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Abstract
The use of orthonormal polynomial bases has been found

to be efficient in preventing ill-conditioning of the sys-

tem matrix in the primal formulation of Virtual Element

Methods (VEM) for high values of polynomial degree and

in presence of badly-shaped polygons. However, we show

that using the natural extension of a orthogonal polynomial

basis built for the primal formulation is not sufficient to

cure ill-conditioning in the mixed case. Thus, in the present

work, we introduce an orthogonal vector-polynomial basis

which is built ad hoc for being used in the mixed formu-

lation of VEM and which leads to very high-quality solu-

tion in each tested case. Furthermore, a numerical experi-

ment related to simulations in Discrete Fracture Networks

(DFN), which are often characterised by very badly-shaped

elements, is proposed to validate our procedures.

KEYWORDS

ill-conditioning, mixed VEM, orthogonal polynomial basis

1 INTRODUCTION

The Mixed Virtual Element Methods were introduced originally in [11] for the Poisson problem in the

two-dimensional case and then were extended to more general elliptic equations in [6]. In the Mixed

Virtual Element Space, two discrete spaces are introduced for approximating the pressure variable and

the velocity field, respectively. The first space is a scalar-polynomial space, while a vector-polynomial

basis is required to build the local projection matrices and for defining the internal degrees of freedom

needed to obtain an approximation of the velocity field. It was observed that using the classical choice

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Numerical Methods for Partial Differential Equations published by Wiley Periodicals LLC.

Numer Methods Partial Differential Eq. 2024;e23144. wileyonlinelibrary.com/journal/num 1 of 26
https://doi.org/10.1002/num.23144

https://orcid.org/0000-0002-8540-3639
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/NUM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.23144&domain=pdf&date_stamp=2024-08-20


2 of 26 BERRONE ET AL.

of scaled monomials in the definition of internal degrees of freedom in the primal Virtual Element

construction [3, 4, 7, 11], the system matrix could become ill-conditioned in presence of badly-shaped
polygons [9] (e.g., collapsing edges and bulks) and for high values of local polynomial degree [15].

The present work aims at defining new polynomial bases for the mixed VEM construction yielding

well-conditioned local projection matrices also in presence of badly-shaped elements. More precisely,

we propose two different approaches for building a vector-polynomial basis, which we briefly called

“Partial” and “Ortho”, respectively. The first one is the natural extension to the mixed case of the

approach presented in [15] for the primal VEM, which allows us to build a vector-polynomial basis that

is only partially L2-orthonormalized. We show that the use of such basis is not sufficient to cure the

ill-conditioning of the system matrix related to the mixed formulation of VEM in all circumstances [1],

even if, in the primal setting, it reveals to be the best alternative. Thus, we introduce the Ortho approach

which aims to orthogonalize the gradients of a proper scalar-polynomial basis in order to obtain a full

orthonormal vector-polynomial basis. We show that this approach leads to the best local and global

performances, throughout different numerical experiments characterised by challenging geometries.

The outline of the present paper is the following. We define the model problem in Section 2 and its

mixed VEM approximation in Section 3. In Section 4, we describe how to build the new polynomial

bases, while in Section 5 we show an efficient implementation of the method, totally matrix-based.

Finally, in Section 6, we perform some numerical experiments that show the advantages of using the

new polynomial bases.

Let us introduce some notations used throughout the paper. Given k ∈ N, we use (⋅, ⋅)k,𝜎 and || ⋅ ||k,𝜎
to indicate the inner product and the norm in the Sobolev space Hk (𝜎) on some open subset 𝜎 ⊂ R2,

respectively. Furthermore, if v =
[
v1, v2

]T
and u =

[
u1, u2

]T
are vectors in L2 (𝜎) × L2 (𝜎), we define

(v,u)0,𝜎 = ∫
𝜎

(v1u1 + v2u2), ||v||0,𝜎 =
√
(v, v)0,𝜎 . (1)

Let Ω ⊂ R2 be a bounded convex polygonal domain with boundary Γ and let nΓ be the outward

unit normal vector to Γ, then we define the functional spaces

H(div; Ω) =
{

v ∈ L2 (Ω) × L2 (Ω) ∶ ∇ ⋅ v ∈ L2 (Ω)
}
, (2)

H0,ΓN (div; Ω) = {v ∈ H(div,Ω) ∶ v ⋅ nΓ = 0 on ΓN ⊆ Γ}, (3)

H(rot ; Ω) = {v ∈ L2 (Ω) × L2 (Ω) ∶ rot v ∈ L2 (Ω)}. (4)

Furthermore, let H− 1

2 (Γ) be the dual space of the Sobolev space H
1

2 (Γ), the symbol ⟨⋅, ⋅⟩± 1

2
,Γ denotes

the duality pairing between H− 1

2 (Γ) and H
1

2 (Γ).

2 THE CONTINUOUS PROBLEM AND THE MIXED VARIATIONAL
FORMULATION

Let 𝜿 be a symmetric uniformly positive definite tensor overΩ, 𝛾 a sufficiently smooth functionΩ → R

and b a smooth vector valued function Ω → R2. We consider the following problem:

⎧⎪⎨⎪⎩
∇ ⋅ (−𝜿∇p + bp) + 𝛾p = f in Ω,
p = gD on ΓD,

(−𝜿∇p + bp) ⋅ nΓN = gN on ΓN ,

(5)
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BERRONE ET AL. 3 of 26

where ΓD and ΓN are the Dirichlet and the Neumann boundary, respectively, such that ΓD ∪ ΓN = Γ
and |ΓD ∩ ΓN| = 0.

In order to introduce the mixed variational formulation, we define

K = 𝜿−1, 𝜷 = Kb, (6)

and we re-write problem (5) as ⎧⎪⎪⎨⎪⎪⎩

Ku = −∇p + 𝜷p in Ω,
∇ ⋅ u + 𝛾p = f in Ω,
p = gD on ΓD,

u ⋅ nΓN = gN on ΓN .

(7)

Thus, the mixed variational formulation of (5) reads:

Find u = u0 + uN , with u0 ∈ V = H0,ΓN (div; Ω), and p ∈ Q = L2 (Ω) such that{
(Ku, v)0,Ω − (p,∇ ⋅ v)0,Ω − (𝜷p, v)0,Ω = −⟨gD, v ⋅ nΓD⟩ 1

2
,ΓD

∀v ∈ V

(∇ ⋅ u, q)0,Ω + (𝛾p, q)0,Ω = (f , q)0,Ω ∀q ∈ Q
(8)

where uN ∈ H(div; Ω) is a chosen function that satisfies uN ⋅ nΓN = gN on ΓN .

3 THE MIXED VIRTUAL ELEMENT METHOD

Let h be a decomposition of Ω into star-shaped polygons E. We will denote by xE, hE and h,E the

centroid, the diameter and the set of edges of E, respectively. We further set NE,e = #h,E, and, as

usual, we fix h = maxE∈h hE.

Moreover, Pk (E) is the set of all polynomials defined on E of degree less or equal to k ≥ 0 and

nk = dim Pk (E) = (k+1)(k+2)
2

. For the ease of the notation, we fix P−1 = {0} and n−1 = 0 and we

introduce the natural function 𝓁 ∶ N2 → N which associates

(0, 0) → 1, (1, 0) → 2, (0, 1) → 3, (2, 0) → 4, (1, 1) → 5, … (9)

A classical choice of the basis for Pk (E) that can be found in virtual element literature (see [3, 4,

7]) is the set of the scaled monomials, which can be defined as

k (E) =
{
𝕞k

𝛼 =
(

x − xE
hE

)𝜶

,∀𝜶 = 𝓁(𝛼) ∈ N
2 s.t. 𝛼 = 1, … , nk

}
, (10)

where the function 𝓁 is defined in (9).

As in [6], we introduce the (vector) polynomial space

∇
k (E) = ∇Pk+1 (E) =

{
g∇,k
𝛼

}n∇k
𝛼=1

(11)

and its complement ⊥
k (E) =

{
g⊥,k𝛼

}n⊥k
𝛼=1

in
[
Pk (E)

]2
, which satisfies[

Pk (E)
]2 = ∇

k (E)⊕ ⊥
k (E), (12)

where
⨁

is the direct sum operator, and

dim
[
Pk (E)

]2 = 2nk, (13)

n∇
k = dim∇

k (E) = nk + (k + 1), (14)
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4 of 26 BERRONE ET AL.

n⊥
k = dim⊥

k (E) = nk − (k + 1). (15)

Now, following [6], for any integer k ≥ 0, we define the local mixed virtual element space for the

velocity variable u as

Vh,k (E) = {vh ∈ H(div;E) ∩ H(rot ;E) s.t. vh ⋅ ne ∈ Pk (e) ∀e ∈ h,E,

∇ ⋅ vh ∈ Pk (E), rot vh ∈ Pk−1 (E)}.
(16)

It is easy to see that
[
Pk (E)

]2
⊂ Vh,k (E).

The following set of local degrees of freedom is unisolvent for Vh,k (E) (see [5, 7]): given vh ∈
Vh,k (E),

• Edge dofs: chosen k + 1 Gauss quadrature points xe,Q
i internal on each edge e ∈ h,E:

dofe
i (vh) = (vh ⋅ ne)(xe,Q

i ) ∀i = 1, … , k + 1. (17)

We note that this choice automatically ensures the continuity of the flux vh ⋅n across two adjacent

elements.

• Internal ∇ dofs:

dof∇𝛼 (vh) =
1|E| ∫E

vh ⋅ g∇,k−1
𝛼 ∀𝛼 = 1, … , n∇

k−1. (18)

• Internal ⊥ dofs:

dof⊥𝛼 (vh) =
1|E| ∫E

vh ⋅ g⊥,k
𝛼 ∀𝛼 = 1, … , n⊥

k . (19)

Let it be Ndof
E = dim Vh,k (E) = NE,e(k+1)+n∇

k−1 +n⊥
k , we denote henceforth the local Lagrangian

mixed VE basis corresponding to the defined degrees of freedom:{
𝝋i
}Ndof

E
i=1

=
{{

𝝋e
i
}k+1

i=1

}
e∈h,E

∪
{
𝝋∇

i
}n∇k−1

i=1
∪
{
𝝋⊥

i
}n⊥k

i=1
, (20)

where the dofs numbering first counts the edge dofs, then the internal ∇ dofs and lastly the internal ⊥

dofs.

As in [6], we define the local mixed virtual element space Qh,k (E) for the pressure variable p as

the space of polynomials Pk (E), that is, Qh,k (E) = Pk (E). In the next section, we will provide further

details regarding the selection of the local basis functions for the local pressure space.

Finally, we define the global mixed virtual element spaces for both velocity and pressure variables

as

Vh,k = {vh ∈ H0,ΓN (div; Ω) s.t. vh|E ∈ Vh,k (E) ∀E ∈ h}, (21)

Qh,k = {qh ∈ L2 (Ω) s.t. qh|E ∈ Qh,k (E) ∀E ∈ h}. (22)

3.1 The discrete mixed variational formulation

The L2 (E)-projection operator Π0
k ∶ Vh,k →

[
Pk (h)

]2
is locally defined as(

Π0
k vh, pk

)
0,E =

(
vh, pk

)
0,E ∀pk ∈

[
Pk (E)

]2
and ∀E ∈ h. (23)

and, as shown in [5], the projection Π0
k vh of a virtual function vh ∈ Vh,k can be explicitly computed

from the knowledge of its degrees of freedom (17)–(19).
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Now, the local discrete counterpart of the continuous bilinear form

a(u, v) = (Ku, v)0,Ω, ∀u, v ∈ V, (24)

reads
ah(uh, vh) =

∑
E∈h

aE
h (uh, vh) (25)

=
∑
E∈h

[(
K Π0

k uh,Π0
k vh

)
0,E + SE(uh, vh)

]
, (26)

where the stabilization term SE(⋅, ⋅) is any symmetric and positive definite bilinear form that satisfies,

∀vh ∈ Vh,k
𝛼∗a|E(vh, vh) ≤ SE(vh, vh) ≤ 𝛼∗a|E(vh, vh)

for some constants 𝛼∗, 𝛼
∗ > 0 that are depending on K but independent of h. As in [6, 7], we will choose

SE(uh, vh) = K|E|Ndof
E∑

r=1

dofr
(
(I − Π0

k ) uh
)
dofr

(
(I − Π0

k ) vh
)
,

where K is the largest singular value of K on E.

Finally, the mixed VEM approximation of (8) is given by:

Find uh = u0,h + uN,h, with u0,h ∈ Vh,k, and ph ∈ Qh,k such that ∀vh ∈ Vh,k and ∀qh ∈ Qh,k:{
ah(uh, vh) − (ph,∇ ⋅ vh)0,Ω −

(
𝜷ph,Π0

k vh
)

0,Ω = −⟨gD, vh ⋅ nΓD⟩± 1

2
,ΓD

(∇ ⋅ uh, qh)0,Ω + (𝛾ph, qh)0,Ω = (f , qh)0,Ω
(27)

where uN,h ∈ {v ∈ H(div; Ω) ∶ v|E ∈ Vh,k (E) ∀E ∈ h} is a proper function that satisfies

dofe
i (uN,h) = dofe

i (uN), ∀i = 1, … , k + 1 and for each edge e ∈ h, belonging to the Neumann

boundary ΓN .

The problem (27) has unique solution (uh, ph) ∈ Vh,k × Qh,k and, for h sufficiently small, the

following a priori error estimates hold true||p − ph||0 = O(hk+1), ||u − uh||0 = O(hk+1). (28)

Furthermore, the following superconvergence result holds true.

Theorem 3.1 (Superconvergence result). Let ph the solution to (27) and let pI ∈ Qh,k be
the interpolant of p. Then, for h sufficiently small,||pI − ph||0 = O(hk+2). (29)

4 POLYNOMIAL BASIS

In this section, we show different procedures for building some polynomial bases for both Pk (E) and[
Pk (E)

]2
. In the following, the left superscript will denote the underlying polynomial basis used for the

space Pk (E). In particular, we will use the symbol 𝕞 to indicate the scaled monomial basis (10) and

the symbol 𝕢 to refer to the orthogonal basis {𝕢k
𝛼}

nk
𝛼=1 for Pk (E), whose construction will be detailed

in the following. Finally, we will use the symbol 𝕡 to denote a generic polynomial basis {𝕡k
𝛼}

nk
𝛼=1 for

Pk (E).
As mentioned in the previous section, the standard choice for the polynomial basis is the set of

scaled monomials, defined in (10) (see [3, 4, 7]). Orthogonal polynomial bases have already been
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6 of 26 BERRONE ET AL.

introduced in the virtual element literature, since it has been proven that modifying the definition of

internal moments by choosing an L2 (E)-orthonormal basis for Pk (E) can largely improve the reliabil-

ity of the virtual element method for higher order approximations and in the presence of badly-shaped

polygons ([9, 15]).

An efficient procedure for building an L2 (E)-orthonormal polynomial basis for Pk (E) is presented

in [2]. This procedure consists in the application of the modified Gram-Schmidt (MGS) orthogonal-

ization process to the monomial Vandermonde matrix 𝕞VE,k ∈ RNE,Q×nk associated with a quadrature

formula
{(

xE,Q
i , 𝜔

E,Q
i

)}NE,Q

i=1
on a given element E with NE,Q nodes. As suggested in [2, 13], the pro-

cess must be applied twice in order to make the orthonomalization error ||I − 𝕢HE,k|| independent

of the condition number of 𝕞VE,k matrix, where 𝕢HE,k ∈ Rnk×nk is the mass matrix of the resulting

L2 (E)-orthonormal polynomial basis {𝕢k
𝛼}

nk
𝛼=1 for Pk (E).

In particular, the whole procedure defines a matrix LE,k ∈ Rnk×nk on each element E such that

𝕢VE,k = 𝕞VE,k(LE,k)T
, (30)

where 𝕢VE,k is the Vandermonde matrix associated with the new polynomial basis. More precisely,

we first apply the MGS process to the 𝕞VE,k matrix, that is, we define an upper triangular matrix

RE,k
1 ∈ Rnk×nk and an orthonormal matrix QE,k

1 ∈ RNE,Q×nk such that

𝕞VE,k = QE,k
1 RE,k

1 .

Then we apply MGS to the QE,k
1 matrix properly rescaled by quadrature weights in order to obtain an

L2 (E)-orthonormal basis: (
ZE,Q)1∕2QE,k

1 = QE,k
2 RE,k

2 ,

where ZE,Q ∈ RNE,Q×NE,Q
is the diagonal matrix whose diagonal entries are the quadrature weights.

Being LE,k =
(
RE,k

2 RE,k
1

)−T
, we note that

QE,k
2 =

(
ZE,Q)1∕2QE,k

1

(
RE,k

2

)−1

=
(
ZE,Q)1∕2 𝕞VE,k(LE,k)T

=
(
ZE,Q)1∕2 𝕢VE,k

which means that QE,k
2 is the Vandermonde matrix 𝕢VE,k rescaled by the square root of the quadrature

weights, thus,

𝕢HE,k =
(𝕢VE,k)TZE,Q 𝕢VE,k =

(
QE,k

2

)TQE,k
2 = I. (31)

Remark 1. Note that 𝕢VE,k = 𝕞VE,k(LE,k)T
means that the columns of

(
LE,k)T

are the

coefficients that provide each orthonormal polynomial as a linear combination of the

scaled monomials.

4.1 Polynomial bases for
[
Pk (E)

]2

For simplicity, in the following, we will drop the superscript E when no ambiguity occurs. Now, we

introduce some auxiliary matrices that we will use in the following. Let 𝕡


k+1
x , 𝕡


k+1
y ∈ Rnk+1×nk be

the matrices which collect the coefficients of the partial derivatives of {𝕡k+1
𝛼 }nk+1

𝛼=1, that is,

𝜕𝕡k+1
𝛼

𝜕x
=

nk∑
𝛽=1

( 𝕡


k+1
x

)
𝛼𝛽

𝕡k
𝛽 ,

𝜕𝕡k+1
𝛼

𝜕y
=

nk∑
𝛽=1

( 𝕡


k+1
y

)
𝛼𝛽

𝕡k
𝛽 , ∀𝛼 = 1, … , nk+1. (32)

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23144 by G
ioana T

eora - Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino , W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BERRONE ET AL. 7 of 26

Note that, if the MGS basis is used, matrices 𝕢


k+1
∗ can be derived from the (easily computable)

monomial ones 𝕞


k+1
∗ as:

𝕢


k+1
∗ = Lk+1 𝕞


k+1
∗ (Lk)−1 ∀ ∗∈ {x, y},

since, ∀𝛼 = 1, … , nk+1,

𝜕𝕢k+1
𝛼

𝜕∗
=

nk+1∑
𝛽=1

Lk+1
𝛼𝛽

𝜕𝕞k+1
𝛽

𝜕∗
=

nk+1∑
𝛽=1

nk∑
𝛾=1

Lk+1
𝛼𝛽

(𝕞


k+1
∗

)
𝛽𝛾
𝕞k

𝛾

=
nk+1∑
𝛽=1

nk∑
𝛾=1

nk∑
s=1

Lk+1
𝛼𝛽

(𝕞


k+1
∗

)
𝛽𝛾
(Lk)−1

𝛾s 𝕢k
s .

Remark 2. As highlighted in [2], the modified Gram-Schmidt algorithm allows us to

obtain a hierarchical sequence of bases {{𝕢k
𝛼}

nk
𝛼=1}k≥0, that is,

{𝕢k
𝛼}

nk
𝛼=1 ⊂ {𝕢k+1

𝛼 }nk+1

𝛼=1. (33)

As a consequence, we only need to compute Lk+1 and then we can set

Lk = Lk+1(1 ∶ nk, 1 ∶ nk), (34)

being Lk+1(1 ∶ nk, 1 ∶ nk) the matrix obtained from the first nk rows and columns of Lk+1.

Indeed, we define the Vandermonde matrices of both k and k + 1 orders with respect to

the same quadrature formula.

Starting from a generic polynomial basis for Pk (E), as shown in [7], an easily computable basis

{pk
I}

2nk
I=1 for

[
Pk (E)

]2
can be built as

pk
I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
𝕡k

I

0

]
I = 1, … , nk

[
0

𝕡k
I−nk

]
I = nk + 1, … , 2nk

(35)

The Vandermonde matrix pVk ∈ R2NQ×2nk associated with the {pk
I}

2nk
I=1 polynomial basis functions

can be written as

pVk =

[
𝕡Vk O ∈ RNQ×nk

O ∈ RNQ×nk 𝕡Vk

]
, (36)

where

• the top left 𝕡Vk matrix contains the evaluations of the x-components of pk
I for all I = 1, … , nk;

• the top right O matrix contains the evaluations of the y-components of pk
I for all I = 1, … , nk,

that are all zeros;

• the bottom left O matrix contains the evaluations of the x-components of pk
I for all I = nk +

1, … , 2nk, that are all zeros;

• the bottom right 𝕡Vk matrix contains the evaluations of the y-components of pk
I for all I =

nk + 1, … , 2nk.

Note that if {𝕡k
𝛼}

nk
𝛼=1 is an L2 (E)-orthonormal polynomial basis for Pk (E), then {pk

I}
2nk
I=1 is an

L2 (E)-orthonormal polynomial basis for
[
Pk (E)

]2
.
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8 of 26 BERRONE ET AL.

Now, functions belonging to ∇
k (E), as defined in (11), can be written as

g∇,k𝛼 = ∇𝕡k+1
𝛼+1 =

2nk∑
I=1

T∇,k
𝛼I pk

I ∀𝛼 = 1, … , n∇
k , (37)

where T∇,k ∈ R
n∇k ×2nk is the coefficient matrix of gradients of the polynomial functions {𝕡k+1

𝛼 }nk+1

𝛼=2 with

respect to the polynomial basis {pk
I}

2nk
I=1 of

[
Pk (E)

]2
and the corresponding Vandermonde matrix is

gV∇,k = pVk(T∇,k)T
. (38)

Based on definitions (32), the T∇,k matrix reads

T∇,k =
[
𝕡


k+1
x (2 ∶ nk+1, ∶) 𝕡


k+1
y (2 ∶ nk+1, ∶)

]
,

with 𝕡


k+1
∗ (2 ∶ nk+1, ∶) the sub-matrix of 𝕡


k+1
∗ obtained extracting rows from 2 to nk+1 and all

columns.

Now, we can complete a basis k (E) for
[
Pk (E)

]2
by adding the set of functions ⊥

k (E) =

{g⊥,k𝛼 }n⊥k
𝛼=1 defined in such a way (12) is satisfied. As suggested in [7], g⊥,k𝛼 function can be defined as

g⊥,k𝛼 =
2nk∑
I=1

T⊥,k
𝛼I pk

I ∀𝛼 = 1, … , n⊥
k , (39)

where T⊥,k ∈ R
n⊥k ×2nk is the matrix whose rows define an euclidean orthonormal basis for the nullspace

of T∇,k matrix. Thus, by considering the Singular Value Decomposition of T∇,k = U 𝚺(V)T , we can

define T⊥,k as

T⊥,k =
[
V(∶, n∇

k + 1 ∶ 2nk)
]T
, (40)

where V(∶, n∇
k + 1 ∶ 2nk) is the submatrix of V made up of all its rows and of the columns running

from the (n∇
k + 1)-th to the 2nk-th. As a consequence,

T∇,k(T⊥,k)T = O. (41)

The Vandermonde matrix gVk ∈ R2NQ×2nk associated with the basis functions k (E) = {gk
I}

2nk
I=1 =

{g∇,k𝛼 }n∇k
𝛼=1 ∪ {g⊥,k

𝛽 }n⊥k
𝛽=1 reads

gVk =
[

gV∇,k gV⊥,k
]
= pVk

[(
T∇,k)T (

T⊥,k)T
]
. (42)

We define Gk ∈ R2nk×2nk as the mass matrix related to the k (E) basis, whose entries are given by

Gk
IJ = ∫E

gk
I ⋅ gk

J , ∀I, J = 1, … , 2nk. (43)

In matrix form, Gk reads

Gk =
(gVk)T

[
ZQ O
O ZQ

]
gVk

=

[
T∇,k pHk(T∇,k)T T∇,k pHk(T⊥,k)T

T⊥,k pHk(T∇,k)T T⊥,k pHk(T⊥,k)T

]

=

[
G∇,∇ G∇,⊥

G⊥,∇ G⊥,⊥

]
,

(44)
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BERRONE ET AL. 9 of 26

where

pHk =
(pVk)T

[
ZQ O
O ZQ

]
pVk

is the mass matrix related to {pI}
2nk
I=1 basis.

Now, we make the following observations.

1 If we choose the standard set of scaled monomials k (E) as the basis for Pk (E) and we set

1T∇,k =
[
𝕞


k+1
x (2 ∶ nk+1, ∶) 𝕞


k+1
y (2 ∶ nk+1, ∶)

]
= 1U 1𝚺

(1V
)T
, 1T⊥,k =

[1V(∶, n∇
k + 1 ∶ 2nk)

]T
,

it is known that the corresponding 1Gk matrix, that is,

1Gk =

[
1T∇,k mHk(1T∇,k)T 1T∇,k mHk(1T⊥,k)T

1T⊥,k mHk(1T∇,k)T 1T⊥,k mHk(1T⊥,k)T

]
(45)

will be ill-conditioned for high polynomial degrees. Anyway, we want to highlight that,

in this so-called monomial approach, the rows of 1T⊥,k are orthonormal to each other

and are orthogonal to the rows of 1T∇,k with respect to the euclidean scalar product, by

construction.

2 On the other hand, if we choose the MGS basis {𝕢k
𝛼}

nk
𝛼=1, that is, the L2 (E)-orthonormal polyno-

mial basis for Pk (E) introduced in [2], the corresponding mass matrix qHk will be the identity

matrix I. Thus, by setting

2T∇,k =
[
𝕢


k+1
x (2 ∶ nk+1, ∶) 𝕢


k+1
y (2 ∶ nk+1, ∶)

]
= 2U 2𝚺

(2V
)T
, 2T⊥,k =

[2V(∶, n∇
k + 1 ∶ 2nk)

]T
, (46)

the related 2Gk matrix, in infinite precision, is given by

2Gk =

[
2T∇,k I

(2T∇,k)T 2T∇,k I
(2T⊥,k)T

2T⊥,k I
(2T∇,k)T 2T⊥,k I

(2T⊥,k)T

]
=

[
2T∇,k(2T∇,k)T O

O I

]
, (47)

where the last equation is a consequence of property (41). In conclusion, if an

L2 (E)-orthonormal polynomial basis for Pk (E) is used, 2k (E) will be partially

L2 (E)-orthonormalized, since the 2g⊥,k𝛼 functions are a set of L2 (E)-orthonormal functions

and are L2 (E)-orthogonal to 2g∇,k𝛼 functions, but the 2g∇,k𝛼 are not naturally L2 (E)-orthogonal

to each other. We denote this as partial-orthonormal approach.

4.1.1 A full L2 (E)-orthonormal approach

In this section, we will show a procedure that allows to full L2 (E)-orthonormalize the k (E) basis.

For this purpose, we first note from (47) that in order to make ∇
k (E) an L2 (E)-orthonormal set of

functions, it is sufficient to orthonormalize the rows of 2T∇,k matrix defined in (46) with respect to the

euclidean scalar product. In order to do this, we apply only once the modified Gram-Schmidt algorithm

to
(2T∇,k)T

. More precisely, we factorize
(2T∇,k)T

as(2T∇,k)T = Q∇,kR∇,k,

and, then we set

3T∇,k = (Q∇,k)T = L∇,k 2T∇,k, 3T⊥,k = 3V(∶, n∇
k + 1 ∶ 2nk)T , (48)

where 3T∇,k = 3U3𝚺3VT and L∇,k =
(
R∇,k)−T ∈ R

n∇k ×n∇k .
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10 of 26 BERRONE ET AL.

By proceeding in this way, the 3Gk matrix will become the identity matrix. We will call this

procedure as full-orthonormal approach.

Remark 3. It is worth mentioning that in order to orthonormalize the rows of 2T∇,k we

could resort to its computed Singular Value Decomposition (46) and set

3T∇,k = 2V(∶, 1 ∶ n∇
k )T =

(2𝚺(∶, 1 ∶ n∇
k )
)−12UT 2T∇,k,

3T⊥,k = 2V(∶, n∇
k + 1 ∶ 2nk)T = 2T⊥,k.

In this way, we obtain that 3Gk = I, but the SVD process is not hierarchical and, as a

consequence, the set of functions {3g∇,k−1
𝛼 }n∇k−1

𝛼=1 used for defining the internal ∇ dofs is not

L2(E)-orthonormalized for free. As highlighted in [9, 15], this type of change can improve

only the condition number of elemental matrices, but does not ensure to improve the global

performance of the method.

Instead, since the MGS is a hierarchical procedure (see Remark 2), we obtain that the

functions {3g∇,k−1
𝛼

}n∇k−1

𝛼=1
⊂
{3g∇,k𝛼

}n∇k
𝛼=1

(49)

used in the definition of internal ∇ dofs are a set of L2 (E)-orthonormal functions.

5 SOME IMPLEMENTATION DETAILS

In this section, we will show how to compute the local matrices needed for assembling the local system

matrix related to the discrete problem (27) with the aforementioned approaches, following a procedure

similar to the one shown in [7].

5.1 The divergence term (∇ ⋅ uh, qh)0,E
By choosing uh = 𝝋i and qh = 𝕡k

𝛼 , we define W ∈ R
nk×Ndof

E as the matrix whose entries read, ∀i =
1, … ,Ndof

E , 𝛼 = 1, … , nk,

W𝛼i = ∫E
∇ ⋅ 𝝋i 𝕡k

𝛼 (50)

= −∫E
𝝋i ⋅ ∇𝕡k

𝛼 + ∫
𝜕E

𝝋i ⋅ n𝜕E 𝕡k
𝛼

∶= (W1)𝛼i + (W2)𝛼i.

(51)

Since in the monomial and partial-orthonormal approaches we have

𝕡 = 𝕞, ∇𝕞k
𝛼=1g∇,k−1

𝛼−1 ∀𝛼 = 2, … , nk,

𝕡 = 𝕢, ∇𝕢k
𝛼=2g∇,k−1

𝛼−1 ∀𝛼 = 2, … , nk,
(52)

by exploiting the internal ∇ degrees of freedom (18), we have

W1 =

[
O ∈ R

1×Ndof
E

O ∈ R
n∇k−1

×NE,e(k+1) −|E| I ∈ R
n∇k−1

×n∇k−1 O ∈ R
n∇k−1

×n⊥k

]
.
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BERRONE ET AL. 11 of 26

Concerning the full-orthonormal approach, we observe that

𝕡 = 𝕢, ∇𝕢k
𝛼+1 =

2nk−1∑
I=1

2T∇,k
𝛼I qk−1

I =
2nk−1∑
I=1

n∇k−1∑
𝛽=1

(
L∇,k−1

)−1

𝛼𝛽

3T∇,k
𝛽I qk−1

I

=
n∇k−1∑
𝛽=1

(
L∇,k−1

)−1

𝛼𝛽

3g∇,k−1
𝛽 , ∀𝛼 = 1, … , n∇

k−1.

(53)

Thus, thanks to the hierarchical property shown in Remark 3, the W1 matrix becomes

W1 =

[
O ∈ R

1×Ndof
E

O ∈ R
n∇k−1

×NE,e(k+1) −|E|(L∇,k)−1(1 ∶ n∇
k−1, 1 ∶ n∇

k−1) O ∈ R
n∇k−1

×n⊥k

]
.

Concerning the second term in the right-hand side of Equation (51), we observe that the integrand

function is a known polynomial of degree 2k on each edge of E, which can be computed exactly (up

to machine precision) by exploiting the edge dofs (17). Then, the second term W2 reads

W2 =
[(𝕡V𝜕,k)TZ𝜕,Q O ∈ R

nk×(n∇k−1
+n⊥k )

]
,

where pV𝜕,k ∈ RNE,e(k+1)×nk is the Vandermonde matrix related to the polynomials {𝕡k
𝛼}

nk
𝛼=1 and the

boundary quadrature formula

{{(
xe,Q

i , 𝜔
e,Q
i

)}k+1

i=1

}
e∈h,E

defined on 𝜕E, whose quadrature nodes

coincide with the nodes used in the edge dofs (17) and the matrix Z𝜕,Q ∈ RNE,e(k+1)×NE,e(k+1) is the diag-

onal matrix whose non-zero entries coincide with the related boundary quadrature weights properly

arranged.

5.2 Computation of L2 (E)-projection of basis functions of Vh,k (E)

Now, we compute the projection Π0
k 𝝋i of the Lagrangian basis functions of Vh,k (E) in terms of the

k (E) basis, that is, we determine the matrix 𝚷0
k ∈ R

2nk×Ndof
E such that

Πk
0 𝝋i =

2nk∑
I=1

(
𝚷0

k
)

Ii gk
I . (54)

By replacing (54) in the definition (23) of Πk
0 , we obtain, ∀i = 1, … ,Ndof

E , ∀J = 1, … , 2nk,

2nk∑
I=1

(
𝚷0

k
)

Ii

(
gk

I , gk
J
)

0,E =
(
𝝋i, gk

J
)

0,E.

or, analogously, in matrix form

Gk𝚷0
k = B, (55)

where B ∈ R
2nk×Ndof

E is the matrix whose entries are defined as

BJi =
(
𝝋i, gk

J
)

0,E, ∀i = 1, … ,Ndof
E , ∀J = 1, … , 2nk.

Now, as in [7], we split B as

B =

[
B∇

B⊥

]
.
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12 of 26 BERRONE ET AL.

The term B⊥ ∈ R
n⊥k ×Ndof

E , whose entries are

B⊥
𝛼i =

(
𝝋i, g⊥,k

𝛼

)
0,E, ∀𝛼 = 1, … , n⊥

k , ∀i = 1, … ,Ndof
E ,

can be readily computed as

B⊥ =
[
O ∈ R

n⊥k ×(N
E,e(k+1)+n∇k−1

) |E| I ∈ Rn⊥k ×n⊥k
]
,

by exploiting the internal ⊥ degrees of freedom (19).

Regarding the first term B∇ ∈ R
n∇k ×Ndof

E , we note that, ∀𝛼 = 1, … , n∇
k , ∀i = 1, … ,Ndof

E

• in the monomial and in the partial-orthonormal approaches, recalling Equation (52),

B∇
𝛼i = ∫E

𝝋i ⋅ g∇,k
𝛼 = ∫E

𝝋i ⋅ ∇𝕡k+1
𝛼+1

= −∫E
∇ ⋅ 𝝋i 𝕡k+1

𝛼+1 + ∫
𝜕E

𝝋i ⋅ n𝜕E 𝕡k+1
𝛼+1

∶=
(
B∇

1

)
𝛼i +

(
B∇

2

)
𝛼i,

(56)

• in the full-orthonormal approach, evoking Equation (53), we have

B∇
𝛼i = ∫E

𝝋i ⋅ g∇,k
𝛼 =

∑
𝛽

L∇,k
𝛼𝛽 ∫E

𝝋i ⋅ ∇𝕡k+1
𝛽+1 =

(
L∇,k B∇

1

)
𝛼i +

(
L∇,k B∇

2

)
𝛼i.

Since the integrand of the second term of (56) is a known polynomial of degree 2k + 1 on each

edge of E, it can be integrated exactly by exploiting the edge dofs (17). Thus,

B∇
2 =

[(𝕡V𝜕,k+1(∶, 2 ∶ nk+1)
)TZ𝜕,Q O ∈ R

n∇k ×(n
∇
k−1

+n⊥k )
]
.

In order to compute the term B∇
1 , we first note that ∇ ⋅ 𝝋i is a known polynomial of degree k on E.

Then, it can be written as

∇ ⋅ 𝝋i =
nk∑
𝛼=1

𝚲𝛼i 𝕡k
𝛼, ∀i = 1, … ,Ndof

E .

whose coefficient matrix 𝚲 ∈ R
nk×Ndof

E can be retrieved from

nk∑
𝛼=1

𝚲𝛼i ∫E
𝕡k
𝛼𝕡k

𝛽 = ∫E
∇ ⋅ 𝝋i 𝕡k

𝛽 , ∀𝛽 = 1, … , nk, ∀i = 1, … ,Ndof
E . (57)

Equation (57) can be written in matrix form as

𝕡Hk𝚲 = W, (58)

since the term at right hand side of (57) coincides with the definition of the W matrix given in

Section 5.1. We highlight that, in the partial and in the full orthonormal approaches, in infinite

precision, it holds

𝚲 = W.

Finally, matrix B∇
1 is given by(

B∇
1

)
𝛼i = −∫E

∇ ⋅ 𝝋i𝕡k+1
𝛼+1 = −

nk∑
𝛽=1

𝚲𝛽i ∫E
𝕡k
𝛽𝕡k+1

𝛼+1,

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23144 by G
ioana T

eora - Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino , W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BERRONE ET AL. 13 of 26

or, equivalently,

B∇
1 = − 𝕡Hk+1(2 ∶ nk+1, 1 ∶ nk)𝚲 = − 𝕡Hk+1(2 ∶ nk+1, 1 ∶ nk)

(𝕡Hk)−1W.

5.3 The diffusion term aE
h (uh, vh)

The local discrete diffusion term, defined in Equation (26), is the sum of a consistency and a stability

term. Thus, as in [7], we can separately define the consistency matrix

(Ka
C)ij =

(
KΠk

0 𝝋i,Πk
0 𝝋j

)
0,E

and the stability matrix

(Ka
S)ij = K|E| Ndof

E∑
r=1

dofr
(
(I − Πk

0 ) 𝝋i
)
dofr

(
(I − Πk

0 ) 𝝋j
)
.

By writing the tensor K =
[

Kxx Kxy
Kxy Kyy

]
, we define the matrix ZQ,K∗ ∈ RNQ×NQ

as the diagonal matrix

whose non zeros entries are

ZQ,K∗
ii = K∗(xQ

i ) 𝜔
Q
i , ∀i = 1, … ,NQ ∀ ∗∈ {xx, xy, yy}.

Then, the consistency matrix can be computed as

Ka
C =

(
𝚷0

k
)TGk,K 𝚷0

k,

where the matrix Gk,K ∈ R2nk×2nk reads

Gk,K =
(gVk)T

[
ZQ,Kxx ZQ,Kxy

ZQ,Kxy ZQ,Kyy

]
gVk,

that is, Gk,K is the mass matrix Gk related to the basis polynomial basis k (E) of degree k weighted

by the tensor K.

Now, we define the matrix D ∈ R
Ndof

E ×2nk , whose entries are

DiI = dofi(gk
I ), ∀i = 1, … ,Ndof

E , ∀I = 1, … , 2nk.

Matrix D can be split as

D =
⎡⎢⎢⎢⎣

D𝜕

D∇

D⊥

⎤⎥⎥⎥⎦,
being matrices D∇ ∈ R

n∇k−1
×2nk and D⊥ ∈ R

n⊥k ×2nk given by

D∇ = 1|E|Gk(1 ∶ n∇
k−1, ∶), D⊥ = 1|E|Gk(n∇

k + 1 ∶ 2nk, ∶).

Matrix D𝜕 ∈ RNE,e(k+1)×2nk , instead, ∀i = 1, … , k + 1, ∀e ∈ h,E, ∀I = 1, … , 2nk,, reads

D[𝜕]iI = dofe
i (gk

I ) =
(
gk

I ⋅ ne
)
(xe,Q

i ),

or, equivalently,
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14 of 26 BERRONE ET AL.

D𝜕 =
[
Nx Ny

]
gV𝜕,k

=
[
Nx Ny

] [ 𝕡V𝜕,k O ∈ RNE,e(k+1)×nk

O ∈ RNE,e(k+1)×nk 𝕡V𝜕,k

] [(
T∇,k)T (

T⊥,k)T
]
,

where N∗ ∈ RNE,e(k+1)×NE,e(k+1), for all ∗∈ {x, y}, is the diagonal matrix whose diagonal entries are the

∗-component of the normal vectors to the edges of E, properly arranged.

Finally, the stability matrix can be computed as

Ka
S = K |E| (I − D 𝚷0

k
)T(I − D 𝚷0

k
)
.

5.4 The advection term −
(
𝜷ph,Πk

0 vh
)

0,E

The matrix A𝜷 ∈ R
Ndof

E ×nk corresponding to the local advection term

−(𝜷ph, vh)0,E,

∀i = 1, … ,Ndof
E , ∀𝛼 = 1, … , nk, is defined as

A𝜷
i𝛼 = −∫E

𝜷 ⋅ Πk
0 𝝋i 𝕡k

𝛼 = −
2nk∑
I=1

(
𝚷0

k
)

Ii ∫E
𝜷 ⋅ gk

I 𝕡k
𝛼.

Given 𝜷 =
[
𝛽x, 𝛽y

]T
, in matrix form A𝜷 reads

A𝜷 =
(
𝚷0

k
)T(gVk)T

[
ZQ,𝛽x O

O ZQ,𝛽y

][
𝕡Vk

𝕡Vk

]
,

where ZQ,𝛽∗ ∈ RNQ×NQ ∀ ∗∈ {x, y} is the diagonal matrix whose non zero entries are defined as

(ZQ,𝛽∗ )ii = 𝛽∗(xQ
i ) 𝜔

Q
i , ∀i = 1, … ,NQ.

5.5 The reaction term (𝛾ph, qh)0,E
We define the local reaction matrix 𝕡Hk,𝛾 ∈ Rnk×nk as the matrix that collects the terms

𝕡Hk,𝛾
𝛼𝛽 = ∫E

𝛾 𝕡k
𝛼 𝕡k

𝛽 ∀𝛼, 𝛽 = 1, … , nk.

We observe that this matrix is the mass matrix 𝕡Hk related to the polynomial basis {𝕡k
𝛼}

nk
𝛼=1 of degree

k weighted by the reaction coefficient 𝛾 . Thus, in matrix form, we have

𝕡Hk,𝛾 =
(𝕡Vk)TZQ,𝛾 𝕡Vk,

where

ZQ,𝛾

ij = 𝛾(xQ
i ) 𝜔

Q
i 𝛿ij, ∀i, j = 1, … ,NQ.

In conclusion, the local system matrix KE ∈ R
Ndof

E ×Ndof
E for the discrete problem (27) is given by

KE =

[
Ka

C + Ka
S −WT + A𝜷

W pHk,𝛾

]
.
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BERRONE ET AL. 15 of 26

6 NUMERICAL EXPERIMENTS

In this section, we propose some numerical experiments to show the performance of the aforemen-

tioned approaches in terms of the following error norms:

perr =

(∑
E∈h

||p − ph||20,E)
1

2

, (59)

uerr =

(∑
E∈h

||u − Πk
0 uh||20,E)

1

2

, (60)

pI,err =

(∑
E∈h

||pI − ph||20,E)
1

2

, (61)

where the interpolant pI ∈ Qh,k of p is computed locally as

pI =
nk∑
𝛼=1

c𝛼𝕡k
𝛼.

The vector c ∈ Rnk of coefficients is the solution of the following linear least squares problem

min ||𝕡Vkc − y||,
where y ∈ RNQ

is the vector whose entries are the evaluation of p at the internal quadrature points

{xQ
i }NQ

i=1.

We will also analyze the condition number of the main local matrices that allow assembling the

local system matrix, namely Gk, W, B, 𝚷0
k and D. The condition number of a matrix is computed as

the ratio between its largest and its smallest singular values.

For the first two numerical examples, we consider problem (5) on the unit square domain Ω =
(0, 1)2 with

𝜿 =

[
y2 + 1 −xy
− xy x2 + 1

]
, b =

[
x
y

]
, 𝛾 = x2 + y3.

The forcing term, the Dirichlet and the Neumann boundary conditions are set in such a way the exact

solution is

p(x, y) = x2y + sin(2𝜋x) sin(2𝜋y) + 2, (62)

and the set ΓN coincides with the edge of the domain of interest on the x-axis.

In particular, in the first experiment (Test1), we validate the proposed methods showing the order

of convergence of the three monomial, partial and full orthogonal approaches against rising polynomial

degree k, for various mesh refinement levels, on meshes made of squared elements. Then, in the second

test (Test2), we show the performance of the approaches in terms of matrix condition number and error

convergence trends in presence of collapsing polygons in the meshes.

Finally, the last example (Test3) proposes the application of the method to flow simulations in

Discrete Fracture Networks (DFNs). DFN simulations are, indeed, a typical example where highly

distorted mesh elements might appear in the process to generate a conforming mesh [8]. A simple net-

work is here considered, for which an analytic solution is known, in order to compare the convergence

curves of the three different approaches.
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16 of 26 BERRONE ET AL.

6.1 Test1: Convergence rates

In this first experiment, we validate the new approaches by showing that the computational orders

of convergence match the theoretical ones for different values of the polynomial degree k on regular

meshes. At this aim, convergence tests are performed on a sequence of squared meshes that decompose

the domain of interest in 25, 100, 400 and 1600 identical squares, respectively.

Obtained convergence rates are shown in Table 1, while convergence curves of the errors are shown

in Figure 1. In this figure, each row reports the graphs of the three error norms at varying k on a fixed

mesh. The three rows correspond to the last three considered refinement levels, that is, the 100, 400

and 1600 element meshes, respectively. In the figure, the upper bound of y-axis is fixed to 1.0e + 1.

The obtained results show that the rates of convergence related to all three approaches match the

theoretical ones up to polynomial degree k = 5. For higher orders, errors in the monomial approach

start to increase due to ill-conditioning, while both the partial and the full orthonormal approaches

still provide the expected results in terms of errors, up to stagnation due to finite precision arithmetic.

We highlight that, in the partial and full orthonormal approach, the local projection matrices and the

global system matrix are well-conditioned, as we will see in the next tests.

6.2 Test2: Collapsing polygons

Now, we analyze the condition number of local matrices in case of collapsing polygons. For this pur-

pose, we use three meshes of rectangular elements, with elements having aspect ratios of 10, 50, and

100, respectively. We remark that the aspect ratio of an element is here defined as the ratio between

the maximum and the minimum length of its edges. These meshes are built starting from a mesh made

up of 100 identical squares, then subdivided into rectangles with length fixed to the value 0.1, equal

to that of the original square, and a height computed according to the desired aspect ratio value. The

mesh with aspect ratio of 10 originated from this process is shown in Figure 2.

Figures 3, 4 and 5 report the highest value among mesh elements of the condition number of

elemental matrices Gk, W, B, 𝚷k
0 and D, on the three considered meshes. In these figures, we set the

upper bound of y-axis to 1.0e + 20. As shown in these figures, mass matrix Gk, resulting from the

full orthonormal approach, is perfectly well-conditioned, since it corresponds to the identity matrix,

up to machine precision. Moreover, an algebraic growth of the condition number of the mass matrix

obtained with the partial orthonormal approach is observed, whereas conditioning grows exponentially

for the monomial one. More generally, we can observe that the condition numbers of the local matrices

vary in a very limited range in the partial and full orthonormal approaches, as k increases. Instead,

TABLE 1 Test1: Convergence rates on squared mesh.

k 0 1 2 3 4 5 6 7 8

Monomial perr 1.1956 2.4760 3.7464 4.8565 5.9153 6.9456 5.8756 2.4067 1.5749

uerr 0.9947 2.0937 3.1263 4.0877 5.1110 5.9812 3.2093 0.3267 -0.0167

pI,err 1.9417 3.0056 3.9580 4.9588 5.9529 6.9680 5.8761 2.4071 1.5749

Partial perr 1.1956 2.4760 3.7464 4.8565 5.9153 6.9456 7.6064 6.8582 5.1747

uerr 0.9947 2.0937 3.1263 4.0877 5.1110 6.0812 5.4221 3.8693 2.1663

pI,err 1.9417 3.0056 3.9580 4.9588 5.9529 6.9680 7.6098 6.8590 5.1751

Ortho perr 1.1956 2.4760 3.7464 4.8565 5.9153 6.9456 7.9637 8.5476 7.2031

uerr 0.9947 2.0937 3.1263 4.0877 5.1110 6.1058 7.0385 6.0692 4.3635

pI,err 1.9417 3.0056 3.9580 4.9588 5.9529 6.9680 7.9773 8.5484 7.2035
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BERRONE ET AL. 17 of 26

FIGURE 1 Test1: Behaviour of errors (59), (60) and (61) at varying k on square meshes. Pictures on each row refer to a

different mesh refinement level: 100, 400 and 1600 element meshes from top to bottom.

FIGURE 2 Test2: Mesh with aspect ratio 10.
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18 of 26 BERRONE ET AL.

FIGURE 3 Test2: Figure 3a–e show the maximum condition number of local matrices among elements, at varying k.

Figure 3f reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 10.

FIGURE 4 Test2: Figure 4a–e show the maximum condition number of local matrices among elements, at varying k.

Figure 4f reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 50.
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BERRONE ET AL. 19 of 26

FIGURE 5 Test2: Figure 5a–e show the maximum condition number of local matrices among elements, at varying k. Figure 5f

reports the behaviour of the condition number of the global system matrix K, at varying k. Mesh with aspect ratio 100.

the condition number of local matrices grows exponentially in the monomial approach, with the only

exception of matrices W, which exhibit a good conditioning regardless of the case.

Conditioning of matrices obtained with the partial-orthonormal bases appear to be slightly more

affected by increasing aspect ratio values than the corresponding matrices with the full-orthonormal

approach, however, still showing much lower values than the matrices given by the monomial

basis.

Figure 6 reports convergence curves of the error against growing polynomial accuracy k, for the

three considered meshes: top row for the mesh with aspect ratio 10, middle row for aspect ratio 50

and bottom row for aspect ratio 100. Also in this case, the upper bound of y-axis is fixed to 1.0e + 1.

At low values of k, the curves corresponding to the monomial approach are well overlapped with the

curves of partial and full-orthonormal approaches. Furthermore, the maximum value of polynomial

accuracy k for which the monomial approach provides errors in line with the other approaches reduces

as the aspect ratio of mesh elements increases. Finally, error curves relating to the monomial approach

are interrupted at values of k ≤ 6 due to failure of linear algebra libraries (the SparseLU solver of

Eigen) in computing a solution due to ill-conditioning of the global system matrix. Small differences

are instead noticed between the curves obtained with the partial and full orthonormal approaches for

all the considered values of k. We remark that these behaviours are coherent with the corresponding

trends of the condition number of the global system matrices, which are shown in Figures 3f, 4f and 5f

for the three considered meshes. In these figures, the upper bound of y-axis is set to 1.0e + 40. In the

monomial approach, the condition number of the global system matrix K grows exponentially as the

polynomial degree k increases, while the growth in the partial and full orthonormal approaches is linear.

The partial-orthonormal approach however provides condition numbers significantly higher than the

full approach. In Figures 4f and 5f, the curves reporting the behaviour of the global condition numbers

for the monomial approach are interrupted due to the failure of both the MATLAB R2023b routine

condest and the C++ SuiteSparse v7.7.0 klu_condest. This behaviour confirms that using orthonormal
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20 of 26 BERRONE ET AL.

FIGURE 6 Test2: Behaviour of errors (59), (60) and (61) at varying k on rectangular meshes. Each row represents a different

mesh: 10, 50, 100 from top to bottom.

polynomial basis to define the internal degrees of freedom allows to improve the conditioning of the

global system matrix and to obtain more accurate solutions, as noted also in [15].

6.3 Test3: Simulations in discrete fracture networks

In this last example, the application of the proposed orthonormal bases to Discrete Fracture Network

(DFN) problems is presented. Discrete Fracture Networks are obtained as the union of planar polygo-

nal domains with arbitrary orientations in the 3D space and are used to model the fractures in a porous

medium [1]. As fracture thickness is typically orders of magnitude smaller than the other dimensions,

fractures are geometrically reduced to 2D domains, and suitable equations, averaged across fracture

thickness, are derived to describe the phenomena occurring in such domains [14]. Interface equations

are then added at fracture intersections. A major complexity in DFN simulations consists in the genera-

tion of a conforming mesh, for realistic configurations characterized by intricate networks with a large

number of fractures and fracture intersections. A possible strategy for DFN meshing is proposed, for

example, in [8], based on the use of mixed virtual elements: first a triangular mesh is constructed on

each fracture domain, independently of the intersections with the other fractures; then, the elements of

these meshes are cut according to the interfaces, and hanging nodes are added where needed, to obtain
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BERRONE ET AL. 21 of 26

a fully conforming mesh of the whole domain (see [8] for more details). Highly elongated elements

are likely to be generated in this process, such that the standard choice of VEM basis function might

yield badly conditioned problems for high order approximations [12].

An advection-diffusion-reaction problem on a network made up by the union of three fractures Fi
with three intersections Γi, is here considered, namely

F1 = {(x, y, z) ∈ R
3 ∶ −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, z = 0},

F2 = {(x, y, z) ∈ R
3 ∶ −1 ≤ z ≤ 1,−1 ≤ x ≤ 1, y = 0},

F3 = {(x, y, z) ∈ R
3 ∶ −1 ≤ y ≤ 1,−1 ≤ z ≤ 1, x = 0},

Γ1 = {(x, y, z) ∈ R
3 ∶ −1 ≤ x ≤ 1, y = 0, z = 0},

Γ2 = {(x, y, z) ∈ R
3 ∶ −1 ≤ y ≤ 1, x = 0, z = 0},

Γ3 = {(x, y, z) ∈ R
3 ∶ −1 ≤ z ≤ 1, x = 0, y = 0}.

On each fracture, we choose

𝜿i(x̂, ŷ) =

[
1 + ŷ2 − x̂ŷ

2

− x̂ŷ
2

1 + x̂2

]
, bi(x̂, ŷ) =

[
x̂ − ŷ
ŷ − 1

]
, 𝛾i(x̂, ŷ) = x̂3 + ŷ.

where (x̂, ŷ) is a proper fracture-local reference system, and a forcing term and Neumann boundary

conditions are defined in such a way the exact solution on each fracture is:

h1(x, y) = −|x|(1 + x)(1 − x)y(1 + y)(1 − y),
h2(z, x) = −z(1 + z)(1 − z)x(1 + x)(1 − x),
h3(y, z) = y(1 + y)(1 − y)|z|(1 + z)(1 − z).

The same problem is considered in [8] up to order 5. The network and the exact solution are shown

in Figure 7.

FIGURE 7 Test3: Exact solution DFN benchmark problem.
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22 of 26 BERRONE ET AL.

TABLE 2 Test3: Number of cells (Num Cells), minimum aspect ratio (Min AR) and maximum aspect ratio (Max AR) of
mesh cells for the four refinement levels (R0 to R3).

Num cells Min AR Max AR

R0 75 1.41 38.43

R1 246 1.19 62.11

R2 882 1.19 152.11

R3 3294 1.14 215.13

TABLE 3 Test3: Convergence rates on conforming mesh.

k 0 1 2 3 4 5 6 7

Monomial perr 1.1984 2.3292 3.5494 4.6377 5.6597 2.8423 1.8227 −4.7912

uerr 1.0354 1.8430 2.8787 3.9900 4.9328 1.1135 0.6710 −6.5224

pI,err 1.7581 2.6572 3.8542 4.8566 5.8788 2.8333 1.8227 −4.7912

Partial perr 1.1984 2.3292 3.5494 4.6377 5.6633 6.8989 5.7860 −2.8821

uerr 1.0354 1.8430 2.8787 3.9900 5.0341 4.7002 2.8836 −4.0248

pI,err 1.7581 2.6572 3.8542 4.8566 5.8885 6.9844 5.7860 −2.8821

Ortho perr 1.1984 2.3292 3.5494 4.6377 5.6633 6.9237 8.0005 −0.3784

uerr 1.0354 1.8430 2.8787 3.9900 5.0345 6.0422 6.2590 −2.7340

pI,err 1.7581 2.6572 3.8542 4.8566 5.8885 7.0225 8.0005 −0.3784

FIGURE 8 Test3: Figure 8a–e show the maximum condition number of local matrices among elements, at varying k.

Figure 8f reports the behaviour of the condition number of the global system matrix K, at varying k. Coarsest mesh.
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BERRONE ET AL. 23 of 26

FIGURE 9 Test3: Figure 9a–e show the maximum condition number of local matrices among elements, at varying k.

Figure 9f reports the behaviour of the condition number of the global system matrix K, at varying k. Finest mesh.

In this numerical test, we use four refinements of an initially triangular mesh, modified, as men-

tioned above, in such a way that the final polygonal meshes are conforming at the traces. Table 2 reports

the number, the minimum and maximum aspect ratio of mesh elements for the four refinements (R0

to R3).

Table 3 shows the computed convergence rates of errors (59) and (61), for all the three

tested approaches. In each sub-domain, the velocity field is a vector of polynomials of degree

7, such that, for k ≥ 7 only errors related to floating point arithmetic computations are to be

expected.

Figures 8 and 9 report, as previously, the maximum condition number across mesh ele-

ments of the computed local matrices and the trend of the condition number of the global

system matrix as k varies, on the coarsest and finest considered meshes. We can observe that

these data show the same behaviour as in the previous tests. Figure 10 shows error convergence

curves against polynomial accuracy k, for the four considered mesh refinement levels. Pictures

on each row correspond to the same mesh. It can be seen that the curves obtained with the

three approaches are almost indistinguishable for k up to 4 − 5. For higher values errors given

by the monomial approach start growing rapidly due to ill-conditioning, whereas errors given

by partial and full orthonormal approaches still decrease up to stagnation due to finite precision

arithmetic.
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FIGURE 10 Test3: Behaviour of errors (59), (60) and (61) at varying k on conforming meshes. Each row represents a

different refinement, from the coarsest mesh on top to the finest mesh at the bottom.

7 CONCLUSIONS

In this paper, we presented a possible solution to cure the ill-conditioning of system matrix in the

mixed formulation of the Virtual Element Method.

Since in the mixed formulation we need to introduce a discrete local space for both the pressure and

the velocity variable, we have first introduced an orthonormal scalar-polynomial basis in the pressure

space and then we have also orthonormalized the vector-polynomial basis used in the definition of the

degrees of freedom related to the velocity variable.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23144 by G
ioana T

eora - Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino , W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BERRONE ET AL. 25 of 26

Numerical experiments suggest that the introduction of orthonormal polynomial basis in both

spaces allows to improve stability of mixed Virtual Elements for high order applications on distorted

elements.

The additional computational cost for the Ortho and the Partial approaches with respect to the

standard, monomial approach stems from the application of the Gram-Schmidt algorithm. This needs

to be performed twice for the Partial approach and three times for the full-orthonormal approach.

However, its cost is only associated with local quantities, such as the local polynomial degree k and

the cardinality of the employed quadrature formula. Additionally, in the full-orthonormal approach,

this cost is at least partially mitigated by the elimination of the two linear system resolutions, namely

(58) and (55). It is also to remark that, overall, the leading cost is the one related to the resolution of

the global system, that does not increase after the use of the proposed polynomial bases, and may even

decrease due to improvements in the condition number.

It is worth to mention that the methods here suggested to build orthonormal polynomial bases

improve the conditioning of the Vandermonde matrix defined with respect to the quadrature formulas

in the interior of each element E. However, in general, this does not guarantee an improvement in the

conditioning of the Vandermonde matrix defined with respect to quadrature formulas on the boundary

of the elements [10]. Nonetheless, this appears to be sufficient to recover optimal convergence trends

in the considered cases.
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