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A B S T R A C T

Information Recommendation (IR) systems are conventionally designed to operate within a single modality at
a time, such as Text2Text or Image2Image. However, the concept of cross-modality aims to facilitate a versatile
recommendation experience across different modalities, such as Text2Image. In recent years, significant strides
have been made in developing neural recommender models that are multimodal and capable of generalizing
across a broad spectrum of domains in a zero-shot manner, thanks to the robust representation capabilities of
neural networks. These architectures enable the generation of embeddings for assets (i.e., content uploaded on a
platform by users), presenting a concise representation of their semantics and allowing for comparisons through
similarity ranking. In this paper, we present ZCCR, a Zero-shot Content-based Crossmodal Recommendation
System that leverages knowledge from large-scale pretrained Vision-Language Models (VLMs) such as CLIP and
ALBEF to redefine the recommendation task as a zero-shot retrieval task, eliminating the need for labeled data
or prior knowledge about the recommended content. Furthermore, ZCCR performs crossmodal similarity search
on an optimized index, such as FAISS, to improve the speed of recommendation. The goal is to recommend
to the user assets that are similar to those they have previously uploaded, commonly referred to as their user
profile. Within the user profile, we identify ‘‘areas of interest’’—groups of assets associated with specific user
interests, such as cooking, sports, or cars. To identify these areas of interest and construct the search query for
the retrieval operation, ZCCR employs an innovative use of Agglomerative Clustering. This technique groups
user past assets by similarity without requiring prior knowledge of the number of clusters. Once the areas of
interest, or clusters, are identified, the centroid is utilized as the search seed to find similar assets. Experimental
results demonstrate the efficiency of the selected components in terms of search time and retrieval performance
on modified MSCOCO and FLICKR30k datasets tailored for the recommendation task. Furthermore, ZCCR
outperforms both a baseline tagging system (BT) and a more advanced tag system which utilizes a Large
Language Model (LLM) to extract embeddings from tags. The results show that, even compared with the latter,
embeddings directly extracted from raw assets yield superior outcomes compared to relying on intermediate
tags generated by other tools. The code implementation to reproduce all experiments and results shown in
this paper is provided at the following link: ZCCR-experiments.
1. Introduction

Images and videos constitute a massive source of data for indexing
and search. Extensive metadata for this content is often not available
and a variety of machine learning and deep learning algorithms are
being used to interpret and classify these complex, real-world enti-
ties. Popular examples include text representation encoders such as
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), repre-
sentations of images by convolutional neural networks (Gong, Wang,
Guo, & Lazebnik, 2014; Sharif Razavian, Azizpour, Sullivan, & Carlsson,
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2014), and image descriptors for instance search (Gordo, Almazán,
Revaud, & Larlus, 2016).

These representations, commonly known as embeddings, typically
consist of real-valued, high-dimensional vectors ranging from 50 to
over 1000 dimensions. This paper delves into multimodal deep learn-
ing within the context of recommendation systems, highlighting the
effectiveness of multimodal embeddings in synthesizing semantic in-
formation from both images and texts. Multimodal deep learning
refers to simultaneously considering and integrating data from various
https://doi.org/10.1016/j.eswa.2024.125108
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modalities, such as text and images, to enhance overall understanding
and performance. In multimodal deep learning, an embedding denotes
the transformation of varied data types, like text and images, into a
unified, lower-dimensional vector space. This allows for the representa-
tion and understanding of inter-modal relationships, capturing nuanced
semantic connections across different modalities.

In the context of Information Retrieval, the search task involves
seeking and retrieving relevant information from a dataset. Thanks
to the semantics encoded within these embeddings, the search task
becomes independent of tags. According to the Pfeiffer report1, tags are
commonly linked with the following challenges: (1) It is impractical
to anticipate all the ways individuals might search for something,
considering factors like mood, colors, visual perspective, and purpose.
Consequently, tagging fails to provide sufficient support for diverse
search queries. This leads to cumbersome workflows in the search
process when relying solely on keyword-based searches along with
tagging tasks. (2) Maintaining discoverability through tagging is time-
consuming due to the need for exhaustive content description, in-
volving multiple tagging methods, each associated with an execution
time. According to the Pfeiffer report, a multimodal search and recom-
mendation system offers three notable improvements for digital asset
management: (a) Companies eliminate the need to spend time tagging
for making assets discoverable. (b) Users can now employ descriptive
language for searches, precisely locating what they seek. (c) There is
an increase in asset usage, as users easily find existing assets, reducing
the likelihood of recreating content or settling for subpar assets.

1.1. The proposed system

In this context, we introduce ZCCR, a Zero-Shot Content-Based
Crossmodal Recommendation System. ZCCR leverages assets previously
uploaded by the target user to recommend new assets, framing the
recommendation task as a crossmodal retrieval problem. ZCCR employs
a pre-trained Vision-Language Model (VLM), such as CLIP (Radford
et al., 2021), to generate multimodal embeddings for images and texts,
eliminating the need for tagging systems. It provides recommendations
to the target user in a purely zero-shot fashion, requiring no additional
training.

In the context of social media platforms, an ‘‘asset’’ is defined
as an individual item posted by a user, playing a pivotal role in
delineating the user’s distinct areas of interest. An ‘‘area of interest’’
is characterized as a collection of homogeneous assets posted by the
user, revolving around specific concepts such as animals, cars, cooking,
or travel. We designate the term ‘‘user profile’’ to encompass the set of
assets that have been previously uploaded by the user. Following the
extraction of embeddings from these assets through a pre-trained VLM,
we apply Agglomerative Clustering to systematically group together
the assets within the user profile, relying on their inherent similarities.
Agglomerative Clustering is a hierarchical unsupervised machine learn-
ing method that starts with individual data points as separate clusters
and progressively merges them based on similarity until a termination
condition is met. All assets within the same cluster are presumed to
belong to the same area of interest for the user, while assets in different
clusters are considered to belong to different areas of interest.

In a content-based recommendation system, the user query is au-
tonomously derived from the user’s prior uploads, eliminating the
need for direct input. The user query refers to the summarized rep-
resentation of the user’s areas of interest, constructed by condensing
identified cluster information into what we now define as a ‘‘seed’’ –
a representative of the cluster. This seed operates as a search query,
facilitating the recommendation of new assets aligning with the target
user’s preferences. After identifying the seeds, the recommendation task

1 https://www.pfeifferreport.com/wp-content/uploads/2018/11/
reativity_and_AI_Report_INT.pdf?ref=kailua-labs.ghost.io.
2 
transforms into a crossmodal retrieval, seeking similar assets relative to
each seed. As each identified cluster represents an area of interest, the
number of seeds corresponds to the identified clusters, with each seed
querying the database for new assets.

1.2. Modules of ZCCR

ZCCR comprises three primary modules: (1) A large-scale VLM
functioning as a multimodal encoder, which includes two parallel
encoders for processing images and texts. (2) A FAISS similarity search
index (Johnson, Douze, & Jégou, 2019) enhances the efficiency of the
retrieval process in terms of recommendation time. In the domain of
Multimodal Learning, CLIP (Radford et al., 2021) and ALBEF (Li, Sel-
varaju et al., 2021) stand out as prominent VLMs pretrained on large-
scale image-text corpora, excelling in zero-shot crossmodal retrieval
on benchmark datasets such as MSCOCO and FLICKR30k. However,
a notable observation is that when these architectures encode image
and text features from these datasets, the embeddings from different
modalities do not align effectively. Specifically, unimodal pairs like
text-text and image-image consistently yield representations associated
with higher similarity values than multimodal pairs like image-text,
irrespective of their semantic content. This results in an undesired
outcome where features tend to cluster in the feature space based on
their modality rather than purely on semantic relevance, indicating
a lack of modality-invariance. We define the ‘‘Search Space’’ as the
collection of retrievable assets during the search operation, and we
refer to ‘‘noise’’ as the presence of assets within the Search Space
lacking semantic relevance concerning the search query. We argue
that the misalignment of multimodal embeddings, referred to here as
‘‘Modality Gap’’ negatively impacts crossmodal retrieval performance.
This is particularly evident in scenarios where noise is introduced by
irrelevant data of the same modality as the query. This is because
they are consistently associated with a higher similarity score than
data of different modalities. Consequently, we decide to instantiate as
many search indexes as there are modalities—in our case, one index
for texts and one for images. This approach ensures that unimodal
(e.g., Text2Text, Image2Image) and crossmodal (e.g., Text2Image, Im-
age2Text) search tasks are performed by querying two distinct indexes.
This avoids the mixture of embeddings from different modalities in the
same search index while still enabling both unimodal and crossmodal
retrieval. In unimodal retrieval, we search among assets of the same
modality as the query, while in crossmodal retrieval, we search among
assets of a different modality compared to the query. We term this
operation ‘‘decoupling’’ the unimodal and crossmodal retrieval tasks,
as they are accomplished by querying different search indexes. (3)
Agglomerative Clustering acts as the semantic grouping mechanism for
previously uploaded user assets without requiring the pre-specification
of the number of clusters. This is essential as the number of areas of
interest, derived from the user’s past uploaded assets, is not formally
defined and must be discerned from the arrangement of embeddings in
the semantic space. Following the identification of user asset clusters,
the cluster centroids act as seeds for retrieving similar texts and images.

1.3. The MediaVerse use case

ZCCR is developed in the scope of MediaVerse (MV) a H2020-
ICT-2020-1 3-years project entitled ‘‘A universe of media assets and
co-creation opportunities at your fingertips’’. MV is an answer to
the blurred boundaries between professional media houses, prosumers
and small creators. It is a decentralized network for intelligent, auto-
mated, and accessible digital asset management systems, where tradi-
tional stakeholders and other media owners can share, enrich, verify,
and monetize multimedia content. Since the speed of communication
and publishing is increasing, audiences are seeking more user-driven
and accessible multimedia experiences. A semantics-based multimodal

https://www.pfeifferreport.com/wp-content/uploads/2018/11/Creativity_and_AI_Report_INT.pdf?ref=kailua-labs.ghost.io
https://www.pfeifferreport.com/wp-content/uploads/2018/11/Creativity_and_AI_Report_INT.pdf?ref=kailua-labs.ghost.io
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Fig. 1. In this example scenario within the MediaVerse Platform, ZCCR recommends images to the user based on their areas of interest (cats, dogs, books) by conducting both
Image2Image and Text2Image searches.
Search and Recommendation tool is important for a multimedia content
platform populated by a plurality of users.

In Fig. 1, we present an illustrative use case of ZCCR within a
prototype version of the MediaVerse platform, which may be subject
to modifications compared to the version depicted here. Fig. 1(a)
showcases the user profile when it involves assets related to cats,
dogs, and books. Specifically, cat and book assets are uploaded in
image format, while textual posts related to dogs have been published.
Fig. 1(b) displays the assets recommended to the user in (a) based on
their interests. Images of dogs, cats, and books are recommended, even
though no dog images were initially present in the user’s profile. In
this case, ZCCR conducted Image2Image searches for cats and books
and crossmodal Text2Image searches for dogs.

1.4. Contributions

We investigate both text and image modalities, which are the focus
of interest in the MediaVerse project. However, our ZCCR can be
expanded to encompass any combination of modalities, as long as there
are encoders capable of converting those modalities into embeddings.

Our main contributions are summarized below:
3 
1. We present ZCCR, a Zero-shot Content-Based Crossmodal Rec-
ommendation system that transforms the recommendation task
into a retrieval task without the need of training. It is crafted as
a plug-and-play solution, seamlessly integrating without depen-
dence on domain-specific data, while fully leveraging the rich
knowledge encoded in pretrained VLMs. ZCCR combines two
prominent research directions: the use of pretrained multimodal
architectures into recommendation systems and the creation of
a zero-shot recommender.

2. ZCCR leverages Agglomerative Clustering to generate user
queries, termed as seeds, that mirror the user’s areas of interest.
The integration of Agglomerative Clustering strengthens ZCCR’s
zero-shot capabilities, and to the best of our knowledge, we are
the first to use clustering to generate user query in the realm of
content-based recommendation.

3. ZCCR addresses the issue of Modality Gap associated with VLMs
by decoupling the unimodal and crossmodal retrieval tasks. This
is achieved by utilizing distinct search indexes for each of the
modalities involved.

4. ZCCR outperforms a baseline tag-based recommender system
by efficiently clustering embeddings from multimodal encoders
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based on user areas of interest. This highlights the superior
semantic information extraction of ZCCR’s multimodal encoder,
allowing the clustering algorithm to generate homogeneous clus-
ters reflecting the user’s areas of interest.

The paper is structured as follows: Section 2 provides an intro-
uction to the context. Section 3 outlines our ZCCR recommendation
ipeline, detailing individual components and explaining the rationale
ehind the decision to instantiate separate search indexes for each
odality. Section 4 presents the setup of experiments conducted to

ustify design choices and compare the performance of ZCCR versus
he Tag system. Finally, Section 5 offers comprehensive results for our
pproach, showcasing concrete improvements over the vanilla tagging
pproach.

. Related work

.1. Content-based recommender systems

Content-based recommender systems analyze a set of documents
nd descriptions (or only either document or description) of items
reviously rated by a user, and build a model, also called profile, of
ser areas of interest based on asset embeddings rated by that user (Ko,
ee, Park, & Choi, 2022). The profile is a structured representation of
ser areas of interest adopted to recommend interesting new items.
he fundamental assumption of the content-based methods is that an

tem is recommended to a user if that user has liked a particular item
ith characteristics similar to the recommended item. The result of

he recommendation task is the level of relevance that a new asset
as for the considered user. In our case, we do not exploit the user
nteraction with other assets (user ratings), we instead rely on their
reviously uploaded assets assuming that they form a basis on user
reas of interest.

Content-based recommender systems were mainly used in various
pplication areas, such as recommendations according to the properties
f movies (Ali, Nayak, Lenka, & Barik, 2018), e-commerce recommen-
ations (De, Banerjee, Rath, Swain, & Samant, 2022). According to Ko
t al. (2022) Content-Based Filtering is the simplest recommendation
odel. In the early 2000s, there were many studies using it to present

ecommendations to users, but due to its disadvantage of recommend-
ng only biased items, the number of studies using this model alone
as gradually decreased since 2010. However, it is still being studied
nd utilized continuously in the fields of books and news, which are
pplication fields centered on text information.

Nonetheless, we argue that a purely content-based strategy, employ-
ng pretrained VLM as feature encoder and a Hierarchical clustering
echnique to formulate the user query, is remarkably efficient in ad-
ressing the Mediaverse Context. This methodology allows us to create
zero-shot recommendation system without relying on item data, user
ata, or interaction data.

Using a VLM as a semantic extractor is motivated by the challenge
n content-based recommenders, where textual features often face diffi-
ulties due to natural language ambiguity. In De Gemmis, Lops, Musto,
arducci, and Semeraro (2015), researchers explore semantic repre-

entations to overcome limitations of keyword-based approaches. The
urvey categorizes semantic methods into top-down (integration of ex-
ernal knowledge) and bottom-up (using lightweight representations).
mphasizing the importance of semantic incorporation in recommender
ystems for advancing content-based recommendations, ZCCR adopts a
ottom-up approach with a pretrained VLM.

Building upon the achievements in multimodal representation learn-
ng for crossmodal retrieval (Feng, Wang, & Li, 2014; Peng, Huang, &
i, 2016; Wang, He, Wang, Wang, & Tan, 2013), this paper employs

wo extensive pre-trained image-text encoders. The first, CLIP (Con-
rastive Language–Image Pre-training) (Radford et al., 2021), stands

s a state-of-the-art dual-encoder network pre-trained on a dataset

4 
comprising 400 million (image, text) pairs collected from various pub-
licly available Internet platforms. CLIP utilizes Contrastive Loss (Sohn,
2016), incorporating paired text and image embeddings as inputs dur-
ing training. The second encoder, ALign BEfore Fuse (ALBEF) (Li,
Selvaraju et al., 2021), adopts a similar methodology to CLIP, in-
dependently encoding images and text using a detector-free image
encoder and a text encoder. Both architectures undergo pretraining to
uncover projections of data items from diverse modalities into a shared,
semantics-based feature representation subspace. Within this subspace,
a direct assessment of similarity between different modalities becomes
achievable.

In the absence of user-specific information, we enhance the uti-
lization of data derived from the user’s previously uploaded content
to formulate what we now identify as the ‘‘seed’’ for the user query.
This is achieved through the application of agglomerative cluster-
ing on representations of individual user content. Hence, during the
recommendation phase, a particular user is linked to a quantity of
queries/seeds equal to the number of semantic concepts expressed in
the content previously posted.

Let us proceed with referencing two pivotal aspects within the
domain of ZCCR: the application of clustering techniques and the
deployment of a pre-trained multimodal architecture within the realm
of zero-shot recommendation systems.

2.2. Clustering in recommender systems

Clustering is a technique mainly used to identify user groups similar
to users in the Collaborative Filtering model. When clustering is used
for Content-Based Filtering, it is mainly used when clustering and
analyzing the similarity of location-based data in the recommenda-
tion system of the travel field (Dietz, Sen, Roy, & Wörndl, 2020).
Clustering techniques have been utilized to enhance the efficacy of
recommendation systems.

The work by Berbague et al. (2021) leverages clustering to augment
recommendation diversity, a recognized issue in recommendation sys-
tems. Addressing this concern has been shown to result in heightened
user satisfaction. The authors of Zhang, Lin, Lin, and Liu (2016) pro-
posed a new collaborative filtering algorithm based on clustering user
preferences to reduce the impact of data sparsity. Collaborative filtering
is widely used by online vendors and review sites to recommend items
based on the ratings of many users. However, this method has several
problems, and one of them is the presence of attacks aimed at distorting
the predicted ratings of specific elements. Zhang (2019) proposed a
collaborative filtering technique that reduces the impact of attacks
while maintaining or improving prediction accuracy by repeatedly
applying clustering to target data and predicting ratings for unrated
items within each cluster. In this way the recommendation reliability
is improved. Jiang, Zhang, Jiang, Wang, and Pei (2019) present a
method of joint filtering based on biclustering and information entropy
to eliminate the effect of historical sparseness in user ratings.

As evident, the majority of clustering techniques are employed in
collaborative recommendation strategies with the objectives of im-
proving reliability, enhancing diversity, grouping users according to
preferences, or mitigating the challenge of data sparsity within the
user-item interaction matrix. In this article, we focus on content-based
recommenders and utilize hierarchical Agglomerative clustering within
the ZCCR to generate user queries, referred to as ‘seeds’. Instead of
employing more complex deep learning clustering techniques, we chose
Agglomerative clustering for its simplicity and lack of additional train-
ing requirements (Aljalbout, Golkov, Siddiqui, Strobel, & Cremers,
2018), enabling the ZCCR to provide zero-shot recommendations.

According to Assent (2012), many clustering algorithms face ef-
ficiency challenges in higher-dimensional spaces due to the inherent
sparsity of data. In such applications, it is common for points to be far
apart in at least a few dimensions. One approach is to project points

from higher-dimensional to lower-dimensional spaces, assuming that
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data can be reasonably approximated with only a small number of
dimensions retained. This method, often using techniques like Principal
Component Analysis (PCA) (Jain & Dubes, 1988) or Singular Value
Decomposition (SVD) (Strang, 2012), can effectively reduce noise and
enhance data analysis.

2.3. Large multimodal recommendation models

Inspired by the achievements of Large Language Models (LLMs),
the recommender system community began focusing on enhancing
the generalization capability and transferability of recommendation
models (Li, Zhang, Liu and Chen, 2023). Fueled by the success of Large
Language Models (LLMs), some models, like Li, Zhang and Chen (2021,
2023) leverage LLM knowledge for enhanced recommendation inter-
pretability. Others, such as Geng, Liu, Fu, Ge and Zhang (2022) and Xu,
Hua, and Zhang (2023) address multiple recommendation tasks concur-
rently including direct recommendation, sequential recommendation,
and explanation generation. With the increasing volume of multimedia
content, the research focus has shifted to multimodal recommenda-
tion. The common practice involves utilizing multimodal content as
supplementary information to aid recommendation decisions (He &
McAuley, 2016b; Meng, Feng, He, Gao, & Chua, 2020) or incorporating
visual data sources to provide visual explanations to users (Geng, Fu
et al., 2022; Hou et al., 2019). Multimedia recommendation systems,
which consider extensive multimedia content information for items,
have proven successful in various applications like e-commerce, instant
video platforms, and social media platforms (Cui, Yu, Wu, Liu, & Wang,
2021; He & McAuley, 2016a; Veit et al., 2015). Taking a step beyond
the current trend of pretrained LLMs and the use of multimodal models
involves utilizing Vision-Language Models (VLMs) like CLIP. Examples
include VIP5 (Geng, Tan, Liu, Fu, & Zhang, 2023), which integrates
the CLIP image branch to encode visual data, and e-CLIP (Shin et al.,
2022), addressing e-commerce domain-specific data by training a CLIP
architecture from scratch using contrastive product image and text key-
words. Another instance is MICRO (Zhang et al., 2022) that proposes
graph structure learning to uncover latent item relationships based on
multimodal features. While these multimodal solutions prove highly
effective in their respective domains and tasks, they typically require
a training step and the availability of data regarding users, items,
and their interactions. A partial exception among these is P5 (Geng,
Liu et al., 2022), achieving domain transferability by training the
architecture on an auxiliary domain to solve tasks on target domains,
where users are known to P5 but the items have never been encoun-
tered by the model. In this paper, we aim to achieve top-k ranking
of items by integrating CLIP multimodal encoder within a procedure
that requires no training. Our pure content-based approach, combined
with a foundational clustering technique like Agglomerative Clustering,
demonstrates the effectiveness of using multimodal features rather
than solely textual ones, thereby contributing to the advancement of
research in multimodal recommendation systems.

2.4. Zero-shot recommendation

The performance of recommender systems heavily relies on avail-
able training data, yet there are instances, known as zero-shot cases,
where historical records are limited. Success in handling such startup
cases indicates a commendable generalization ability of recommen-
dation models. One extensively explored challenge in this context is
cold-start recommendation, wherein either users or items are new to
the system with no prior interaction records. Solutions to this issue
either involve learning to model content features (Li et al., 2019; Shi
et al., 2019), enabling inference without interaction records, or learning
to transfer representations from auxiliary domains (Man, Shen, Jin, &
Cheng, 2017; Yuan et al., 2021; Zhu et al., 2021). In our specific case,
neither the users nor the items have been encountered by the ZCCR
before. Additionally, the ZCCR does not require any training, making
5 
it a fitting plug-in solution for both pure content-based and hybrid
recommenders.

As evident, the most innovative recommendation systems delve into
two emerging research branches: Large Multimodal Recommendation
Models and Zero-Shot Recommendation. In this article, we introduce
ZCCR, a Zero-Shot Content-Based Crossmodal Recommendation system
that leverages the knowledge of large-scale pretrained VLMs to extract
multimodal embeddings from assets present on the MediaVerse social
media platform. ZCCR operates without the need for any training
data, positioning itself as a pure zero-shot recommender. The latter is
enhanced by the innovative use of Agglomerative Clustering to generate
the user query for retrieving assets most similar to those uploaded by
the target user.

3. Method

Our ZCCR leverages asset embeddings of user 𝑢 profile 𝑃𝑢, generated
y multimodal neural encoders, to form clusters that align with the
ser’s areas of interest (e.g., animals, cars, sports). It employs Agglom-
rative Clustering to generate these clusters. Subsequently, it utilizes
he centroids of these clusters as search seeds to identify multimodal
ssets similar to those previously uploaded by user 𝑢. We note that the
luster centroid effectively represents the entire cluster information.
CCR separates the search operation into unimodal search (txt2txt,
mg2img) and crossmodal search (txt2img, img2txt) by creating mul-
iple similarity search indexes, one for each modality. We leverage
acebook AI Similarity Search (FAISS) (Johnson et al., 2019) as an
ndex to store text and image encoded embeddings, as it significantly
ccelerates search times to achieve optimal performance levels.

The ZCCR pipeline is depicted in Fig. 2. The recommendation
rocess begins with the user 𝑢’s previously uploaded items (the user
rofile 𝑃𝑢), arranged by modality.

1. Given a user 𝑢 and its profile 𝑃𝑢 consisting of 𝑁 images 𝑋 =
[𝑥1, 𝑥2,… , 𝑥𝑁 ] and 𝑀 texts 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑀 ], the image
encoder 𝐸𝐼 and the text encoder 𝐸𝑇 project them respectively
into a shared embedding space:

𝑧𝐼,𝑖 = 𝐸𝐼 (𝑥𝑖), 𝑧𝐼,𝑖 ∈ R𝐷 (1)

𝑧𝑇 ,𝑗 = 𝐸𝑇 (𝑦𝑗 ), 𝑧𝑇 ,𝑗 ∈ R𝐷 (2)

Here, 𝑍𝐼 = [𝑧𝐼,1, 𝑧𝐼,2,… , 𝑧𝐼,𝑁 ] and 𝑍𝑇 = [𝑧𝑇 ,1, 𝑧𝑇 ,2,… , 𝑧𝑇 ,𝑀 ] are
real-valued multi-dimensional embeddings of the image and text
in the shared 𝐷-dimensional embedding space. 𝐸𝐼 and 𝐸𝑇 are
the multimodal encoders that originate from pre-trained CLIP or
ALBEF.

2. Separately for each modality, asset embeddings are projected
into a lower-dimensional space using PCA:

𝑝𝐼,𝑖 = PCA(𝑧𝐼,𝑖), 𝑝𝐼,𝑖 ∈ R𝐷′ (3)

𝑝𝑇 ,𝑗 = PCA(𝑧𝑇 ,𝑗 ), 𝑝𝑇 ,𝑗 ∈ R𝐷′ (4)

where 𝑝𝐼,𝑖, 𝑝𝑇 ,𝑗 are the linearly projected image and text fea-
tures belonging to an embedding space of dimension 𝐷′ < 𝐷.
Then 𝑃𝐼 = [𝑝𝐼,1, 𝑝𝐼,2,… , 𝑝𝐼,𝑁 ] and 𝑃𝑇 = [𝑝𝑇 ,1, 𝑝𝑇 ,2,… , 𝑝𝑇 ,𝑀 ]
are separately clustered through the Agglomerative Clustering
technique. Let 𝐶𝐼 = {𝐶𝐼,1, 𝐶𝐼,2,… , 𝐶𝐼,𝐾} be the clusters formed
from images projections 𝑃𝐼 , and 𝐶𝑇 = {𝐶𝑇 ,1, 𝐶𝑇 ,2,… , 𝐶𝑇 ,𝐿} the
clusters formed from texts projections 𝑃𝑇 , these are obtained:

𝐶𝐼 = AgglomerativeClustering(𝑃𝐼 ) (5)

𝐶𝑇 = AgglomerativeClustering(𝑃𝑇 ) (6)

Referring back to full representations 𝑍𝐼 and 𝑍𝑇 , each point is
assigned to a cluster such that:
𝐶𝐼,𝑘 = {𝑧𝐼,𝑖|𝑧𝐼,𝑖 belongs to cluster 𝑘} (7)
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Fig. 2. ZCCR’s recommendation process consists of two parallel pipelines initiated with the previously uploaded texts and images of user 𝑢. These texts and images are encoded
by language and vision encoders, respectively, and then clustered using Agglomerative Clustering. In this scenario, we assume that the user has uploaded assets from two clusters
(each representing an area of interest) for both texts and images. The centroid of each cluster is used as a search seed to perform unimodal and crossmodal retrieval on the text
and image pools. Finally, for each seed, a ranked top-k list of assets is returned to the user 𝑢.
𝐶𝑇 ,𝑙 = {𝑧𝑇 ,𝑗 |𝑧𝑇 ,𝑗 belongs to cluster 𝑙} (8)

In this way, each user asset is associated with a label indicating
the cluster it belongs to. Considering that the embedding space
of each modality is semantically consistent, assets of the same
cluster are similar to each other, creating the so-called areas of
interests. Once each asset has a cluster label, we refer back to
the full multi-dimensional embeddings 𝑍𝐼 , 𝑍𝑇 .

3. To condense cluster 𝐶𝐼,𝑘 and 𝐶𝑇 ,𝑙 information into a singular
vector, we calculate their centroids and utilize them as a search
seed to query both text and image databases. The query for each
cluster is given by:

𝑞𝐼,𝑘 = 1
|𝐶𝐼,𝑘|

∑

𝑧𝐼,𝑖∈𝐶𝐼,𝑘

𝑧𝐼,𝑖 (9)

𝑞𝑇 ,𝑙 =
1

|𝐶𝑇 ,𝑙|

∑

𝑧𝑇 ,𝑗∈𝐶𝑇 ,𝑙

𝑧𝑇 ,𝑗 (10)

The goal is to identify the pertinent assets associated with the
user’s initial clusters, which summarize their interests.
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4. For each seed 𝑞𝐼,𝑘, 𝑞𝑇 ,𝑙 (each representative of an area of in-
terest), we retrieve the top-k assets for both unimodal and
crossmodal searches. Specifically, a single seed 𝑞𝐼,𝑘 queries both
the Image Search Space and the Text Search Space separately,
resulting in two top-k assets, namely 𝑜𝑡𝐼,𝑘 = [𝑦1, 𝑦2,… , 𝑦𝑘] and
𝑜𝑖𝐼,𝑘 = [𝑥1, 𝑥2,… , 𝑥𝑘] respectively associated to recommended
texts and images associated to the seed 𝑞𝐼,𝑘 (area of interest
emerging from image assets). The same goes for 𝑞𝑇 ,𝑙 which
results in two top-k assets, namely 𝑜𝑡𝑇 ,𝑙 = [𝑦1, 𝑦2,… , 𝑦𝑘] and
𝑜𝑖𝑇 ,𝑙 = [𝑥1, 𝑥2,… , 𝑥𝑘] respectively associated to recommended
texts and images associated to the seed 𝑞𝑇 ,𝑙 (area of interest
emerging from text assets).

Since image and text features (𝑍𝐼 , 𝑍𝑇 ) are stored in two separate
search indexes, the entire recommendation process involves two par-
allel pipelines—one for images and one for texts. This results in the
separation of unimodal and crossmodal searches, as each seed 𝑞𝐼,𝑘 and
𝑞𝑇 ,𝑙 performs queries on both the image database and the text database.
For instance, a seed generated from images (𝑞 ), previously uploaded
𝐼,𝑘
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Fig. 3. Desired multimodal embeddings arrangement in the common feature space.
Similar assets that share common semantics are close to each other, regardless of their
modality.

by user 𝑢, is used to conduct unimodal search among other images
and crossmodal search of texts by querying their respective indexes.
The decision to avoid instantiating a single index (a single database)
containing embeddings from all modalities (images and texts) stems
from the misalignment in embedding similarities between unimodal
and multimodal pairs, defined as Modality Gap (see Section 3.1.3).

In the following of this section, we further describe ZCCR imple-
mentation details.

3.1. Multimodal encoder

We adopt a dual-encoder (text and image) approach as (Radford
et al., 2021) in parallel pre-trained to feed a contrastive loss (Sohn,
2016). We assess CLIP and ALBEF as alternative image-text encoders
due to their representation of the cutting edge in Visual Language
Models (VLMs). However, another VLM alternative can be seamlessly
integrated into the ZCCR pipeline. Here, we provide an outline of the
specifications of the pre-trained architectures utilized.

3.1.1. CLIP
As regards the text encoder, it is a Transformer (Vaswani et al.,

2017). As a base size we use a 63M-parameter 12-layer 512-wide model
with 8 attention heads. The transformer operates on a lower-cased byte
pair encoding (BPE) representation of the text with a 49,152-vocab size.
For computational efficiency, the max sequence length was capped at
76. For the visual encoder we opted for ViT-B/32 (Dosovitskiy et al.,
2021), the ViT base variant with 32 × 32 input patch size. The final
text and image representations are 512-d embeddings, 𝑧𝐼 , 𝑧𝑇 ∈ R512,
where 𝑧𝐼 , 𝑧𝑇 are text and image features respectively.

3.1.2. ALBEF
The Text Encoder is a 6-layer transformer initialized using the

first 6 layers of the BERTbase (Devlin, Chang, Lee, & Toutanova,
2018) (123.7M parameters). The Vision Encoder is a 12-layer visual
transformer ViT-B/16 (85.8M parameters). The final text and image
representations are 256-d embeddings, 𝑧𝐼 , 𝑧𝑇 ∈ R256.

3.1.3. Modality gap
Features originating from different modalities often exhibit incon-

sistent distribution and representation, leading to a gap that needs to
be addressed. Models like CLIP and ALBEF aim to discover (i.e., learn)
projections of data items from various modalities into a shared em-
bedding space, allowing for direct assessment of similarity between
them. As depicted in Fig. 3, the desired representation space is expected
to be primarily organized based on asset semantics rather than being
arranged in a modality-aware fashion, such as modality-specific clusters
shown in Fig. 4.

However, recent studies (Liang, Zhang, Kwon, Yeung, & Zou, 2022;
Shi, Welle, Björkman, & Kragic, 2023) have highlighted a misalignment
7 
Fig. 4. Undesired multimodal embeddings arrangement in the common feature space.
Similar assets of different modalities that share common semantics are further apart
than dissimilar ones of the same modality.

in embeddings derived from Vision-Language Models (VLMs) such as
CLIP and ALBEF, often referred to as ‘‘Modality Gap’’. This misalign-
ment indicates that image and text embeddings tend to concentrate in
distinct subregions within the full embedding space, as quantified by
the difference between the centroids of image and text embeddings:

𝛥gap = 1
𝑛

𝑛
∑

𝑖=1
𝑧𝐼,𝑖 −

1
𝑛

𝑛
∑

𝑖=1
𝑧𝑇 ,𝑖 (11)

Here, 𝑧𝐼 and 𝑧𝑇 denote the L2-normalized image and text embed-
dings, respectively. The cause of this misalignment remains an ongoing
research question, with initial findings suggesting that it may stem
from the dual-encoder architecture of VLMs, making them sensitive
to random weight initialization and the adopted contrastive learning
procedure. While a comprehensive investigation into the causes and
potential solutions to this phenomenon exceeds the scope of this ar-
ticle, several factors warrant exploration: (1) the level of detail in the
obtained embeddings, where finer-grained encodings at the word or im-
age patch level may yield more aligned embeddings, (2) the complexity
and size of the training data distribution, and (3) the potential benefits
of utilizing a VLM with a single shared encoder among modalities to
mitigate the problem of modality gap.

Before discussing our approach to tackle modality gap, we further
examine this phenomenon by analyzing cosine similarity distribution
on MSCOCO and FLICKR30k datasets.

To evaluate the challenge of modality gap, we randomly sam-
ple 1000 text-image pairs from the validation sets of MSCOCO and
FLICKR30k datasets. Subsequently, we compute the cosine similarity
matrix among their features. A pair is considered positive when both
elements share a common semantics (similar pair), and negative when
they do not (dissimilar pair). In this matrix, the diagonal entries rep-
resent the similarity values between positive image-text pairs, while
the off-diagonal entries correspond to values between negative pairs.
Additionally, we calculate the similarity for both positive and negative
text-text pairs. The cosine similarity for negative text-text pairs is de-
termined by extracting the upper-diagonal elements from the similarity
matrix constructed using only the textual features of text-image pairs.
Conversely, for positive text-text pairs, we leverage the presence of
multiple captions associated with the same image. As these captions
share a common semantic context, extracting the upper-diagonal values
from their similarity matrix provides us with the cosine similarity
values for similar text-text pairs.

We observe that representations of unimodal positive text-text pairs
are consistently more aligned than multimodal positive image-text
pairs. Starting from CLIP, Fig. 5 indicates that both positive and nega-
tive multimodal pairs are associated with lower cosine similarities com-
pared to unimodal ones. More significantly, even unimodal negative
text-text pairs exhibit higher similarity scores than positive image-text
pairs. Specifically, positive image-text pairs display cosine similarities
around 0.3, in contrast to both positive text-text pairs (around 0.8)



F. D’Asaro et al. Expert Systems With Applications 258 (2024) 125108 
Fig. 5. Cosine similarity distribution of CLIP image and text encoders applied to MSCOCO (a) and FLICKR30k (b) image-text pairs. 𝑥 axis specifies if it is an unimodal pair of
texts or a text-image multimodal one. Blue boxes show positive pairs, i.e. cosine similarity computed between similar assets. While the red boxes indicate negative pairs, i.e. pairs
that do not share the same semantics. In both datasets, we notice a severe misalignment between unimodal and multimodal pairs.
Fig. 6. Cosine similarity distribution of ALBEF image and text encoders applied to MSCOCO (a) and FLICKR30k (b) image-text pairs. As for MSCOCO in Fig. 5, between unimodal
and multimodal pairs we notice a severe misalignment that generates problems in the retrieval phase when all modalities reside in a common Search Space.
and negative text-text pairs (around 0.5). This discrepancy hinders
crossmodal retrieval when irrelevant data from the same modality as
the query is introduced into the Search Space. Similar observations
hold for ALBEF representations (Fig. 6), where cosine similarity is more
compactly distributed. These distributions suggest that embeddings
are arranged in a modality-aware fashion that compromises semantic
relationships, as depicted in Fig. 4.

Another evidence of the modality-aware arrangement of embed-
dings in the space is given by the bi-dimensional t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) plot of text and image features coming
from MSCOCO and FLICKR30k. Fig. 7 shows that CLIP features are
grouped by modality rather than only with respect to semantics.

In the development of ZCCR, we have devised an implementation
strategy that circumvents the problem of modality gap by decoupling
the FAISS indexes associated with images and texts. This way, we
avoid both embedding modalities residing in the same Search Space
because otherwise, assets of the same modality as the query would
introduce noise in the crossmodal search for assets of a different
modality (effectively making the crossmodal retrieval task impossible).

Hence, each index is filled with assets of the same modality. This
ensures the generation of multiple top-k rankings, each specific to
a particular modality, resulting in distinct queries for unimodal or
crossmodal retrieval. Fig. 8 illustrates the multi-index structure in the
general case with M modalities. The use of separate indexes guarantees
that the retrieval process remains unaffected by noise from unimodal
assets (with respect to the input query) that may have higher similarity
scores, as each index node generates its own top-k ranking.
8 
To better highlight how the proposed strategy of decoupling indexes
circumvents the problem of modality gap, we compare the crossmodal
retrieval performance in two different retrieval scenarios, here defined
as Unimodal Search Space and Multimodal Search Space.

We define crossmodal retrieval tasks as follows: given an input
query of one modality 𝑚𝑞 (e.g., text), we retrieve relevant (semantically
related) assets of a different modality 𝑚𝑟, where 𝑚𝑟 ≠ 𝑚𝑞 (e.g., 𝑖𝑚𝑎𝑔𝑒 ≠
𝑡𝑒𝑥𝑡). This retrieval occurs within the Search Space of assets, as defined
in Section 1. To emphasize the effect of modality gap on crossmodal
retrieval from a single Search index, we distinguish between two cases
(Fig. 9) based on the assets populating the Search Space:

• Unimodal Search Space Retrieval: The Search Space comprises data
from a single modality (𝑚𝑟), distinct from the query modality
(𝑚𝑞). Specifically, for the MSCOCO 1k validation split, the Search
Space consists of 1000 texts for Text Retrieval and 1000 images
for Image Retrieval.

• Multimodal Search Space Retrieval: In this setting, the Search Space
includes data from all modalities (text and images). This configu-
ration is designed to simulate the presence of noise introduced by
data of the same modality as the query within the Search Space.
In the case of the MSCOCO 1k val split, it contains 500 texts with
500 images for both Text and Image Retrieval.

Tables 3 and 4 in Section 5.1 display Recall@k (k = 1,5,10) values
in the two Search Spaces for both Image Retrieval (Txt2Img) and Text
Retrieval (Img2Txt) tasks. The results clearly indicate that, due to
the modality gap, performing crossmodal retrieval in the Multimodal
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Fig. 7. T-SNE vector arrangement on the plane of CLIP image and text embeddings taken from MSCOCO (a) and FLICKR30k (b) image-text pairs.
Fig. 8. In the retrieval process employing the multi-index structure, the input query
serves as a seed to search for similar assets in each modality-specific index. For each
of these indexes, the top-k similar assets are then retrieved.

Search Space is not viable. This highlights the infeasibility of relying
on a single FAISS index instance that contains assets from various
modalities, preventing the search for assets of a different modality than
the query. This rationale justifies the choice to create multiple FAISS
indexes, each tailored to a specific modality, and each functioning
within the Unimodal Search Space scenario.

3.2. Agglomerative clustering

To distinguish among different areas of interest, we apply Agglom-
erative Clustering on the user 𝑢 previously uploaded items. Specifically,
as shown in Fig. 10, we apply PCA to linearly reduce the input embed-
ding dimension. We take PCA’s minimum number of components that
retain 99% of total variance. The projected embeddings (𝑃𝐼 , 𝑃𝑇 ) are
then grouped according to the Agglomerative Clustering algorithm. We
adopt Ward’s linkage due to its effectiveness in dealing with datasets
where clusters have different sizes (i.e., a varying number of assets
over different areas of interest of the user) and its lower sensitivity to
noise and outliers compared to other linkage methods such as single-
linkage or complete-linkage. Points belonging to the same cluster share
a common semantics, i.e. the same area of interest. Being each item
assigned with a cluster label, we go back to the full dimensional space
(𝑍𝐼 , 𝑍𝑇 ) and compute the centroid of embeddings sharing a common
label (𝑞𝐼,𝑘, 𝑞𝑇 ,𝑙). Each centroid is then used as search seed to query text
and image databases.
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In Section 5.2, we conducted an ablation study of the different
components that can be part of the Agglomerative Clustering mod-
ule. Among these, we assessed whether the retrieval performance of
the seed varies when generated from the centroid or medoid of the
associated cluster. Medoids emerge as an appropriate substitute for
centroids, especially when dealing with non-convex clusters. Unlike
centroids, which hinge on the average of data points, medoids denote
the data point that minimizes the sum of dissimilarities to all other
points within the cluster. This difference underscores a significant
drawback of centroids, as they are prone to problems like sensitivity
to outliers and difficulties in managing non-convex shapes. According
to our experiments, there are no systematic differences between the
two. Due to the simplicity and linear time complexity of centroid
calculations, as opposed to the potentially higher computational cost
associated with medoid calculations, we chose to use the centroid as
the cluster seed for executing the search query.

A challenge faced by many clustering algorithms is efficiency in
higher-dimensional spaces due to the inherent sparsity of data (Assent,
2012). When dealing with assets uploaded by a user, ZCCR generates
512-dimensional embeddings from the pretrained VLM, which faces
difficulties in being appropriately clustered. To address this issue, we
choose to project points from higher-dimensional to lower-dimensional
space using the PCA technique. In Section 5.2, we demonstrate how
our strategy of first linearly projecting the embeddings with PCA and
then clustering them using Agglomerative Clustering leads to better
recommendation performance compared to using the original 512-
dimensional embeddings to generate clusters (without projection). Ad-
ditionally, specifically in the context of ZCCR, we inquire whether the
number of user-associated areas of interest and, consequently, the num-
ber of clusters that the Agglomerative algorithm must identify, along
with the number of assets associated with each area (i.e., how many
assets the user has previously uploaded in that area of interest, the
cardinality), impact performance. In Section 5.2, we showcase the ro-
bustness of Agglomerative Clustering to variations in both the number
and cardinality of areas of interest, highlighting its resilience to fluc-
tuations in user preference scenarios. Through a comparative analysis
with another clustering algorithm, such as HDBSCAN (McInnes, Healy,
& Astels, 2017), we provide evidence of the superior performance of
Agglomerative Clustering.

3.3. Search index

We choose the Facebook AI Similarity Search (FAISS) index (John-
son et al., 2019) for its specialized optimizations tailored for high-
dimensional embedding searches. FAISS accelerates search times
through GPU support, optionally employing quantization and compres-
sion techniques. It leverages parallel processing and multi-threading,
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Fig. 9. Image and Text Retrieval are conducted in both Unimodal and Multimodal Search Spaces. In Image Retrieval, a text query (triangle) is used to search in both the Unimodal
Search Space, which contains only images (circle), and the Multimodal Search Space, which includes both images and texts. The goal of this search query is to identify the relevant
paired image (blue). Similarly, for the Text Retrieval task, a query image (circle) is used to search in both the Unimodal Search Space, which contains only texts (triangle), and
the Multimodal Search Space, which includes both texts and images. The aim is to retrieve the relevant paired text (yellow).
Fig. 10. Pipeline of the Agglomerative Clustering of user assets.

making it adaptable to modern hardware architectures. FAISS is ver-
satile, supporting various similarity measures, and its scalability and
efficiency in handling large datasets make it a popular choice for
improving search times in machine learning applications. We utilize
the FAISS index without quantization or compression, relying on cosine
similarity for embedding comparisons. This choice prioritizes simplicity
and information preservation, as the approach with raw embeddings
is flexible and interpretable, avoiding potential information loss asso-
ciated with compression. However, it underscores the importance of
considering efficiency in computational aspects.

In Table 6, we compare the search time performance of the FAISS
index with a vanilla linear search. In this vanilla scenario, raw em-
beddings are stored without additional optimizations. The FAISS index,
designed for high-dimensional vector searches, demonstrates improved
efficiency in similarity searches compared to the simple storage of
raw embeddings while still maintaining comparable performance in
terms of recall (refer to Table 7). In the case of the CLIP encoder, we
achieve a significant speedup in search time, reducing it from 129 ms
with the linear vanilla approach to 0.72 ms using the FAISS index.
This improvement is observed with only a minor decrease in recall,
approximately 0.2% for image retrieval and 0.14% for text retrieval.

Due to the observed modality gap (refer to Section 3.1.3), we
create a separate index for each modality involved. In our scenario,
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dealing with text and image modalities, we instantiate two indexes (see
Fig. 11). All asset embeddings from all users are stored within these
two indexes. Since FAISS does not store any embedding metadata, we
maintain an additional container data structure that associates FAISS
indexes with the embeddings of the assets uploaded by each user. This
allows us to select only the embeddings of the user targeted by the
recommendation and use embeddings from other users to build the
Search Space.

In practice, when generating a top-k recommendation for user 𝑢, we
select 𝑘+𝑁𝑢 assets, where 𝑁𝑢 is the number of assets uploaded by user
𝑢, and then filter out those belonging to user 𝑢. This approach ensures
that we avoid suggesting assets to user 𝑢 that they have generated
themselves. Instead, we recommend assets from the same areas of
interest as user 𝑢 but created by other users.

The problem of modality gap led us to instantiate two FAISS in-
dexes. However, we are concerned about the impact this may have on
retrieval performance in terms of search times compared to the scenario
where only one FAISS index is instantiated. In Table 1, we present
the mean search time and standard deviation (std dev) in milliseconds
required to retrieve k = 1000 assets in a Search Space of size 1 000 000.
We computed these values using a GPU NVIDIA GeForce RTX 2080 Ti.
For each setting, we calculated search times over different numbers
of FAISS indexes (1,2) by distributing the size of the Search Space
across the various indexes. Specifically, if there are 2 indexes, each is
populated with 500k assets. The search times are obtained by averaging
over 1000 queries.

It is observed that in both scenarios, the search time increases with
the number of indexes, suggesting that a single global index with all
assets from all modalities, constituting a unified Search Space, may be
a better solution in terms of retrieval time. The mean values of the two
cases were compared using a two-sample t-test to determine if there is a
significant difference between the means or if they occurred by chance.
We obtain a 𝑝-value of approximately 0. This suggests that the pursuit
of modality-invariance also has an impact on the efficiency of retrieval
times, and we encourage further exploration in this direction.

In summary, ZCCR stands out as an innovative zero-shot content-
based crossmodal recommendation system, leveraging knowledge from
large-scale pretrained VLM to create multimodal embeddings for im-
ages and texts. Positioned at the forefront of large multimodal rec-
ommendation systems, ZCCR also explores the innovative domain of
Zero-Shot Recommenders. This is enhanced by employing Agglomera-
tive Clustering to formulate the user query. This innovative approach,
incorporating clustering within a recommendation system, casts the
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Fig. 11. The FAISS index structure consists of separate search indexes for texts and images. Additionally, for each index, we maintain an associated container that maps each user
to the assets they uploaded.
Table 1
Mean and standard deviation of search time over 1000 queries for different numbers
of FAISS indexes (1, 2). The low p-value confirms that, with an equal total Search
Space size, two indexes are associated with higher search times; hence, a single index
instance is more efficient than two instances.

n. FAISS
indexes

Emb. size k Search
Space size

Mean time
(ms)

Std Dev p-value

1 512 1000 1 000 000 13.811 0.340
≈ 02 512 1000 1 000 000 14.490 0.433

typical recommendation task into a retrieval task. It recommends new
assets to the user based on their previously uploaded assets. As far
as we know, we are the pioneers in employing a clustering technique
for user query generation. The combination of a large-scale pretrained
architecture and Agglomerative Clustering for query generation em-
powers ZCCR to operate without the need for training procedures or
domain-specific data, addressing potential gaps in certain contexts.
This adaptability positions ZCCR as a plug-and-play solution suitable
for integration into more intricate systems employing collaborative
logic. Finally, the utilization of the FAISS index for storing embeddings
and accelerating the similarity search of new assets has been adjusted
following the observation of the modality gap phenomenon. In the
multimodal context, ZCCR proposes instantiating two separate FAISS
indexes—one for images and another for texts. This ensures that the
retrieval task is not hindered by noise generated by assets of the same
modality as the query.

ZCCR also faces challenges typical of content-based recommenda-
tion systems, including the need for diversification in recommendation
output to offer users serendipity and the avoidance of redundancy to
prevent information overload from assets in the same area of interest.
As discussed in Section 2.2, clustering has been employed to enhance
asset diversity and can be implemented in ZCCR at the output level
for this purpose. Regarding the prevention of redundancy, in ZCCR, it
heavily relies on the number of recommended assets originating from a
specific seed related to a user’s area of interest. Decreasing this number
(k) and thus limiting recommendations to a short top-k ranking can
help alleviate the redundancy of semantically related assets.

4. Experimental setup

In this section, we detail the datasets employed and outline the
experimental setups necessary for conducting the subsequent studies,
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including the rationale behind the choice of ZCCR clustering compo-
nents and the comparison of ZCCR’s performance with the Baseline Tag
system.

4.1. Dataset

The experimental setups described in the following sections are
based on MSCOCO validation split (Lin et al., 2014) (40,504 images)
and FLICKR30k (Young, Lai, Hodosh, & Hockenmaier, 2014) (30,000
images and 150K descriptive captions). Since, in MediaVerse, we are
unable to conduct any quantitative tests due to the absence of users,
we rely not only on MSCOCO but also on a retrieval benchmark
dataset like FLICKR30k. It is a combination of rich multimedia assets,
user-generated images, and annotations, where each user has different
interests and produces quality assets. This diversity in user preferences
and asset themes makes it an ideal platform to assess recommendation
tools that need to cater to a broad spectrum of user areas of interest
and asset types. It is a publicly available dataset, making it a valuable
resource for evaluating recommendation tools designed for social media
platforms.

To evaluate ZCCR, we need to simulate a scenario where users have
uploaded assets coming from specific areas of interest. From all the
assets associated with a detected area of interest, a seed is extracted
and used to perform retrieval operations over other assets uploaded by
different users. To achieve this, we initiate the evaluation process using
the validation splits of MSCOCO and FLICKR30k. These two datasets
consist of images, each of which is paired with five descriptive captions.
They do not allow us to track the semantic relationship between text-
to-text and image-to-image pairs, but only between image-to-text pairs.
For this reason, we design a setup in which we assign a common seman-
tic label to each image-text pair that allows us to pair texts that share
a common semantics (same for images). In practice, for each image we
sample one of the five associated caption, to obtain the same number of
images and texts. Then, we label each image with ResNet50 (He, Zhang,
Ren, & Sun, 2016), pretrained on ImageNet (Deng et al., 2009) and
able to classify an image according to one of 1000 classes. This way,
each image-text pair is associated with a single label. This means that
the text shares the same label as its paired image, creating an ‘‘image,
text, label’’ triplet structure. Now, we can group together all the images
and texts that share the same label, indicating that they have the same
high-level semantics defined as the area of interest in the context of
ZCCR. To enhance the semantic relevance among assets of the same
area of interest, we retain only the pairs whose images are associated
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with a classification confidence higher than 90%. In this manner, we
obtain two datasets with the triplet ⟨text, image, ImageNetClass⟩ that
we designate as MSCOCO classified and FLICKR30k classified.

In 4.3, we define the performance evaluation of ZCCR as the extent
to which the unsupervised clusters identified by the Agglomerative
Clustering technique align with the nominal areas of interest of a given
user, which correspond to the assigned ImageNet label. Quantitatively,
this is assessed by computing retrieval Recall starting from the seed
generated from the identified clusters.

4.2. ZCCR retrieval task

We evaluate crossmodal retrieval using Recall@k, where k denotes
the number of retrieved assets. For the Txt2Img (Img2Txt) task, we take
a randomly sampled image-text pair, using the text (image) component
as a query to retrieve the image (text) component in a Search Space
of 1000 retrievable images (texts). We calculate averages over 100
queries.

4.3. ZCCR recommendation task

In the construction of the experimental setup for ZCCR, the first
step involves creating what we refer to as a user 𝑢 profile. This profile
comprises a collection of assets associated with the user, specifically
those assets previously uploaded by the user. The profile is generated by
randomly selecting 𝑁 assets from 𝑀 randomly chosen ImageNet classes
within the datasets detailed in 4.1 (MSCOCO classified and FLICKR30k
classified). The parameter 𝑀 signifies the number of distinct areas of
interest for user 𝑢, which are derived from the uploaded assets. Once
the user profile is established, we employ ZCCR to cluster the asset
embeddings based on their semantics, uncovering areas of interest for
the user 𝑢. It is crucial to emphasize that the clusters identified by ZCCR
rely solely on the semantics of the assets and lack information about
the ImageNet classes from which the assets were originally sourced,
representing the ground truth. A well-performing clustering procedure
is expected to yield clusters predominantly composed of assets from
a single ImageNet class (area of interest), with only a few assets from
different areas of interest, as illustrated in Fig. 12. After the clusters are
identified, their centroid (or medoid for comparison) is calculated and
used as a seed, serving as a search query to retrieve assets belonging
to the same area of interest. These assets are assigned to the same
ImageNet class but were uploaded by other users and are present
in the Search Space. The Search Space is constructed by randomly
selecting 1000 assets from the datasets outlined in 4.1. Among these,
we incorporate a single relevant asset for each of the 𝑀 ImageNet
classes utilized in the earlier step to construct the user 𝑢 profile. The
objective is for ZCCR to be capable of recommending, from the Search
Space, the asset associated with each of the 𝑀 classes that constitute
the user 𝑢 profile.

We evaluate the performance of ZCCR in relation to Recall@10
across Txt2Img, Img2Txt, Txt2Txt, and Img2Img, considering various
configurations influenced by the factors outlined in Table 2: (1) The
number of ImageNet classes used to sample assets for the user 𝑢 profile
(number of ImageNet classes; 1, 2, 5), indicating the number of areas
of interest the user 𝑢 has at recommendation time. (2) The number of
assets drawn for each ImageNet class (number of points per ImageNet
class; 5, 10, 20, 30), representing the quantity of assets associated
with an area of interest. We expect in some cases the low number
of embeddings per class label to be a problem in discriminating from
different clusters. (3) If the cluster centroid or medoid is used as search
seed for recommendation. (4) Which projection techniques is aplied be-
fore Clustering: No projection applied before clustering (None), linear
projection of the embeddings (PCA), and non-linear projection (TSNE).
(5) The choice of Hierarchical Clustering technique: Agglomerative

Clustering or HDBSCAN.
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Table 2
ZCCR configurations are specified, and the components crucial for clustering, denoted
in bold, serve as ablative components. The selection of these components is contingent
upon the variation in Recall@10 values obtained, corresponding to changes in both the
number of ImageNet classes and the number of points per ImageNet class.

Name Values

Number of ImageNet classes 1,2,5
Number of points per ImageNet class 5,10,20,30
Projection technique None, PCA, TSNE
Clustering algorithm Agglomerative clustering, HDBSCAN
Representative cluster point Centroid, Medoid

For each configuration, we calculate the Recall@10 values by av-
eraging across 100 queries. These queries are generated by initially
randomly selecting ImageNet classes and subsequently sampling assets
for each class based on the specified number of assets per class in the
configuration.

Fig. 12 illustrates the configuration for recommendations when user
𝑢 has previously uploaded assets associated with three areas of interest
(three ImageNet classes). The ZCCR algorithm organizes the points co-
herently based on their semantics and generates a seed for each cluster
to query the Search Space. Within our setup, a single relevant point in
the Search Space corresponds to each ImageNet class. Our goal is to
have the output of ZCCR include the three relevant assets associated
with the three ImageNet classes used to construct the user 𝑢 profile.
The successful retrieval of these three relevant assets indicates the
effectiveness of the Clustering algorithm in grouping points according
to their ImageNet class. The Recall@10 for the user 𝑢 recommendation
is determined by averaging the partial Recall@10 values obtained from
the queries, each associated with a seed. To address the possibility of
multiple queries retrieving the same relevant asset (as user 𝑢 has as
many relevant assets as the ImageNet classes assigned during profile
creation), we maintain a list of already retrieved relevant assets within
the scope of the user 𝑢 recommendation. This approach ensures that
even if the same relevant asset is retrieved from multiple seeds, it is
counted only once for Recall@10 purposes. Without this consideration,
the same relevant asset could be counted multiple times for the same
recommendation.

For a clearer visualization of the diverse settings we assess, Fig. 13
illustrates some scenarios based on the number of ImageNet classes and
the number of points per ImageNet class.

4.4. Baseline tagger

In comparing ZCCR with traditional tag systems, we make use of
annotation models developed within the context of the MediaVerse
project to enrich both images and texts with descriptive tags. This
comprehensive approach encompasses models designed for image cap-
tioning, object detection, and action recognition. The image captioning
model, utilizing the advanced OFA (Wang et al., 2022), generates
descriptive text for each image, providing an avenue to enhance the
retrieval of visual content. In terms of object detection, we employ
the Yolov8 model by ultralytics 2 to identify objects within images,
presenting confidence scores and bounding box information. For action
recognition, our choice is the SlowFast R50 model (Feichtenhofer,
Fan, Malik, & He, 2019), which has been trained on the Kinetics400
dataset (Carreira, Noland, Hillier, & Zisserman, 2019).

Concerning the text associated with each image, we utilize Part of
Speech (POS) tagging and Lemmatization to preserve only the root
form of nouns and verbs within the caption. The generated list of
these words functions as the tags associated with the text, forming
the basis for comparison with the visual tags. Both POS tagging and
Lemmatization are applied to the visual caption generated by the image

2 https://github.com/ultralytics/ultralytics.

https://github.com/ultralytics/ultralytics
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Fig. 12. An illustration of a recommendation scenario begins with user 𝑢 having a profile comprising images associated with three distinct areas of interest. The accompanying
figure depicts clusters identified by ZCCR’s clustering module. It is important to note that the labels assigned by the clustering algorithm may not perfectly align with the ImageNet
classes assigned to the points; rather, they are influenced by the capabilities of the clustering algorithm. A seed is constructed from all points within the same cluster to encapsulate
cluster information. This seed is then used as a query to retrieve similar assets from the Search Space.
Fig. 13. Some scenarios featuring different numbers of ImageNet classes and points
per ImageNet class. In (a), the user generated 10 assets distributed across three areas
of interest (3 ImageNet classes). In (b), two ImageNet classes are represented, each
comprising 5 assets. Finally, in (c), there are 5 classes, each containing 5 assets.

captioning model. However, for the text output of object detection
and action recognition, we exclusively apply Lemmatization. To ensure
comparability between the outcomes of the tag system and our ZCCR,
we calculate Recall@10 across various configurations. These configu-
rations depend on the number of ImageNet classes (indicative of the
areas of interest linked to user 𝑢’s previously uploaded assets) and the
number of assets per ImageNet class. This assessment spans the tasks
of Txt2Txt, Txt2Img, Img2Txt, and Img2Img 5.3.

For each configuration, Recall@10 values are computed by averag-
ing across 100 queries. These queries are generated by first randomly
selecting ImageNet classes and then sampling assets for each class based
on the specified number of assets per class in the configuration.

We evaluate two versions of the tagger:

1. Baseline Tagger (BT): In this version, assets are evaluated
through an exact match of tags. Specifically, among all the
tags associated with the assets in user 𝑢’s profile, we keep the
33% most frequently occurring ones. These selected tags serve
as search keys to retrieve the top 10 assets with the highest
number of matches in a Search Space comprising 1000 assets.
The limitation of this strategy lies in the heterogeneity of the tags
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originating from multiple assets, which can belong to different
areas of interest.

2. Baseline Tagger + BERT embeddings (Devlin et al., 2018) +
Agglomerative Clustering (BTBA): In this version, each asset,
whether text or image, is linked to embeddings obtained by
encoding the tags using BERT. The comprehensive asset embed-
ding is derived by averaging its tag embeddings. Subsequently,
following the same procedure as ZCCR described in Section 3,
the assets of user 𝑢 are clustered utilizing their PCA projections,
and the resulting centroids are employed as search queries to
recommend similar assets in the Search Space. This Search Space
is constructed similarly to ZCCR but with tag embeddings.

5. Results

5.1. Retrieval results

Tables 3 and 4 illustrate the Recall@k for crossmodal retrieval of
CLIP and ALBEF on both the MSCOCO and FLICKR30k 1k validation
sets under the scenarios of Unimodal Search Space and Multimodal
Search Space as defined in Section 3.1.3. Across both datasets, ALBEF
demonstrates superior performance to CLIP in Txt2Img and Img2Txt
tasks. In investigating the reasons behind ALBEF’s outperformance over
CLIP, several distinctive elements of ALBEF come into play. These
include the use of momentum distillation self-training, which involves
learning from pseudo targets generated by the model itself, cross-
attention to enhance language and vision alignment, and the use of
contrastive learning with hard negative samples. Apart from archi-
tectural differences, we believe that training data also contributes to
performance variations. Specifically, ALBEF was trained using two web
datasets (Conceptual Captions (Sharma, Ding, Goodman, & Soricut,
2018), SBU Captions (Ordonez, Kulkarni, & Berg, 2011)) and two in-
domain datasets (COCO (Lin et al., 2014) and Visual Genome (Krishna
et al., 2017)), totaling 14.1 million images. The presence of COCO in
the training datasets contributes to enhancing ALBEF’s performance on
this dataset, allowing it to outperform CLIP, which was trained on a
substantially larger dataset consisting of 400 million image-text pairs.
In the scenario of Multimodal Search Space, the Recall values at 0.0
underscore the challenge of conducting crossmodal retrieval, mainly
due to the misalignment in multimodal embeddings. This difficulty is
attributed to the noise introduced by assets sharing the same modality
as the query.

Moreover, Table 6 demonstrates the substantial benefits of FAISS
compared to vanilla exhaustive search in terms of search time, with
measurements conducted on a 64-core AMD Epyc CPU with 1TB of
RAM and one NVIDIA A100 GPU with 80 GB. Vanilla cosine denotes
a similarity search performed across the entire Search Space without
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Table 3
Values of Recall@k computed on 1k validation set of MSCOCO. The recall values are reported in two scenarios: Unimodal Search Space and Multimodal Search Space. In the
atter, it can be observed how the modality gap makes crossmodal retrieval impossible in the presence of noise generated by assets of the same modality as the query.
Model/Recall Unimodal Search Space Multimodal Search Space

Txt2Img Img2Txt Txt2Img Img2Txt

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 0.51 0.81 0.90 0.53 0.80 0.89 0.0 0.0 0.0 0.0 0.0 0.0
ALBEF 0.67 0.93 0.97 0.69 0.92 0.97 0.0 0.0 0.0 0.0 0.0 0.0
Table 4
Values of Recall@k computed on 1k validation set of FLICKR30k. The recall values are reported in two scenarios: Unimodal Search Space and Multimodal Search Space. In the
atter, it can be observed how the modality gap makes crossmodal retrieval impossible in the presence of noise generated by assets of the same modality as the query.
Model/Recall Unimodal Search Space Multimodal Search Space

Txt2Img Img2Txt Txt2Img Img2Txt

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 0.60 0.85 0.90 0.58 0.85 0.91 0.0 0.0 0.0 0.0 0.0 0.0
ALBEF 0.61 0.86 0.92 0.63 0.87 0.92 0.0 0.0 0.0 0.0 0.0 0.0
Table 5
Encoding times of CLIP and ALBEF.

Text encoding time (ms) Image encoding time (ms)

CLIP 9.10 17.43
ALBEF 8.15 15.71

Table 6
Search time of vanilla exhaustive search and FAISS applied on CLIP and ALBEF
embeddings.

n. assets Embeddings size K Run time (ms)

Vanilla cosine 5000 512 5000 129.31
FAISS (CLIP) 5000 512 5000 0.72
FAISS (ALBEF) 5000 256 5000 0.56

any filtering. In contrast, FAISS optimizes this search by narrowing
the Search Space to areas where there is a high probability of finding
assets associated with higher similarity scores concerning the input
query. For both VLM encoders, there are noteworthy improvements
in search time, decreasing from 129.31 ms to 0.72 and 0.56 for CLIP
and ALBEF, respectively, without compromising recall values on the 1k
MSCOCO validation set (refer to Table 7). In the case of ALBEF, there is
only a marginal decrease of 0.24% and 0.18% for Image Retrieval and
Text Retrieval, respectively. It is important to highlight that ALBEF,
which maps assets into 256-dimensional embeddings instead of 512-
dimensional ones, is associated with search times shorter by about
0.2 ms compared to CLIP. In a large-scale scenario, this, along with
a shorter encoding time, can lead to a significant advantage in terms
of retrieval time (see Table 5).

5.2. ZCCR clustering components

As introduced in Section 4.3, we test different projection techniques
(None, PCA, TSNE), clustering techniques (Hierarchical Agglomerative
Clustering, HDBSCAN) and which choice of cluster representative (cen-
troid, medoid) lead to better performance in terms of Recall@10. We
focus on ALBEF multimodal encoder applied to MSCOCO classified and
LICKR30k classified as defined in Section 4.1. Figs. 14, 15, 16, and 17
isplay Recall@10 values across varying numbers of ImageNet classes
ssigned to the user 𝑢 (column-wise), reflecting the respective number
f areas of interest (1, 5, 10) associated with user 𝑢 at recommenda-
ion time. The rows exhibit different projection techniques, including
one (no projection), linear PCA, and non-linear TSNE. In each cell,
ecall@10 is graphically represented over various numbers of points
er ImageNet class (5, 10, 20, 30). This refers to the count of assets
ploaded by user 𝑢 from a particular area of interest at recommendation

ime. The plots distinguish between Agglomerative Clustering (in red)
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and HDBSCAN (in blue), with further distinction based on the use of
centroid (solid line) or medoid (dashed line) as the cluster representa-
tive (seed). We observe that: (1) Not projecting data before clustering
points leads to poor results. As regards Agglomerative Clustering, the
capabilities to discriminate among clusters in a high-dimensional space
becomes difficult as the number of nominal ImageNet classes increases
(i.e. the number of user 𝑢 interests). It leads to representatives (cen-
troids, medoids) that are not effective in retrieving relevant information
since they come from non-cohesive clusters. This challenge is mit-
igated by implementing linear or non-linear projection just before
clustering points, indicating that reducing the dimensionality facilitates
clustering algorithms in discerning between distinct groups. (2) The
ability of clustering algorithms to effectively group similar points and
distinguish dissimilar ones improves with an increase in the number
of points per ImageNet class. This effect is particularly notable for
HDBSCAN, whereas Agglomerative Clustering is less influenced by the
number of assets originating from a specific area of interest. Con-
sequently, Agglomerative Clustering demonstrates greater robustness
across diverse scenarios. (3) Agglomerative Clustering exhibits higher
Recall@10 values compared to HDBSCAN. It excels at identifying well-
separated clusters, particularly when preceded by a dimensionality
reduction technique. From these clusters, Agglomerative Clustering
generates seeds that prove effective in retrieving similar assets within
the Search Space. (4) As outlined in Section 3.2, there are no sys-
tematic differences in terms of retrieval Recall between centroid and
medoid. Given the simplicity and linear time complexity of centroid
calculations, in contrast to the potentially higher computational cost
associated with medoid calculations, we opt to utilize the centroid
as the cluster seed for executing the search query. (5) Implementing
PCA projection followed by Agglomerative Clustering produces the
highest Recall@10 values. Furthermore, this approach exhibits reduced
sensitivity to fluctuations in the number of areas of interest and their
respective number of assets.

The observations remain consistent across all tasks, including
Txt2Img, Txt2Txt, Img2Txt, Img2Img, and datasets MSCOCO and
FLICKR30k. To illustrate this, Fig. 18 serves as a further example,
reaffirming the earlier findings, even when CLIP is employed to en-
code MSCOCO data. Specifically, we focus on instances where PCA
projection is applied across the four tasks on MSCOCO.

The decision to use Agglomerative Clustering, preceded by a di-
mensionality reduction of embeddings using PCA, enables ZCCR not
only to attain favorable retrieval results but also to exhibit flexibility
across diverse scenarios. This is particularly evident in cases where
users possess varying numbers of areas of interest and upload different
volumes of assets. Such an approach reinforces the zero-shot character-
istics of ZCCR, making it well-suited for integration without the need

for specific training to adapt to particular contexts.
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Fig. 14. MSCOCO classified 1k validation set - Txt2Img Recall@10. The values are obtained using the ALBEF multimodal encoder. Each row in the grid represents the projection
technique (None, PCA, T-SNE) applied before employing either Agglomerative Clustering or HDBSCAN. Each column denotes the true number of areas of interest (ImageNet classes)
existing in the user 𝑢 historical asset space. Within a cell, Recall@10 is influenced by the number of assets within each ImageNet class. Red and blue lines depict the values for
Agglomerative Clustering and HDBSCAN, respectively. A solid line indicates the use of the centroid as the cluster representative, while a dashed line represents the medoid.

Fig. 15. MSCOCO classified 1k validation set - Txt2Txt Recall@10. The values are obtained using the ALBEF multimodal encoder. Each row in the grid represents the projection
technique (None, PCA, T-SNE) applied before employing either Agglomerative Clustering or HDBSCAN. Each column denotes the true number of areas of interest (ImageNet classes)
existing in the user 𝑢 historical asset space. Within a cell, Recall@10 is influenced by the number of assets within each ImageNet class. Red and blue lines depict the values for
Agglomerative Clustering and HDBSCAN, respectively. A solid line indicates the use of the centroid as the cluster representative, while a dashed line represents the medoid.
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Fig. 16. FLICKR30k classified 1k validation set - Img2Txt Recall@10. The values are obtained using the ALBEF multimodal encoder. Each row in the grid represents the projection
technique (None, PCA, T-SNE) applied before employing either Agglomerative Clustering or HDBSCAN. Each column denotes the true number of areas of interest (ImageNet classes)
existing in the user 𝑢 historical asset space. Within a cell, Recall@10 is influenced by the number of assets within each ImageNet class. Red and blue lines depict the values for
Agglomerative Clustering and HDBSCAN, respectively. A solid line indicates the use of the centroid as the cluster representative, while a dashed line represents the medoid.

Fig. 17. FLICKR30k classified 1k validation set - Img2Img Recall@10. The values are obtained using the ALBEF multimodal encoder. Each row in the grid represents the projection
technique (None, PCA, T-SNE) applied before employing either Agglomerative Clustering or HDBSCAN. Each column denotes the true number of areas of interest (ImageNet classes)
existing in the user 𝑢 historical asset space. Within a cell, Recall@10 is influenced by the number of assets within each ImageNet class. Red and blue lines depict the values for
Agglomerative Clustering and HDBSCAN, respectively. A solid line indicates the use of the centroid as the cluster representative, while a dashed line represents the medoid.
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Table 7
Comparison of retrieval recall between vanilla cosine and the FAISS search index for both CLIP and ALBEF encodings of the MSCOCO 1k validation set. The FAISS index results
in a very low decrease in Recall for both encoders, approximately 0.2% and 0.14% for image and text retrieval for CLIP, and 0.24% and 0.18% for ALBEF.

Txt2Img Img2Txt

R@1 R@5 R@10 Avg. Delta R@1 R@5 R@10 Avg. Delta

CLIP Vanilla cosine 0.514 0.818 0.906 +0% 0.529 0.806 0.889 +0%
FAISS 0.513 0.816 0.904 −0.208% 0.528 0.805 0.888 −0.138%

ALBEF Vanilla cosine 0.670 0.931 0.971 +0% 0.692 0.920 0.971 +0%
FAISS 0.668 0.929 0.969 −0.244% 0.691 0.918 0.969 −0.182%
Fig. 18. MSCOCO classified val 1k recommendation evaluated in terms of Recall@10. Values are obtained by using CLIP multimodal encoder followed by PCA projection to
cluster the embeddings by means of Agglomerative Clustering or HDBSCAN. Each row in the grid shows the task. Columns indicate the true number of areas of interest (ImageNet
classes) that exist in the user 𝑢 historical asset space. Inside a cell, Recall@10 is a function of how many assets each ImageNet class contains. Red and blue lines show the value
of Agglomerative Clustering and HDBSCAN respectively. Solid line specifies the use of centroid as cluster representative, while dashed line the medoid.
5.3. Comparison between ZCCR and baseline tagging

Figs. 19 and 20 present a comparative analysis between our ZCCR
and the Baseline Tag systems, focusing on Recall@10. The evalua-
tion is conducted on the MSCOCO classified and FLICKR30k classified
datasets (refer to Section 4.1). Similar to the structure outlined in 5.2,
Recall@10 values are reported across varying numbers of ImageNet
classes assigned to the user 𝑢 (column-wise), reflecting the correspond-
ing number of areas of interest (1, 5, 10) associated with user 𝑢 at
recommendation time. The rows represent different retrieval tasks,
specifically Txt2Img, Txt2Txt, Img2Txt, and Img2Img. In each cell,
Recall@10 is visually depicted across different numbers of points per
ImageNet class (5, 10, 20, 30). These values correspond to the count
of assets uploaded by user 𝑢 from a specific area of interest at the time
of recommendation. The Recall@10 values for our ZCCR best configu-
ration, involving PCA projection followed by Agglomerative Clustering
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with the centroid as the cluster representative, are depicted by the Red
and Pink lines. These configurations employ ALBEF and CLIP as multi-
modal feature encoders, respectively. The Blue line corresponds to the
Baseline Tagging (BT) system, which compare different assets through
tag matching, as outlined in 4.4. The Green line represents BTBA (Base-
line Tagging Bert Agglomerative), which relies on asset tags and shares
components with ZCCR. BTBA uses BERT to extract embeddings from
asset-associated tags, followed by Agglomerative Clustering to identify
user 𝑢 areas of interest. Additionally, a FAISS index is employed to
search for other assets, following the same index decoupling structure
as defined in 3.3. The key distinction between ZCCR and BTBA lies
in the encoder utilized for extracting asset embeddings: the former
employs a Vision-Language Model (VLM) for encoding raw assets, while
the latter uses BERT for encoding tags associated with an asset. This
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comparative analysis aims to demonstrate the superior effectiveness of
ZCCR’s VLM multimodal encoding over tag language encoding.

Across both datasets and all four tasks, it is observed that the
Recall@10 values associated with BT are consistently the lowest, and
these values tend to decrease as the number of ImageNet classes
increases. This phenomenon can be attributed to the heterogeneity
of tags derived from assets uploaded by user 𝑢, which compose the
search query. The diversity in these tags prevents a focused search
for relevant assets in the Search Space. The excessive generality of
the query is effectively addressed by clustering embeddings derived
from the tags of assets uploaded by user 𝑢. In contrast to BT, BTBA
not only outperforms BT due to the enhanced semantic value of tag
Bert embeddings but also maintains high Recall@10 values even as
the number of ImageNet classes increases (indicative of more areas
of interest associated with user 𝑢). This highlights the effectiveness of
clustering embeddings in mitigating the challenges posed by overly
general queries and contributes to improved performance in asset
retrieval tasks.

Finally, the results clearly show how ZCCR, whether using ALBEF
or CLIP as the VLM encoder, is associated with higher Recall@10
values than BTBA. Therefore, it exhibits more efficient recommendation
performance. Considering that the sole difference between the two
alternatives lies in the encoder used, this suggests that a pretrained
VLM encoder is more effective than a unimodal language encoder in
extracting embeddings in a multimodal context, such as that of a social
media platform in MediaVerse.

6. Discussion

The suggested ZCCR method, standing for Zero-shot Content-based
Crossmodal Recommendation system, functions as a plug-and-play so-
lution that does not necessitate any training or domain-specific data.
It utilizes CLIP or ALBEF as Vision-Language Models (VLM) to en-
code images and texts, producing embeddings that we have observed
to be linked with the challenge of misalignment in multimodal em-
beddings. This misalignment involves inconsistencies in similarities
between unimodal and crossmodal pairs. The examination of the causes
and potential solutions for this issue extends beyond the limits of this
article, requiring specialized efforts to achieve modality-invariance in
multimodal embeddings. Modality-invariance denotes the consistency
of embeddings across diverse modalities, depending exclusively on the
semantic content of the encoded asset.

We observed that the modality gap adversely affects retrieval per-
formance when both text and image embeddings are integrated into the
same Search Space (Tables 3, 4). To tackle this challenge, we suggest
an approach that includes creating two FAISS indexes – one dedicated
to text and another to images. The FAISS index plays a dual role by
storing embeddings and expediting the search for similarity during
recommendation, resulting in improved efficiency (Table 6).

The separation of indexes proved effective in recommending across
various input and output modalities (Text2Text, Image2Image,
Text2Image, and Image2Text), Figs. 19, 20. ZCCR converts the recom-
mendation task into a retrieval one by creating user profiles through
clustering uploaded assets based on latent areas of interest. We noted
the efficacy of Agglomerative Clustering, preceded by PCA dimension-
ality reduction, in identifying clusters (and hence areas of interest)
without prior knowledge of their number 14. The centroid of these
clusters serves as a search seed for retrieval tasks on the Search Space
containing all assets associated with other users on the platform.

Experiments on MSCOCO and FLICKR30k validate these findings,
establishing ZCCR’s superiority over a baseline tagger that matches
queries and assets in the Search Space based on their tags. Furthermore,
it outperforms a more advanced system named BTBA, which employs
a Language Model (LLM) like BERT for encoding tags. Although BTBA
shares the same structure as ZCCR, the only distinction lies in the en-
coder employed (LLM vs. VLM). Results indicate that directly extracting
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embeddings from the asset using VLM is more effective than depend-
ing on tags, resulting in more semantically consistent and compact
embeddings within a latent area of interest, Figs. 19, 20.

In the following, we refer to two limitations in our experimental
setup. (1) It is important to note a limitation in using Flickr for evalu-
ating recommendation systems. The dataset’s focus on photography and
high-quality images may not fully represent the broader asset landscape
found on some social media platforms. Researchers should consider
this limitation when generalizing findings to recommendation scenarios
that involve a more varied asset mix. (2) Another limitation of the
described experimental setup lies in the assumption that semantically
similar assets can be grouped into the same user area of interest. This
is not necessarily true because assets with similar embeddings might be
associated with different areas of interest. Consider two images, Image
A and Image B, both portraying beach scenes. These images are deemed
semantically similar based on the embeddings or features derived from
them, as they exhibit shared visual characteristics associated with
beach scenes. Now, suppose a user has two distinct areas: ‘‘Tropical
Beaches’’ and ‘‘Surfing’’ that come from the previous uploaded assets.
However, due to the nature of the embeddings, both Image A and
Image B might be linked to the same or similar embeddings, leading
to the assumption that they pertain to the same user area of interest.
In reality, the user may have intended Image A for the ‘‘Tropical
Beaches’’ category and Image B for the ‘‘Surfing’’ category. Therefore,
the assumption that semantically similar assets are inherently in the
same user area of interest may not hold true in all cases. This limitation
underscores the need for careful consideration and validation when
using embedding-based approaches for grouping and recommending
user interests.

These two limitations restrict the full generalizability of the system
to all scenarios, paving the way for new experimental setups.

7. Conclusion and future work

In this paper, we introduced ZCCR, a Zero-shot Content-based
Crossmodal Recommendation System that utilizes a pretrained Vision-
Language Model (VLM) to extract embeddings from texts and images.
ZCCR employs Agglomerative Clustering to identify a user’s areas of
interest and constructs a user query for searching similar assets in the
Search Space. Additionally, it addresses the challenge of modality gap
associated with VLMs by using two FAISS indexes—one for texts and
another for images. ZCCR proves to be highly effective in recommend-
ing assets similar to a user’s profile, transforming the recommendation
task into a retrieval task and enhancing search efficiency through FAISS
similarity search indexes. ZCCR outperforms both a baseline tagging
system (BT) and a more sophisticated system named BTBA, which uses
a Large Language Model (LLM) to extract embeddings from tags. The
results demonstrate that even in the latter case, embeddings extracted
directly from raw assets yield better outcomes than relying on interme-
diate tags generated by other tools. Consequently, ZCCR emerges as a
Zero-shot recommendation solution that can be seamlessly integrated
without requiring training or domain-specific data, encompassing both
text and image modalities.

ZCCR has its limitations, primarily stemming from its focus on
the modalities of images and text, as it relies on pre-trained VLMs
in these specific domains. Another constraint is associated with the
extensive variety of assets that can potentially be recommended to
users. Specifically, with 𝑛task representing the number of tasks (which
is equal to 4: Text2Image, Text2Text, Image2Text, and Image2Image)
and 𝑚 indicating the number of areas of interest linked to a user
rofile, the system’s output comprises 𝑚 × 𝑛task top-k rankings. This

quantity can become considerable when the number of areas of interest
is substantial. Therefore, it is advisable to maintain a small value for k
to ensure that each top-k ranking provides a concise list.

Future work involves extending ZCCR to handle additional modali-
ties, such as video, 3D, 360-degree content, and audio. Efforts should be
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Fig. 19. The Recall@10 values for ZCCR are represented in the following manner: red for ALBEF and pink for CLIP. Baseline Tagger (BT) is denoted in blue, while Baseline Tagger
+ Bert embeddings + Agglomerative Clustering (BTBA) is in green. The evaluation is performed on MSCOCO classified. The values are plotted against the number of ImageNet
classes (columns) and the number of points per ImageNet class (x-axis). The tasks Txt2Img, Txt2Txt, Img2Txt, and Img2Img are differentiated by rows. Text numbers on the chart
are displayed for all curves except ZCCR (CLIP) to maintain clarity in visualization. The best values associated with ZCCR (ALBEF) are highlighted in bold.
also directed towards investigating the causes and potential solutions
for the modality gap issue. Resolving this problem, specifically achiev-
ing modality-invariant embeddings, would enable ZCCR to expedite
search times by using a single index for all modalities, as seen in
the instance of a single index being more advantageous than multiple
indexes. Furthermore, having a single index for all modalities would
present users with a clearer and more concise recommendation re-
sult. Achieving modality-invariance in embeddings would remove the
necessity to distinguish tasks based on the query and Search Space
modalities, consolidating them into a single index. This unified index
would then execute 𝑚 queries, each associated with an area of in-
terest containing semantically similar texts and images. Consequently,
providing a seed generated by both images and texts of the same
area of interest would yield similar texts and images by querying a
single index. Moreover, this approach would impact the clustering
algorithm, reducing its execution frequency to once instead of multiple
times for each involved modality. Concluding, an alternative avenue
for exploration involves evaluating other clustering algorithms that do
not require prior knowledge of the number of clusters, which in ZCCR
corresponds to the number of areas of interest during the recommen-
dation phase. These approaches have been investigated in the domain
of Evolutionary Computation, with a specific emphasis on employing
Genetic Algorithms, which have demonstrated their effectiveness in
addressing NP-Complete problems such as clustering.
19 
CRediT authorship contribution statement

Federico D’Asaro: Conceptualization, Methodology, Software, Val-
idation, Investigation, Writing — original draft, Writing — review
& editing. Sara De Luca: Conceptualization, Methodology, Investiga-
tion, Visualization, Writing — original draft. Lorenzo Bongiovanni:
Conceptualization, Writing — review & editing. Giuseppe Rizzo: Re-
sources, Validation, Supervision. Symeon Papadopoulos: Data Cura-
tion, Supervision. Manos Schinas: Supervision. Christos Koutlis: Data
Curation, Validation.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Federico D’Asaro reports financial support was provided by European
Unions Horizon 2020 Research and Innovation Programme under grant
agreement No 957252, MediaVerse project.

Data availability

I’ve shared the link to the code in the article abstract.



F. D’Asaro et al. Expert Systems With Applications 258 (2024) 125108 
Fig. 20. The Recall@10 values for ZCCR are represented in the following manner: red for ALBEF and pink for CLIP. Baseline Tagger (BT) is denoted in blue, while Baseline
Tagger + Bert embeddings + Agglomerative Clustering (BTBA) is in green. The evaluation is performed on FLICKR30k classified. The values are plotted against the number of
ImageNet classes (columns) and the number of points per ImageNet class (x-axis). The tasks Txt2Img, Txt2Txt, Img2Txt, and Img2Img are differentiated by rows. Text numbers
on the chart are displayed for all curves except ZCCR (CLIP) to maintain clarity in visualization. The best values associated with ZCCR (ALBEF) are highlighted in bold.
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