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Abstract The damage process in structures with quasi-brittle behavior, such as 
concrete, rocks, ceramics, and composites, is characterized by typical phenomena 
including sensitivity to size effect, the interaction of micro-fissures, and the 
transition of the continuum to discontinuity through the so-called localization effect. 
There are many approaches to modeling the mechanical behavior of this type of 
material/structure. Our simulation strategy, which is a version of the discrete 
element model, aligns with Prof. Krajcinovic's perspective. According to him, the 
random nature of the material is a key aspect that must due to consider. With the aim 
of addressing this problem, the Acoustic Emission Technique (AET) could also be 
useful to characterize the damage process. The spatial and temporal distribution of 
events during the damage process is determined by the combination of signals 
captured from different locations in the structure. This information can be used to 
calculate global parameters and their evolution during structural damage. These 
parameters may serve as precursors to identify local or global damage. It is worth 
noting that structure failure can be viewed as a phase transformation phenomenon. 
The Renormalization Group Theory, proposed by Wilson, and Anderson's ideas 
related to complex systems provide a theoretical perspective that allows us to 
understand the collapse in solids from a different angle. The present work considers 
some applications related to the characterization of the damage process of quasi-
brittle structures/materials, carried out by our research group. We aim to establish a 
link between these results and the ideas of Wilson and Anderson. 

Keywords: Acoustic Emission Technique, Discrete Element Method, critical 
phenomena 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rti

cl
e:

ht
tp

s:
//w

w
w

.n
dt

.n
et

/?
id

=2
97

11

e-Journal of Nondestructive Testing - ISSN 1435-4934 - www.ndt.net

https://doi.org/10.58286/29711

https://creativecommons.org/licenses/by/4.0/


2 

1. Introduction

The damage process in quasi-brittle materials, such as concrete, rocks, ceramics, and 
several artificial composite materials, is characterized by the interaction among a cluster of 
micro-cracks, localization effect, and size effect. The way to the collapse system is 
governed by the damage in these materials. Many researchers have studied the damage 
process and found interesting results within the continuum mechanics theory using the 
plasticity framework. An example of this approach can be found in the classical book by [1] 
and the revised edition by [2] and [3]. An alternative perspective considers the value of 
incorporating the random nature of material properties and using Discrete Methods as 
alternative strategies. The technical literature offers several Discrete Element approaches, 
including two literature review papers [4], [5].  

To solve the problem, considering the mechanical collapse governed by fracture as a 
phase transition problem could be interesting. This approach is commonly used in 
Statistical Physics, as presented in classical books such as [6]. Many prestigious researchers 
in Solid Mechanics also support this point of view, including [7], [8], and [9]. 

As an example of phase transition problems, it is possible to cite the state change from 
solid to liquid or from ferromagnetic to paramagnetic at characteristic temperatures. In 
these problems, the phase transition occurs at a critical temperature and the function 
governing this process near this critical value exhibits a particular behaviour. In the 
theoretical framework of statistical physics, this parameter is referred to as the control 
parameter (CP). On the other hand, another typical parameter is the 'Order Parameter' (OP), 
a global parameter that changes significantly when the CP reaches its critical value. The OP 
represents the density in the change of state transition problem and the magnetization in the 
other example cited. The interesting point of this approach is that when the system is close 
to the critical CP, the parameters that govern the system follow a potential law with 
characteristic exponents. The physical interpretation of this fact is related to the fact that 
close to the situation when the phase transition happens, the phenomenon studied doesn´t 
depend on the boundary conditions and geometry of the specific problem analysed.  

The normalization group method proposed by [10] explains this universal behavior. The 
practical implication of this characteristic behaviour, in the context of the failure of 
materials, implies that when the system is close to the local or global collapse during its 
damage process, the global parameters that govern the system follow potential laws with 
characteristic exponent. Then, when these global parameters adopt a potential shape with a 
characteristic value, the global or local collapse is imminent.  

In [8], a statistical distribution of seismic magnitudes in Japan between 1985 and 1998 
is plotted on a log-log axis, revealing a potential law between the number of events and 
their magnitude. If the entire interval is plotted, a potential expression with an exponent of 
0.88 is clearly visible, as depicted in Fig. 1(a). However, reducing the time interval close to 
a significant seismic event results in an exponent of 0.6. In this case, the interval used to 
compute the time close to the collapse was [0,100 days]. Within this time window, the 
statistical distribution of seismic magnitudes is defined by a potential law with an exponent 
of 0.6. Figure 1(a) illustrates this phenomenon, which was originally presented in [8] and 
adapted in this work. 

In the present work two applications are investigated by using the AET. In the first one 
the Discrete Element Method is employed in order to simulate a plate under pure shear 
loading. The second application involves an experimental test of a cracked basalt specimen. 
Acoustic Emission data is simulated/measured and global parameters are computed in both 
applications.  
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        (c) 
Figure 1: (a) The relation between the events statistical distributions during the seismic evolution in Japan vs their 
amplitude in the period of [1985-1998]. The exponent change from 0.88 when all the period is considered to 0.6 when a 
period close to the main shock (day 0) is considered. (b) and (c) the map of Italy with the position of Aquila place where a 
strong earthquake happen in 2009, and the b value evolution obtained using the seismic information of this region. Notice 
that close before a great activity happen the b value decrease. 

2. Tools used in the Analysis

In the following the Acoustic Emission technic and the Discrete Element method used
in the simulations are briefly described. 

2.1 Acoustic emission technique  

The acoustic emission signal allows for the capture of the spatial and temporal distribution 
of events associated with mechanical changes in the studied body through sensors placed 
on its surface. A key resource for Acoustical Emission techniques applied to quasi-fragile 
materials is [11], which is among the extensive technical material developed on this topic 
over the last sixty years. The researchers proposed several alternatives for computing global 
parameters using signal information. The most classical method, originally used in 
seismological applications, was proposed by Gutenberg & Richter and presented in [12]. 
This law proposes a relation between the number of events (N) and the signal amplitude 
(A), which can be expressed as follows: 

�(≥ �)  ∝ ��� (1)

(a) (a) 
(b)
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where � is the cumulative number of events and � is the signal amplitude. The physical 
meaning of � is discussed in [13]. According to Eq. 1, most events produce signals with 
small amplitudes. As damage progresses, localization effects occur, and the events 
preferentially emanate from the micro crack cloud, resulting in macro crack nucleation. In 
this cases the b value decreases. An example of the practical application of the value b is 
presented in Cotugno [14], considering the seismic activity of the Aquila region in Italy, 
Fig. 1(b). Analysis of the b-value over time, Fig. 1(c), shows that close to significant 
earthquakes the b-value decreases. The b value computation is schematically illustrated in 
Fig. 2(a) using the approach proposed by Gutenberg Richter [12]. 

In addition, in this paper it is computed a precursor index proposed by Debsky Pradhan 
and Hansen [15], named DPH index in the following. This index involves carrying out a 
temporal derivative of a measured elastic energy during a test. The index was investigated 
through numerical simulation in reference [15]. 

The schematic description of the DPH index computation proposed in Hansen in [15] is 
presented in Fig 2(b). 

Figure 2: (a) An example of device record vs time, the AE signal statistical density and the accumulated number of 
signals with the axis in log-log scale where the b value coefficient presented in Eq. 1 appear. (b) The DPH index, 
represented in schematic form by the red curve. 

2.2 The Lattice Discrete Element Method (DEM) 

In the present DEM formulation, solid bodies are modelled by means of an arrangement of 
nodal lumped masses interconnected by massless uniaxial elements able to carry only axial 
loads. Nayfeh and Hefzy [16] determined the properties of an orthotropic elastic continuum 
equivalent to an arrangement of axial elements, consisting of a cubic cell with nine nodes, 
as shown in Fig. 3(a). This representation of an orthotropic continuum was adopted by 
Riera [17] to solve structural dynamic problems. The mass is concentrated at nodal points, 
each of which has three degrees of freedom (the displacements in the three orthogonal 
coordinate directions). For the basic geometric arrangement used herein, the lengths of 
longitudinal and diagonal elements are L� and L� = �3L/2 , respectively. The equations that 
relate the equivalent elements stiffness and the properties of an isotropic elastic solid are 
presented as follows,  

��� = ����, ��� =
���√�

�
, (2)

where Young’s module is denoted by �, � is the length of longitudinal elements, � = (9 +
8δ)/(18 + 24δ) and δ = 9ν/(4 − 8ν)  are coefficients that relate the parameters, defined 
for longitudinal and diagonal elements, with the linearly elastic solid properties. Poisson’s 
coefficient ν appears in the definition of factor δ. The DEM model used herein is 
completely equivalent to an isotropic elastic solid when � = 0.25. The spatial discretization 
results in N equations of motion, in which internal material damping is assumed a linear 
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function of the velocities of nodal masses. The resulting equations of motion may be 
written in the well-known form, 

��̈ + ��̇ + ��(�) − �(�) = � (3)

where � represents the vector of generalized nodal displacements, �̇ denotes the temporal 
derivative of �, � the diagonal mass matrix, � the damping matrix, both assumed 
diagonals, ��(�) the vector of internal forces acting on the nodal masses and �(�) the 
vector of external forces. Obviously, if � and � are diagonal, Eq. 3 is not coupled. 

Figure 3: View of basic DEM model: (a) the basic cubic module, (b) Constitutive law adopted for DEM uniaxial 
elements.

For fracture analysis, the softening law for quasi-brittle materials proposed by 
Hillerborg [18] was adopted. It is thus assumed that the force-strain relation for elements 
subjected to tension is defined by the triangular constitutive relationship presented in 
Fig. 3(b), which allows accounting for the irreversible effects of crack nucleation and 
propagation. The area under the force vs. strain curve (the area of the triangle OPR) is 
related to the energy density necessary to fracture the area of influence of the element. 
Thus, for a given point P on the force vs. strain curve, the area of the triangle OPQ 
quantifies the energy density dissipated by damage. Once the damage energy density equals 
the fracture energy, the element fails and loses its load carrying capacity. On the other 
hand, under compression the material was assumed linearly elastic. Thus, failure in 
compression is induced by indirect tension.  

Constitutive parameters and symbols are defined below: the element axial force � 
depends on the axial strain �. An equivalent fracture area ��

∗ of each element is defined in 
order to satisfy the condition that the energy dissipated by fracture of the continuum and by 
its discrete representation are equivalent. With this purpose, fracture of a cubic sample of 
dimensions � × � × � is considered. The energy dissipated by fracture of a continuum cube 
due to a crack parallel to one of its faces is � =  ��� = ����, in which � is the actual 

fractured area, i.e., ��. On the other hand, the energy dissipated when a DEM module of 
dimensions � × � × � fractures in two parts consists of the contributions of five 
longitudinal elements (four coincident with the module edges and an internal element) and 
four diagonal elements.  

The strains ε� and ε� (see Fig. 3(b)) are related to another material parameter, the 
characteristic length d��, by means of the equations, 

ε� = �
��

����
 ,  ε� = ε���� �

��
∗

��
� �

�

��
�, (4)

in which A∗ denotes the equivalent fracture area of each element defined to accomplish that 
the energy dissipated by fracture of the continuum and by its discrete representation are the 
same. The subindex � identifies the type of element referenced (diagonal or normal). 
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Unstable fracture propagation, requires that the characteristic length of the structure, ���, 
should be exceeded. The characteristic length is especially relevant because it represents 
the minimum crack dimension for an unstable fracture to start unstable propagating. d�� 

could be relate to the dimensionless stress brittleness number, s, proposed by Carpinteri 
[19] defined as s=[(GcE/d)0.5/p]. Where � represents the structure’s characteristic length 

and �� is the failure stress. Combining the expression of p presented in (4) and considering 

p=Ep , it is possible rewrite s as s=(deq/d)0.5. These relations are discussed in more detail 
in [20] and [21]. 
 
3. Applications  

3.1 First application: AE events from a simulated fracture process using DEM 

As a first application, we evaluate the proposed DEM approach through a simulated test. 
The test involves the fracture process of a square plate subjected to prescribed 
displacements, inducing a nominally homogeneous pure-shear load with linearly increasing 
amplitude. We evaluate the corresponding damage process through virtual AE events 
generated by the acceleration waves induced within the structure as cracks occur.  

This simulation refers to a concrete-made, 316 mm-long, and 36 mm-thick square plate, 
shown in Fig. 4(a) with its prescribed boundary conditions. The figure also includes the 
positions of virtual AE sensors, simulating accelerometers aligned with the direction 
normal to the plate’s median plane. The corresponding DEM model comprises 79 × 79 × 9 
cubic cells, with �� = 4 mm.  

In Table 1, deq=0.022 m was obtained by assuming t=10MPa as p, Gf=70N/m, 
E=32GPa, and d=0.316m. In this case the stress brittleness number proposed by Carpinteri 
could be computed as s=0.27, and combining d and s could be used to compute deq.   

For the random field, the DEM elements’ coefficient of variation is determined 
according to [22], which has shown that CVGfsolid=CVGf/2.5 for the DEM’s cubic 
arrangement. Thus, CVGfsolid=100%/2.5=40% in the present case. The correlation lengths 
lcx, lcy, lcz are considered equal to the cubic module’s side. Random mesh variability is also 
introduced as normally-distributed perturbation with CVp=2.5%. The introduction of 
randomness in the DEM is discussed in more general terms in [23]. 
 
Table 1. DEM parameters and material properties of the plate. 

���
 ����

 ��� � ��� � � �� �� 

70 �/� 100% 2.50% 32 ��� 0.020 � 2400 ��/�� 0.25 4 �� 4 �� 

 
Fig. 4(a) illustrates the same test regarding the shear stresses along each plate edge as 

function of the distortion angle. The behaviour is approximately linear until the peak load is 
reached. Then, unstable fracture propagation takes place, leading to large changes in the 
stress distribution. Notice that the test concentrates on the damage process leading to 
collapse, so the post-peak behaviour is not considered. The corresponding energy balance 
appears in Fig.  4(b). The sudden raises in kinetic and dissipated energies occurring after 
the normalized time of 0.8 are clear indicators of unstable growth in the main crack 
nucleated during the damage process.  

In Fig. 5 (top), the final fracture configuration shows a main diagonal cack throughout 
the plate, which is typical for this kind of test. That information is complemented by the 
distribution of bars that exceeded their limit strain ��, from the start of the process to 
immediately before the main fracture occurred. In this Figure a distinctly dense cluster of 
broken bars (a crack) appears where the main crack begins. Such region’s dimensions are 
nearly 0.022 m, which is coherent with the value of ��� i.e., the critical crack size that 
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generates unstable propagation throughout the specimen. In Fig. 5 (bottom) the b value 
evolution is presented indicating a clear drop of its value when the specimen is in critical 
regime. More details about the present applications could be seen in [24]. 

Figure 4: (a) Global shear stress vs. global distortion obtained with DEM. (b) global energy balance. 

 

 

 
Figure 5: (top) model of the plate submitted to pure shear stress, with boundary conditions and AE sensors positions. 
Final configuration obtained with DEM model submitted to pure shear test. Broken elements are in red. Spatial 
distribution of bars where the strain exceeded εr from the beginning to immediately before the main fracture occurred. 
The ellipse indicates where the main crack started. (bottom) Correlation of b-value variations with the AE amplitude 
distribution during the simulated fracture process. 

 
3.2 Second application: Prismatic specimen with oblique Crack 
 
In this application a prismatic specimen with an oblique pre-crack was tested. Fig. 6 (left) 
shows the dimensions, boundary conditions, and specimen failure configuration obtained 
during the test. The experiment was performed on a basalt sample, seeking to ensure a 
mixed state of stresses at the tip of the pre-crack. The specimen was subjected to a partial 
compression load according to the arrangement showed in (see Fig. 6 (top right)), in which 
the moving parts applied a prescribed displacement at a constant velocity of 0.6 mm/min 
through a Shimadzu AGX-PLUS universal testing machine. AE measurements were 
performed with a data acquisition (DAQ) frequency of 455 kHz by using two piezoelectric 
crystals on the opposite sides of the specimen. The signals were acquired during 290 s, 
obtaining 1274 hits in the signals post-processing. The adjustment of the boundary 
conditions applied during the test induced a complex and unanticipated damage pattern. 
This fact gives an excellent opportunity to assess a damaging process with three local 
instabilities before reaching global failure (see Fig. 6 (bottom right)). Fig. 7(a) shows the 
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temporal evolution of the AE parameters calculated from the data collected during the 
experiment. The time scale is normalized with respect to the rupture time (216.49 s). The 
graph on top illustrates the load evolution (in red) accompanied by the AE measurements 
from sensor S1. Since the measurements from both sensors were very similar, only one data 
set was used in the remainder of the work. The second graph concerns the b-value 
parameter computed from the mentioned sensor’s signals using windows of 35samples with 
three-sample overlaps. Finally, the bottom graph presents the evolution of the DPH 
parameter, inferred by taking the time derivative of the product between the applied 
displacement and the measured reaction forces on the specimen’s supports. The three plots 
presented in Fig.7(a) (top, middle, and bottom) are divided into four different intervals by 
lightly colored shadows, identified as (I) red, (II) green, (III) blue, and (IV) gray, 
corresponding to each characteristic behavior identified visually during the test. Fig. 7(b) 
assists in the interpretation of the damage evolution during the test. The evolution of the b 
value and the DPH index presented in Fig 7(a) adopting characteristic values, that is falls in 
the b value and local maxima in the DPH index during the test. More details about this 
example could be founded in [25]. 

 

 
Figure 6: The layout and main dimensions of the basalt specimen test. (left) The specimen dimension. (top right) The 
dispositive used to fix the basalt specimen during the test. (bottom right) The final configuration obtained. 

 

 
Figure 7: (a) AE experimental results: top—the results of the temporal evolution of Load, Signal AE; middle—b-value 
evolution; bottom—DPH parameter evolution during the test. (·)⋄ and (·)∗ instants of particular interest for the predictors 
b-value and DPH, respectively. (b) Visual representation of the damage process throughout the test. 
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4. Conclusions 
 
In the present work, two applications are presented in order to analyse the damage 

process evolution in quasi-brittle materials using the AE technique. The first is a numerical 
simulation using a version of the Discrete Element Method where a plate was submitted to 
a pure shear loading, and the second is an experimental test where a prismatic pre-cracked 
basalt specimen is loaded until the collapse. The analysis of both examples is carried out by 
means of global parameters computed based on the AE data obtained for the case of the b 
value, and from the global load - displacement response for the case of the DPH index. In 
this two applications, it was possible to perceive that the global indexes could be used as 
precursors to indicate when the structural system enters the critical regime. 
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