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1 | INTRODUCTION

The Mixed Virtual Element Methods were introduced originally in [11] for the Poisson problem in the
two-dimensional case and then were extended to more general elliptic equations in [6]. In the Mixed
Virtual Element Space, two discrete spaces are introduced for approximating the pressure variable and
the velocity field, respectively. The first space is a scalar-polynomial space, while a vector-polynomial
basis is required to build the local projection matrices and for defining the internal degrees of freedom
needed to obtain an approximation of the velocity field. It was observed that using the classical choice
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of scaled monomials in the definition of internal degrees of freedom in the primal Virtual Element
construction [3, 4, 7, 11], the system matrix could become ill-conditioned in presence of badly-shaped
polygons [9] (e.g., collapsing edges and bulks) and for high values of local polynomial degree [15].

The present work aims at defining new polynomial bases for the mixed VEM construction yielding
well-conditioned local projection matrices also in presence of badly-shaped elements. More precisely,
we propose two different approaches for building a vector-polynomial basis, which we briefly called
“Partial” and “Ortho”, respectively. The first one is the natural extension to the mixed case of the
approach presented in [15] for the primal VEM, which allows us to build a vector-polynomial basis that
is only partially L?-orthonormalized. We show that the use of such basis is not sufficient to cure the
ill-conditioning of the system matrix related to the mixed formulation of VEM in all circumstances [1],
even if, in the primal setting, it reveals to be the best alternative. Thus, we introduce the Ortho approach
which aims to orthogonalize the gradients of a proper scalar-polynomial basis in order to obtain a full
orthonormal vector-polynomial basis. We show that this approach leads to the best local and global
performances, throughout different numerical experiments characterised by challenging geometries.

The outline of the present paper is the following. We define the model problem in Section 2 and its
mixed VEM approximation in Section 3. In Section 4, we describe how to build the new polynomial
bases, while in Section 5 we show an efficient implementation of the method, totally matrix-based.
Finally, in Section 6, we perform some numerical experiments that show the advantages of using the
new polynomial bases.

Let us introduce some notations used throughout the paper. Given k € N, we use (-, )xs and || - [|x.»
to indicate the inner product and the norm in the Sobolev space H* (¢) on some open subset ¢ C R?,
respectively. Furthermore, if v = [v1, vz]T and u = [uy, uz]T are vectors in L? (o) X L* (o), we define

v, u) = /(Vlul +vuz),  |IYlloe = VO, V)os. ()

Let Q C R? be a bounded convex polygonal domain with boundary I' and let rr be the outward
unit normal vector to I', then we define the functional spaces

Hdiv;Q={ve > QxL*(Q) :V-veL*(Q)}, 2)
Hor,(div; Q) = {v € H(div,Q) : v-nr=0o0n Ty CT}, 3)
H(rot; Q) = {v € L> (Q) X L? (Q) : roty € L? (Q)}. 4)

Furthermore, let H = (T") be the dual space of the Sobolev space H ; ('), the symbol (-, -), 1 - denotes
£3.

the duality pairing between H = (T)and H ; ™.

2 | THE CONTINUOUS PROBLEM AND THE MIXED VARIATIONAL
FORMULATION

Let x be a symmetric uniformly positive definite tensor over Q, y a sufficiently smooth function Q — R
and b a smooth vector valued function Q — R?. We consider the following problem:
V- (—xVp+bp)+yp=f inQ,
P=28p onlI'p, 5)
(=xVp +bp) - nr, = gn on 'y,
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where I'p and I'y are the Dirichlet and the Neumann boundary, respectively, such that 'p UTy =T
and [IT'pnT'y| =0.
In order to introduce the mixed variational formulation, we define

K=x"'. p=Kb. ©)
and we re-write problem (5) as

Ku=-Vp+pp inQ,

Veut+yp=f in Q,

(7
P =&D on FD,
u-nr, =gy on I'y.
Thus, the mixed variational formulation of (5) reads:
Find u = up + uy, withug € V= Hyr, (div;Q), andp € Q = L? (Q) such that
{(Ku,v)o,g - @.V-v)oa—(Bp.vioo=—(gp,V" ”FD>§,1"D Wwev ®)
(V-u, @)oo+ (rp. 9oe = (f, 9oo VgeQ

where uy € H(div; Q) is a chosen function that satisfies uy - nr,, = gy on I'y.

3 | THE MIXED VIRTUAL ELEMENT METHOD

Let 7}, be a decomposition of Q into star-shaped polygons E. We will denote by xg, hg and &, g the
centroid, the diameter and the set of edges of E, respectively. We further set N&¢ = #&, ¢, and, as
usual, we fix & = maxger, he.

Moreover, P (E) is the set of all polynomials defined on E of degree less or equal to £ > 0 and
n, = dimP (E) = W For the ease of the notation, we fix P_; = {0} and n_; = 0 and we
introduce the natural function # : N?> — N which associates

©0,0)~1, (1,00—-2, O,H)+—3, 2,0+~4, (1,1)->5, ... C))

A classical choice of the basis for P, (E) that can be found in virtual element literature (see [3, 4,
7)) is the set of the scaled monomials, which can be defined as

M, (E) = {m{; = (x;ExE> Na=¢f)eNsta=1, ... ,nk}, (10)

where the function # is defined in (9).
As in [6], we introduce the (vector) polynomial space

G (B) = VPt (B) = {04} (1n

nL . . . .
and its complement G (E) = {g+* }ak= ,in [Py (E)]Z, which satisfies

[Py (B)]° = G} (E) ® Gt (E), (12)

where @ is the direct sum operator, and
dim [P, (B)]” = 2y, (13)
n =dimGy (E) =n + (k+ 1), (14)
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nt =dim Gt (E) = ng — (k + 1). (15)

Now, following [6], for any integer k > 0, we define the local mixed virtual element space for the
velocity variable u as

Vik (E) ={vy, € Hiv;E)n H(rot; E) s.t. v, - n, € P (e) Ve € &g,

(16)
V-v, € P, (E), rotv, € Py (E)}.

It is easy to see that []P’k (E)]2 C Vi (B).
The following set of local degrees of freedom is unisolvent for V;; (E) (see [5, 7]): given v, €
Vi (E),

Q

e Edge dofs: chosen k + 1 Gauss quadrature points x;~ internal on each edge e € & g:

dofivy) = v - n)D) Vi=1, ... k+1. (17)

We note that this choice automatically ensures the continuity of the flux v, -n across two adjacent
elements.
e Internal V dofs:

1 -
dofy (v,) = m/vh gyl Ya=1,...,n,. (18)
E

e Internal 1 dofs:

1
dofi(vy) = ﬁ/vh gtk Ya=1, .. ,nf. (19)
E

Letitbe Ng"f =dimVj; (E) = NEC(k+ 1)+ nZ_l + n,f we denote henceforth the local Lagrangian
mixed VE basis corresponding to the defined degrees of freedom:

{odi) = {{e}h ) v{el}h uleti, 0)
eEC,

where the dofs numbering first counts the edge dofs, then the internal V dofs and lastly the internal L
dofs.

As in [6], we define the local mixed virtual element space O (E) for the pressure variable p as
the space of polynomials P, (E), thatis, Oy (E) = P; (E). In the next section, we will provide further
details regarding the selection of the local basis functions for the local pressure space.

Finally, we define the global mixed virtual element spaces for both velocity and pressure variables
as

Vh,k = {Vh (S HO’FN(diV;Q) s.l. vk € Vh,k (E) VE € Th}, (21)

Ok = {qn € L* (Q) s.t. gue € Quy (E) VE € Ty} (22)

3.1 | The discrete mixed variational formulation
The L? (E)-projection operator IT) : V. — [P (Th)]2 is locally defined as
0 2
(M vipi) oy = (Vi) WPk € [P« (B)]” and VE € 7;,. (23)

and, as shown in [5], the projection H2 vy, of a virtual function v;, € V), can be explicitly computed
from the knowledge of its degrees of freedom (17)—(19).
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BERRONE ET AL. WILEY—5°2
Now, the local discrete counterpart of the continuous bilinear form

a(u,v) = (Ku,v)q, Yu,vey, (24)

reads
ap(up, vp) = Zaf(uh,vh) (25)

EE771
-y [(K M 1w ) + St vh)], 26)
EET,

where the stabilization term SF(-, -) is any symmetric and positive definite bilinear form that satisfies,
Yy, € Vh,k
aaigpsvi) < SEWp,vi) < @ aig(vy, vi)
for some constants a,, a* > 0 that are depending on K but independent of 4. As in [6, 7], we will choose
Ngof
SE(uy, vi) = K|E| Y. dof, (I =TI ) uy)dof, (I =TI ) ),
r=1

where K is the largest singular value of K on E.
Finally, the mixed VEM approximation of (8) is given by:
Find u;, = uon + U, with Uy, € Vh,k’ and p;, € Qh,k such that Vv, € Vh,k and Vg, € Qh,kl

{ah(uh,vh) — iV - Vi)og — (Bpn IT vh)O’Q = —(gp,Vn - nr, 1r,
(V- un, gn)og + (yPr-qndoo = (> qnlog

@7)

where uy;, € {v € Hdiv;Q) : vz € V) (E)VE € T,} is a proper function that satisfies
doff(uy ;) = dofj(uy), Vi = 1, ... ,k + 1 and for each edge e € &, belonging to the Neumann
boundary T'y.

The problem (27) has unique solution (uy,py) € Vi X Oni and, for i sufficiently small, the
following a priori error estimates hold true

P = pallo = O, lu = uyllo = OH™). 28)
Furthermore, the following superconvergence result holds true.

Theorem 3.1 (Superconvergence result). Let pj, the solution to (27) and let p; € Qpx be
the interpolant of p. Then, for h sufficiently small,

lpr = pallo = O(H?). (29)

4 | POLYNOMIAL BASIS

In this section, we show different procedures for building some polynomial bases for both P (E) and
[]P’k (E)] ? Inthe following, the left superscript will denote the underlying polynomial basis used for the
space P, (E). In particular, we will use the symbol m to indicate the scaled monomial basis (10) and
the symbol q to refer to the orthogonal basis {qk}"*, for P (E), whose construction will be detailed
in the following. Finally, we will use the symbol p to denote a generic polynomial basis {pk Zkz | for
Py (E).

As mentioned in the previous section, the standard choice for the polynomial basis is the set of
scaled monomials, defined in (10) (see [3, 4, 7]). Orthogonal polynomial bases have already been
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6 of 26 Wl LEY BERRONE ET AL.

introduced in the virtual element literature, since it has been proven that modifying the definition of
internal moments by choosing an L? (E)-orthonormal basis for IP; (E) can largely improve the reliabil-
ity of the virtual element method for higher order approximations and in the presence of badly-shaped
polygons ([9, 15]).

An efficient procedure for building an L? (E)-orthonormal polynomial basis for P, (E) is presented
in [2]. This procedure consists in the application of the modified Gram-Schmidt (MGS) orthogonal-

ization process to the monomial Vandermonde matrix myEk & RN associated with a quadrature
NEQ

formula { <xf’Q, leQ> } on a given element E with N%€ nodes. As suggested in [2, 13], the pro-
i=1
cess must be applied twice in order to make the orthonomalization error ||I — agE4| independent
of the condition number of ™VE* matrix, where 9H** € R is the mass matrix of the resulting
L? (E)-orthonormal polynomial basis {q¥}"“ for P (E).
In particular, the whole procedure defines a matrix L% € R">*% on each element E such that

qu,k — mvE,k (LE,k)T’ (30)

where 9VEX is the Vandermonde matrix associated with the new polynomial basis. More precisely,
we first apply the MGS process to the myEX matrix, that is, we define an upper triangular matrix
RE* € R™*n and an orthonormal matrix Q5% € RN*** such that

myEk _ (\EkREk
VEE = QTR
Then we apply MGS to the QlE‘k matrix properly rescaled by quadrature weights in order to obtain an

L? (E)-orthonormal basis:
L0\ /2 ~Ek EkypE.k
(ZEQ) 1 =Q Ry,

where ZF¢ € RV**XN“? ig the diagonal matrix whose diagonal entries are the quadrature weights.
Being L& = (Rf‘ka’k)_T, we note that
E.k E,O\ /2 ~Ek (nEk)~]
2 =<Z Q) Q (Rz )
_ (ZE,Q)I/2 mVE,k(LE,k)T
- (ZE,Q)'/2 ayEk

which means that Qg’k is the Vandermonde matrix 9VE* rescaled by the square root of the quadrature
weights, thus,

apEk — (qVE’k)TZE,Q ayEk _ ( ]22,k)T Bk, 3D

T T
Remark 1. Note that V5% = mVE4(L5*)" means that the columns of (L**)" are the
coefficients that provide each orthonormal polynomial as a linear combination of the
scaled monomials.

4.1 | Polynomial bases for [IP’k (E)]2

For simplicity, in the following, we will drop the superscript E when no ambiguity occurs. Now, we
introduce some auxiliary matrices that we will use in the following. Let PDX™!, PDF! € R be
the matrices which collect the coefficients of the partial derivatives of {p&*!}"“!, that is,

a=1>
opit' _ N Pkt v opst < Pkt k _
7_,;( D), b, % _;( D), B Va=1, . g 32)
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Note that, if the MGS basis is used, matrices 9D can be derived from the (easily computable)
monomial ones ™DX*! as:

qu_H _ Lk+1 mDi‘H(Lk)_l VY %€ {X,y}’

since, Va =1, ... ,ng4q,
My k+1 Mgy My
ogs*! k1 9 Kl [ myk+] k
o ;{L“ﬂ 0% ;Z]Laﬂ ("D )ﬂrmy
= =ly=

M1 My T

— ZZZLI;EI ( mDiﬂ)ﬂy(Lk);sl Q]I§-

p=1y=1s=1

Remark 2. As highlighted in [2], the modified Gram-Schmidt algorithm allows us to
obtain a hierarchical sequence of bases {{q%}'“  }i»0, that is,

{aalots © (aa™ 1o, (33)
As a consequence, we only need to compute L*"! and then we can set
LY =L""(1 : ni, 12 my), (34)

being LA (1 : ng, 1 : ng) the matrix obtained from the first n;, rows and columns of LA
Indeed, we define the Vandermonde matrices of both k and k + 1 orders with respect to
the same quadrature formula.

Starting from a §eneric polynomial basis for P (E), as shown in [7], an easily computable basis
{p’,‘ }Z‘l for [IP’k (E)] can be built as

[k
P I=1, .. .m
_0
P = (35
0
. I=n,+1, ...,2n
L _Ipl—nk

. : . 2 . : :
The Vandermonde matrix ?V* € R2N**2% associated with the {p¥};" polynomial basis functions
can be written as

PVK 0 € RV
vk — ) : (36)
0 € RV% py*
where
e the top left PVX matrix contains the evaluations of the x-components of p’,‘ foralll =1, ... ,ng;

e the top right O matrix contains the evaluations of the y-components of p% forall I = 1, ... ,n,
that are all zeros;

e the bottom left O matrix contains the evaluations of the x-components of p¥ for all 7 = n +
1, ... ,2ny, that are all zeros;

e the bottom right PV* matrix contains the evaluations of the y-components of pk forall I =
ne+1,...,2n.

Note that if {p’f,}g*: | is an L? (E)-orthonormal polynomial basis for P, (E), then {p} }f:kl is an
L? (E)-orthonormal polynomial basis for []P’k (E)]z.
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8 of 26 WILEY BERRONE ET AL.
Now, functions belonging to Q,Y (E), as defined in (11), can be written as
2ny,
gyt =vplth = Y Tpf Va=1,.. .0}, (37)
=1

where TV* € R X2 is the coefficient matrix of gradients of the polynomial functions {p&*! Zk:*ﬁ with

respect to the polynomial basis {p} }?:‘1 of [Pk (E)] * and the corresponding Vandermonde matrix is
sV = PVE(TVH), (38)
Based on definitions (32), the TVF matrix reads
TV = [[F"D)’ﬁ“(z Cns ) PDETNQ2 g, :)],

with "DD’*‘“(Z I Niy1, o) the sub-matrix of PD ! obtained extracting rows from 2 to ng4; and all
columns.
Now, we can complete a basis Gy (E) for [Pk (E)]2 by adding the set of functions Q,J; (E) =
L
{glk }Zk:l defined in such a way (12) is satisfied. As suggested in [7], g&** function can be defined as

2ny,

gal’k = ZTi}kpll‘ Va=1, ... ,n,f, (39)
1=1

where TH* € R">% is the matrix whose rows define an euclidean orthonormal basis for the nullspace
of TV matrix. Thus, by considering the Singular Value Decomposition of TV = U X(V)”, we can
define T+ as

TH = [V, +1: 2m)]', (40)

where V(:,n) + 1 : 2ny) is the submatrix of V made up of all its rows and of the columns running
from the (nZ + 1)-th to the 2n;-th. As a consequence,
TV (T+)" = 0. (41)

The Vandermonde matrix 8V* € R associated with the basis functions G; (E) = {gk}o =

ny Lkt
{gZ’k}a‘zl V) {gﬂ }ﬂ;1 reads

gvk — [ng,k gvl,k] — pvk [(Tv’k)T (Tl’k)T:I . (42)
We define G¥ € R?*2m a5 the mass matrix related to the Gr (E) basis, whose entries are given by
Gy = /g’,‘ govLI=1, ... 2. (43)
E
In matrix form, GF reads
Z° 0
Gk = (evH)" gyk
(V) o ze
TV ka(Tv,k)T TV ka(TL,k)T
= T4 Pt (TV,k )T Tk PR (TJ_,k)T 44)
GV,V GV,J_
= GLv G|
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BERRONE ET AL. Wl LEY 9 of 26

where
7° 0

pyk
OZQV

PHF = (ka)T

is the mass matrix related to {pl}?ik1 basis.
Now, we make the following observations.

1 If we choose the standard set of scaled monomials My (E) as the basis for P, (E) and we set
TS MDD n ) DR e, 0] = UIE(Y)T T = VG 41 2m)]
it is known that the corresponding 1GK matrix, that is,
P 1V mHk(lTV,k)T 1V mHk(lTJ_,k)T
Tk mHk(lTV,k)T 1Lk mHk(lTJ_,k)T

will be ill-conditioned for high polynomial degrees. Anyway, we want to highlight that,
1Lk

! (45)

in this so-called monomial approach, the rows of are orthonormal to each other
and are orthogonal to the rows of 'TV* with respect to the euclidean scalar product, by
construction.

2 On the other hand, if we choose the MGS basis {qf }Z"z 1» thatis, the L? (E)-orthonormal polyno-
mial basis for P, (E) introduced in [2], the corresponding mass matrix ¢ H* will be the identity

matrix I. Thus, by setting
TV = [umfr“(z Cmen ) DN )] =2022(V)", T =PVCal +1 2], (46)
the related 2G* matrix, in infinite precision, is given by

2V I(va,k)T 2V I(le,k)T ~
2Lk I(va,k)T 2Lk I(le,k)T -

where the last equation is a consequence of property (41). In conclusion, if an
L? (E)-orthonormal polynomial basis for P; (E) is used, 2’& (E) will be partially
L? (E)-orthonormalized, since the 2gi* functions are a set of L? (E)-orthonormal functions
and are L? (E)-orthogonal to 2gY* functions, but the 2g¥* are not naturally L? (E)-orthogonal

to each other. We denote this as partial-orthonormal approach.

ZTV,k(ZTV,k)T o)
(0] |

2¢k _ ’ (47)

4.1.1 | A full L? (E)-orthonormal approach

In this section, we will show a procedure that allows to full L? (E)-orthonormalize the G; (E) basis.
For this purpose, we first note from (47) that in order to make ka (E) an L? (E)-orthonormal set of
functions, it is sufficient to orthonormalize the rows of 2TV matrix defined in (46) with respect to the
euclidean scalar product. In order to do this, we apply only once the modified Gram-Schmidt algorithm
to ((TV* )T. More precisely, we factorize (ZTW‘)T as

(ZTV,k)T — QV,kRV,k’
and, then we set
3TV,k — (QV.k)T — LV.k ZTV,k’ 3TJ.,k — 3V(:,nZ + 1: znk)T’ (48)

where 3TV* = 3U3E3V7 and LV* = (RV¥) ™" € R,
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10 of 26 Wl LEY BERRONE ET AL.

By proceeding in this way, the 3G* matrix will become the identity matrix. We will call this
procedure as full-orthonormal approach.

Remark 3. Tt is worth mentioning that in order to orthonormalize the rows of 2TV we
could resort to its computed Singular Value Decomposition (46) and set

TV =2V, 1)) = (P2, 1)) T 2T 2T,
ST =2V, + 10 20" =T

In this way, we obtain that 3GF = I, but the SVD process is not hierarchical and, as a
consequence, the set of functions {3gy ! }i‘} used for defining the internal V dofs is not
L*(E)-orthonormalized for free. As highlighted in [9, 15], this type of change can improve
only the condition number of elemental matrices, but does not ensure to improve the global
performance of the method.
Instead, since the MGS is a hierarchical procedure (see Remark 2), we obtain that the
functions
(i < Par) “9)

a=1

used in the definition of internal V dofs are a set of L2 (E)-orthonormal functions.

5 | SOME IMPLEMENTATION DETAILS

In this section, we will show how to compute the local matrices needed for assembling the local system
matrix related to the discrete problem (27) with the aforementioned approaches, following a procedure
similar to the one shown in [7].

5.1 | The divergence term (V - u, ;) ;

By choosing u, = @, and g;, = pk, we define W € R™<i" as the matrix whose entries read, Vi =
1, ... ,Ng"f, a=1, ...,n,

W.i= [ V- ph (50)
E

=— Y ’,§,+/ IRy k
/Eq’ P aE(P JE P 1)
1= (Wig + (W2

Since in the monomial and partial-orthonormal approaches we have
P =m, Vm’;:ng’_kl_l Ya=2,..,n,

p=gq Vai=g)' Va=2,...,m,

(52)

by exploiting the internal V degrees of freedom (18), we have

Oe }RlxNg"f

W, = , .
Oe Rnkv_]xNE"(k+1) —|E| Ie an_lxnf_] Oe an_lxnlf

SUONIPUOD PUe SWLB L 3U) 885 *[1202/60/60] UO AeiqiTauluO AB1M * ouLIoL 1 Mlod BA (18 SIS 0ULO 10 001UdR)1[0d - B108 L BUEOID AQ #TEZ WINU/Z00T OT/10pA00"AB 1M ARG [ou1|uoj/Sdny WoJ) popeojumoa ‘0 ‘9228601

W00 A3 1M A

35UB017 SUOLIWLOD) BAIES1D 3|qealjdde au Aq pauenoh a2 sajo e O ‘38N Jo Sajni 1oy Aiqi aunuo A3|im uo



BERRONEET AL. WILEY 11 of 26
Concerning the full-orthonormal approach, we observe that
2m_y 2y T
=1\~ ko k—
P=q, V‘q]ut+l - ZZT(II ql 2 Z(LV )a/)3Tﬂ1 q]; !
I=1 =1 p=1

(53)

V

_ V.k— 1 —13 V.k-1 _ v
Z (L) ey va=1, .. 0,

Thus, thanks to the hierarchical property shown in Remark 3, the W; matrix becomes

Oe ]Rlde."f

Wi = Y XNEC (k] Vi v st |
0 € R >NED (LY A i al 1 inY,) O e R

Concerning the second term in the right-hand side of Equation (51), we observe that the integrand
function is a known polynomial of degree 2k on each edge of E, which can be computed exactly (up
to machine precision) by exploiting the edge dofs (17). Then, the second term W, reads

W2 = [(Pvﬁsk)Tzﬁ,Q O (S Rnkx(n’cv*l-'—nt) s

where V% g RN*“®+Dxn is the Vandermonde matrix related to the polynomials {p%}" , and the

k+1
boundary quadrature formula { { (xf’Q, con> }

} defined on 0F, whose quadrature nodes
i=1 e€E,

coincide with the nodes used in the edge dofs (17) and the matrix Z>¢ € RN *+DxN*“(+1) jg the diag-
onal matrix whose non-zero entries coincide with the related boundary quadrature weights properly
arranged.

5.2 | Computation of L2 (E)-projection of basis functions of V,,; (E)

Now, we compute the projection IT? g, of the Lagrangian basis functions of V;; (E) in terms of the
G« (E) basis, that is, we determine the matrix II) € R2%*V:" such that

2ny,

M @, = ) (), &f- (54)

1=1
By replacing (54) in the definition (23) of IT¥, we obtain, Vi= 1, ... ,N%f vy =1, ... ,2ny,

2ny

Z(Hg)li (g];’g];)O,E = (¢i’g§)O,E

1=1
or, analogously, in matrix form
G =B, (55)

where B € R2WN:" is the matrix whose entries are defined as
Bji=(08))o Vi=1 .. N W =1, .. 20

Now, as in [7], we split B as
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12 of 26 Wl LEY BERRONE ET AL.

The term B+ € R XNEM, whose entries are
L Lk _ 1o\ dof
By = ((p[,ga )O’E, Ya=1,..,n, Vi=1, ... N,
can be readily computed as
Bl — [O c Rnkix(NE"'(k+l)+nZ_l) |E| Ie Rntxnf{' ,

by exploiting the internal L degrees of freedom (19).
Regarding the first term BY e R”ZXN%M, we note that, Va =1, ... , nZ, Vi=1, ... ,Ng"f

e in the monomial and in the partial-orthonormal approaches, recalling Equation (52),

BZ,-=/¢i-gZ"‘=/¢,~~Vpﬁiﬁ
E E
56
=—/V'¢ip§iﬁ+/¢i-nagp’;iﬁ (56)
E oF
= (Blv)ai"' (BZV)ai’

e in the full-orthonormal approach, evoking Equation (53), we have

= [oat = DU [0 woiti= (LB, ¢ (L7 B,
s

Since the integrand of the second term of (56) is a known polynomial of degree 2k + 1 on each
edge of E, it can be integrated exactly by exploiting the edge dofs (17). Thus,

B; = [('”Va”‘“(:,z ) 292 0 e RO,

In order to compute the term B, we first note that V - @; is a known polynomial of degree k on E.
Then, it can be written as

7y
Vg, = Auph Vi=1, .. NP

a=1

. . . dof .
whose coefficient matrix A € R®** e can be retrieved from

T
ZA,,[/EP’;[@’;, =/EV-¢I. ph, VB=1,...m, Vi=1, ... ,N& (57)
a=1

Equation (57) can be written in matrix form as
PHA = W, (58)

since the term at right hand side of (57) coincides with the definition of the W matrix given in
Section 5.1. We highlight that, in the partial and in the full orthonormal approaches, in infinite
precision, it holds

A=W.

Finally, matrix B} is given by

3
(BY)ai=—/V-¢ip’;ﬂ =—2Am/p’5p’;ﬂ»
E p=1 E
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BERRONE ET AL. WILEY—| 130126
or, equivalently,

BY = — PH'' (2 : miyr, 1 m)A = — PHMYL(2 ¢ g, 10 nk)(PHk)_lw.

5.3 | The diffusion term a% (w;, vy,)

The local discrete diffusion term, defined in Equation (26), is the sum of a consistency and a stability
term. Thus, as in [7], we can separately define the consistency matrix

a _ k k
(Ke); = (KHO @, 11 (Pj>0,E
and the stability matrix
Nlc:lpf

(K$); = K|E| Y dof,((I - TI§) @;)dof, (I - TI§) @;).

r=1

By writing the tensor K = [?“ ?@ ] , we define the matrix Z2% € RV*N? a5 the diagonal matrix
xy By

whose non zeros entries are
K. .
Zg = K*(xiQ) coiQ, Vi=1, .. ,N2V=xe {xx, xy, yy}.
Then, the consistency matrix can be computed as
0\T ~kK 0
K¢ = (I) GM* Iny,

where the matrix GK € R2w2m reads

Ko Ky
Gk’K _ (ng)T ZQ ZQ i
70K, 70K, ’

that is, G*K is the mass matrix G* related to the basis polynomial basis G; (E) of degree k weighted
by the tensor K.
Now, we define the matrix D € ]RNg“fxz"k, whose entries are

D; =dofi(gh), Vi=1,.. ,NX vi=1, .., 2n.

Matrix D can be split as

. . v .
being matrices DV € R™%-*¥% and D* € R"%>% given by

1 1
DY = m(}"(l im0, Db= 5
Matrix D? € RV*“®+Dx2n instead, Vi =1, ... ,k+1,Ve € &z, VI =1, ... ,2n,, reads

D[a]il = doff(g];) = (gI; . ne)(xf!Q),

Gy +1 : 2my, 0).

or, equivalently,
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14 of 26 Wl LEY BERRONE ET AL.

D() = [Nx N¥:| gvé,k

pVa,k O IS RNE‘('(k-l—l)Xnk
Oe RNE»e(k+1)><nk [de,k

] (79" (1)),

[ )

where N, € RV*“*+DxN™&+D) for a]] € {x, y}, is the diagonal matrix whose diagonal entries are the
x-component of the normal vectors to the edges of E, properly arranged.
Finally, the stability matrix can be computed as

K{=K|E| (1-DI) (1-D ).

5.4 | The advection term —(Bp;, IT; vh)O,E

The matrix A? € RV:"> corresponding to the local advection term
—(Bpns Vi)o.es
Vi=1,.. ,N¥ Va=1, ...,m,is defined as

2my,

Agx = _/'B'Hg(pi Py = _Z(Hg)li/ﬁ'.ﬁ Pt
E =1 E
Given g = [fs, ﬂy]T, in matrix form A? reads

T T
=y vyt D

ZQ’ﬁx O ]

Py
v
where Z2% € RVN° v «¢g {x,y} is the diagonal matrix whose non zero entries are defined as

227y = p.x2) 0?, Vi=1, .. N

5.5 | The reaction term (ypp, qi)g ¢

We define the local reaction matrix PH*" € R™>™ as the matrix that collects the terms
k,
pHa; = /y pk [p»]; Va,f=1, ... ,m.
E

We observe that this matrix is the mass matrix PH related to the polynomial basis {pk }% | of degree
k weighted by the reaction coefficient y. Thus, in matrix form, we have

PHA = ([ka)TZQ,y PVk,

where
22" =ya?) of 55, Vij=1, .. ,N°

In conclusion, the local system matrix K¥ € RVe" Nz for the discrete problem (27) is given by

KE = K% + K¢ —WT + AP
w PH
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6 | NUMERICAL EXPERIMENTS

In this section, we propose some numerical experiments to show the performance of the aforemen-
tioned approaches in terms of the following error norms:

1

2

per=| D lp=pillis ) - (59)
E€eT,
1
2
Uerr = z “u - 1_II(() uh”%,E s (60)
E€T,
1
prec =\ 2 lpr—pallde ) - (61)
E€eT,

where the interpolant p; € Oy, of p is computed locally as

T
_ k
pr="Y caph-
a=1

The vector ¢ € R™ of coefficients is the solution of the following linear least squares problem
min [PVie -y

where y € RV ¢ is the vector whose entries are the evaluation of p at the internal quadrature points
O\N?
{x; o
We will also analyze the condition number of the main local matrices that allow assembling the
local system matrix, namely G, W, B, Hﬂ and D. The condition number of a matrix is computed as
the ratio between its largest and its smallest singular values.
For the first two numerical examples, we consider problem (5) on the unit square domain Q =
(0, 1)*> with
2
+1 - by
K= Y v , b= , oy =xr+y.
—xy x*+1 y
The forcing term, the Dirichlet and the Neumann boundary conditions are set in such a way the exact
solution is

p(x,y) = x>y + sin(2zx) sin(2zy) + 2, (62)

and the set I'y coincides with the edge of the domain of interest on the x-axis.

In particular, in the first experiment (Testl), we validate the proposed methods showing the order
of convergence of the three monomial, partial and full orthogonal approaches against rising polynomial
degree k, for various mesh refinement levels, on meshes made of squared elements. Then, in the second
test (Test2), we show the performance of the approaches in terms of matrix condition number and error
convergence trends in presence of collapsing polygons in the meshes.

Finally, the last example (Test3) proposes the application of the method to flow simulations in
Discrete Fracture Networks (DFNs). DEN simulations are, indeed, a typical example where highly
distorted mesh elements might appear in the process to generate a conforming mesh [8]. A simple net-
work is here considered, for which an analytic solution is known, in order to compare the convergence
curves of the three different approaches.
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16 of 26 Wl LEY BERRONE ET AL.

6.1 | Testl: Convergence rates

In this first experiment, we validate the new approaches by showing that the computational orders
of convergence match the theoretical ones for different values of the polynomial degree k on regular
meshes. At this aim, convergence tests are performed on a sequence of squared meshes that decompose
the domain of interest in 25, 100, 400 and 1600 identical squares, respectively.

Obtained convergence rates are shown in Table 1, while convergence curves of the errors are shown
in Figure 1. In this figure, each row reports the graphs of the three error norms at varying k on a fixed
mesh. The three rows correspond to the last three considered refinement levels, that is, the 100, 400
and 1600 element meshes, respectively. In the figure, the upper bound of y-axis is fixed to 1.0e + 1.

The obtained results show that the rates of convergence related to all three approaches match the
theoretical ones up to polynomial degree k = 5. For higher orders, errors in the monomial approach
start to increase due to ill-conditioning, while both the partial and the full orthonormal approaches
still provide the expected results in terms of errors, up to stagnation due to finite precision arithmetic.
We highlight that, in the partial and full orthonormal approach, the local projection matrices and the
global system matrix are well-conditioned, as we will see in the next tests.

6.2 | Test2: Collapsing polygons

Now, we analyze the condition number of local matrices in case of collapsing polygons. For this pur-
pose, we use three meshes of rectangular elements, with elements having aspect ratios of 10, 50, and
100, respectively. We remark that the aspect ratio of an element is here defined as the ratio between
the maximum and the minimum length of its edges. These meshes are built starting from a mesh made
up of 100 identical squares, then subdivided into rectangles with length fixed to the value 0.1, equal
to that of the original square, and a height computed according to the desired aspect ratio value. The
mesh with aspect ratio of 10 originated from this process is shown in Figure 2.

Figures 3, 4 and 5 report the highest value among mesh elements of the condition number of
elemental matrices G* , W, B, H'& and D, on the three considered meshes. In these figures, we set the
upper bound of y-axis to 1.0e + 20. As shown in these figures, mass matrix G*, resulting from the
full orthonormal approach, is perfectly well-conditioned, since it corresponds to the identity matrix,
up to machine precision. Moreover, an algebraic growth of the condition number of the mass matrix
obtained with the partial orthonormal approach is observed, whereas conditioning grows exponentially
for the monomial one. More generally, we can observe that the condition numbers of the local matrices
vary in a very limited range in the partial and full orthonormal approaches, as k increases. Instead,

TABLE 1 Testl: Convergence rates on squared mesh.

k 0 1 2 3 4 5 6 7 8
Monomial  p,, 11956 24760 37464 48565 59153 69456  5.8756 24067  1.5749
Ugr 09947 20937  3.1263 40877  5.1110 59812 32093 03267  -0.0167
Prew 19417 30056 39580 49588 59529 69680 58761 24071 15749
Partial Pere 11956 24760  3.7464 48565 59153 69456  7.6064  6.8582  5.1747
Ugrr 09947 20937  3.1263 40877 51110 60812 54221  3.8693  2.1663
Prew 19417 30056 39580 49588 59529 69680  7.6098  6.8590  5.1751
Ortho Per 11956 24760 37464 48565 59153 69456  7.9637  8.5476  7.2031
Ugr 09947 20937  3.1263 40877  5.1110  6.1058  7.0385  6.0692  4.3635
Prew 19417 30056 39580 49588 59529 69680  7.9773 85484  7.2035

SUONIPUOD PUe SLUB | 3U) 985 * [7202/60/60] U0 Afeiqi78UIIUO AS|IM  ouLio L 1a 1Iod A [Q1E 1S OULIO | 10 00IUIBH|Od - 8108 | BULOID AQ ¥TEZ WNU/ZO0T 0T/I0PALI0D' A3 1M AReq 1 jBu1|UO//SANY WOy papeojumod ‘0 ‘921Z860T

W00 A3 1M A

35UB017 SUOLIWLOD) BAIES1D 3|qealjdde au Aq pauenoh a2 sajo e O ‘38N Jo Sajni 1oy Aiqi aunuo A3|im uo



BERRONE ET AL. Wl LEY 17 of 26

10° 10

10-10 +Monomial “*+Monomial 1019 «Monomial
-@Partial 10 ‘®Partial ®Partial
+*Ortho 0" %ortho +Ortho

o 5 10 15 (o] 5 10 15 o 5 10 15

(@) (b) ()

10°

= 107 = £ 10°
= = 107 =
10719 «Monomial -*Monomial 101° ~Monomial
@Partial @ Partial @ Partial
=Ortho 10719 = Ortho “#Ortho
o 2 4 6 8 10 12 o 2 4 6 8 10 12 o 2 4 6 8 10 12
k k k
G (e) ()
10° 10° 10°
= 10‘5 B E 1075
< = 10° s
10710 = . 10710 A
-*Monomial -*Monomial “+Monomial
@Partial @ Partial @ Partial
*Ortho 101° *Ortho “#Ortho
[ 2 6 8 o 2 6 8 o 2 6 8

J J k
(2 (h) )

FIGURE 1  Testl: Behaviour of errors (59), (60) and (61) at varying k on square meshes. Pictures on each row refer to a
different mesh refinement level: 100, 400 and 1600 element meshes from top to bottom.

FIGURE 2 Test2: Mesh with aspect ratio 10.
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Test2: Figure 3a—e show the maximum condition number of local matrices among elements, at varying k.

Figure 3f reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 10.
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FIGURE 4 Test2: Figure 4a—e show the maximum condition number of local matrices among elements, at varying k.
Figure 4f reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 50.
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FIGURE 5 Test2: Figure 5a—e show the maximum condition number of local matrices among elements, at varying k. Figure 5f
reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 100.

the condition number of local matrices grows exponentially in the monomial approach, with the only
exception of matrices W, which exhibit a good conditioning regardless of the case.

Conditioning of matrices obtained with the partial-orthonormal bases appear to be slightly more
affected by increasing aspect ratio values than the corresponding matrices with the full-orthonormal
approach, however, still showing much lower values than the matrices given by the monomial
basis.

Figure 6 reports convergence curves of the error against growing polynomial accuracy k, for the
three considered meshes: top row for the mesh with aspect ratio 10, middle row for aspect ratio 50
and bottom row for aspect ratio 100. Also in this case, the upper bound of y-axis is fixed to 1.0e + 1.
At low values of k, the curves corresponding to the monomial approach are well overlapped with the
curves of partial and full-orthonormal approaches. Furthermore, the maximum value of polynomial
accuracy k for which the monomial approach provides errors in line with the other approaches reduces
as the aspect ratio of mesh elements increases. Finally, error curves relating to the monomial approach
are interrupted at values of k < 6 due to failure of linear algebra libraries (the SparseLU solver of
Eigen) in computing a solution due to ill-conditioning of the global system matrix. Small differences
are instead noticed between the curves obtained with the partial and full orthonormal approaches for
all the considered values of k. We remark that these behaviours are coherent with the corresponding
trends of the condition number of the global system matrices, which are shown in Figures 3f, 4f and 5f
for the three considered meshes. In these figures, the upper bound of y-axis is set to 1.0e + 40. In the
monomial approach, the condition number of the global system matrix K grows exponentially as the
polynomial degree k increases, while the growth in the partial and full orthonormal approaches is linear.
The partial-orthonormal approach however provides condition numbers significantly higher than the
full approach. In Figures 4f and 5f, the curves reporting the behaviour of the global condition numbers
for the monomial approach are interrupted due to the failure of both the MATLAB R2023b routine
condest and the C++ SuiteSparse v7.7.0 klu_condest. This behaviour confirms that using orthonormal
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FIGURE 6 Test2: Behaviour of errors (59), (60) and (61) at varying k on rectangular meshes. Each row represents a different
mesh: 10, 50, 100 from top to bottom.

polynomial basis to define the internal degrees of freedom allows to improve the conditioning of the
global system matrix and to obtain more accurate solutions, as noted also in [15].

6.3 | Test3: Simulations in discrete fracture networks

In this last example, the application of the proposed orthonormal bases to Discrete Fracture Network
(DFN) problems is presented. Discrete Fracture Networks are obtained as the union of planar polygo-
nal domains with arbitrary orientations in the 3D space and are used to model the fractures in a porous
medium [1]. As fracture thickness is typically orders of magnitude smaller than the other dimensions,
fractures are geometrically reduced to 2D domains, and suitable equations, averaged across fracture
thickness, are derived to describe the phenomena occurring in such domains [14]. Interface equations
are then added at fracture intersections. A major complexity in DFN simulations consists in the genera-
tion of a conforming mesh, for realistic configurations characterized by intricate networks with a large
number of fractures and fracture intersections. A possible strategy for DFN meshing is proposed, for
example, in [8], based on the use of mixed virtual elements: first a triangular mesh is constructed on
each fracture domain, independently of the intersections with the other fractures; then, the elements of
these meshes are cut according to the interfaces, and hanging nodes are added where needed, to obtain
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a fully conforming mesh of the whole domain (see [8] for more details). Highly elongated elements
are likely to be generated in this process, such that the standard choice of VEM basis function might
yield badly conditioned problems for high order approximations [12].
An advection-diffusion-reaction problem on a network made up by the union of three fractures F;

with three intersections I';, is here considered, namely

Fi={xy2)€eR : -1<x<1,-1<y<1,z=0},

F={xy2)€R : -1<z<1,-1<x<1,y=0},

Fi={xy2€R :-1<y<1,-1<z< L,x=0},

I ={xyzeR:-1<x<1,y=0,z=0},
={(xyzeR: -1<y<1l,x=0,7=0},
3={(x,y,20eR: -1<z<1,x=0,y=0}.

On each fracture, we choose

1+3? —%]

a ey — 3 s
_% 1+522 ]’ Yz(x’}’)—x +y.

kiX,9) = l

where (%, ) is a proper fracture-local reference system, and a forcing term and Neumann boundary
conditions are defined in such a way the exact solution on each fracture is:

hi(x, y) = =[x|(1 + )1 —x)y(1 + y)(1 - y),

ho(z,x) = —z(1 + 2)(1 — 2)x(1 + x)(1 — x),

h3(y,2) = y(1 + )1 = y)z|(1 + 2)(1 = 2).

The same problem is considered in [8] up to order 5. The network and the exact solution are shown
in Figure 7.

—0.05
-0

Exact

&

_ 005
[-0.1
-1.5e-01

FIGURE 7 Test3: Exact solution DFN benchmark problem.
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TABLE 2 Test3: Number of cells (Num Cells), minimum aspect ratio (Min AR) and maximum aspect ratio (Max AR) of
mesh cells for the four refinement levels (RO to R3).

RO
R1
R2
R3

Num cells
75

246

882

3294

TABLE 3  Test3: Convergence rates on conforming mesh.
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Test3: Figure 8a—e show the maximum condition number of local matrices among elements, at varying .

Figure 8f reports the behaviour of the condition number of the global system matrix K, at varying k. Coarsest mesh.
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FIGURE 9  Test3: Figure 9a—e show the maximum condition number of local matrices among elements, at varying k.
Figure 9f reports the behaviour of the condition number of the global system matrix K, at varying k. Finest mesh.

In this numerical test, we use four refinements of an initially triangular mesh, modified, as men-
tioned above, in such a way that the final polygonal meshes are conforming at the traces. Table 2 reports
the number, the minimum and maximum aspect ratio of mesh elements for the four refinements (RO
to R3).

Table 3 shows the computed convergence rates of errors (59) and (61), for all the three
tested approaches. In each sub-domain, the velocity field is a vector of polynomials of degree
7, such that, for k > 7 only errors related to floating point arithmetic computations are to be
expected.

Figures 8 and 9 report, as previously, the maximum condition number across mesh ele-
ments of the computed local matrices and the trend of the condition number of the global
system matrix as k varies, on the coarsest and finest considered meshes. We can observe that
these data show the same behaviour as in the previous tests. Figure 10 shows error convergence
curves against polynomial accuracy k, for the four considered mesh refinement levels. Pictures
on each row correspond to the same mesh. It can be seen that the curves obtained with the
three approaches are almost indistinguishable for k up to 4 — 5. For higher values errors given
by the monomial approach start growing rapidly due to ill-conditioning, whereas errors given
by partial and full orthonormal approaches still decrease up to stagnation due to finite precision
arithmetic.
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FIGURE 10  Test3: Behaviour of errors (59), (60) and (61) at varying k on conforming meshes. Each row represents a
different refinement, from the coarsest mesh on top to the finest mesh at the bottom.

7 | CONCLUSIONS

In this paper, we presented a possible solution to cure the ill-conditioning of system matrix in the
mixed formulation of the Virtual Element Method.

Since in the mixed formulation we need to introduce a discrete local space for both the pressure and
the velocity variable, we have first introduced an orthonormal scalar-polynomial basis in the pressure
space and then we have also orthonormalized the vector-polynomial basis used in the definition of the
degrees of freedom related to the velocity variable.
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Numerical experiments suggest that the introduction of orthonormal polynomial basis in both
spaces allows to improve stability of mixed Virtual Elements for high order applications on distorted
elements.

The additional computational cost for the Ortho and the Partial approaches with respect to the
standard, monomial approach stems from the application of the Gram-Schmidt algorithm. This needs
to be performed twice for the Partial approach and three times for the full-orthonormal approach.
However, its cost is only associated with local quantities, such as the local polynomial degree k and
the cardinality of the employed quadrature formula. Additionally, in the full-orthonormal approach,
this cost is at least partially mitigated by the elimination of the two linear system resolutions, namely
(58) and (55). It is also to remark that, overall, the leading cost is the one related to the resolution of
the global system, that does not increase after the use of the proposed polynomial bases, and may even
decrease due to improvements in the condition number.

It is worth to mention that the methods here suggested to build orthonormal polynomial bases
improve the conditioning of the Vandermonde matrix defined with respect to the quadrature formulas
in the interior of each element E. However, in general, this does not guarantee an improvement in the
conditioning of the Vandermonde matrix defined with respect to quadrature formulas on the boundary
of the elements [10]. Nonetheless, this appears to be sufficient to recover optimal convergence trends
in the considered cases.
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