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Abstract—Network telescopes are ranges of IP addresses with
nothing connected. They are contacted by botnets and scanners
that look for possible victims. Each telescope exposes a partial
view, and merging the information with that coming from other
telescopes is fundamental. Machine learning allows us to build
models to solve classification tasks automatically. However, the
continuous evolution of traffic calls for a continuous update
of such a model. This work explores applying collaborative
Artificial Intelligence solutions via Federated Learning (FL) to
build a global model without sharing the raw (and sensitive) data,
also limiting data exchange. We leverage a two-stage pipeline:
(i) a self-supervised upstream task generates and updates an
incremental compact representation of the senders hitting the
telescope; (ii) such embeddings serve as input for a downstream
classification task to identify possible offenders. We compare the
embedding that a single telescope generates with those obtained
via FL from data collected by multiple telescopes and evaluate
the benefits of the incremental approach. We show that FL can
produce embeddings of better quality than a single network
telescope can, increasing the model accuracy (+6%) and coverage
(+12%) while limiting the amount of data exchanged (from GBs
to MBs).

Index Terms—Federated Learning, Network Telescope, Net-
work Traffic Analysis, Host Embeddings, Privacy.

I. INTRODUCTION

Network monitoring plays a critical role in cybersecurity as
it allows the continuous observation and analysis of traffic to
detect and mitigate potential threats, minimising the risk of
cyber-attacks. The humongous amount and the continuously
evolving nature of traffic reaching networks require the adop-
tion of scalable solutions based on Artificial Intelligence (AI)
to assist network and security analysts in unveiling hidden
traffic patterns and coordinated malicious activities [1], [2].

Network telescopes, or telescopes or darknets, are valuable
monitoring tools made of ranges of IP addresses not hosting
any services [3]. They only receive traffic resulting from
misconfigured services, routine scans or botnet activities. For
this, they represent a privileged point of view for cybersecurity
applications. As such, security providers deploy different net-
work telescopes as sensors. Yet, each telescope offers a unique
but partial view of internet activities [4].

To extract actionable information, a common recent trend
sees the employment of an AI-based 2-stage pipeline [2], [5],
[6] as shown in Figure 1: data arrives to the sensor in batches,
e.g., every day or hour; given a new batch of data, a self-
supervised upstream task updates embeddings, i.e. compressed

representations of input data in a latent space with no need for
ground truth. Such embeddings serve as input to specialised
models to solve specific problems in the downstream tasks.
In fact, the adoption of NLP-based embeddings successfully
enables the identification of new attacks and threats from
network telescopes [2], [7]–[9].

Given each network telescope provides a different view [4],
security providers can benefit greatly from collaboration by
sharing data and intelligence collected by different network
telescopes. However, the volume of network traffic challenges
the sharing of data, where even a small /24 telescope can
observe millions of packets in one day [9]. Furthermore,
there are serious privacy and security concerns associated
with network telescope data, as CAIDA, the provider of the
world’s largest network telescope, points out [10]. In fact,
some providers share telescope data by hashing senders’ IP
addresses [11] which greatly reduces the value of the data.

The recent development of Federated Learning (FL) tech-
niques paves the road for collaborative solutions allowing the
extraction of information across different networks without
requiring the sharing of raw data [12]. FL allows us to learn
a common model by aggregating locally-computed updates.
In addition, the continuous evolution of the attack patterns
calls for a continuous and incremental update of the model.
From this comes the need to incrementally update the model,
which FL naturally favours. In cybersecurity literature, FL
solutions gained traction to limit data sharing and build global
intrusion detection models [13], risk intelligence systems [14],
monitor IoT networks [15], perform DDoS attack detection
and classification [16]. The authors of [17] focus on creating
representations for the occurrence of a handful of malware
activities starting from telescope traffic. Our work differs as
we aim to learn comprehensive representations from network
telescope traffic that fit different downstream tasks.

We adopt the 2-stage pipeline [6] relying on i-DarkVec [2],
an NLP-based methodology to represent senders targeting net-
work telescopes. We extend i-Darkvec to work with multiple
network telescopes through the FL framework [12]. We evalu-
ate the goodness of the produced embeddings by formulating
a sender classification problem. We gauge the benefit of the
FL approach by varying the number and the size of involved
telescopes. Finally, we test the improvement obtained by a
continuous incremental update of the embedding.

Results show that the FL collaboration between multiple
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Fig. 1: Incremental two-stage pipeline for temporal analysis.

telescopes allows us to improve both the i) quality and
ii) coverage of the AI pipeline: we obtain a better model
which extends the visibility of each telescope thanks to the
information provided by other telescopes. Fundamental to this
is the ability to continuously and incrementally update such
models.

II. NETWORK TELESCOPE TRAFFIC

In this work, we rely on data collected from two network
telescopes. The first one is a /24 network telescope situated in
our university campus network, and the second one is a /19
network telescope operated in a Brazilian academic network.

We collect one month of network telescope traffic, from
2021-05-01 to 2021-05-31, observing more than 64 million
packets sent by 532 thousand senders in the /24 network
telescope and more than 1.5 billion packets sent by 3 million
senders in the /19 one. We remove from the original collection
senders sending less than 5 daily packets [2], retaining 15%
and 30% of the observed senders in the /24 network telescope
and the /19 one respectively.

a) Supervised Task and Ground truth: As supervised
downstream task, we perform a host classification assigning
senders to known classes characterised by coordinated be-
haviours. We leverage a ground truth representing classes of
senders whose coordination is known a priori relying on two
data sources: (i) the presence of fingerprints of Mirai-like
malwares observed in received packets [18], and (ii) publicly
available information retrieved from online repositories of
acknowledged internet scanners1 – i.e. non-hostile senders
performing scanning activities. The final ground truth has 13
classes covering ≈ 13 thousand (≈ 23 thousand) of the senders
observed in the whole month within the /24 network telescope
(/19 network telescope). We mark all the remaining senders
Unknown, ending up with a highly unbalanced ground truth
– e.g. thousands of senders exhibit the Mirai-like label, while
only hundreds or dozens belong to classes of acknowledge
scanners.

b) Sampling subnets: When investigating the potential of
FL approaches in different scenarios, we design experiments
relying on network telescopes of different sizes. We consider
our campus telescope as the provider d1, and mimic different

1https://gitlab.com/mcollins at isi/acknowledged scanners

network telescopes by splitting addresses of the /19 Brazilian
network telescope into sub-telescopes. Namely, we extract
multiple non-adjacent subnets whose size ranges from /20 to
/28. We refer to one of the sampled /24 network telescopes as
d2 when 2 providers are involved.

Next, we investigate the performance of the collaborative
embeddings in a downstream supervised classification task.

III. LEARNING FEDERATED HOST EMBEDDINGS

We generate host embeddings through state-of-the-art ap-
proach i-DarkVec [2], which relies on Word2Vec [19] and
incremental training. We assume that the reader is familiar
with Word2Vec. We consider the traffic collected by a network
telescope which receives traffic from external hosts, or senders
identified by their IP addresses. Our goal is to identify some
common patterns and even coordinated attacks groups of
senders contribute to, e.g., coordinated botnets or network
scanners. Given a batch of packets, we extract the sequences of
senders that send packets to the same TCP/UDP ports. Analo-
gously to NLP, senders represent “words”, and their sequence
represents “sentences”. We feed the generated sequences as
input to Word2Vec to produce senders’ embeddings. This
process projects the senders in a latent space such that senders
co-occurring in time when targeting similar ports appear close
in the latent space.

Formally, given a vocabulary of senders V =
{v1, v2, v3, . . .} and the sequences of packets they send,
i.e. the corpus C, we map each entity v ∈ V → u ∈ RE

where u is the embedding of v in the E dimensional space.
The function e : V → RE is the embedding function (i.e.
Word2Vec) that we train by giving in input the corpus C in a
self-supervised manner using the masked language technique.
Finally, given the function e, let X = [e(v)]v∈V be the matrix
of embeddings for all senders in V , i.e., X ∈ R|V |×E .

We call the scenario in which we generate embeddings from
a single network telescope local approach.

A. Incremental update of the embeddings

Given the telescope continuously collects packets over time,
we propose to leverage an incremental learning approach to
continuously update the embeddings: Instead of retraining
from zero the Word2Vec model each time we have new data,
we perform a model update by fine-tuning for just 1 epoch the
model with the new batch of data. In detail, at each timestep
ti+1, we obtain a new batch of data from which we generate a
new corpus and incrementally update the embeddings starting
from the weights computed at the ti timestep. This strategy
speeds up the embeddings learning and lets the system weigh
newer information automatically.

This requires updating the vocabulary and modifying the
neural network topology. In fact, at each epoch, the telescope
observes possibly new senders. This makes the vocabulary
grow and implies the addition of a new neuron for each new
sender in the input and output layers2.

2As required by the Word2Vec One-Hot-Encoding of the words [19]
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Fig. 2: Overview of the adopted collaborative approaches.

B. Federated approach

To extend i-DarkVec to multiple networks, we rely on
the idea of FedAvg [12], an efficient FL algorithm allowing
distributed training among a large number of clients3. In
FedAvg, a central server distributes model parameters to the
clients and aggregates their updates. We provide an overview
of the FL approach in Figure 2a.

Given a set of network telescopes D (the providers), each
provider d ∈ D generates the corpus Cd according to the
traffic it observes, updates its local embedding function ed and
generates the local embedding matrix Xd ∈ R|Vd|×E , where
Vd is the local vocabulary. Then, the central server receives
the local models ed and vocabularies Vd. The server aggregates
the local models into a federated model that can be applied
on any sender observed in at least a vocabulary. In formulas,
the server aggregates the functions e1, . . . , e|D| into a new
function e :

⋃
d Vd → RE . Finally the server sends back e

to each provider. Notice that now, for each provider d, after
the aggregation, ed = e. This update procedure repeats for
multiple rounds.

We use as the aggregation function a weighted average
between the local embeddings produced by each provider.4

Notice that some local embeddings might not be defined
for some providers. The weighted average is only performed
among defined embeddings.

Formally, we define the final federated embedding for a host

3In our case, a client is a network telescope, which acts as a provider.
4Notice that in Word2Vec the produced embeddings are the learnable

weights matrix between the input and the hidden layers.

v ∈ ⋃
d Vd as

e(v) =

∑
d:v∈Vd

wv,d · ed(v)∑
d:v∈Vd

wv,d

where wv,d ∈ R is the weight referred to the local embeddings
of sender v observed in network telescope d.

Note that this entails the definition of a common vocabulary
and a consequent modification of the global neural network
topology. In fact, each provider observes a different and
growing set of senders, and thus a different vocabulary. The
server receives each client changes, computes and redistributes
the global vocabulary Vtot =

⋃
d Vd and the new neural

network topology where a new neuron is added for each new
element in the vocabulary at the input and output layers.

The frequency of senders appearing in the corpus causes
their embeddings to be updated at different rates. To account
for this, we use a network-wise weighting scheme: Observing
more senders means acquiring more information, we aggre-
gate the local models favouring the embeddings produced by
providers that have larger telescopes. Namely, we compute
a unified weight to all the senders active in a telescope d
as the size of the local vocabulary Vd. Thus, for each host
v ∈ Vd the weight is equal to wv,d = |Vd|. Note that for those
v ∈ Vtot, v /∈ V (d) we consider ed(v) = {0}.

C. Centralised approach

We compare the FL solution with a centralised approach
baseline overviewed in Figure 2b. Here, each provider d ∈ D
builds its local corpus Cd and sends it to a central server.
The server obtains the centralised corpus as the concatenation
of the corpora of each provider, C =

⋃
d∈D Cd. The server

produces the final collaborative embeddings by training or
updating e with the sequences of senders appearing in C.

IV. SUPERVISED CLASSIFICATION TASK RESULT

A. Methodology

Motivated by the assumption that high-quality embeddings
can project senders of the same class (i.e. belonging to one
of the coordinated groups of the ground truth) into adjacent
regions of the latent space, we perform our downstream
classification task relying on a simple k-Nearest-Neighbours
(k-NN) classifier. It assigns each sender to the most frequent
label through majority voting among the classes of the k
nearest neighbours in the embedding space. Thus, the more
compact the regions of embeddings of senders engaged in
similar activities, the better the classification performance. We
use cosine distance to measure distance among embeddings.

We account for the lack of ground truth by adopting a
Leave-One-Out validation approach on the senders active in
our collection. We use the Marco average F1-score to address
the unbalancing among ground truth classes. Since we cannot
verify the characteristics of the Unknown senders, we consider
them in k-NN computation only but do not report classification
metrics for such a class. We set k = 7 for the k-NN classifier
and we set all the other hyperparameters consistently with the



TABLE I: Macro F1-Score and covered senders for the k-NN
classifier applied on the host embeddings generated through
different approaches.

Local Collaborative SupportCentralised FL

d1 0.86 0.89 0.89 13 126
d2 0.83 0.90 0.90 13 825

d1 ∪ d2 – 0.89 0.89 16 560

validation reported in [2]. We partition our one-month dataset
into 31 daily batches. For each batch, the FL approach involves
only one round of aggregation. At each round, we update local
models starting from the previous model (incremental update)
for 1 epoch. We set the embedding size E = 200.

B. Two /24 network telescopes

In Table I we report the average F1-Score for the senders
active in our collection. We consider a scenario where there
are 2 providers d1 and d2, each with a /24 telescope. We report
the metrics when considering
• Local: test only the senders active in each considered
network telescope (d1 and d2); the embeddings are generated
without collaboration;
• Centralised: test only the senders active in each considered
network telescope; the embeddings are generated with the
centralised approach;
• FL: test only the senders active in each considered network
telescope; the embeddings are generated with the FL approach;
• Joint: the the whole set of senders observed in both the
networks (d1 ∪ d2); Embeddings are generated collaborating
with centralised and FL approaches.

Performance benefit. Firstly, focus on the senders of the
two network telescopes separately. Both the Centralised and
FL approaches achieve good performance (≥0.89 of average
F1-Score in both providers) improving the local embeddings
generation (F1-Score of 0.86 in d1 and 0.83 in d2). When
focusing on the full set of observed senders (d1 ∪ d2), the FL
results are in line with the centralised ones, resulting in an
average F1-Score of 0.89.

Coverage benefit. As at least 5 daily packets are needed
to generate an embedding for a sender, the majority of the
senders are deemed inactive. Since scanners and botnets target
different telescopes with different intensities [4], some senders
may be inactive in one telescope and be active in another one.
Thus, building a single common model and vocabulary extends
the embeddings to include more active senders independently
from which telescope they are active, i.e. extending the support
(last column). In fact, the federated setup allows thus the
providers to build an embedding for about 3 000 additional
senders compared to the ones locally observed for both d1 and
d2, i.e., extending the support to include 14.77% and 12.25%
more senders in d1 and d2 respectively.

In a nutshell, FL not only improves the embedding quality
but it also allows to building of embeddings for more senders
thus extending the support.

TABLE II: Macro F1-Score and covered senders for the
classifier applied on the host embeddings without incremental
training.

Local Collaborative SupportCentralised FL

d1 0.56 0.66 0.61 2 299
d2 0.59 0.73 0.66 2 186

d1 ∪ d2 – 0.65 0.60 2 839

/20 /21 /22 /23 /24 /25 /26 /27 /28
d2 size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

F
1-

S
co

re

Local
Centralised
FL

Fig. 3: Classification performance on d2 of traffic observed by
the /24 d1 and a varying size d2.

C. Benefit of incremental training

In Table II we report the performance when the incremental
training is disabled. In this case, we train the embeddings from
scratch only using the current batch of data, without benefitting
from the previously accumulated knowledge represented by
the previously learnt weights (trained over the 30 previous
batches of data). With no incremental learning, each provider
is only able to create embeddings for a few thousand senders.
Also, the k-NN classifier performance is rather poor: the F1-
Score drops to less than 0.6 in the local scenario. Collaboration
cannot compensate the degradation in performance.

In a nutshell, the adoption of an incremental and continuous
learning approach lets the embedder accumulate information.
This produces a more informative representation and extends
the coverage to more senders (including those that have been
seen active in at least one batch of data in the past).

D. Two network telescopes of different sizes

In Figure 3 we evaluate the downstream classification task
performance when the two telescopes are not equally sized.
We consider the same /24 network telescope d1 and vary the
size of d2 from /20 to /28. The vertical dashed line represents
the case of Table I where the two telescopes have equal size.

Performance benefit. The benefits obtained by the larger
network (leftmost part of Figure 3) show only marginal
improvement compared to the local embeddings. Conversely,
focusing on the benefits obtained by the smaller network, we
observe substantial benefits from the collaborative approaches,
resulting in a noticeable F1-score gain compared to the local
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baseline. As illustrated in Figure 3, when the network tele-
scope is extremely small (e.g./27 or /28) it heavily relies on the
knowledge brought by the larger network telescope obtaining
high-quality embeddings (F1-Score gain > 0.3 in d2).

Coverage benefit. In Figure 4 we report the extended
coverage due to the collaborative approaches. Overall, the
sharing of information creates embeddings for more senders
than the local approach, when collaborating with a network
telescope of the same size, the coverage extends 12%. We
highlight that smaller network telescopes strongly benefit from
the federated setting. Thanks to the broader point of view of
the /24 network, the embeddings coverage increases by 34%
up to 123% when d2 is a /28 network. The /24 d1 telescope
obtains similar benefits when federating its model with a larger
d2 telescope (not reported here for brevity).

E. Multiple network telescopes

Next, we evaluate the performance of the FL approach with
multiple providers (i.e. network telescopes). We consider N
network telescopes of the same size and report the resulting
F1-Score in Figure 5. In this experiment, we extract all the
network telescopes from the Brazilian network telescope by
extracting equally spaced subnets. When all the providers
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Fig. 6: Classification performance of traffic observed by the
/24 d1 and a /24 d2, with different embedding sizes.

observe a sufficient amount of traffic to generate meaningful
embeddings locally (e.g./24 or /25 network telescopes) the col-
laborative improves the quality of embeddings as reflected by
the improved F1-Score. Interestingly, /26 or smaller network
telescopes do not accumulate enough data to produce robust
embeddings. Their collaboration is less beneficial in this case.

V. QUANTIFYING THE EXCHANGED INFORMATION

Both the FL and centralised approaches require the
providers to share information with the central server. In this
section, we estimate the amount of exchanged data.

A. Centralised scenario

In the Centralised approach each provider d shares all its
data with the server. This results in hundreds of MB being
sent. Even just sharing necessary features (in our case source
IP addresses, timestamps and destination ports) amounts to
33.5 MB of data to be sent on average for each batch for
a /24 subnet. Sharing the raw packet trace would cost about
5GB of data being exchanged5.

Considering our specific case, each provider could share
only the corpus Cd (i.e. the sequence of senders as they
target specific ports) to train the Word2Vec model in the
central server. In this case, the volume of exchange data
is proportional to the amount of observed traffic. Formally,
INd = |Cd| · s, where s denotes the size of the identifier of
an IP address (i.e. 32 bits). On the last day of our collection,
the /24 network telescope d1 observes ≈ 2.5 million packets,
resulting in an exchange of INd1

= 5.3 MB of data.

B. Federated learning approach

In the FL solution, each provider d transmits its vocabulary
Vd and two embedding matrices sized |Vd| × E each6. Thus,
the amount of exchanged information by provider d is IFL

d =

5Notice that in certain scenarios, such as Distributed Denial of Service
(DDoS) attacks, the large number of sent packets might increase significantly
resulting in higher information exchange.

6The first is the actual embedding matrix Xd defined in Section III, while
the second is used for negative sampling [19]



|Vd| · (2E · f + s), where f denotes a floating-point number
size (i.e. 64 bits). On the last day of the collection, network
telescope d1 observes ≈ 9 thousand senders. With E = 200,
this results in an exchange of IFL

d1
= 27.8 MB of data.

In [2] the embedding size is set to E = 200 through a
sensitivity analysis, given the transmitted information can be
substantially reduced through a small embedding size, here we
investigate if FL allows to reduce the embeddings size.

We report in Figure 6 the impact of E on classification
performance. In line with [2], larger embeddings can better
represent the information leading to an improved performance
(F1-Score > 0.82 with E = 200 for both local case and with
FL). Overall, for embeddings whose size is in the [50, 200]
range, the impact of E becomes marginal and the FL ap-
proach leads to consistent F1-Score improvement. Conversely,
embeddings smaller than E = 50 do not represent enough
information, degrading the classification performance – e.g.
F1-Score < 0.77 for local d1 and d2 embeddings with E = 10.

By reducing E, the benefit of collaborating is even more
evident: With E = 50 only 7.0 MB of data is exchanged,
yet achieving 0.88 of F1-score. Compared to the 5GB of raw
traffic data, FL guarantees a significant reduction in the data
exchange cost.

Notice that in our use case, the adoption of an FL approach
introduces a marginal delay in the update of the embeddings
(which finishes in one round) and thus on the classification
task.

C. Privacy consideration

Notably, even though the Centralised approach only requires
sending the preprocessed traffic, i.e. the corpus, to the server,
it still entails sharing sensitive information.

In detail, the corpus reports (i) the actual amount of traffic
directed at the provider’s network telescope, (ii) the temporal
co-occurrence of senders generating this traffic, (iii) unveils
the presence of possible infected machines7. Furthermore, if
the data are leaked to attackers, they will be able to locate the
IP addresses of telescopes so that they can avoid these ranges
in future activities, rendering network telescopes ineffective
for their purpose.

Conversely, the embeddings shared through the FL approach
are simply numerical representations of observed senders.

VI. CONCLUSIONS

In this paper, we presented an exploration of incremental
federated learning solutions for generating self-supervised host
embeddings from darknet traffic analysis. We embrace a 2-
stage pipeline and extensively evaluate Centralised and FL
collaborative solutions.

Overall, our work underscores the potential of FL and incre-
mental learning as a valuable tool in the analysis of network
traffic. Future works should encompass a more comprehensive
exploration of FL adaptation in traffic analysis. Additionally,

7Because some viruses and worms involve the installation of backdoors
that provide unfettered access to infected computers, telescope data may
inadvertently advertise these vulnerable machines

there is the possibility of extracting information from diverse
sources beyond darknet traffic, such as honeypot data. Finally,
the embeddings generated from different providers can find
applications in other downstream tasks like clustering and
anomaly detection.
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