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Abstract - We investigate how particle thermal feedback 
modulates heat flux in a turbulent shearless flow. This is done 
by utilizing a recently developed decomposition of the velocity-
temperature correlation into particle velocity and temperature 
time derivative correlations. A set of Eulerian-Lagrangian 
point-particle direct numerical simulations (DNSs) with a 
Taylor microscale Reynolds number from 56 to 124 have been 
carried out. These simulations cover a broad spectrum of 
thermal Stokes numbers and Stokes numbers at a constant 
volume fraction, providing insight into the role of thermal 
feedback. Our findings indicate that thermal feedback has a 
more significant impact on particle heat flux compared to fluid 
convective heat flux, with both exhibiting opposite effects in a 
two-way coupling regime. Additionally, we explore the reasons 
behind the observed behavior of the global particle 
contribution to the heat flux ratio and identify the main factors 
that can either diminish or amplify this ratio under varying 
conditions of particle inertia and thermal inertia. 

 
Keywords: Two-phase flow, Turbulent mixing, Heat 
transfer, Fluid-particle thermal interaction, Direct 
numerical simulations. 
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nomenclature 
 𝑡    time 

𝑥    spatial position 

𝑢    fluid velocity 

𝑝    fluid pressure 

𝑇    fluid temperature 

𝑋𝑝  particle position 

𝑉𝑝  particle velocity 

𝛩𝑝   particle temperature 

𝑉̇𝑝   particle acceleration 

𝛩̇𝑝   particle temperature time derivative 

ˆ      Fourier coefficient 

𝜅     three-dimensional wavenumber vector 

𝜅𝑓     forced wavenumber 

𝑓𝑢    deterministic external body force 

𝐶𝑇    particle thermal feedback per unit time and unit 
mass 

𝛿(. )  Dirac delta function 

𝐿𝑖      domain length in direction 𝑥𝑖 
𝜌0     fluid density 

𝜌𝑝     particle density 

𝑐𝑝0   fluid isobaric specific heat capacity 

𝑐𝑝𝑝    particle isobaric specific heat capacity 

𝑅      particle radius 

𝜈       kinematic viscosity 

𝜅       thermal diffusivity 

𝜆𝑇      thermal conductivity 

𝑁𝑝    total number of particles 

𝜑       particle volume fraction 

𝜑𝜗     particle thermal mass fraction 

𝜏𝑣      particle dynamical relaxation time 

𝜏𝜗      particle thermal relaxation time 
⟨. ⟩     statistical average 
⟨. ⟩𝑝   statistical average conditioned on particle position 

′         fluctuation 

𝜀        mean turbulent kinetic energy dissipation rate 
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𝑢′      root mean square of velocity fluctuations 

𝑙         turbulence integral scale 

𝜆        Taylor microscale 

𝜂        Kolmogorov microscale 

𝜏     large-eddy turnover time 

𝜏𝜂    Kolmogorov timescale 

𝜏𝑇    timescale of fluid temperature modulation by 
particles 

𝑞̇     total heat flux vector 

𝑃𝑟  Prandtl number 

𝑅𝑒𝜆Taylor microscale Reynolds number 

𝑆𝑡    particle Stokes number 

𝑆𝑡𝜗  particle thermal Stokes number 
 

1. Introduction 
Understanding the dynamics and 

thermodynamics of suspended inertial particles in 
turbulent flows, is crucial for various industrial and 
environmental applications. In many practical systems, 
e.g. combustors [1],  or atmospheric clouds [2,3] 
particles (or bubbles or droplets) interact with the 
surrounding fluid, influencing the inter-phase transport 
of mass, momentum and heat. The best literature 
reviews of the recent theoretical, numerical and 
experimental efforts to report insightful information 
about this non-trivial physical problem can be found in 
[4-9].  

Such a complex interplay gives rise to many 
complicated involved phenomena such as turbulence-
induced thermophoresis, turbophoresis, clustering, 
preferential concentration, sweep-stick mechanisms, 
scattering, caustics, thermal caustics and preferential 
sampling that  affect locally and non-locally fluid-
particle thermal and mechanical interactions. Moreover, 
in the presence of turbulent mixing, multiscale 
interaction between mixing dynamics and turbulent 
flow influences the overall heat, mass and momentum 
transport in the flow domain. Although these 
phenomena and mechanisms exist in one- and two-way 
coupling regimes, in two-way coupled flows, particles 
ability to change the turbulence characteristics through 
their back-reaction adds another level of complexity to 
the problem. In a non-isothermal turbulent flow laden 
with inertial heavy particles, when particles can also 
carry enthalpy through the mixing layer, particles 
interact mechanically and thermally with the turbulent 
fields and mixing according to their inertia and thermal 
inertia. Meanwhile, due to the inherent challenges in 

precisely measuring the velocity and temperature of 
inertial particles, even with the use of advanced 
experimental techniques, Direct Numerical Simulation 
(DNS) is employed to enhance the understanding of the 
overall dynamics and thermodynamics. Owing to 
significant advancements in computational technology 
and the development of efficient algorithms in recent 
decades, DNS has emerged as a primary tool for 
investigating particle-laden turbulent flows across 
various fields, although it remains constrained to low 
and moderate Reynolds numbers.  

The study of heat transfer within the two-way 
coupling regime has primarily focused on unbounded, 
statistically homogeneous turbulent flows, aiming to 
elucidate the impact of particle feedback on fluid 
temperature statistics and inter-scale heat transfer [10-
13]. Nonetheless, the existing literature features limited 
research on this topic when the temperature field is 
inhomogeneous and statistically unsteady, as in the 
presence of a developing mixing layer.  

Bec et. al. in [11] performed an analysis on fluid-
particle thermal interaction in a homogeneous and 
isotropic turbulent flow, and reporting the role of 
particle temperature time derivative and fluid 
temperature gradients in inter-phase and inter-scale 
heat transfer. In that study, the thermal and dynamical 
behavior of inertial particles has been quantified in 
terms of  particle inertia and thermal inertia and the 
ranges with maximum contribution has been identified. 
Carbone et. al. in [12] also performed a very 
comprehensive study on the multiscale thermal 
interaction taking into account the impact of particle 
collision and thermal feedback on the heat transfer in a 
homogeneous isotropic turbulent flow. Furthermore, 
we have recently investigated an anisothermal 
turbulent flow containing particles, where a thermal 
mixing layer develops in a quasi-self-similar manner 
between two homogeneous and isotropic homothermal 
regions. We analysed the dynamical and thermal effects 
of particle Stokes and thermal Stokes numbers, and the 
flow's Taylor microscale Reynolds number in both one-
way and two-way coupling, considering both 
collisionless [14] and collisional regimes [15]. During 
our previous studies we have mainly attempted to 
explore the role of the major factors in overall heat 
transport between two homothermal regions, including 
particle inertia, thermal inertial, turbulence 
characteristics, the inter-particle collisions and particle 
feedback. In [14], while the particle dynamical and 
thermal relaxation times ratio is kept constant 
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(𝜏𝜗 𝜏𝑣⁄ = 𝑆 𝑡𝜗 𝑆⁄ 𝑡 = 4.43), we could quantify the 
particle contribution to the overall heat flux. In that 
work, since we neglected the effect of particle collisions, 
overall flow parameters reduced to the carrier flow 
turbulence characterized by Taylor microscale 
Reynolds number and particle inertia characterized by 
Stokes number as well as the particle thermal back-
reaction. Note that due to the proportionality, particle 
thermal inertia can be seen through the variation of its 
inertia. The numerical experiments have enabled us to 
detect the different mechanisms and phenomena and 
quantify them in terms of flow parameters and report 
the range of inertia at which overall particle 
contribution is maximum. We reported how the 
multiscale heat transfer between particles and fluid, 
and turbulent mixing dynamics simultaneously affect 
the overall heat transfer. In this situation, on one hand, 
turbulence is advecting the temperature field and 
creating some temperature fronts, on the other hand, 
particles are interacting with both fluid turbulent fields 
and mixing at different scales in different particle 
inertia ranges. Moreover, we investigated the role of 
particle collisions in subsequent study [15], however; it 
has been found that the impact of the inter-particle 
collisions on the overall heat transfer is mild and it 
merely becomes more effective at higher particle inertia 
range. We also performed a comprehensive study on 
the effect of particle inertia and thermal inertia in such 
a case that these two parameters are not proportional 
and can vary independently in [16]. That investigation 
has been done only for a single Taylor microscale 

Reynolds number, 𝑅𝑒𝜆 = 56. We also proposed a novel 
decomposition of the velocity-temperature correlation 
in terms of  particle velocity and temperature time 
derivative correlations, to better understand the 
different phenomena which are behind the variation of 
particle heat flux at various particle inertia and thermal 
inertial. The results regarding this novel decomposition 
obtained only for one-way coupling regime and to 
extend our knowledge and capture the effect of particle 
feedback, we preform a new set of simulations in two-
way thermal coupling which has been reported in [17].  

To complement the works related to the effective 
mechanisms in two-way coupling regime, specifically 
the crucial role of the particle thermal back-reaction in 
particle heat flux, we present new set of results for 
different Taylor microscale Reynolds numbers, ranging 
from 56 to 124 in this present work. In this study we 
aim to employ the proposed decomposition in [16] to 
analyze the effect of particle thermal feedback on heat 

flux at  different Taylor microscale Reynolds numbers. 
We show how turbulent motion affects the way that 
particle thermally modulated fluid thermal fields and 
consequently changes the overall heat transfer at 
mixing layer.  Accordingly, this study is more focused on 
the effect of particle back-reaction on the heat flux 
statistics at different Taylor Reynolds numbers, 
however; some statistics regarding the particle 
temperature time derivative in two-way coupling 
regime are also presented. The presented findings are 
useful to further studies in two-phase flows, especially 
when heat transfer is the core of the investigation. 

 
2. Governing equations 

The objective of this study is to investigate the 
heat transfer in the simplest thermally inhomogeneous 
turbulent flow, i.e. between two regions with uniform 

temperature,  𝑇1 and 𝑇2 < 𝑇1, in a particle-laden flow 
with homogeneous and isotropic velocity fluctuations. 
We adopt the point-particle Eulerian-Lagrangian direct 
numerical simulations. In the Eulerian frame, the 
Navier-Stokes equations are solved for the carrier flow, 

characterised by a divergence-free velocity field 𝑢(𝑡, 𝑥), 

a pressure field 𝑝(𝑡, 𝑥) , and a passively advected 

temperature field 𝑇(𝑡, 𝑥), while individual particles are 
tracked along their Lagrangian paths. Under these 
assumptions, the dynamics of the fluid phase are 
governed by the incompressible Navier-Stokes 
equations, given by  

 

𝛻 ⋅ 𝑢 = 0 (1) 

𝜕𝑡𝑢 + 𝑢 ⋅ 𝛻𝑢 = −(1 𝜌0⁄ )𝛻𝑝 + 𝜈𝛻2𝑢 + 𝑓𝑢 (2) 

𝜕𝑡𝑇 + 𝑢 ⋅ 𝛻𝑇 = 𝜅𝛻2𝑇 + (1 𝜌0⁄ 𝑐𝑝0)𝐶𝑇 (3) 

 
 where 𝜌0 denotes fluid density, 𝑐𝑝0 and 𝜈  

represent the fluid isobaric specific heat capacity and 

kinematic viscosity, respectively; 𝜅 = 𝜆𝑇 (𝜌0𝑐𝑝0)⁄  is 

the thermal diffusivity (𝜆𝑇  is the thermal conductivity). 

Function 𝑓𝑢 is an external body force introduced to 
maintain turbulent fluctuations in a statistically steady 

state, and 𝐶𝑇  is the heat exchanged per unit time and 
unit mass with particles, representing the particle 
thermal feedback on the carrier flow. 

 In accordance with previous studies (e.g., [14-16]), 
we do not account for the force exerted by particles on 
the fluid. Instead, only the fluid temperature field is 
two-way coupled with the particles, while momentum 
exchange is restricted to the one-way coupling regime. 
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This assumption leads to a dilute regime in our 
investigation. Anyway, it has been established that 
momentum feedback has a negligible thermal effect on 
fluid temperature statistics [12] even at higher 
concentrations. 

The discrete phase is modeled as a set of 

monodisperse solid spheres of radius 𝑅, assumed to be 

smaller than the Kolmogorov lenghtscale 𝜂 of the 
turbulent carrier flow. These material point particles 
have a density 𝜌𝑝 much higher than the fluid density, 

and an isobaric specific heat capacity 𝑐𝑝𝑝. In this 

situation the motion of the particle can be described by 
a simplified form of the equation proposed by Gatignol 
[18] and Maxey & Riley [19], in which the Stokes drag 
force is the dominant term in the force, and all other 
contributions are neglected. Some studies, such as 
[20,21], have thoroughly investigated the impact of the 
added-mass and other forces on particle dynamics in 
turbulent flows, which lead to a reduction of particle 
clustering for lighter particles, but produce negligible 
effects when the particle-to-fluid density ratio exceed 
20. Thus, for the scope of this work, we focus on the 
simplified model valid for heavier particles as in our 
previous studies [14,17]. 

Analogous to the equation of motion of a rigid 
sphere in fluid, an equation for the particle temperature 
can be derived under the same hypothesis, so that the 
dynamics of each individual particle is governed by the 
following equations in the Lagrangian reference frame 

 

𝑑

𝑑𝑡
{

𝑋𝑝(𝑡)

𝑉𝑝(𝑡)

𝛩𝑝(𝑡)

} = [

0 1 0
0 −1 𝜏𝑣⁄ 0

0 0 −1 𝜏𝜗⁄
] {

𝑋𝑝(𝑡)

𝑉𝑝(𝑡)

𝛩𝑝(𝑡)

}

+ [

0
1 𝜏𝑣⁄ 𝑢(𝑡, 𝑋𝑝)

1 𝜏𝜗⁄ 𝑇(𝑡, 𝑋𝑝)

]

 (4) 

 
where  𝑋𝑝(𝑡), 𝑉𝑝(𝑡), and 𝛩𝑝(𝑡)  are position, 

velocity and temperature of the 𝑝 − 𝑡ℎ particle, 
respectively, and define the dynamical state of the 
particle. In the following, a dot will be used to indicate 
the time derivative of particle variables, so that, for 

example, 𝑉̇𝑝(𝑡) is the particle acceleration. Here 𝜏𝑣 and 

𝜏𝜗  are the momentum and thermal relaxation times, 
given by 

 

𝜏𝑣 =
2

9

𝜌𝑝

𝜌0

𝑅2

𝜈
, 𝜏𝜗 =

1

3

𝜌𝑝𝑐𝑝𝑝

𝜌0𝑐𝑝0

𝑅2

𝜅
 (5) 

 
Any direct particle-particle interaction, including 

collisions, is excluded. Collisions, which become more 
frequent as particle density increases, have a minor 
effect on the heat flow in this configuration, as shown in 
[15], producing a mild reduction of the particle 
contribution which becomes appreciable only for large 
inertia. The only interaction between particles is 
thermal and mediated by the carrier fluid: particle 
thermal feedback modifies the carrier flow temperature 
and this affects other particles. The particle thermal 
feedback per unit time and unit volume is given by 

 

𝐶𝑇(𝑡, 𝑥) =
4

3
𝜋𝑅3𝜌𝑝𝑐𝑝𝑝∑

𝑑𝛩𝑝(𝑡)

𝑑𝑡

𝑁𝑝

𝑝=1

𝛿[𝑥

− 𝑋𝑝] 

(6) 

 

where 𝑁𝑝 is the total number of spherical inertial 

particles and 𝛿(⋅) is the Dirac delta function. 
 

3. Flow setup and numerical method 
We use the same computational setup of [14], so 

that the governing equations are solved in a 
parallelepiped computational domain with dimensions 
𝐿1 = 𝐿2 and 𝐿3 = 2𝐿1  along the  𝑥1, 𝑥2, and 𝑥3 
directions. The temperature distribution is initialized 

by setting the temperature equal to 𝑇1 in the half-

domain where 𝑥3 < 𝐿3 2⁄  and equal to 𝑇2 in the half-

domain where 𝑥3 < 𝐿3 2⁄ . Periodic boundary 
conditions are imposed to the velocity field on all faces 
of the computational domain, while the temperature 
field, which is intrinsically non periodic, is decomposed 
into a mean linear steady part and a fluctuating part, to 
which periodic boundary conditions can be applied, as 
described in detail in [14].  Moreover, for the sake of 
consistency with physics of the two-phase flow, 
periodicity is applied also to particles, so that any 
particles that may exit the computational domain is 
reintroduced on the opposite side with the same 
velocity and fluctuating part of its temperature.  

The governing equations are solved in 
dimensionless form. They are non-dimensionalized by 
using 𝐿1 = 𝐿1 2⁄ 𝜋 as reference length, a reference 
velocity which is deduced from the imposed kinetic 
energy dissipation rate 𝜀, and the temperature 
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difference 𝑇1 − 𝑇2 as reference temperature [14]. The 

flow is forced on a single length-scale 𝐿1 = 𝐿1 2⁄ 𝜋, and 
the linear deterministic forcing, which allows to control 
both the forced length-scale and the energy injection 
rate, is used, as in [12,14,16]. To make the results 
physically significant, the Taylor-microscale is used as 
the reference length in the definition of the Reynolds 

number instead of the (arbitrary) domain size 𝐿1 =
𝐿1 2⁄ 𝜋 

In the dimensionless form, the flow is governed 

by the Reynolds number 𝑅𝑒𝜆 = 𝑢′ 𝜆 𝜈⁄ , the Prandtl 

number 𝑃𝑟 = 𝜈 𝜅⁄ , and the particle thermal mass 

fraction or particle-to-fluid heat capacity ratio 𝜑𝜗 =

𝜑 (𝜌𝑝𝑐𝑝𝑝) (𝜌0𝑐𝑝0)⁄ , where 𝜑 is the particle volume 

fraction. In dimensionless form, particle dynamics is 
determined by the ratio between their relaxation times 
and the flow timescales. To characterize the particle 
dynamics in terms of local fluctuations of fluid state, the 

Kolmogorov timescale 𝜏𝜂 = (𝜈 𝜀⁄ )1 2⁄  is used instead of 

the large-scale time used in the adimensionalization. 
Thus, the Stokes number 𝑆𝑡 = 𝜏𝑣 𝜏𝜂⁄  and the thermal 

Stokes number 𝑆𝑡𝜗 = 𝜏𝜗 𝜏𝜂⁄  are used to describe the 

particle dynamical and thermal behavior. A 
pseudospectral method, fully dealiased  by using the 
3/2-rule, was employed to discretize the spatial domain 
of the fluid phase equations (1-3). The forcing function 

𝑓𝑢was defined in Fourier space as 
 

𝑓𝑢,𝑖^ (𝑡, 𝜅) = 𝜀
𝑢𝑖̂(𝑡, 𝜅)

∑ ||||𝜅||=𝜅𝑓 𝑢𝑖̂(𝑡, 𝜅)||2
𝛿(||𝜅||

− 𝜅𝑓) 

(7) 

 
where 𝜀 denotes the energy injection rate, equal 

to the kinetic energy dissipation in statistically steady 
conditions, 𝜅 is the three-dimensional wavenumber, 

and 𝜅𝑓  is the forced wavenumber. Interpolation of fluid 

velocity and temperature at particle positions, 

necessary to determine 𝑢(𝑡, 𝑋𝑝) and 𝑇(𝑡, 𝑋𝑝) in 

equation (4), and the computation of the particle 
thermal feedback (6) were carried out using a recent 
numerical method [22,23] based on inverse and 
forward non-uniform fast Fourier transforms with a 
fourth-order B-spline basis. Integration in time was 
performed for both the carrier flow equations (2-3) and 
the particle equations (4) using a second order 
exponential integrator. More details about the 

numerical method and flow setup can be found in [14] 
and [22].  

All the results we present in the following section 

come from simulations carried out using 2562 × 512 
Fourier modes (after dealiasing using the 3/2 rule, i.e.  

3842 × 768 grid points in physical space) in the 2𝜋 ×
2𝜋 × 4𝜋  domain in dimensionless form, so that the 
resolution is the same in every direction. This grid 

resolution ensures that 𝜅𝑚𝑎𝑥𝜂 > 2 (𝜅𝑚𝑎𝑥𝜂 is the 
maximal wavenumber), so that all turbulent scales up to 
the Kolmogorov microscale are resolved, and the 
interpolation does not introduce spurious fluctuations 
of particle acceleration. For all simulations particle 
volume fraction is kept constant and equal to 𝜑 = 4 ×
10−4 and a particle to fluid density ratio 𝜌𝑝 𝜌0⁄ = 103. 

The Taylor miscroscale Reynolds number 𝑅𝑒𝜆 varies 
from 56 to 124. Particle size and number are 
determined from the volume fraction and density ratio 
by the Stokes number. We consider the Stokes and 
thermal Stokes number as independent parameters, so 
that the particle specific heat is adjusted accordingly. 
The thermal Stokes number ranges from 0.1 to 10 and 
the Stokes number from 0.2 to 5. All relevant flow 
parameters are listed in table 1. The initial conditions 
for the simulations involve a randomly initialized 
velocity field, which is evolved in time until statistical 
stationarity is reached, then it is randomly seeded by 
particles, with a uniform distribution.  

 
Table 1. Dimensionless flow parameters. 

Simulation  I II III 
Taylor 
microscale 
Reynolds 
number 

𝑅𝑒𝜆 56 86 124 

Taylor 
microscale 

𝜆 0.226 0.29 0.35 

Integral 
length scale 

𝑙 0.40 0.74 0.94 

Root mean 
square of 
velocity 
fluctuations 

𝑢′ 0.59 0.71 0.85 

Forced 
wavenumber 

𝜅𝑓 5 √6 √3 

Prandtl 
number 

𝑃𝑟 0.71 0.71 0.71 

mean 
turbulent 

𝜀 0.25 0.25 0.25 



277  

kinetic 
energy 
dissipation 
rate 
Kolmogorov 
length scale 

𝜂 0.0153 0.0153 0.0153 

Kolmogorov 
time scale 

𝜏𝜂 0.098 0.098 0.098 

Particle 
volume 
fraction 

𝜑 4 × 10−4 

Density ratio 𝜌𝑝 𝜌0⁄  103 

Stokes 
number 

𝑆𝑡 
0.2 ; 0.7 ; 0.8 ; 0.9 ; 1 ; 1.2 ; 1.5 ; 

2 ; 2.5 ; 3.5 ; 4 ; 5 
Thermal 
Stokes 
number 

𝑆𝑡𝜗 
0.1 ; 0.2 ; 0.3 ; 0.5 ; 0.7 ; 1 ; 1.2 ; 

1.5 ; 2 ; 3 ; 4 ; 5 ; 6 ; 
7 ; 8 ; 9 ; 10 

 
4. Correlation decomposition 

The thermal discontinuity which initially 

separates the two homothermal regions is spread by 

the turbulent velocity field creating an interaction 

layer characterized by the presence of a mean 

temperature gradient and, a consequence, a heat flux 

between the two regions. This layer grows in time as 

the process occurs [14]. Therefore, the most important 

quantity is the heat flux across this layer, which is due 

to both conduction, turbulent fluctuations and the 

motion of particles. Given the statistical 

inhomogeneity and unsteadiness of the temperature, in 

the following we consider conditional averages at a 

given time and position 𝑥3 along the inhomogeneous 

direction, i.e., we define, for any function 𝑓 of the 

state of the particle, 

 

⟨𝑓⟩𝑝 = ⟨𝑓|𝑡, 𝑥3⟩𝑝,  

 
where ⟨⋅⟩𝑝 is the statistical average and we define the 

fluctuation of f as 𝑓′ = 𝑓 − ⟨𝑓⟩𝑝. The heat flux across 

the inhomogeneous layer, i.e. in direction x, is 

 

𝑞̇ = 𝜆
𝜕⟨𝑇⟩

𝜕𝑥
+ 𝜌0𝑐𝑝0⟨𝑢′𝑇′⟩

+ 𝜑𝜌𝑝𝑐𝑝𝑝⟨𝑉′𝑝𝛩′𝑝⟩𝑝 
(8) 

 

where the last term is the contribution of particles 

motions, which is the focus of this work [14]. 

Following [16], we can express the average heat flux 

in terms of the time derivatives of particle velocity 

(i.e., the particle acceleration) and temperature. By 

subtracting from (4) its conditional average, the 

particle temperature and velocity fluctuations can be 

expressed as 

𝑉′𝑝,𝑖 = 𝑢′ − 𝜏𝑣𝑉̇′𝑝,𝑖  (9) 

𝛩′𝑝,𝑖 = 𝑇′ − 𝜏𝜗𝛩̇′𝑝 (10) 

 

where fluid velocity and temperature are to be 

computed at particle position. Since the mean velocity 

is zero, in the following we will skip the apex from all 

moments that are second order or higher to keep 

notations simple. By cross multiplying equations (9) 

and (10) and taking the conditioned statistical average, 

we obtain the following expression of the particle 

velocity--temperature correlation [16] 

 

⟨𝑉𝑝,𝑖𝛩𝑝⟩𝑝 =
⟨𝑢𝑖𝑇⟩𝑝 − 𝜏𝑣⟨𝑉̇𝑝,𝑖𝑇⟩𝑝 − 𝜏𝜗⟨𝑢𝑖𝛩𝑝̇⟩𝑝

+𝜏𝑣𝜏𝜗⟨𝑉̇𝑝,𝑖𝛩̇𝑝⟩𝑝
 (11) 

 

which expresses the particle contribution to the 

convective heat flux. This correlation can be 

conveniently divided by the fluid temperature--

velocity correlation to obtain 

 

⟨𝑉𝑝,𝑖𝛩𝑝⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

= 1 − 𝜏𝑣

⟨𝑉̇𝑝,𝑖𝑇⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

− 𝜏𝜗

⟨𝑢𝑖𝛩𝑝̇⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

+𝜏𝑣𝜏𝜗

⟨𝑉̇𝑝,𝑖𝛩̇𝑝⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

 (12) 

 

This ratio relates, apart for a constant coefficient 

(the particle to fluid heat capacity), the particle and 

fluid contributions to the Nusselt number (see [14]). 

In this way, we have decomposed the particle 

contribution to the heat flux in terms of the 

correlations between the particle derivatives and 

between them and the fluid velocity and temperature 

fluctuations. The particle derivatives account for the 

instantaneous heat exchanges between the two phases 

and strongly depend on both relaxation and thermal 
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relaxation times, which also explicitly appear as 

coefficients in the decomposition. 

Decomposition (11) has been used in [16] only 

in the one-way coupling regime and in [17] in two-

way coupling regime at a single Taylor microscale 

Reynolds number equal to 56 and for a wide range of 

Stokes and thermal Stokes numbers. Here, we aim to 

elucidate the role of particle feedback by analysing the 

flow at different Taylor Reynolds numbers. 

Since 𝑥3, the direction normal to the initial 

interface and parallel to the mean gradient, is the only 

non homogeneous transport direction, the index will 

be omitted from all velocity and acceleration 

components. To comprehend how particle feedback 

modifies the fluid temperature fluctuations and, 

consequently, the fields experienced by the particles, 

we employ the proposed decomposition  (11) and 

some of its terms in two-way coupling, comparing 

them with the corresponding terms in the one-way 

coupling at different Reynolds and Stokes/thermal 

Stokes numbers. As in [14], all data will be presented 

in the central sublayer of the interaction layer, where 

the mean temperature gradient is largest. The observed 

self-similarity allows to extend the comparison to the 

whole layer. 

 
5. Results 

First, we present the overall effect of particle 
feedback on the heat transport by comparing the fluid 
and particle velocity-temperature correlation in the 
one- and two-way coupling. Figure 1, panels (a), (c) and 
(e) illustrate the ratio between fluid velocity-
temperature correlation  in one- and two-way coupling 
while figure 1, panels (b), (d) and (f) show the ratio 
between particle velocity-temperature correlations in 
one- and two-way coupling at Taylor Reynolds number 

𝑅𝑒𝜆 = 56, 𝑅𝑒𝜆 = 86 and 𝑅𝑒𝜆 = 124 respectively. As 
observed in homogeneous flows, particles tend to 
accumulate in regions with high temperature gradients 
[11], and their thermal back-reaction tends to reduce 
fluid temperature gradients [12]. Consequently, particle 
feedback decreases the fluid velocity-temperature 
correlation, an effect that intensifies with increased 
particle thermal inertia, i.e., at higher thermal Stokes 
numbers. Particles with very low inertia cannot cross 
temperature fronts, limiting their modulation effect, 
regardless of their thermal inertia. Intermediate inertia 
particles are more effective in reducing the fluid 

velocity-temperature correlation, since they can 
experience different temperature gradients regions, 
interact with larger turbulence scales. This effect 
becomes more pronounced when the Stokes number is 
of order one due to the intense particle clustering at 
temperature fronts. As thermal inertia increases,  the 
reduction mechanism is amplified, allowing particles to 
smooth temperature fronts and alter small-scale fluid 

temperature field. However, for 𝑆𝑡𝜗 ≫ 1, the relative 

reduction seems to be independent of 𝑆𝑡 for 
intermediate inertia particles, quickly saturating. 

Larger inertia particles behave differently, 
initially increasing the correlation if their thermal 
Stokes number is less than one, but reducing it as 
thermal inertia increases. Thus, they can enhance 
turbulent convective heat transfer at lower thermal 
inertia but hinder it at higher thermal inertia due to 
their longer relaxation time, which makes the damping 
effect due to the thermal disequilibrium prevail. Thus 
the maximum effect is seen at intermediate thermal 
inertia, where particle benefit from clustering. Two-way 
coupling always increases the particle velocity-
temperature correlation, figure 1, panels (b), (d) and (f), 
as seen in [14,16]. 

For small Stokes numbers, the effect is negligible 
and almost independent of thermal Stokes number, 

becoming significant when 𝑆𝑡 becomes of order one. 
Feedback reduces the particle-to-fluid temperature 
difference, slowing particle temperature variation and 
enabling particles to carry enthalpy over longer 
distances. Higher thermal inertia increases the particle 
velocity-temperature correlation by allowing particles 
to interact locally and non-locally with different 
turbulent eddies and, by crossing temperature fronts, 
by smooth fluid temperature fluctuation and 
decorrelating them from velocity fluctuations. The 
overall heat flux depends on the particle thermal mass 

fraction 𝜑𝜗 which is proportional to the particle-to-
fluid heat capacity ratio. At the simulated volume 
fraction, 4 × 10−4, the particle phase has a higher heat 

capacity than the fluid, 𝜑𝜗 ≃ 1.664 increasing the total 
heat flux even when they damp the convective heat flux 
of the carrier fluid. This pattern persists across different 
Taylor microscale Reynolds numbers, though the 
magnitude of particle contribution to the heat flux 

decreases with increasing 𝑅𝑒𝜆. Indeed, the maximum 
particle heat flux occurs at the lowest simulated 
Reynolds number, consistent with previous 
observations [14,17]. The timescale for fluid 
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temperature modulation by fluid-particle thermal 

interaction, 𝜏𝑇 ∼ 𝜏𝜗 𝜑𝜗⁄  [13,14], is crucial. Since 
mixing dynamics is governed by large-scale turbulence, 
characterized by the large-eddy turnover time 𝜏, the 

ratio 𝜏𝑇 𝜏⁄ ∼ 𝜑𝜗
−1𝑆𝑡𝜗𝑅𝑒𝜆

−1 reveals the interplay 
between thermal inertia and large-scale turbulence. 
Larger particle thermal inertia requires more time for 
thermal field modulation at a given Reynolds number, 
as confirmed by figure 1, panels (a), (c), and (e). 
Increased Reynolds numbers result in faster mixing, 
reducing the effectiveness of particle thermal 
modulation. 

Figure 2, panels  (a), (c) and (e) show that the 
variance of particle temperature time derivative is 
always reduced by thermal feedback across all 
simulated particle inertia, thermal inertia and Reynolds 
numbers. This reduction is more pronounced at higher 

thermal Stokes numbers and intermediate particle 
inertia, as particles in these parameter ranges can 
interact with intermediate fluid structures and 
modulate them. Higher thermal inertia at the same 
inertia reduces the effectiveness of this feedback 
mechanism. Lower inertia, as in the 𝑆𝑡 = 0.2 case, have 
limited impact, regardless of their thermal inertia, 
because they cannot affect the formation of 
temperature fronts. 

Large-scale turbulence seems to have a minor 
influence on the mechanism through which particle 
temperature time derivative is decreased by thermal 
feedback, except at the highest Reynolds number, 

𝑅𝑒𝜆 = 124 and for the smallest inertia particles, 𝑆𝑡 =
0.2. Variance in particle temperature time derivative 
increases with particle inertia but decreases with 
increasing  
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Figure 1. (a), (c), (e) Ratio between fluid velocity-temperature correlation  in one- and two-way coupling regimes at 𝑅𝑒𝜆=56, 86 and 

124; (b), (d), (f) Ratio between particle velocity temperature correlation  in one- and two-way coupling regimes at 𝑅𝑒𝜆=56, 86 and 

124. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝑒𝜆 = 124 𝑅𝑒𝜆 = 124 

𝑅𝑒𝜆 = 56 

𝑅𝑒𝜆 = 86 

𝑅𝑒𝜆 = 56 
 

(a) (b) 

(c) (d) 

(e) 
(f) 

𝑅𝑒𝜆 = 86 



281  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. (a), (c), (e) Particle temperature time derivative variance comparison between one- and two-way coupling at 𝑅𝑒𝜆=56, 86 and 

124; (b), (d), (f) Particle temperature time derivative variance normalized with fluid temperature variance at 𝑅𝑒𝜆=56, 86 and 124 in 

two-way coupling. Legend as in figure 1. 
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Figure 3. (a) Ratio between particle acceleration-temperature time derivative in one- and two-way coupling at 𝑅𝑒𝜆=56; (b) Ratio 

between fluid velocity and particle temperature time derivative in one- and two-way coupling at 𝑅𝑒𝜆=56. Legend as in figure 1. 

thermal inertia, a universal pattern across all simulated 
Reynolds numbers. Higher thermal inertia reduces 
inter-phase heat transfer, with particles retaining their 
temperature and filtering out small-scale fluctuations. 
This behavior is due to the role of particle thermal 
inertia, since as particle thermal inertia increases the 
inter-phase heat transfer reduces. Two mechanisms are 
responsible for this reduction, first, particles with 
higher thermal inertia tend to keep their temperature 
and they also filter out the small scale temperature 
fluctuations. Secondly, they respond only to the larger 
scale of thermal field and by modulating it with their 
back-reactions.  

 In homogeneous turbulence, the presence of a 
smooth temperature field leads to a finite limit of the 

variance of 𝛩̇𝑝 for small thermal Stokes numbers [12]. 

Conversely, in the opposite limit, with very large 
thermal inertia, the thermal acceleration integral tends 
to be dominated by uncorrelated temperature 
increments, The data  in figure 2, panels (b), (d) and (f) 
illustrate a low thermal inertia finite limit at all 
simulated Stokes numbers, suggesting a smooth 
temperature field. This is consistent with the fact that, 

in the limit of vanishing 𝑆𝑡𝜗 there is no difference 
between one- and two-way thermal coupling, Figure 2, 
panels (b), (d) and (f), and the one-way coupled 
simulations show a smooth behavior [15]. Meanwhile, 
the behaviour in the self-similar stage in the presence of 
high thermal inertia demonstrates the presence of well-
mixed regions within the thermal mixing layer core, 

even if the 𝑆𝑡𝜗
−2 asymptotic scaling of homogeneous 

turbulence is not reached in the range of simulated 
thermal Stokes numbers. As observed in [15], this could 
be due to the existence of a strong mean temperature 
gradient which dominates large-scales temperature 
variations, the only one which can be felt by very high 
inertia particles. However, we can see a small variation 

in magnitude of this quantity for different 𝑅𝑒𝜆 and the 
difference is more pronounced for lower inertia 
particles. At the smallest simulated Stokes number, i.e. 

𝑆𝑡 = 0.2 the variance of particle temperature time 

derivative reduces with 𝑅𝑒𝜆 the most. We can also see 
this reduction also for intermediate and high Stokes 

numbers as 𝑅𝑒𝜆 increases, but at a smaller range with 
respect to the smallest Stokes number, 0.2. 

How the particle acceleration and temperature 
time derivative influence the velocity-temperature 
correlation, which gives the heat flux, can be seen from 
the decomposition introduced in section 4. Analyzing 
the three terms on the right-hand side of equation (11), 
we note all terms are negative, with the first two 
building the correlation while the third one dampens it 
[14]. A positive velocity fluctuation produces a positive 
temperature fluctuation, leading to a negative 
temperature time derivative because the particle is 
most often moving into a colder zone, thus being cooled 
by the surrounding fluid. Correlations involving particle 
acceleration are less intuitive, even if higher 
acceleration are expected for particles which are in the 
higher strain zones [24]. However, in [16], for one-way 

coupling at 𝑅𝑒𝜆 = 56, we observed that this correlation 

is negative for all 𝑆𝑡 and 𝑆𝑡𝜗 Furthermore, figure 3 (a) 

indicates the same sign in two-way coupling at 𝑅𝑒𝜆 =
56 for all ranges of particle inertia and thermal inertia, 
as the ratio remains positive. Conversely, the 

correlation ⟨𝑢𝛩̇𝑝⟩𝑝 was found to be negative in one-way 

coupling at𝑅𝑒𝜆 = 56 in  [16]. Figure 3 (b) confirms the 
same sign in two-way coupling regime. Thus, we can 
conclude that particle thermal feedback does not 
change the sign associated to the particle acceleration 
and temperature time derivative used in the 
decomposition analysis. The acceleration-temperature 
time derivative correlation (last term of equation (11)) 

increases with 𝑆𝑡𝜗 contributing to a reduction in 
particle heat flux, appreciable at large Stokes and 
thermal Stokes numbers. For any given Stokes number, 
thermal feedback increases the modulus of the 
correlation between particle velocity and temperature 
time derivative. 

Figure 3(a) illustrates the correlation between 
acceleration and the time derivative of temperature, 
which is the last term of equation (11) This correlation 

increases with 𝑆𝑡𝜗 and exhibits a minor dependence on 

𝑆𝑡. It contributes to the reduction of particle heat flux, 
an effect which becomes significant only for large 
Stokes and thermal Stokes numbers due to the 
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multiplication by the product of the relaxation times, 

𝜏𝑣𝜏𝜗. This term only becomes relevant and potentially 

dominant for very large values of 𝑆𝑡 and 𝑆𝑡𝜗. However, 

for any given Stokes number (i.e., for any fixed 𝜏𝑣), it 

does not dominate the other terms, at least up to 𝑆𝑡 =
5. A reduction in heat flux can only be observed at high 

𝑆𝑡 if the ratio 𝜏𝜗 𝜏𝑣⁄ = 𝑆 𝑡𝜗 𝑆⁄ 𝑡 is kept fixed. This 
indicates that the impact of the acceleration-
temperature time derivative correlation in reducing 

particle heat flux is contingent on the values of 𝑆𝑡 and 

𝑆𝑡𝜗. For most practical applications, this term does not 
overshadow the other terms unless the Stokes and 
thermal Stokes numbers are exceptionally large. 

Additionally, maintaining a fixed ratio of 𝜏𝜗 to 𝜏𝑣 is 
crucial for observing a notable reduction in heat flux at 
high Stokes numbers. This finding offers a potential 
explanation for the reductions in heat flux observed in 
specific flow configurations, as documented in certain 
flow configurations [25]. 

Since particles are momentum one-way coupled 
only, fluid velocity and particle accelerations are 
independent of any thermal effects, with thermal 
feedback affecting only 𝑇. This implies that two-way 
coupling increases the sum of the last two terms in 
equation (11), overcoming the observed reduction in 
⟨𝑢𝑇⟩𝑝. Since their sum is equal to −𝜏𝜗⟨𝑉𝑝𝛩̇𝑝⟩𝑝, thermal 

feedback tends to increase the modulus of the 
correlation between particle velocity and temperature 
time derivative. 

 

6. Discussion and conclusion 
We have studied the effects of inertia and thermal 

inertia on the velocity-temperature correlations, which 
produce the turbulent heat flux, in a simple 
inhomogeneous particle-laden turbulent flow, focusing 
on the effect of particle thermal feedback. Low inertia 
particles (𝑆𝑡 ≪ 1) give a minimal contribution, because 
they follow local fluid motion and interact with small-
scale turbulence only. When they have also low thermal 

inertia (𝑆𝑡𝜗 ≪ 1) they transfer heat only over short 
distances because they quickly reach thermal 
equilibrium with the surrounding fluid. When they have 
high thermal inertia (𝑆𝑡𝜗 ≫ 1) they smooth the fluid 
temperature field by storing and releasing heat over 
longer periods. Despite this, their small inertia prevents 
them from crossing different temperature fronts, 
resulting in a modest contribution to overall heat 
transfer and a limited modulating effect. High inertia 

particles (𝑆𝑡 ≫ 1), whether with low or high thermal 
inertia, significantly enhance the overall heat transfer 
by moving through different temperature fronts, 
homogenising sharp zones, and increasing thermal 
mixing efficiency. Their ability to cross and disrupt 
temperature fronts, whenever they have a rapid or slow 
response to fluid temperature changes, allows for 
effective homogenisation of fluid temperature 
gradients, modification of large-scale thermal fields, and 
increased overall heat flux, promoting uniform 
temperature distribution and redistributing thermal 
energy along their trajectories. Intermediate inertia 
particles (𝑆𝑡 ∼ 1) and thermal inertia (𝑆𝑡𝜗 ∼ 1) 
balance both effects, enhancing their contribution to the 
heat transfer by matching timescales with turbulent 
flows and interacting with intermediate-scale 
turbulence. They efficiently homogenise temperature 
fronts and can cross different fronts, experiencing 
various regions of the flow domain and locally 
exchanging heat with the fluid. However, clustering 
makes also their thermal feedback more effective in 
reducing fluid temperature fluctuations, reducing the 
fluid velocity-temperature correlation. The 
decomposition of the correlation in terms of particle 
acceleration and temperature derivative has been used 
to underscore their significant role in modulating 
particle heat flux through the thermal feedback.  
Although particle acceleration is influenced by large 
scale motions of the turbulent flow, the variance of the 
particle temperature time derivative behaves almost 

independently of 𝑅𝑒𝜆 . The turbulent convective term is 
indirectly affected by particle inertia and thermal 
inertia through the thermal feedback effect on fluid 
temperature field and can either increase or reduce the 
particle velocity-temperature correlation. The findings 
indicate that effectiveness of particle modulation on 
turbulent convective terms diminishes as the Taylor 
Reynolds number increases. Numerical results further 
show that the first two particle correlation terms in the 
decomposition contribute to the heat flux, whereas the 
last term, i.e. the acceleration-temperature time 
derivative correlation, reduces it, in both one- and two-
way coupling regimes. However, the overall 
contribution results from the interplay of all terms 
across different inertia and thermal inertia ranges. It 
has been observed that the overall amplification of 
particle heat flux due to particle thermal feedback 
occurs at larger 𝑆𝑡 and 𝑆𝑡𝜗for any 𝑅𝑒𝜆. Moreover, the 
large-scale motions of turbulence, affecting all terms, 
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generally lead to reduction in particle heat flux through 

particle thermal back-reaction as 𝑅𝑒𝜆  increases. This 
phenomenon arises from the faster dynamics of the 
carrier flow, which makes the particle feedback less 
effective and hinders particle thermal interaction 
within the mixing layer, as particles in accelerated flows 
have less time to modulate the fluid temperature field. 
Additionally, at increased 𝑅𝑒𝜆 , the particle acceleration 

also increases, leading to an enhanced 𝜏𝑣𝜏𝜗⟨𝑉̇𝑝𝛩̇𝑝⟩𝑝, 

which is responsible for the reduction of ⟨𝑉𝑝𝛩𝑝⟩𝑝. 

Consequently, as predicted by the decomposition, we 
have observed that the ratio between particle velocity-
temperature correlation in one- and two-way coupling 
is maximum at the lowest Taylor microscale Reynolds 
number. Furthermore, at the highest ranges of particle 
inertia and thermal inertia for any Taylor Reynolds 

number, the time derivative of particle temperature 𝛩̇𝑝 

diminishes. Our comprehensive observations using the 
decomposition conclude that the amplification of 
particle heat flux due to the thermal feedback is 
achieved at the highest inertia and thermal inertia and 
the lowest Taylor Reynolds number as thermal 
modulation operates most effectively under these 
conditions. 

The proposed decomposition aids in 
understanding the intricate fluid-particle thermal 
interactions, by examining how different terms 
contribute to the particle heat flux and how these 
contributions vary with flow parameters. This 
decomposition can allow for a more thorough analysis, 
prediction and control thermal behaviors in such a 
complex flow in practical applications. 
 
Acknowledgements 

The authors acknowledge the CINECA award 
IsCb6_TCPLF, HP10CN9N4N, under the ISCRA initiative, 
for the availability of high performance computing 
resources and support. Additional computational 
resources provided by hpc@polito 
(http://www.hpc.polito.it) are also gratefully 
acknowledged. 
 
References 
[1]  T. D. Luu, A. Shamooni, A. Kronenburg, D. Braig, J. 

Mich, B.-D. Nguyen, A. Scholtissek, C. Hasse, G. 

Thä ter, M. Carbone, B. Frohnapfel, and O. T. Stein, 

“Carrier-phase dns of ignition and combustion of 

iron particles in a turbulent mixing layer”, Flow, 

Turbulence and Combustion, vol. 112,no. 4, pp. 

1083–1103, 2024. 

[2]  P. Götzfried, B. Kumar, R. A. Shaw, and J. 

Schumacher, “Droplet dynamics and fine-scale 

structure in a shearless turbulent mixing layer with 

phase changes,” J. Fluid Mech., vol. 814, pp. 452–

483, 2017. 

[3]  T. Bhowmick and M. Iovieno, “Direct numerical 

simulation of a warm cloud top model interface: 

Impact of the transient mixing on different droplet 

population,” Fluids, vol. 4, no. 3, p. 144, 2019. 

[4]  S. Subramaniam and S. Balachandar, eds. 

Computation and Analysis of Turbulent Flows, 

Academic Press, 2023 

[5]  L. Brandt and F. Coletti, “Particle-laden turbulence: 

Progress and perspectives,” Annu. Rev. Fluid Mech., 

vol. 54, pp. 159–189, 2022. 

[6]  G. Gai, A. Hadjadj, S. Kudriakov, and O. Thomine, 

 “Particles-induced turbulence: A critical review of 

physical concepts, numerical modelings and 

experimental investigations,” Theoretical and 

Applied Mechanics Letters, vol. 10, no. 4, pp. 241–

248, 2020. 

[7]  V. Mathai, D. Lohse, and C. Sun, “Bubbly and 

buoyant particle–laden turbulent flows,” Annual 

Review of Condensed Matter Physics, vol. 11, no. 

Volume 11, 2020, pp. 529–559, 2020. 

[8]  S. Elghobashi, “Direct numerical simulation of 

turbulent flows laden with droplets or bubbles,” 

Annual Review of Fluid Mechanics, vol. 51, no. 1, 

pp. 217–244, 2019. 

[9]  J. G. M. Kuerten, “Point-particle dns and les of 

particle-laden turbulent flow - a state-of-the-art 

review,” Flow, Turbulence and Combustion, vol. 97, 

2016. 

[10]  S. Wetchagarun and J. J. Riley, “Dispersion and 

temperature statistics of inertial particles in isotropic 

turbulence,” Physics of Fluids, vol. 22, art. no. 

063301, 2010. 

[11]  J. Bec, H. Homann, and G. Krstulovic, “Clustering, 

fronts, and heat transfer in turbulent suspensions of 

heavy particles,” Physical Review Letters, vol. 112, 

p. 234503, 2014. 

[12]  M. Carbone, A. D. Bragg, and M. Iovieno, 

“Multiscale fluid–particle thermal interaction in 

isotropic turbulence,” J. Fluid Mech., vol. 881, pp. 

679–721, 2019. 

[13]  I. Saito, T. Watanabe, and T. Gotoh, “Modulation of 

fluid temperature fluctuations by particles in 

turbulence,” J.Fluid Mech., vol. 931, art. no. A6, 

2022. 



285  

[14]  H. R. Zandi Pour and M. Iovieno, “Heat transfer in a 

non-isothermal collisionless turbulent particle-laden 

flow,” Fluids, vol. 7, no. 11, art. no. 345, 2022. 

[15]  H. R. Zandi Pour and M. Iovieno, “The impact of 

collisions on heat transfer in a particle-laden 

shearless turbulent flow,” Journal of Fluid Flow, 

Heat and Mass Transfer, vol. 10, pp. 140–149, 2023. 

[16]  H. R. Zandi Pour and M. Iovieno, “The role of 

particle inertia and thermal inertia in heat transfer in 

a non-isothermal particle-laden turbulent flow,” 

Fluids, vol. 9, no. 1, art. no. 29, 2024. 

[17]  H. R. Zandi Pour and M. Iovieno, “Modulation of 

heat flux by inertial particles thermal feedback in a 

turbulent shearless anisothermal flow,” Proceedings 

of the 11th International Conference on Fluid Flow, 

Heat and Mass Transfer (FFHMT 2024), June 2024. 

[18]  R. Gatignol, “The Faxen formulae for a rigid particle 

 in an unsteady non-uniform stokes flow”, Journal de 

 Mecanique Theorique et Appliquee, vol. 2, no. 2, pp 

143-160, 1983. 

[19]  M. R. Maxey and J. J. Riley, “Equation of motion for 

a small rigid sphere in a nonuniform flow,” Phys. 

Fluids, vol. 26, no. 4, pp. 883–889, 1983. 

[20]  X. Wang, M. Wan, L. Biferale, “Acceleration 

statistics of tracer and light particles in compressible 

homogeneous isotropic turbulence”, Journal of Fluid 

Mechanics, vol. 935, art. no. A36., 2022. 

[21]  D. Zaza D., M. Iovieno, ”On the Preferential 

Concentration of Particles in Turbulent Channel 

Flow: The Effect of the Added-Mass Factor”, 

Energies, vol. 17, no. 4, art. no. 783, 2024. 

[22]  M. Carbone and M. Iovieno, “Application of the 

non-uniform Fast Fourier Transform to the Direct 

Numerical Simulation of two-way coupled turbulent 

flows,” WIT Trans. Eng. Sci., vol. 120, pp. 237–248, 

2018. 

[23]  M. Carbone and M. Iovieno, “Accurate direct 

numerical simulation of two-way coupled particle-

laden flows through the nonuniform fast fourier 

transform,” Int. J. Safety and Sec. Eng., vol. 10, no. 

2, pp. 191–200, 2020. 

[24]  R. Zamansky, “Acceleration scaling and stochastic 

dynamics of a fluid particle in turbulence,” Phys. 

Rev. Fluids, vol. 7, art. no. 084608, Aug 2022. 

[25]  B. Lessani and M. Nakhaei, “Large-eddy simulation 

of particle-laden turbulent flow with heat transfer,” 

International Journal of Heat and Mass Transfer, vol. 

67, pp. 974–983, 2013. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


