discussing the behavior of the gap parameters, we will show
that this effectively corresponds to a melting of the stripe.

In section 2, we have introduced the gap parameters ∆c,
∆s and ∆AF related to the ‘strength’ of the charge, spin, and
Néel order, respectively. In this section we proceed by look-
ing at their behavior as the hole-doping increases in the case
t ′/t=−0.25. Their values are plotted in figure 2. For small
doping, the striped state is well established and indeed∆c and
∆s are finite. This corresponds to a well-defined order in both
charge and spin. Also the uniform state, despite not being the
optimal one, is able to develop Néel antiferromagnetism in the
underdoped regime, as indicated by a finite ∆AF.

4
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Figure 2. Behavior of ∆c (full squares) and ∆s (empty squares) for
the best striped state and ∆AF (circles) for the uniform state, as a
function of δ for t ′/t=−0.25. The best striped state for each
doping is shown in figure. The error bars are smaller than the
symbol size.

Figure 3. Static structure factor (divided by qx) N(q)/qx as a
function of qx with qy = 0. Data are reported at t ′/t=−0.25, for
the (nonoptimal) uniform state at doping δ = 1/6 for Lx = 48
(squares), and for the optimal striped states at dopings δ = 1/6
(diamonds), 1/5 (red circles), 1/4 (black circles) (for Lx = 48,45,72,
respectively). The error bars are smaller than the symbol size.

As δ increases, we see that all these parameters decrease
monotonically until, at large values of δ they become much
smaller and eventually negligible. This corresponds, for the
striped states, to the absence of any order: the stripe ‘melts’
and effectively reduces to the uniform state. Hence the degen-
eracy in energy pointed out for δ = 1/3. Our results confirm
the shrinking of the stripes at increasing doping, i.e. shorter
modulations are favored when more holes are present in the
system.

The metallic or insulating behavior of the optimal state can
be assessed from the small-q behavior of the static structure
factorN(q), see equation (12). In particular, we plot the quant-
ity N(qx,0)/qx at small qx, as shown in figure 3.

As a reference, we used a uniform state (squares), which is
known to be metallic (except at half-filling, when each site is
occupied by one electron and the Coulomb repulsion prevents

Figure 4. Pair–pair correlations D(r) as a function of r on a log-log
scale, at t ′/t=−0.25. Upper panel: data are reported for the
optimal stripe states at different hole-dopings δ (circles) and for the
(nonoptimal) uniform state at doping δ = 1/6 (blue squares). Lower
panel: data are reported for the uniform state at the critical doping
δc = 0.29 (black squares) along with the (nonoptimal) uniform
superconducting state at δ = 1/6 (blue squares) and the
nonsuperconducting striped state with λ= 4 at δ = 1/6 (diamonds).

them from moving freely) even though it has a higher vari-
ational energy.We observe that, for the striped state at δ = 1/6
(diamonds),N(qx,0)/qx clearly tends to zero, compatibly with
an insulating behavior. On the other hand, for all the other
striped states at δ = 1/5 and δ = 1/4 (circles), N(qx,0)/qx
tends to a finite value indicating that these states are metallic.

Finally, we address the coexistence of superconductivity
and stripe order, by computing the superconducting order
parameter of equation (13). In figure 4, we compare the uni-
form (but not optimal) state at δ = 1/6 (blue squares), taken as
a reference, with some optimal striped states. All the striped
states show strongly suppressed pair–pair correlations with
respect to the uniform case. The stripes at δ = 1/5 and δ = 1/4
(circles), despite having ametallic character, exhibit a suppres-
sion in D(r) similar to that of the insulating stripe at δ = 1/6
(diamonds). This supports the idea that the stripe order dis-
rupts superconductivity, no matter their metallic or insulating
character.

Since stripes are found to compete with superconductiv-
ity, we investigate then whether there is a region where hole-
doping is strong enough to restore the uniform state but not too
strong to suppress superconductivity. In order to answer this

5
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Table 2. Energy per site (in units of t) for the best striped state
Estripe with λ= 3 and the uniform state Euniform, along with their
relative difference∆E= Estripe −Euniform, as a function of
incommensurate δ for t ′/t=−0.25. Data are shown for Lx = 48 for
all the stripes and the uniform state. The error bar on the energy is
always smaller than 10−4t.

δ Estripe Euniform ∆E

0.26 −0.8799 −0.8784 −0.0015
0.27 −0.8891 −0.8885 −0.0006
0.28 −0.8933 −0.8932 −0.0001
0.29 −0.9015 −0.9016 0.0001
0.31 −0.9086 −0.9087 0.0001

question, we look for the first value of δ at which the uniform
state becomes energetically favorable and compute the pair–
pair correlations. For t ′/t=−0.25, as discussed in table 1, the
optimal state at δ = 1/4 is a stripe of wavelengthλ= 3while at
δ = 1/3 we have already reached the uniform state. We then
study incommensurate values of δ in the range

[
1
4 ,

1
3

]
. Since

the wavelengths of the stripes decrease at increasing doping,
it is sufficient to compare the striped state with λ= 3 and the
uniform state in this doping regime. Their variational energies
are presented in table 2.

We can identify as the critical doping, the value δc = 0.29,
where the optimal parameters of the stripe state ∆c and ∆s

vanish. In figure 4, lower panel, the pair–pair correlations
for this state (black squares) are plotted next to the uni-
form, but not optimal, superconducting state at δ = 1/6 (blue
squares) and the nonsuperconducting striped state at δ = 1/6
with λ= 4 (diamonds), for comparison. In this ‘intermedi-
ate’ state, superconductivity is suppressed with respect to the
uniform state at smaller doping, due to an already strong
hole-doping, but is still present, at difference with the striped
state.

3.2. t ′/t=−0.4

The second set of simulations involved the same search for
the optimal state but at a larger value of |t ′/t|, namely t ′/t=
−0.4. The main effect of a larger value of |t ′/t| is to suppress
the stripe pattern and makes the optimal state converge to the
uniform one faster. Indeed, while at δ = 1/5 the optimal state
is a stripe with λ= 3, already at δ = 1/4 the striped state is no
longer favorable and the uniform state is the optimal one. We
can ascribe this behavior to the larger degree of frustration that
is present for a larger value of |t ′/t|.

We investigate then whether the suppression of the stripes
at a lower concentration of holes might be associated to the
presence of stronger superconducting correlations around the
critical doping δc. Following the same reasoning as before,
the doping at which the uniform state prevails is for δ in the
range

[
1
5 ,

1
4

]
. In particular, stripes are suppressed already at

δc = 0.21. In figure 5, we show the pair–pair correlations for
the case t ′/t=−0.4 for different values of doping. Again, we
can see how correlations for the uniform state at the critical

Figure 5. Pair–pair correlations D(r) as a function of r on a log-log
scale. Data are reported at t ′/t=−0.4 for the (nonoptimal) uniform
state at doping δ = 1/6 (empty squares) and for the optimal striped
states at dopings δ = 1/6 (diamonds), 1/5 (circles), as well as for
the uniform state at the critical doping δc = 0.21 (full squares).

Figure 6. Comparison of the pair–pair correlations D(r) for
t ′/t=−0.25 and t ′/t=−0.4, as a function of r on a log-log scale.
Data are reported for the uniform but not optimal superconducting
states at δ = 1/6 (empty red squares at t ′/t=−0.25 and empty
blue squares at t ′/t=−0.4) and for the two uniform states at the
critical dopings δc = 0.29 for t ′/t=−0.25 (full red squares) and
δc = 0.21 for t ′/t=−0.4 (full blue squares).

doping (full squares) are suppressed with respect to the uni-
form but not optimal, superconducting state at δ = 1/6 (empty
squares), but still stronger than in the cases where stripe order
is established.

To conclude the discussion, we compare the magnitude of
the superconducting correlations for the two different values
of t ′/t. The curves are plotted in figure 6. We observe how,
when |t ′/t| is larger, superconductivity for the (nonoptimal)
uniform state at δ = 1/6 is slightly suppressed. This is equally
true for the uniform states at the critical dopings δc where the
uniform state is restored: The effect of a larger value of |t ′/t| in
suppressing superconductivity is clearly visible, since super-
conducting correlations at the critical dopings are smaller at
t ′/t=−0.4 than at t ′/t=−0.25, even if δc is definitely smal-
ler in the first case.
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Figure 7. Phase diagram collecting the optimal states as a function of doping δ, for two values of t ′/t. The symbol SC denotes
superconductivity, while λ indicates the wavelength of the optimal stripe.

4. Conclusions

We have explored the consequences of increasing hole dop-
ing on the instauration of stripe order, superconductivity and
their reciprocal interplay, for two prototypical values of t ′/t.
All the main results of the present work are collected and
summarized by the final phase diagram reported in figure 7.
Superconductivity is considered to be present when the aver-
age ofD(r) over the last 10 distances is above a threshold value
of 3× 10−4.1

By looking for the optimal state for different values of
the hole-doping δ, we found that stripes are present over a
broad range of doping values, as they are energetically favor-
able in comparison to the uniform state. Remarkably, site and
bond-centered stripes have been found to be essentially degen-
erate in energy, suggesting that there is no relevant differ-
ence between the two configurations. Upon increasing δ, the
wavelength of the stripes shrinks until eventually the uniform
state is restored. A larger |t ′/t| is associated to a shrinking of
the wavelength λ and leads to a faster dissolution of the stripes,
with the uniform state being the optimal one at a smaller value
of δ.

The coexistence of superconductivity and stripe order is
addressed by looking at the pair–pair superconducting correl-
ationsD(r). For both values of t ′/t, superconductivity is found
to be suppressed whenever stripes (no matter their metallic
or insulating nature) are present, suggesting that the two phe-
nomena interfere with each other. There is then a small inter-
val in δ among which the hole-doping is strong enough to
restore the uniform state but not too strong to completely sup-
press superconductivity. Furthermore, our results show that, at
t ′/t=−0.4 all superconducting correlations are weaker than
at t ′/t=−0.25, even if stripes melt at a smaller value of δ.

1 This threshold value is chosen arbitrarily, but the goal is to show evidences
for some residual superconductivity in between the striped states and the uni-
form nonsuperconducting metal at large doping.

In conclusion, our results confirm that the phase diagram
of the Hubbard model is dominated by stripe states, possibly
overestimating this phase with respect to superconductivity,
when connected to the cuprate physics.
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