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Abstract
In a previous paper we introduced the concept of semiseparable functor. Here we continue
our study of these functors in connection with idempotent (Cauchy) completion. To this aim,
we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We
show that the (co)comparison functor attached to an adjunction whose associated (co)monad
is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right
(left) adjoint functor is semiseparable if and only if the associated (co)monad is separable
and the (co)comparison functor is a bireflection up to retracts, extending a characterization
pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result
obtained by P. Balmer in the framework of pre-triangulated categories.

Keywords Semiseparable functor · Idempotent completion · Semifunctor ·
Eilenberg–Moore category · Kleisli category · Pre-triangulated category

Mathematics Subject Classification Primary 18A40 · Secondary 18C20 · 18G80

Introduction

The way a functor F : C → D acts on morphisms is encoded in the natural transformation
F given on components by FX ,Y : HomC(X , Y ) → HomD(FX , FY ), f �→ F( f ), where
X and Y are objects in C. In the literature, a functor is called separable if there is a natural
transformation P such that P ◦ F = Id and naturally full if one has F ◦ P = Id instead. In
[1], we introduced a weakening of both these notions, by naming semiseparable a functor
F : C → D such that F ◦ P ◦ F = F for some P . Among other results, we obtained
the following characterization: Given a functor G : D → C with a left adjoint F , then G
is semiseparable if and only if the associated monad GF is separable and the comparison
functor KGF : D → CCF is naturally full. A closer inspection to the functor KGF in this
setting reveals that it satisfies the following extra properties
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(P1) if it has a left adjoint, this is fully faithful;
(P2) it has indeed a left adjoint if its source category is idempotent complete.

The first problemwe address in the present paper is to introduce a new type of functor, that we
call coreflection up to retracts, that catches these two properties, and need to have neither
an adjoint nor an idempotent complete source category a priori. In order to give the rightful
place to this notion, note that there are properties of a functor F : C → D that transfer to
its (idempotent) completion F� : C� → D� and vice versa (e.g. being either faithful, full,
fully faithful, semiseparable, separable or naturally full, as we will see in Proposition 2.1
and Corollary 2.2). There are, however, other properties that do not share this behaviour. For
instance, if F is an equivalence of categories so is F� but the converse is not always true: It is
known that F� is an equivalence if and only if F is fully faithful and surjective up to retracts,
i.e. every D ∈ D is a retract of FC for some C ∈ C, and for this reason a functor F such
that F� is an equivalence is sometimes called an equivalence up to retracts in the literature.
As we will see, something similar happens to a coreflection, i.e. a functor endowed with a
fully faithful left adjoint: If F is a coreflection so is F�, but, again, the converse is not true in
general. We are so prompted to define a coreflection up to retracts to be a functor F whose
completion F� is a coreflection. It goes without saying that the functor KGF results to be a
coreflection up to retracts in case G is semiseparable; this is shown in Theorem 3.5. Since we
noticed that KGF is also naturally full, and in [1] we proved that a naturally full coreflection
is the same as a bireflection, i.e. it has a left and right adjoint equal which is fully faithful
and satisfies a suitable coherent condition, we are also led to introduce the stronger notion
of bireflection up to retracts which identifies a functor whose idempotent completion is a
bireflection. Thus, the functor KGF is indeed a bireflection up to retracts. Luckily enough, in
Proposition 2.9 and Proposition 2.12 we are able to prove that each coreflection up to retracts
(and a fortiori each bireflection up to retracts) verifies the properties (P1) and (P2) discussed
above.

In order to go deeper into the properties of these functors, we have to deal with semifunc-
tors, a notion studied by S. Hayashi in connection with λ-calculus, see [22]. A semifunctor
is defined the same way as a functor, except that it needs not to preserve identities, and
there is also a proper notion of semiadjunction for semifunctors. We show how to construct
a semiadjunction out of a right (left) semiadjoint in the sense of [32]. These tools permit
to pursue a characterization of (co)reflections up to retracts as part of suitable semiadjunc-
tions, see Corollary 2.18, and to provide sufficient conditions guaranteeing that a functor is
a (co)reflection up to retracts, see Proposition 2.20.

Now, given a category C and an idempotent natural transformation e : IdC → IdC one
can consider the coidentifier category Ce which is a suitable quotient category. In Theorem
3.1 we prove that the quotient functor H : C → Ce is another instance of coreflection up to
retracts, in fact a bireflection up to retracts, by means of the aforementioned characterization
employing semifunctors (it is noteworthy that this functor is a bireflection if and only if e
splits, seeRemark 3.2). Through the same characterization, exceeding the initial expectations,
in Theorem 3.4 we find out that the (co)comparison functor attached to an adjunction whose
associated (co)monad is (co)separable is always a coreflection (reflection) up to retracts.
From this we obtain one of the main results of this paper, namely Theorem 3.5, which is a
semi-analogue of [16, Proposition 3.5] proved by X.-W. Chen: Given a functor G : D → C
with a left adjoint F , then G is semiseparable if and only if the associated monad GF is
separable and the comparison functor KGF : D → CCF is a bireflection up to retracts. It
is well-known that GF is separable if and only if the forgetful functor UGF : CGF → C
is a separable functor so that we get the factorization D KGF CGF

UGF C of G as a
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bireflection up to retracts followed by a separable functor. In [1] we proved that when G is
semiseparable we can associate to it an invariant, that we called the associated idempotent
natural transformation e : IdD → IdD , and that G admits a factorization of the form

D H De
Ge C where Ge is separable and H is the quotient functor, that, by the

foregoing, is a bireflection up to retracts. Summing up we have two factorizations of the
same type and it is then natural to wonder how they are related. In Proposition 3.18, we prove
there is an equivalence up to retracts (KGF )e : D → CGF such that (KGF )e ◦ H = KGF

andUGF ◦ (KGF )e = Ge. As a consequence of this result, in Proposition 3.22, we show that
whenG is semiseparable the idempotent completions of the Kleisli category associated to the
monad GF , of the coidentifier De and of the Eilenberg–Moore category CGF are equivalent
categories.

As an application of our results, we achieve for semiseparable functors in the context of
pre-triangulated categories an analogue of P. Balmer’s [6, Theorem 4.1]. More explicitly,
we introduce the notion of stably semiseparable functor by adapting the one of stably
separable functor given in [6, Definition 3.7]. Then Theorem 3.28 shows how, given a stably
semiseparable right adjoint G : D → C with associated idempotent natural transformation e,
under the relevant assumptions,we can transfer the pre-triangulation from C to the coidentifier
categoryDe. We point out that the original result of Balmer requires G to be stably separable
and induces a pre-triangulation on D rather than De. Finally, we provide conditions for the
Eilenberg–Moore category CGF to inherit the pre-triangulation from the base category C, see
Corollary 3.30.

Organization of the paper. In Sect. 1 we recall the known results on semiseparable functors
we will use. Section2 deals with results involving the idempotent completion. We study
how the notions of faithful, full, fully faithful, semiseparable, separable or naturally full
functor behave with respect to idempotent completion. Then we introduce and investigate
(co)reflections up to retracts and bireflections up to retracts. We consider semifunctors and
semiadjunctions as a tool to provide a characterization of (co)reflections up to retracts. We
show that a (co)reflection up to retracts comes out to be always surjective up to retracts and
we give sufficient conditions guaranteeing that a functor is a (co)reflection up to retracts.

Section 3 collects the fall-outs of the results we achieved so far. First we prove that the
quotient functor onto the coidentifier category is a coreflection up to retracts and that so
is the comparison functor attached to an adjunction whose associated monad is separable.
A dual result is obtained for the cocomparison functor in case the associated comonad is
coseparable. These facts allow us to characterize a semiseparable right (left) adjoint in terms
of (co)separability of the associated (co)monad and the requirement that the (co)comparison
functor is a bireflection up to retracts. We prove that two canonical factorizations attached to
a semiseparable right adjoint functor, namely the one through the coidentifier category and
the one through the comparison functor, are the same up to an equivalence up to retracts.
Then we relate the idempotent completions of the Kleisli category and Eilenberg–Moore
category attached to a separable monad and, in case this monad is induced by an adjunction
with semiseparable right adjoint, the idempotent completion of the coidentifier category is
added to the picture. Finally, we show an analogue for semiseparable functors of a result
obtained by P. Balmer in the framework of pre-triangulated categories.

Notations.Given an object X in a category C, the identity morphism on X will be denoted
either by IdX or X for short. For categories C and D, a functor F : C → D just means a
covariant functor. By IdC we denote the identity functor on C. For any functor F : C → D, we
denote IdF : F → F (or just F , if there is no danger of confusion) the natural transformation
defined by (IdF )X := IdFX . By a ring we mean a unital associative ring.
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1 Background on Semiseparability

In this section we recall from [1] some results on semiseparable functors we need. In par-
ticular, in Subsect. 1.1 we provide a characterization of separable and naturally full functors
in terms of semiseparable functors and we explain the behaviour of semiseparable functors
with respect to composition. Subsection 1.2 deals with the idempotent natural transformation
associated to a semiseparable functor, that measures its distance from being separable. Then
we discuss the existence of a canonical factorization of a semiseparable functor through the
coidentifier category attached to this idempotent. Subsection 1.3 concerns a characterization
of semiseparable functors having an adjoint in terms of properties of the attached (co)monad
and (co)comparison functor. In Subsect. 1.4 we explore the connection with (co)reflections
and bireflections.

1.1 (Semi)separability and Natural Fullness

Let F : C → D be a functor and consider the natural transformation

F : HomC(−,−) → HomD(F−, F−),

defined by setting FC,C ′( f ) = F( f ), for any f : C → C ′ in C.
If there is a natural transformation P : HomD(F−, F−) → HomC(−,−) such that

• P ◦ F = Id, then F is called separable [33];
• F ◦ P = Id, then F is called naturally full [2];
• F ◦ P ◦ F = F , then F is called semiseparable [1].

WewillwriteF F ,PF when needed to stress the dependence on the functor F we are consider-
ing. The following result compares the notions of separable, naturally full and semiseparable
functor.

Proposition 1.1 [1, Proposition 1.3] Let F : C → D be a functor. Then,

(i) F is separable if and only if F is semiseparable and faithful;
(ii) F is naturally full if and only if F is semiseparable and full.

It is well-known that if F : C → D and G : D → E are separable functors so is their
composition G ◦ F and, the other way around, if the composition G ◦ F is separable so is F ,
see [33, Lemma 1.1]. A similar result with some difference, holds for naturally full functors,
see [2, Proposition 2.3]. The following result concerns the behaviour of semiseparability with
respect to composition. It is proved in [1, Lemma 1.12 and Lemma 1.13].

Lemma 1.2 Let F : C → D and G : D → E be functors and consider the composite
G ◦ F : C → E .
(i) If F is semiseparable and G is separable, then G ◦ F is semiseparable.
(ii) If F is naturally full and G is semiseparable, then G ◦ F is semiseparable.
(iii) If G ◦ F is semiseparable and G is faithful, then F is semiseparable.

1.2 The Associated Idempotent and the Coidentifier

Recall that an endomorphism eX : X → X in a category C is idempotent if e2X = eX . A
natural transformation e : IdC → IdC is idempotent if the component eX : X → X in C
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is idempotent for all X ∈ C. The following result uniquely attaches an idempotent natural
transformation to a given semiseparable functor.

Proposition 1.3 [1, Proposition 1.4] Let F : C → D be a semiseparable functor. Then there
is a unique idempotent natural transformation e : IdC → IdC such that Fe = IdF with the
following universal property: if f , g : A → B are morphisms, then F f = Fg if and only if
eB ◦ f = eB ◦ g.

The idempotent natural transformation e : IdC → IdC we have attached to a semiseparable
functor F : C → D in Proposition 1.3 will be called the associated idempotent natural
transformation. Explicitly, e is defined on components by eX := PX ,X (IdFX ) where P is
any natural transformation such that F ◦ P ◦ F = F . It controls the separability of F as
follows.

Corollary 1.4 [1, Corollary 1.7] Let F : C → D be a semiseparable functor and let e : IdC →
IdC be the associated idempotent natural transformation. Then F is separable if and only if
e = Id.

Remark 1.5 Let F : C → D, G : D → E be functors. By Lemma 1.2 we know that G ◦ F is
semiseparable in both cases (i) and (ii). Then, in (ii) the idempotent natural transformation
associated to GF is given by

eGF
X = PGF

X ,X (IdGFX ) = PF
X ,XPG

FX ,FX (IdGFX ) = PF
X ,X (eGFX ),

where eG : IdD → IdD is the idempotent natural transformation associated to the semisepa-
rable functorG. In particular, ifG is further separable as in (i), byCorollary 1.4 the idempotent
natural transformation associated to GF is given by eGF

X = PF
X ,X (eGFX ) = PF

X ,X (IdFX ) =
eFX , where e

F : IdC → IdC is the associated idempotent to the semiseparable functor F .

Given a category C and an idempotent natural transformation e : IdC → IdC , the coiden-
tifier Ce, see [21, Example 17], is the quotient category C/∼ of C where ∼ is the congruence
relation on the hom-sets defined, for all f , g : A → B, by setting f ∼ g if and only if
eB ◦ f = eB ◦g. Thus Ob (Ce) = Ob (C) and HomCe (A, B) = HomC (A, B) /∼. We denote
by f the class of f ∈ HomC (A, B) in HomCe (A, B). It is remarkable that the quotient
functor H : C → Ce, acting as the identity on objects and as the canonical projection on
morphisms, is naturally full with respect to PA,B : HomCe (A, B) → HomC (A, B) defined
by PA,B( f ) = eB ◦ f . Moreover the idempotent natural transformation associated to H is
exactly e.

Next lemma is essentially the universal property of the coidentifier that can be deduced
from the dual version of [21, Definition 14(1)], see also [1, Lemma 1.14(1)].

Lemma 1.6 Let C be a category, let e : IdC → IdC be an idempotent natural transformation
and let H : C → Ce be the quotient functor. A functor F : C → D satisfies Fe = IdF if
and only if there is a functor Fe : Ce → D (necessarily unique) such that F = Fe ◦ H.
Given F, F ′ : C → D such that Fe = IdF and F ′e = IdF ′ , and a natural transformation
β : F → F ′, there is a unique natural transformation βe : Fe → F ′

e such that β = βeH.

The following result shows that each semiseparable functor factors, through the coiden-
tifier category, as a naturally full functor followed by a separable one.

Theorem 1.7 [1, Theorem 1.15] Let F : C → D be a semiseparable functor and let e :
IdC → IdC be the associated idempotent natural transformation. Then, there is a unique
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functor Fe : Ce → D (necessarily separable) such that F = Fe ◦ H where H : C → Ce
is the quotient functor. Furthermore, if F also factors as S ◦ N where S : E → D is a
separable functor and N : C → E is a naturally full functor, then there is a unique functor
Ne : Ce → E (necessarily fully faithful) such that Ne ◦ H = N and S ◦ Ne = Fe, and e is
also the idempotent natural transformation associated to N (by Remark 1.5).

C

F

H Ce
Fe

D

C H

N

Ce
Ne Fe

E S D
The natural transformation making Fe separable is uniquely determined by the equality
PFe
H X ,HY := FH

X ,Y ◦PF
X ,Y , where PF

X ,Y is the one making F semiseparable, for all X , Y in C.

1.3 Eilenberg–Moore Category

In order to present the behaviour of semiseparable adjoint functors in terms of separable
(co)monads and associated (co)comparison functor, we remind some notions concerning
Eilenberg–Moore categories [19].

Given a monad (�,m : �� → �, η : IdC → �) on a category C we denote by
C� the Eilenberg–Moore category of modules (or algebras) over it. The forgetful functor
U� : C� → C has a left adjoint, namely the free functor

V� : C → C�, C �→ (�C,mC ), f �→ �( f ).

The unit IdC → U�V� = � is exactly η while the counit β : V�U� → IdC� is completely
determined by the equalityU�β(X ,μ) = μ for every object (X , μ) in C� (see [12, Proposition
4.1.4]). Dually, given a comonad (⊥,� : ⊥ → ⊥⊥, ε : ⊥ → IdC) on a category C we denote
by C⊥ the Eilenberg–Moore category of comodules (or coalgebras) over it. The forgetful
functor U⊥ : C⊥ → C has a right adjoint, namely the cofree functor

V⊥ : C → C⊥, C �→ (⊥C,�C ), f �→ ⊥( f ).

The unit α : IdC⊥ → V⊥U⊥ is completely determined by the equality U⊥α(X ,ρ) = ρ for
every object (X , ρ) in C⊥ while the counit U⊥V⊥ = ⊥ → IdC is exactly ε.

Given an adjunction F 
 G : D → C, with unit η and counit ε, we can consider the
monad (GF,GεF, η) and the comonad (FG, FηG, ε). We have the comparison functor

KGF : D → CGF , D �→ (GD,GεD), f �→ G( f )

and the cocomparison functor

K FG : C → DFG , C �→ (FC, FηC ), f �→ F( f ).

Thus we have the following diagram

DFG ⊥
UFG

D
KGF

V FG

G

CK FG

F 


⊥
VGF

CGF
UGF
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where UGF ◦ KGF = G, KGF ◦ F = VGF , UFG ◦ K FG = F and K FG ◦ G = V FG .
We recall that a monad (�,m : �� → �, η : IdC → �) on a category C is said to be

separable [13] if there exists a natural transformation σ : � → �� such that m ◦ σ = Id�
and �m ◦ σ� = σ ◦ m = m� ◦ �σ ; in particular, a separable monad is a monad satisfying
the equivalent conditions of [13, Proposition 6.3]. Dually, a comonad (⊥,� : ⊥ → ⊥⊥, ε :
⊥ → IdC) on a category C is said to be coseparable if there exists a natural transformation
τ : ⊥⊥ → ⊥ satisfying τ ◦ � = Id⊥ and ⊥τ ◦ �⊥ = � ◦ τ = τ⊥ ◦ ⊥�.

The following results characterize the semiseparability of a right (left) adjoint functor
in terms of the natural fullness of the (co)comparison functor and of the separability of the
forgetful functor from the Eilenberg–Moore category of (co)modules over the associated
(co)monad.

Theorem 1.8 [1, Theorem 2.9 and Theorem 2.14] Let F 
 G : D → C be an adjunction.

(i) G is semiseparable if and only if the forgetful functor UGF : CGF → C is separable
(equivalently, the monad (GF,GεF, η) is separable) and the comparison functor KGF :
D → CGF is naturally full.

(ii) F is semiseparable if and only if the forgetful functor U FG : DFG → D is separable
(equivalently, the comonad (FG, FηG, ε) is coseparable) and the cocomparison functor
K FG : C → DFG is naturally full.

As a consequence of Theorem 1.8, one recovers the following similar characterization for
separable adjoint functors. The first item should be compared with [16, proof of Proposition
3.5] and [3, Proposition 2.16], while the second item is [1, Corollary 2.15].

Corollary 1.9 Let F 
 G : D → C be an adjunction.

(i) G is separable if and only if the forgetful functor UGF : CGF → C is separa-
ble (equivalently, the monad (GF,GεF, η) is separable) and the comparison functor
KGF : D → CGF is fully faithful (i.e. G is premonadic).

(ii) F is separable if and only if the forgetful functor U FG : DFG → D is separable
(equivalently, the comonad (FG, FηG, ε) is coseparable) and the cocomparison functor
K FG : C → DFG is fully faithful (i.e. F is precomonadic).

1.4 (Co)reflections and Bireflections

Recall that

• a reflection is a functor admitting a fully faithful right adjoint;
• a coreflection is a functor admitting a fully faithful left adjoint, see [9];
• a bireflection is a functor G : D → C having a left and right adjoint equal, say F :

C → D, which is fully faithful and satisfies the coherent condition ηr ◦ εl = Id, where
εl : FG → Id is the counit of F 
 G while ηr : Id → FG is the unit of G 
 F , cf. [21,
Definition 8].

Being a coreflection (respectively, a reflection) is equivalent to the fact that the unit (respec-
tively, counit) of the corresponding adjunction is an isomorphism, see [11, Proposition
3.4.1]. The adjoint of the inclusion of a (co)reflective subcategory is a typical example of
(co)reflection. Bireflective subcategories of a given category C provide examples of bireflec-
tions. It is known that these subcategories correspond bijectively to split-idempotent natural
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transformations e : IdC → IdC with specified splitting, see [21, Theorem 13] and [26, The-
orem 1.3]; this fact is connected to the quotient functor H : C → Ce which comes out to be
a bireflection if and only if e splits, see [1, Proposition 2.27].

Remark 1.10 (Co)reflections are closed under composition. In fact, if G : D → C, G ′ : E →
D are (co)reflections with fully faithful left (right) adjoints F : C → D and F ′ : D → E
respectively, then G ◦ G ′ is a (co)reflection with fully faithful left (right) adjoint F ′ ◦ F .
Moreover, also bireflections are closed under composition. Indeed, if G : D → C, G ′ : E →
D are bireflections with fully faithful left and right adjoints F and F ′ respectively, satisfying
the coherent conditions ηr ◦ εl = Id and η̄r ◦ ε̄l = Id where εl : FG → Id is the counit of
F 
 G, ε̄l : F ′G ′ → Id is the counit of F ′ 
 G ′ while ηr : Id → FG is the unit of G 
 F
and η̄r : Id → F ′G ′ is the unit ofG ′ 
 F ′, thenG ◦G ′ is a bireflection with fully faithful left
and right adjoint F ′ ◦ F , satisfying the coherent condition F ′ηrG ′ ◦ η̄r ◦ ε̄l ◦ F ′εlG ′ = Id.

Next result shows how the above notions interact in case the functor is semiseparable.

Theorem 1.11 [1, Theorem 2.24] A functor is a semiseparable (co)reflection if and only if it
is a naturally full (co)reflection if and only if it is a bireflection.

2 Conditions up to Retracts

In order to introduce (co)reflections up to retracts and bireflections up to retracts we have
to deal with general facts about idempotent completions. First in Subsect. 2.1 we recall
the notions of idempotent completion of categories, functors and natural transformations.
In Subsect. 2.2 we prove that a functor F is either faithful, full, fully faithful, semisepa-
rable, separable or naturally full if and only if so is its completion F�. Then we introduce
(co)reflections up to retracts and bireflections up to retracts. We collect some properties of
these new notions and relate the latter one to the concepts of semiseparable and naturally full
functor. Then, in Subsect. 2.4, we show that (co)reflections (and bireflections) up to retracts
verify properties of type (P1) and (P2) discussed in the Introduction. In Subsect. 2.5 we con-
sider semifunctors and semiadjunctions. Among other results, we show how to construct a
semiadjunction out of a right (left) semiadjoint in the sense of [32]. These notions are applied
in Subsect. 2.6 in order to provide a characterization of (co)reflections up to retracts. A first
consequence is that a (co)reflection up to retracts comes out to be always surjective up to
retracts. Then we give sufficient conditions guaranteeing that a functor is a (co)reflection up
to retracts that will be applied to the (co)comparison functor in the next section.

2.1 Idempotent Completion

We recall from [16] what is the idempotent completion of a category C. An idempotent
morphism e : X → X splits if there exist two morphisms p : X → Y and i : Y → X such
that e = i ◦ p and IdY = p ◦ i ; the category C is said to be idempotent complete or Cauchy
complete if all idempotents split. The idempotent completion or Karoubi envelope [28] C� of
a category C is the category whose objects are pairs (X , e), where X is an object in C and
e : X → X is an idempotent morphism in C; a morphism f : (X , e) → (X ′, e′) in C� is a
morphism f : X → X ′ in C such that f = e′ ◦ f ◦e. Note that Id(X ,e) = e : (X , e) → (X , e).

There is a canonical functor

ιC : C → C�, X �→ (X , IdX ), [ f : X → Y ] �→ [ f : (X , IdX ) → (Y , IdY )],
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which is fully faithful. The functor ιC is an equivalence if and only ifC is idempotent complete.
A functor F : C → D can be extended to a functor F� : C� → D�, the completion of F , which
is defined by setting F�(X , e) = (F(X), F(e)) and F�( f ) = F( f ), so that ιD ◦F = F� ◦ ιC ,
i.e.

C ιC

F

C�

F�

D
ιD

D�

is a commutative diagram. A natural transformation α : F → F ′ induces the natural transfor-
mation α� : F� → (

F ′)� with components α
�

(X ,e) := αX ◦Fe = F ′e◦αX . As a consequence,

an adjunction (F,G, η, ε) induces an adjunction
(
F�,G�, η�, ε�

)
.

2.2 The Completion of Semiseparable Functors

Next aim is to explore the behaviour of semiseparability with respect to idempotent com-
pletion. We also include the case of faithful and full functors although it is known in the
literature at least in one direction.

Proposition 2.1 Let F : C → D be a functor. Then,

(1) F is faithful if and only if so is F�;
(2) F is full if and only if so is F�;
(3) F is fully faithful if and only if so is F�.

Proof The “only if” part is well-known, see e.g. [37, Lemma 58].

(1) If F� is faithful, then the composite ιD ◦ F = F� ◦ ιC is faithful, hence F is faithful.
(2) If F� is full, then ιD ◦ F = F� ◦ ιC is full. Since ιD is faithful, we get that F is full.
(3) It follows from (1) and (2).

��
In the following result, the proof that the semiseparability of F implies the one of F�, was

suggested to us by Paolo Saracco. The “only if” part of (2) in the following result seems to
be known, see e.g. [38, Lemma 3.11].

Corollary 2.2 Let F : C → D be a functor. Then,

(1) F is semiseparable if and only if so is F�;
(2) F is separable if and only if so is F�;
(3) F is naturally full if and only if so is F�.

Proof (1) Assume that F� is semiseparable. Since ιC is fully faithful, it is in particular nat-
urally full, hence, by Lemma 1.2 (ii), F� ◦ ιC is semiseparable. From ιD ◦ F = F� ◦ ιC
it follows that ιD ◦ F is semiseparable as well, so that, since ιD is faithful, F is semisep-
arable, by Lemma 1.2(iii). Conversely, if F is semiseparable, then there exists a natural
transformation PF : HomD(F−, F−) → HomC(−,−) such that F FPFF F = F F .
Define PF� : HomD� (F�−, F�−) → HomC� (−,−) by PF�

C,C ′(g) = PF
C,C ′(g), for every

g : (F(C), F(e)) → (F(C ′), F(e′)) in D�. Since g = Fe′ ◦ g ◦ Fe, by naturality
of PF it follows that e′ ◦ PF

C,C ′(g) ◦ e = PF
C,C ′(Fe′ ◦ g ◦ Fe) = PF

C,C ′(g), hence

PF
C,C ′(g) is a morphism in C�. Moreover, PF�

is a natural transformation and it holds

F F�

C,C ′PF�

C,C ′F F�

C,C ′(g) = F F
C,C ′PF

C,C ′F F
C,C ′(g) = F F

C,C ′(g) = F F�

C,C ′(g).
(2) and (3) follow from (1), Proposition 1.1 and Proposition 2.1. ��
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2.3 (Co)reflections and Bireflections up to Retracts

We are now ready to introduce and investigate the announced notion of (co)reflection up
to retracts. We also recall two notions that are already present in the literature, i.e. those of
equivalence up to retracts and of surjective up to retracts. Recall that an object A in a category
C is a retract of an object B in C if there are morphisms i : A → B and p : B → A such
that p ◦ i = IdA.

Definition 2.3 Consider a functor F : C → D and its completion F� : C� → D�. Then, F is

• an equivalence up to retracts if F� is an equivalence, see [16, page 47];
• surjective up to retracts,1 if every object D in D is a retract of FC for some object C in

C, see [8, Definition 2.5];
• a reflection up to retracts if F� is a reflection;
• a coreflection up to retracts if F� is a coreflection;
• a bireflection up to retracts if F� is a bireflection.

In the following lemma we collect some basic facts related to the above notions.

Lemma 2.4 The following assertions hold true.

(1) Any equivalence is an equivalence up to retracts.
(2) Any (co)reflection is a (co)reflection up to retracts.
(3) A functor is a bireflection up to retracts if and only if it is a semiseparable (co)reflection

up to retracts if and only if it is a naturally full (co)reflection up to retracts.
(4) Any bireflection is a bireflection up to retracts.
(5) An equivalence is the same thing as a fully faithful bireflection.
(6) A functor is an equivalence up to retracts if and only if it is fully faithful and surjective

up to retracts if and only if it is a fully faithful bireflection up to retracts.
(7) An equivalence up to retracts is both a reflection up to retracts and a coreflection up to

retracts.

Proof (1) If F is an equivalence with quasi-inverse G, then (F�,G�) is an equivalence and
hence F is an equivalence up to retracts.

(2) IfG is a coreflection, it has a fully faithful left adjoint F . Thus F� 
 G� and F� is fully
faithful by Proposition 2.1. Thus G� is a coreflection, i.e. G is a coreflection up to retracts.
The proof for reflections is similar.

(3) Assume F is a semiseparable (resp. naturally full) (co)reflection up to retracts. By
Corollary 2.2, F� is a semiseparable (resp. naturally full) (co)reflection. Thus, by Theorem
1.11, F� is a bireflection, i.e. F is a bireflection up to retracts. Conversely, by means of
Theorem 1.11 and Corollary 2.2, in a similar way one gets that a bireflection up to retracts is
a semiseparable (resp. naturally full) (co)reflection up to retracts.

(4) A bireflection F is in particular a semiseparable (co)reflection by Theorem 1.11. As a
consequence of (2) and (3), we get that F is a bireflection up to retracts.

(5) An equivalence is clearly a fully faithful bireflection, and conversely a fully faithful
bireflection is an equivalence as the unit and counit of the corresponding adjunction are both
invertible (see [11, Proposition 3.4.3]).

(6) It is well-known that F is an equivalence up to retracts if and only if it is fully faithful
and surjective up to retracts, see e.g. [16, Lemma 3.4(2)]. It is also equivalent to F being a
fully faithful bireflection up to retracts in view of Proposition 2.1 and Theorem 1.11.

1 These functors are also called dense up to retracts see [38, Notation and conventions].

123



Semiseparable Functors and Conditions… Page 11 of 33    24 

(7) If F is an equivalence up to retracts, its completion F� is an equivalence and hence
F� is a (co)reflection. This means that F is a (co)reflection up to retracts. ��
Remark 2.5 From Remark 1.10, it follows that also (co)reflections up to retracts and bire-
flections up to retracts are closed under composition.

Example 2.6 The canonical functor ιC : C → C� is an equivalence up to retracts, see e.g. [27,
Theorem A.6].

Recall, see e.g. [14, Definition 3.1], that a functor F : C → D is called aMaschke functor
if it reflects split-monomorphisms i.e. if, for every morphism i in C such that Fi is a split-
monomorphism, then i is a split-monomorphism2. Similarly, F is a dual Maschke functor if
it reflects split-epimorphisms. A functor is called conservative if it reflects isomorphisms.

Remark 2.7 By [33, Proposition 1.2] a separable functor is both Maschke and dual Maschke.
Moreover a functor which is both Maschke and dual Maschke is conservative.

Example 2.8 Let (F,G) be an adjunction. Then, by [39, Corollary 5], the functor F is a
Maschke functor if and only if G is surjective up to retracts. Dually, the functor G is dual
Maschke if and only if F is surjective up to retracts.

2.4 Two Peculiar Features

The following result includes among others the announced property (P1), discussed in the
Introduction, for a coreflection up to retracts, namely that, if it has a left adjoint, then it is a
coreflection.

Proposition 2.9 The following assertions hold true.

(1) If a coreflection up to retracts has a left adjoint, then it is a coreflection.
(2) If a coreflection up to retracts has a right adjoint, then it is a reflection.
(3) If a reflection up to retracts has a right adjoint, then it is a reflection.
(4) If a reflection up to retracts has a left adjoint, then it is a coreflection.
(5) If a bireflection up to retracts has an adjoint, then it is a bireflection.
(6) If an equivalence up to retracts has an adjoint, then it is an equivalence.

Proof (1) If G has a left adjoint F , then F� 
 G�. If G is a coreflection up to retracts, then
G� is a coreflection. Thus F� is fully faithful and hence so is F by Proposition 2.1, i.e. G is
a coreflection.

(2) If F has a right adjoint G, then F� 
 G�. If F is a coreflection up to retracts, then
F� is a coreflection. Thus it has a fully faithful left adjoint. Then also the right adjoint G�

is fully faithful by [11, Proposition 3.4.2]. By Proposition 2.1 G is fully faithful, i.e. F is a
reflection.

(3) is dual to (1) and (4) is dual to (2).
(5) If F is a bireflection up to retracts, then byLemma2.4 F is a naturally full (co)reflection

up to retracts. If F has a left adjoint, by (1), it is a naturally full coreflection while if F has

2 This is equivalent to [15, Remark 6] where F is called a Maschke functor if every object in C is relative
injective. Recall that an object M is called relative injective if, for every morphism i : C → C ′ such that
Fi is a split-monomorphism, then the map HomC(i, M) : HomC(C ′, M) → HomC(C, M), f �→ f ◦ i , is
surjective.
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a right adjoint, by (3), it is a naturally full reflection. In both cases, by Theorem 1.11, F is a
bireflection.

(6) By Lemma 2.4 an equivalence up to retracts is a fully faithful bireflection up to retracts.
If it has an adjoint, by (5), it is a fully faithful bireflection, i.e. an equivalence by Lemma 2.4.

��
Remark 2.10 By Proposition 2.9 and Lemma 2.4, it follows that

• any coreflection up to retracts with a right adjoint is a reflection up to retracts,
• any reflection up to retracts with a left adjoint is a coreflection up to retracts.

We are now going to prove the property (P2), announced in the Introduction, namely that
a coreflection up to retracts whose source category is idempotent complete has a left adjoint
(it is indeed a coreflection). First we need the following lemma.

Lemma 2.11 Let D be an idempotent complete category. A functor G : D → C has a left
(resp. right) adjoint if and only if so does G�.

Proof If F 
 G, we know that F� 
 G�. Conversely, assume that L 
 G� : D� → C�. Since
D is idempotent complete, the functor ιD : D → D� is an equivalence of categories and
hence it has a left adjoint VD : D� → D. From VD 
 ιD and L 
 G�, we get VDL 
 G�ιD
and hence VDL 
 ιCG. Since ιC is fully faithful, this implies VDLιC 
 G.

The case in which G has a right adjoint follows similarly. ��
Proposition 2.12 Let D be an idempotent complete category. A functor G : D → C is a
coreflection (resp. reflection, bireflection, equivalence) up to retracts if and only if it is a
coreflection (resp. reflection, bireflection, equivalence).

Proof If G is a coreflection (resp. reflection) up to retracts, then G� has a left (resp. right)
adjoint so that, by Lemma 2.11, so does G. By Proposition 2.9 G is a coreflection (resp.
reflection). The other implication is always true by Lemma 2.4. Similarly, one deals with the
case of bireflection and equivalence. ��

For a deeper understanding of (co)reflections up to retracts, we are nowgoing to investigate
the notion of semiadjunction.

2.5 Semiadjunctions

Recall from [22] that a semifunctor is defined the same way as a functor, except that a semi-
functor needs not to preserve identities. Thus, for a semifunctor F , the natural transformation
FId : F → F needs not to be IdF , but it is just an idempotent natural transformation. The
notion of semifunctor originally appeared in [20, Definition 4.1] under the name of weak
functor. For semifunctors F, F ′ : C → D, a natural transformation α : F → F ′ is a family(
αC : FC → F ′C

)
C∈C ofmorphisms inD such thatαD◦F f = F ′ f ◦αC for everymorphism

f : C → D. If moreover αC ◦ F (IdC ) = αC , for everyC ∈ C, then α is called a seminatural
transformation. By a semiadjunction we mean a datum (F,G, η, ε) where F : C → D and
G : D → C are semifunctors endowed with natural transformations η : IdC → GF (unit)
and ε : FG → IdD (counit) such that Gε ◦ ηG = GId and εF ◦ Fη = FId, see [23,
Definition 22]. Although the terminology suggests that it is a weaker notion, a seminatural
transformation α : F → F ′ is in particular a natural transformation but the converse is not
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true in general. It is true in case either F or F ′ is a functor, see [23, Theorem 16]. For this
reason, η and ε as above are also seminatural transformations.

Any semifunctor F : C → D induces a functor F� : C� → D� such that F� (C, c) =
(FC, Fc) and F� f = F f . In fact F�Id(C,c) = Fc = Id(FC,Fc) = IdF�(C,c), as observed in
[22, Definition 1.3]. However note that ιD ◦ F = F� ◦ ιC unless F is a functor.

Moreover any semifunctor is determined by its completion, cf. [22, Proposition 1.4].
Any seminatural transformation α : F → F ′ induces the natural transformation α� :

F� → (
F ′)� with components α

�

(C,c) := αC ◦ Fc = F ′c ◦ αC , cf. [23, Theorem 20].

As a consequence any semiadjunction (F,G, η, ε) induces an adjunction
(
F�,G�, η�, ε�

)

where η
�

(C,c) = ηC ◦ c : (C, c) → (GFC,GFc) and ε
�

(D,d) = d ◦ εD : (FGD, FGd) →
(D, d).

Example 2.13 Consider the canonical functor ιC : C → C�. There is also a semifunctor
υC : C� → C which maps an object (C, c) in C� to the underlying object C and a morphism
f : (C, c) → (C ′, c′) to the underlying morphism υC f : C → C ′ such that c′ ◦ υC f ◦ c =
υC f . It is a semifunctor as υC(Id(C,c)) = c = IdC in general. By [23, Example 6] we have
that (υC, ιC) and (ιC, υC) are semiadjunctions. Let us exhibit explicitly their units and counits.
Note that ιCυC (C, c) = (C, IdC ).

• The unit of (υC, ιC) is defined by (ηC)(C,c) = c : (C, c) → (C, IdC ).
• The counit of (υC, ιC) is εC := IdIdC : υCιC = IdC → IdC .
• The unit of (ιC, υC) is εC := IdIdC : IdC → IdC = υCιC .
• The counit of (ιC, υC) is defined by (νC)(C,c) = c : (C, IdC ) → (C, c).

One has that ηC ◦ νC = ιCυCId and νC ◦ ηC = Id.

We include here the following well-known lemma that will be useful afterwards.

Lemma 2.14 (Cf. [25, proof of Theorem 1]) Let C and D be categories.

(1) For every functor G : C� → D�, then F := υD ◦ G ◦ ιC : C → D is a semifunctor such
that F� ∼= G.

(2) Given semifunctors F,G : C → D and a natural transformation α : F� → G�, then
β := υDαιC : F → G is a seminatural transformation such that β� = α.

Lemma 2.15 The following assertions hold true.

(1) Any functor G whose completion has a left adjoint is part of a semiadjunction (F,G).
(2) Any functor F whose completion has a right adjoint is part of a semiadjunction (F,G).

Proof (1) Let G : D → C be a functor whose completion G� : D� → C� has a left adjoint
L : C� → D�. From Lemma 2.14, there exists a semifunctor F : C → D such that F� ∼= L ,
hence F� 
 G�. Thus, by [24, Theorem 3.5] it follows that (F,G) is a semiadjunction.

(2) It is proved similarly. ��
In [32, Definition 1.3], the authors introduced the concept of “right semiadjoint” (resp.

“left semiadjoint”) which is a priori unrelated to the one of semiadjunction in the sense we
are using here: it consists of functors F : C → D and G : D → C endowed with natural
transformations η : IdC → GF and ε : FG → IdD such that Gε ◦ ηG = IdG (resp.
εF ◦ Fη = IdF ). The following result essentially shows how to construct a semiadjunction
out of a right (left) semiadjoint.3

3 In order to avoid confusion we have not used the expression “right (left) semiadjoint” in the statement.
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Lemma 2.16 Let F : C → D and G : D → C be functors endowed with natural transfor-
mations η : IdC → GF and ε : FG → IdD .

(1) If Gε ◦ ηG = IdG, then there is a semifunctor F ′ : C → D, that acts as F on objects,
such that

(
F ′,G

)
is a semiadjunction.

(2) If εF ◦ Fη = IdF , then there is a semifunctor G ′ : D → C, that acts as G on objects,
such that

(
F,G ′) is a semiadjunction.

Proof We just prove (1). Set e := εF ◦ Fη : F → F . It is well-known that e is idempotent,
see e.g. [32, Lemma 1.4(2)].

Let us check that there is a semifunctor F ′ : C → D that acts as F on objects and sends a
morphism f : X → Y to F f ◦ eX . Given f : X → Y and g : Y → Z in C we have

F ′g ◦ F ′ f = Fg ◦ eY ◦ F f ◦ eX = Fg ◦ F f ◦ eX ◦ eX = F (g ◦ f ) ◦ eX = F ′ (g ◦ f )

so that F ′ is a semifunctor. Let us check that
(
F ′,G, η′, ε′) is a semiadjunction where

η′
C := ηC and ε′

D = εD . To this aim, we first note that

εX ◦ eGX = εX ◦ εFGX ◦ FηGX = εX ◦ FGεX ◦ FηGX = εX ◦ F (GεX ◦ ηGX )

= εX ◦ F (IdGX ) = εX ,

GeX ◦ ηX = GεFX ◦ GFηX ◦ ηX = GεFX ◦ ηGFX ◦ ηX

= (Gε ◦ ηG)FX ◦ ηX = IdGFX ◦ ηX = ηX ,

so that we get the equalities

ε ◦ eG = ε and Ge ◦ η = η. (1)

For every object D inD, we have ε′
D ◦ F ′GIdD = εD ◦ FGIdD = εD = ε′

D and for every
morphism f : X → Y in D, we have

ε′
Y ◦ F ′G f = εY ◦ FG f ◦ eGX = f ◦ εX ◦ eGX

(1)= f ◦ εX = f ◦ ε′
X

so that we can define the seminatural transformation ε′ := (εD)D∈D : F ′G → IdD .
For every objectC in C, we have η′

C ◦ IdC (IdC ) = η′
C ◦ IdC = η′

C and for every morphism
f : X → Y in C, we have

GF ′ f ◦ η′
X = G (F f ◦ eX ) ◦ ηX = G (eY ◦ F f ) ◦ ηX = GeY ◦ GF f ◦ ηX

= GeY ◦ ηY ◦ f
(1)= ηY ◦ f = η′

Y ◦ f

so that we can define the seminatural transformation η′ := (ηC )C∈C : IdC → GF ′. We
compute

Gε′
D ◦ η′

GD = GεD ◦ ηGD = IdGD

and

ε′
F ′C ◦ F ′η′

C = εFC ◦ F ′ηC = εFC ◦ FηC ◦ eC = eC ◦ eC = eC = F ′IdC .

Therefore
(
F ′,G, η′, ε′) is a semiadjunction. ��
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2.6 Characterization of (Co)reflections up to Retracts

Now, we provide a characterization of (co)reflections up to retracts which are semiadjoint
functors. It will be applied to the quotient functor H : C → Ce in Theorem 3.1.

Proposition 2.17 Let (F,G, η, ε) be a semiadjunction. Then,

(1) G is a coreflection up to retracts if and only if there is ν : GF → IdC such that
η ◦ ν = GFId and ν ◦ η = IdIdC .

(2) F is a reflection up to retracts if andonly if there isγ : IdD → FG such thatγ ◦ε = FGId
and ε ◦ γ = IdIdD .

Proof (1) Assume there is ν : GF → IdC such that η ◦ ν = GFId and ν ◦ η = IdIdC .

Let us prove that η� is an isomorphism with inverse ν� defined by ν
�

(C,c) := c ◦ νC so

that F� is fully faithful, i.e. G is a coreflection up to retracts. Note that c ◦ (c ◦ νC ) ◦
GFc = c ◦ c ◦ νC ◦ GFc = c ◦ c ◦ c ◦ νC = c ◦ νC and hence we get the morphism
ν

�

(C,c) : (GFC,GFc) → (C, c). We compute

η
�

(C,c) ◦ ν
�

(C,c) = ηC ◦ c ◦ c ◦ νC = ηC ◦ c ◦ νC = GFc ◦ ηC ◦ νC

= GFc ◦ GFId = GFc = Id(GFC,GFc),

ν
�

(C,c) ◦ η
�

(C,c) = c ◦ νC ◦ ηC ◦ c = c ◦ IdC ◦ c = c ◦ c = c = Id(C,c)

so that η�

(C,c) is an isomorphism in C�. Conversely, assume that G is a coreflection up to

retracts. ThenG� has a left adjoint F� which is fully faithful, so the unitη� : IdC� → G�F�

of the adjunction (F�,G�, η�, ε�) is an isomorphism. By Lemma 2.14, there exists a
seminatural transformation ν : GF → IdC such that ν� = (η�)−1. Thus we have
(η ◦ ν)� = η� ◦ ν� = IdG�F� = (GFId)� and (ν ◦ η)� = ν� ◦ η� = IdIdC� = (IdIdC )�,
hence by [23, Lemma 23] it follows that η ◦ ν = GFId and ν ◦ η = IdIdC , respectively.

(2) The proof follows by the same arguments. ��
Proposition 2.17 allows us to characterize a (co)reflection up to retracts as part of a

semiadjunction as follows.

Corollary 2.18 (Characterization of (co)reflections up to retracts) Let C andD be categories.

(1) A functor G : D → C is a coreflection up to retracts if and only if it is part of a
semiadjunction (F,G, η, ε) and there is ν : GF → IdC such that η ◦ ν = GFId and
ν ◦ η = IdIdC .

(2) A functor F : C → D is a reflection up to retracts if and only if it is part of a semi-
adjunction (F,G, η, ε) and there is γ : IdD → FG such that γ ◦ ε = FGId and
ε ◦ γ = IdIdD .

Proof We prove (1), the proof of (2) being similar. In view of Proposition 2.17, it suffices
to check that a coreflection up to retracts G : D → C is always part of a semiadjunction
(F,G, η, ε). In fact for such a G, the completion G� has a fully faithful left adjoint and we
conclude by Lemma 2.15. ��

The following result is a consequence of Corollary 2.18.

Corollary 2.19 Any (co)reflection up to retracts is surjective up to retracts.
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Proof Let G : D → C be a coreflection up to retracts. By Corollary 2.18 (1), G is part of a
semiadjunction (F,G, η, ε) and there is ν : GF → IdC such that ν ◦ η = IdIdC . Given an
object C in C we get νC ◦ ηC = IdC and hence C is a retract of GFC , i.e. G is surjective
up to retracts. Similarly, any reflection up to retracts is surjective up to retracts by Corollary
2.18 (2). ��

Now we give further conditions for a functor to be a (co)reflection up to retracts. We will
apply it in the next section to study the (co)comparison functor attached to an adjunction.

Proposition 2.20 Let F : C → D and G : D → C be functors endowed with natural
transformations η : IdC → GF and ε : FG → IdD .

(1) If there is a natural transformation ν : GF → IdC such that ν ◦ η = Id and νG = Gε,
then G is a coreflection up to retracts.

(2) If there is a natural transformation γ : IdD → FG such that ε ◦ γ = Id and γ F = Fη,

then F is a reflection up to retracts.

Proof We just prove (1). Given ν as in the statement, note that Gε ◦ ηG = νG ◦ ηG =
(ν ◦ η)G = IdG so that we are in the setting of Lemma 2.16. For any C in C define ν′

C :=
νC ◦GeC , where e := εF ◦ Fη. Then ν′

C ◦GF ′ (IdC ) = νC ◦GeC ◦GeC = νC ◦GeC = ν′
C

and for every morphism f : X → Y in C, we have
ν′
Y ◦ GF ′ f = νY ◦ GeY ◦ GF f ◦ GeX = νY ◦ GF f ◦ GeX ◦ GeX

= f ◦ νX ◦ GeX = f ◦ ν′
X

so that we can define the seminatural transformation ν′ := (
ν′
C

)
C∈C : GF ′ → IdC . We

compute

ν′
C ◦ η′

C = νC ◦ GeC ◦ ηC
(1)= νC ◦ ηC = IdC ,

η′
C ◦ ν′

C = ηC ◦ νC ◦ GeC
nat.ν= νGFC ◦ GFηC ◦ GeC

= GεFC ◦ GFηC ◦ GeC = GeC ◦ GeC = GF ′IdC .

By Proposition 2.17, we conclude. ��

3 Quotient and (Co)comparison Functor

This section collects the fall-outs of the results we achieved so far. First we prove that the
quotient functor H : C → Ce onto the coidentifier category is always a coreflection up to
retracts. Then also the (co)comparison functor attached to an adjunction whose associated
(co)monad is (co)separable is shown to be a coreflection (reflection) up to retracts. This result
allows to characterize a semiseparable right (left) adjoint in terms of (co)separability of the
associated (co)monad and the requirement that the (co)comparison functor is a bireflection up
to retracts. To complete the picture,we study the (semi)separability of a pair of functorswhose
source categories are not idempotent complete. Namely, given a ring morphism ϕ : R → S,
since the induction functor S ⊗R (−) : R-Mod → S-Mod preserves free modules, we
consider what we call the free induction functor S ⊗R (−) : R-Mod f → S-Mod f between
the categories of free left modules (which are not idempotent complete) and its right adjoint,
that we call the free restriction of scalars functor.

In Subsect. 3.1we compare the two canonical factorizationswe have attached to a semisep-
arable right adjoint G : D → C, namely the one through the coidentifier category and the
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one through the comparison functor, showing they are connected by an equivalence up to
retracts.

In Subsect. 3.2, we show that in presence of a separable monad, the associated Kleisli
category and Eilenberg–Moore category have equivalent idempotent completions. Moreover,
given a semiseparable right adjoint G : D → C these idempotent completions result to be
equivalent to the idempotent completion of De, where e is the idempotent natural transfor-
mation associated to G.

In Subsect. 3.3 we apply the foregoing achievements to obtain a semi-analogue of a result
due to P. Balmer concerning pre-triangulated categories. Finally, we provide conditions for
the Eilenberg–Moore category CGF to inherit the pre-triangulation from the base category C.
The quotient functor.We start by proving that the quotient functor H : C → Ce of Subsect.
1.2 is a coreflection up to retracts. Since we know that H is naturally full (as recalled in
Subsect. 1.2), it reveals to be indeed a bireflection up to retracts.

Theorem 3.1 Let C be a category, let e : IdC → IdC be an idempotent natural transformation.
Then, the quotient functor H : C → Ce is a coreflection up to retracts whence a bireflection
up to retracts.

Proof Define the semifunctor L : Ce → C as the identity on objects and by ( f̄ : X → Y ) �→
(eY ◦ f : X → Y ) on morphisms. Note that it is really a semifunctor as LIdX = eX ◦ IdX =
eX = IdLX in general. Moreover, it is well-defined as f̄ = ḡ if and only if eY ◦ f = eY ◦ g.
Now we show that (L, H) is a semiadjunction with unit η : IdCe → HL , ηX = IdX :
X → HLX = X , and counit ε : LH → IdC , εY := eY : LHY = Y → Y . First, observe
that η and ε are seminatural transformations. Indeed, for every f̄ : X → Y in Ce, we have
HL f̄ ◦ηX = H(eY ◦ f )◦IdX = HeY ◦H f ◦H IdX = IdHY ◦H f ◦IdHX = IdY ◦ f̄ = ηY ◦ f̄ ,
hence in particular HLIdX ◦ ηX = ηX ◦ IdX = ηX , thus η is a seminatural transformation.
The same holds for ε, as εY ◦LH f = eY ◦L f̄ = eY ◦eY ◦ f = eY ◦ f = f ◦eX = f ◦εX and
in particular εY ◦ LH IdY = IdY ◦ εY = εY . Moreover, for every X ∈ C and Y ∈ Ce we have
the identities εLX ◦LηX = eLX ◦LIdX = eX ◦LIdX = eX ◦eX ◦IdX = eX ◦IdX = LIdX and
HεY ◦ ηHY = HeY ◦ IdHY = HeY = IdHY = H IdY . So (L, H , η, ε) is a semiadjunction.
Since for every object X ∈ Ce, HL(X) = X , and for every morphism f̄ in Ce, HL f̄ =
H(eY ◦ f ) = HeY ◦ H f = IdHY ◦ f̄ = f̄ , we have HL = IdCe , and thus η = IdIdCe , hence
there exists ν = IdIdCe : HL → IdCe such that η ◦ ν = IdIdCe = HLId and ν ◦ η = IdIdCe .
By Proposition 2.17 H : C → Ce is a coreflection up to retracts. Since H is also naturally
full, then, by Lemma 2.4, H is a bireflection up to retracts. ��
Remark 3.2 The functor H : C → Ce is a bireflection if and only if the idempotent natural
transformation e : IdC → IdC splits, see [1, Proposition 2.27]. Thus, in general it is a
bireflection up to retracts but not a bireflection.

Example 3.3 Let R be a ring and let R-Mod be the category of left R-modules. Denote by
R-Mod f and R-Proj the full subcategories of R-Mod whose objects are free left R-modules
and projective left R-modules, respectively. Let � : R-Mod f → R-Proj be the inclusion
functor. It is an equivalence up to retracts as it is fully faithful and any projective module is
a retract of a free module, cf. Lemma 2.4 (6). As a consequence, by [28, Theorem 6.12, page
30], the functor � induces an equivalence � ′ : R-Mod�

f → R-Proj, (F, e) �→ Im(e). This
fact is well-known and, in the finitely generated case, it is written explicitly in [28, Theorem
6.16].

Now set C := R-Mod f . Given a central idempotent element z ∈ R, with z = 0, 1, define
the idempotent natural transformation e : IdC → IdC by setting eM : M → M,m �→ zm,
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for every free left R-module M . If e splitted, then eR : R → R would split in C and
thus zR = Im(eR) would be a free R-module. Since 0 = z ∈ zR, we have zR = 0
and it is known that a nonzero free module is faithful, i.e. it has trivial annihilator. Hence
1 − z ∈ AnnR(zR) = 0 and so z = 1, a contradiction. Therefore e does not split and hence
H : C → Ce is a bireflection up to retracts but not a bireflection in view of Remark 3.2. For
example, take R = R × R and z = (1, 0).

The (co)comparison functor. Now we move our attention to the (co)comparison functor
attached to an adjunction.

Theorem 3.4 Let F 
 G : D → C be an adjunction with unit η and counit ε.

(1) If the monad (GF,GεF, η) is separable, then the comparison functor KGF : D → CGF

is a coreflection up to retracts.
(2) If the comonad (FG, FηG, ε) is coseparable, then the cocomparison functor K FG :

C → DFG is a reflection up to retracts.

Proof We just check (1). Set K := KGF : D → CGF , U := UGF : CGF → C, V :=
VGF : C → CGF and consider � := FU : CGF → D. Let us construct three natural
transformations η1 : IdCGF → K�, ε1 : �K → IdD and ν1 : K� → IdCGF that fulfill
the requirements of Proposition 2.20, i.e. such that ν1 ◦ η1 = Id and ν1K = K ε1. Since
�K = FUK = FG it makes sense to define ε1 := ε, the counit of the adjunction (F,G).
Since K� = K FU = VU we can set ν1 := β, the counit of the adjunction (V ,U ), which
is defined by Uβ(C,μ) = μ for every object (C, μ) in CGF .

Since themonad (GF,GεF, η) is separable, then the functorU is separable and hence, by
Rafael Theorem, there is a natural transformation η1 : IdCGF → VU such that β ◦ η1 = Id,
i.e. ν1 ◦ η1 = Id.

Moreover UβK D = Uβ(GD,GεD) = GεD = UK ε1D so that βK = K ε1, i.e. ν1K =
K ε1. ��

Theorem 3.4 allows to obtain the following characterization improving Theorem 1.8.

Theorem 3.5 Let F 
 G : D → C be an adjunction with unit η and counit ε.

(1) G is semiseparable if and only if the monad (GF,GεF, η) is separable and the com-
parison functor KGF : D → CGF is a bireflection up to retracts.

(2) F is semiseparable if and only if the comonad (FG, FηG, ε) is coseparable and the
cocomparison functor K FG : C → DFG is a bireflection up to retracts.

Proof We just prove (1). By Theorem 1.8, G is semiseparable if and only if the monad
(GF,GεF, η) is separable and KGF is a naturally full. When (GF,GεF, η) is separable,
KGF is a coreflection up to retracts by Theorem 3.4, and hence it is naturally full if and only
it it is a naturally full coreflection up to retracts if and only if it is a bireflection up to retracts
by Lemma 2.4. ��

Theorem 3.5 allows to retrieve the following characterization improving Corollary 1.9.

Corollary 3.6 Let F 
 G : D → C be an adjunction with unit η and counit ε.

(1) [16, Proposition 3.5] G is separable if and only if the monad (GF,GεF, η) is separable
and the comparison functor KGF : D → CGF is an equivalence up to retracts.

(2) [38, Proposition 2.3] F is separable if and only if the comonad (FG, FηG, ε) is cosep-
arable and the cocomparison functor K FG : C → DFG is an equivalence up to retracts.
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Proof We just prove (1). By Proposition 1.1, G is separable if and only if it is semiseparable
and faithful. By Theorem 3.5, G is semiseparable if and only if the monad (GF,GεF, η) is
separable and KGF is a bireflection up to retracts. On the other hand, since G = UGF ◦ KGF

and UGF is faithful, we have that G is faithful if and only if so is KGF . Summing up G is
separable if and only if (GF,GεF, η) is separable and KGF is a fully faithful bireflection
up to retracts. By Lemma 2.4, the latter requirements on KGF means it is an equivalence up
to retracts. ��

The special features we proved for coreflections up to retracts yield the following result.

Corollary 3.7 Let F 
 G : D → C be an adjunction with comparison functor KGF : D →
CGF and cocomparison functor K FG : C → DFG.

(1) Assume G is semiseparable. If KGF has a left adjoint, then KGF is a bireflection.
(2) Assume F is semiseparable. If K FG has a right adjoint, then K FG is a bireflection.
(3) (Cf. [35, Proposition, page 93] and [3, Proposition 2.16(3)]) Assume G is separable. If

KGF has a left adjoint, then KGF is an equivalence (i.e. G is monadic)
(4) (Cf. [31, Proposition 3.16]) Assume F is separable. If K FG has a right adjoint, then

K FG is an equivalence (i.e. F is comonadic).

In case D (resp. C) is idempotent complete, if G (resp. F) is (semi)separable, then KGF

(resp. K FG) has a left (resp. right) adjoint so the previous assertions apply.

Proof We just prove (1) and (3). If G is semiseparable (resp. separable), by Theorem 3.5
(resp. Corollary 3.6) we know that KGF is a bireflection (resp. equivalence) up to retracts.
Then, if KGF has a left adjoint, by Proposition 2.9 KGF is a bireflection (resp. equivalence).
By Proposition 2.12, if D is idempotent complete, then KGF has a left adjoint as it is a
bireflection (resp. equivalence) up to retracts. ��

What follows is an example of a coreflection (up to retracts) which is not an equivalence
(up to retracts) and not even a bireflection (up to retracts).

Example 3.8 Consider the forgetful functor G : Top → Set and its left adjoint F : Set →
Topwhich assigns to each set X the topological space X equipped with the discrete topology
(all subsets of X are open), see [30, page 144]. This adjunction defines on Set the identity
monad I = (IdSet, Id, Id). The Eilenberg–Moore category of modules over I is then Set, thus
the comparison functor KGF : Top → SetI = Set is the given forgetful functor G. Note that
the identity monad I is separable, thus by Theorem 3.4 KGF is a coreflection up to retracts
and then a coreflection either by Proposition 2.12, as Top is an idempotent complete category
(it has in fact equalizers, see [24, Theorem 2.15]), or by Proposition 2.9, as KGF = G has a
left adjoint. Since KGF is not an equivalence, again by Proposition 2.12 it follows that KGF

is not even an equivalence up to retracts. By Corollary 3.6 we have that G is not separable
and, since G is faithful, G is not semiseparable by Proposition 1.1. Then, by Theorem 3.5
KGF is not even a bireflection up to retracts, and hence not a bireflection by Proposition 2.12.

Remark 3.9 Let F 
 G : R-Mod → S-Mod be an adjunction. Since the source category of
G is idempotent complete, Corollary 3.7 applies. This means that, in view of Theorem 3.5,
the functor G = UGF ◦ KGF is semiseparable if and only if the associated monad GF is
separable (equivalently, the forgetful functor UGF is separable) and the comparison KGF is
a bireflection. As obtained in [1, Corollary 2.28], any factorization as a bireflection followed
by a separable functor is the same given by the coidentifier (i.e., G = Ge ◦ H ), up to a
category equivalence (see Subsect. 3.1 for a more general treatment). Examples are e.g. [1,
Proposition 3.5, Corollary 3.12, Proposition 3.24].
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Next aim is to exhibit examples of (semi)separable adjoints to whom Theorem 3.5 and
Corollary 3.6 apply even if the relevant categories are not idempotent complete, namely the
free induction functor and the free restriction of scalars functor.

The free induction and restriction functors. In order to study the (semi)separability of the
free induction functor and of the free restriction of scalars functor, we will use the following
lemma, inspired by [5, Lemma 2.9].

Lemma 3.10 Let F 
 G : C → D be an adjunction of functors and let S : C′ → C and
T : D′ → D be fully faithful functors. Assume that there exist functors F ′ : D′ → C′ and
G ′ : C′ → D′ such that both squares

C′ S

G ′
C

G

D′ T

F ′

D
F 


are commutative, i.e. F ◦ T = S ◦ F ′ and T ◦ G ′ = G ◦ S. Then, (F ′,G ′) is an adjunction
in a unique way such that the pair of functors (S, T ) is a map of adjunctions in the sense of
[30, IV.7].
Moreover, if G (respectively, F) is (semi)separable, then also G ′ (respectively, F ′) is
(semi)separable.

Proof Consider D′ ∈ D′, C ′ ∈ C′. The composition of natural isomorphisms yields the
natural isomorphism ϕD′,C ′ := (FT

D′,G ′C ′)−1 ◦ ϕT D′,SC ′ ◦ F S
F ′D′,C ′ . By construction the

diagram

HomC′(F ′D′,C ′)
F S

F ′D′,C ′

ϕD′,C ′

HomC(SF ′D′, SC ′) HomC(FT D′, SC ′)

ϕT D′,SC ′

HomD′(D′,G ′C ′)
FT

D′,G′C ′
HomD(T D′, TG ′C ′) HomD(T D′,GSC ′)

commutes and this means that the pair of functors (S, T ) is a map of adjunctions.
Finally, assume that G is semiseparable. Since S is fully faithful, by Lemma 1.2 (ii) G ◦ S

is semiseparable, and then T ◦G ′ is semiseparable, hence, since T is faithful, by Lemma 1.2
(iii) it follows that also G ′ is semiseparable. If G is separable, the proof follows analogously.
The case with F and F ′ is similar. ��

As in Example 3.3, denote by R-Mod f the full subcategory of R-Mod consisting of free
left R-modules. Given a ring morphism ϕ : R → S, the induction functor ϕ∗ = S ⊗R (−) :
R-Mod → S-Mod has a right adjoint, namely the restriction of scalars functorϕ∗ : S-Mod →
R-Mod. Moreover ϕ∗ preserves free modules as S ⊗R R(B) ∼= (S ⊗R R)(B) ∼= S(B), giving
rise to the functor

ϕ∗
f = S ⊗R (−) : R-Mod f → S-Mod f ,

that we call the free induction functor.
We have the following result.

Proposition 3.11 Let ϕ : R → S be a ring morphism. The following assertions are equiva-
lent.
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(1) The free induction functor ϕ∗
f : R-Mod f → S-Mod f has a right adjoint ϕ∗ f .

(2) S is free as a left R-module.
(3) The restriction of scalars functor ϕ∗ : S-Mod → R-Mod preserves free modules.

In case the above equivalent conditions hold, then ϕ∗ f is induced by ϕ∗ and the unit and
counit of (ϕ∗

f , ϕ∗ f ) are the restrictions of the ones of (ϕ∗, ϕ∗). Moreover, if S = 0, then ϕ is
injective and ϕ∗

f is faithful.

We call the functor ϕ∗ f the free restriction of scalars functor.

Proof (1) ⇒ (2). Assume that ϕ∗
f has a right adjoint G : S-Mod f → R-Mod f . Then, we

have the following isomorphisms of left R-modules: S ∼= SHom(S S, S S) ∼= SHom(S ⊗R

R, S S) = SHom(ϕ∗
f (R), S S) ∼= RHom(R R, RG(S)) ∼= RG(S).

Since RG(S) is a free left R-module, then so is S.
(2) ⇒ (3). Assume that S is a free left R-module. Then, S ∼= R(J ). If X is a free left

S-module (i.e. X ∼= S(A)), then it can be regarded as a left R-module where the action of R
is given by R × X → X , (r , x) �→ ϕ(r)x . Then ϕ∗(X) = R X ∼= (RS)(A) ∼= (R(J ))(A) ∼=
R(A×J ) is a free left R-module.

(3) ⇒ (1). If ϕ∗ preserves free modules, it induces ϕ∗ f : S-Mod f → R-Mod f . Since the
inclusion functors iS : S-Mod f ↪→ S-Mod and iR : R-Mod f ↪→ R-Mod are fully faithful,
then the assumptions of Lemma 3.10 are satisfied and (ϕ∗

f , ϕ∗ f ) results to be an adjunction.
Indeed, the square

S-Mod f
iS

ϕ∗ f

S-Mod

ϕ∗

R-Mod f
iR

ϕ∗
f

R-Mod

ϕ∗ 


is commutative, i.e. iR ◦ ϕ∗ f = ϕ∗ ◦ iS and iS ◦ ϕ∗
f = ϕ∗ ◦ iR , since ϕ∗ f and ϕ∗

f have
been defined as the restrictions of ϕ∗ and ϕ∗ respectively. Since the pair (iS, iR) constitute
a morphism of adjunctions, by [30, Proposition 1, page 99] we know that the unit η f and
counit ε f of (ϕ∗

f , ϕ∗ f ) are related to the unit η and counit ε of (ϕ∗, ϕ∗) by the equalities
ηiR = iRη f and εiS = iSε f . This means that η f and ε f are just the restrictions of η and
ε respectively. Explicitly, the unit is defined as (η f )M : M → S ⊗R M, m �→ 1S ⊗R m,
for any M ∈ R-Mod f . Note that (η f )M = (ϕ ⊗R M) ◦ l−1

M where lM : R ⊗R M → M is
the canonical isomorphism. Assume S = 0. Since M if a free left R-module, then it is flat,
so that (η f )M is injective as so is ϕ since Ker(ϕ) ⊆ AnnR(S) and the annihilator is zero as
every non-trivial free left R-module is faithful. Then, ϕ∗

f is faithful. ��
We recall the following known facts:

• ϕ∗ is separable if and only if S/R is separable, i.e. the multiplication mS : S ⊗R S → S,
s ⊗R s′ �→ ss′ splits as an S-bimodule map, see [33, Proposition 1.3];

• ϕ∗ is separable if and only if ϕ is split-mono as an R-bimodule map, i.e. if there is
E ∈ RHomR(S, R) such that E ◦ ϕ = Id, see [33, Proposition 1.3];

• ϕ∗ is semiseparable if and only if ϕ is a regular morphism of R-bimodules, i.e. there is
E ∈ RHomR(S, R) such that ϕ ◦ E ◦ ϕ = ϕ, see [1, Proposition 3.1].

Note that the free restriction of scalars functor ϕ∗ f is a faithful functor, so by Proposition
1.1 it is semiseparable if and only if it is separable. Assuming that S = 0 is free as a left
R-module, then by Proposition 3.11 the functor ϕ∗

f is faithful, hence again by Proposition
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1.1 it is semiseparable if and only if it is separable. It remains to check when ϕ∗ f and ϕ∗
f are

separable functors.

Proposition 3.12 Let ϕ : R → S be a morphism of rings, with S a free left R-module.

(1) The free induction functor ϕ∗
f = S ⊗R (−) : R-Mod f → S-Mod f is separable if and

only if ϕ is a split-mono as an R-bimodule map.
(2) The free restriction of scalars functor ϕ∗ f : S-Mod f → R-Mod f is separable if and

only if S/R is separable.

Proof (1) Assume that ϕ∗
f is separable. Then, by Rafael Theorem, there exists a natural

transformation ν ∈ Nat(ϕ∗ f ϕ
∗
f , IdR-Mod f ) such that ν ◦ η = Id, where η is the unit of

(ϕ∗
f , ϕ∗ f ) i.e. ηM : M → S ⊗R M, m �→ 1S ⊗R m, for any M ∈ R-Mod f . Now, since R is

a free R-module, we consider E ∈ RHomR(S, R) defined by setting E(s) := νR(s ⊗R 1R),
for every s ∈ S (note that the right R-linearity of E descends from the naturality of ν). Then,
for every r ∈ R, we get (E ◦ ϕ)(r) = E(ϕ(r)) = νR(ϕ(r) ⊗R 1R) = νR(ηR(r)) = r . Thus
E ◦ ϕ = Id. Conversely, if ϕ is a split-mono as an R-bimodule map, we mentioned that ϕ∗
is separable. By Lemma 3.10, so is ϕ∗

f .
(2) Assume now that ϕ∗ f is separable. Then, by Rafael Theorem, there exists a natural

transformation γ ∈ Nat(IdS-Mod f , ϕ
∗
f ϕ∗ f ) such that ε ◦ γ = Id, where ε is the counit of

(ϕ∗
f , ϕ∗ f ) i.e. εN : S ⊗R N → N , s ⊗ n �→ sn, for any N ∈ S-Mod f . Now, since S is a

free S-module, we consider γS ∈ SHomS(S, S ⊗R S) (note that the right S-linearity of γS
descends from the naturality of γ ).

Since εS ◦ γS = Id, we conclude that the multiplication mS = εS : S ⊗R S → S splits as
an S-bimodule map so that S/R is separable. Conversely, if S/R is separable, we mentioned
that ϕ∗ is separable. By Lemma 3.10, so is ϕ∗ f . ��
Example 3.13 (1) Consider the morphism of rings ϕ : R → R × R, r �→ (r , r). The R-
bimodule structure induced onR×R via ϕ is the canonical one so that it is free. The canonical
projection E : R×R → R, (a, b) �→ a, is a morphism ofR-bimodules such that E ◦ϕ = Id.
By Proposition 3.12, the free induction functor ϕ∗

f = R
2 ⊗R (−) : R-Mod f → R

2-Mod f

is separable.
(2) Let R be a ring and let ϕ : R → Mn(R) be the canonical inclusion into the ring of

n×nmatrices over R. It is well-known thatMn(R)/R is separable (see e.g. [18, Example II])
and clearly Mn(R) ∼= Rn2 is free as a left R-module. By Proposition 3.12, the free restriction
of scalars functor ϕ∗ f : Mn(R)-Mod f → R-Mod f is separable.

3.1 Comparing the Factorizations of a Semiseparable Adjoint

Let F 
 G : D → C be an adjunction. So far we have seen that if G is semiseparable, then
it admits two canonical factorizations as a bireflection up to retracts followed by a separable
functor, namely G = Ge ◦H (cf. Theorems 1.7 and 3.1) and G = UGF ◦KGF (cf. Theorems
1.8 and 3.5).

D H

biref. u.t.r.
De

Ge

sep. C and D KGF

biref. u.t.r.
CGF

UGF

sep. C

Similar factorizations have been obtained also for F in case it is semiseparable. Next aim
is to compare these factorizations. First we need Lemma 3.14, an easy result concerning
the idempotent completeness of the coidentifier, and the useful Lemma 3.15, regarding the
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composition of (co)reflections (up to retracts). The subsequent Proposition 3.16 provides a
factorization of bireflections up to retracts.

In order to state next result, we adopt the following terminology: A functor F : C → D
lifts idempotents whenever each idempotent morphism in D is of the form F(q) for some
idempotent morphism q in C. It is clear that, given such a functor, if C is idempotent complete
so is D.

Lemma 3.14 Let C be a category and let e : IdC → IdC be an idempotent natural transfor-
mation. Then the quotient functor H : C → Ce lifts idempotents. As a consequence, if C is
idempotent complete so is the coidentifier Ce.

Proof Let h : C → C be an idempotent morphism in Ce. Then h ◦ h = h i.e. h ◦ h = h and
hence eC ◦ h ◦ h = eC ◦ h. Set q := eC ◦ h : C → C . Then q ◦ q = eC ◦ h ◦ eC ◦ h =
eC ◦ eC ◦ h ◦ h = eC ◦ h ◦ h = eC ◦ h = q and hence q is an idempotent morphism in C.
Moreover Hq = q = eC ◦ h = h. ��

Lemma 3.15 Let G : D → C and U : C → C′ be functors.

1) If G is a (co)reflection and U is conservative, then U is an equivalence if and only if
U ◦ G is a (co)reflection.

2) If G is a (co)reflection up to retracts and U is separable, then U is an equivalence up to
retracts if and only if U ◦ G is a (co)reflection up to retracts.

Proof Set G ′ := U ◦ G.

(1) SinceU is conservative, if G ′ is a coreflection, by [4, Corollary 4.9], which is a conse-
quence of [9, Lemma 1.2], we get thatU is an equivalence. Conversely, ifU is an equivalence
then it is in particular a coreflection and hence, by Remark 1.10, G ′ is a coreflection as a
composition of coreflections. The statement for G a reflection is proved dually.

(2) By Corollary 2.2, since U is separable so is U �. In particular U � is conservative, by
Remark 2.7. Therefore we have that

(
G ′)� = U � ◦G� where G� is a (co)reflection andU � is

conservative. By 1), we get thatU � is an equivalence (i.e.U is an equivalence up to retracts)
if and only if

(
G ′)� is a (co)reflection (i.e. G ′ is a (co)reflection up to retracts). ��

Proposition 3.16 Let F : C → D be a bireflection up to retracts. If we consider the associated
idempotent natural transformation e : IdC → IdC and the corresponding factorization
F = Fe ◦ H, then the unique functor Fe : Ce → D is an equivalence up to retracts. If C is
idempotent complete, then Fe is an equivalence.

Proof If F is a bireflection up to retracts, it is a semiseparable coreflection up to retracts
by Lemma 2.4. In particular, F admits the associated idempotent natural transformation
e : IdC → IdC , see Proposition 1.3. By Theorem 1.7, there is a factorization F = Fe ◦ H
for a unique functor Fe : Ce → D which is separable. Since both F and H are coreflections
up to retracts (see Theorem 3.1) and Fe is separable, by Lemma 3.15, we get that Fe is an
equivalence up to retracts.

If C is idempotent complete so is Ce by Lemma 3.14. Then Fe is an equivalence in view
of Proposition 2.12. ��

Example 3.17 Let F : C → D be a bireflection up to retracts. Thus F� : C� → D� is a
bireflection. In particular, by Lemma 2.4, it is a bireflection up to retracts whose source
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category C� is idempotent complete. By Proposition 3.16, (F�)α : (C�)α → D� is an equiv-
alence where α : IdC� → IdC� is the idempotent natural transformation associated to F�. By
definition and running through again the proof of Corollary 2.2, we get that

α(C,c) = PF�

(C,c),(C,c)(IdF�(C,c)) = PF�

(C,c),(C,c)(Id(FC,Fc))

= PF
C,C (Fc) = PF

C,C (IdFC ) ◦ c = eC ◦ c

so that α = e� where e : IdC → IdC is the idempotent natural transformation associated to
F . This shows that (F�)e� : (C�)e� → D� is an equivalence and hence D� ∼= (C�)e� .

In particular, in Theorem 3.1 we proved that H : C → Ce is a bireflection up to retracts.
By the foregoing, (H �)e� : (C�)e� → (Ce)� is an equivalence and hence (Ce)� ∼= (C�)e� .

We are now able to compare the two factorizations we are interested in.

Proposition 3.18 Consider an adjunction F 
 G : D → C.
(1) If G is semiseparable and e : IdD → IdD is the associated idempotent natural transfor-

mation, then there is a unique functor (KGF )e : De → CGF such that (KGF )e◦H = KGF

andUGF ◦(KGF )e = Ge.Moreover, the functor (KGF )e is an equivalence up to retracts.
If D is idempotent complete, then (KGF )e is an equivalence of categories.

(2) If F is semiseparable and e : IdC → IdC is the associated idempotent natural transforma-
tion, then there is a unique functor

(
K FG

)
e : Ce → DFG such that

(
K FG

)
e ◦H = K FG

andU FG ◦(
K FG

)
e = Fe.Moreover, the functor

(
K FG

)
e is an equivalence up to retracts.

If C is idempotent complete, then
(
K FG

)
e is an equivalence of categories.

D H

KGF

De

(KGF )e Ge

CGF
UGF

C

C H

K FG

Ce
(K FG )e Fe

DFG

UFG
D

Proof We just prove (1). The existence of a unique functor (KGF )e that makes commutative
the diagram in the statement has already been observed in [1, Remark 2.10]. Moreover
the functors Ge and UGF are separable while the functors H and KGF are naturally full.
Furthermore, by Theorem 1.7 G and KGF have the same associated idempotent natural
transformation e.

Since e is the associated idempotent natural transformation for KGF , the factorization
KGF = (KGF )e ◦ H is necessarily the one of Proposition 3.16, once observed that KGF is
a bireflection up to retracts by Theorem 3.5. As a consequence (KGF )e is an equivalence up
to retracts (an equivalence in case D is idempotent complete). ��

Although in the present paper we usually deduced the general results from weaker ones
(e.g. we deduced results on separable functors from those on semiseparable functors), we
could, in some cases, also have done the opposite. For instance, given an adjunction (F,G)

with G semiseparable, since the equality (KGF )e ◦ H = KGF holds and the functor H is a
coreflection up to retracts, by Lemma 3.15 we can conclude that KGF is a coreflection up to
retracts (whence a bireflection up to retracts) if we know that (KGF )e is an equivalence up to
retracts. In other words, we can give a different proof of Theorem 3.5, by first showing that
(KGF )e is an equivalence up to retracts. To this aim we first need the following lemma.
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Lemma 3.19 Let Ge : De → C be a functor. If G := Ge ◦ H : D → C has a left adjoint F
with unit η and counit ε, then Fe := H ◦ F is a left adjoint of Ge with unit ηe and counit
εe uniquely defined by the identities ηe = η and εeH = Hε. Moreover the adjunctions
(Fe,Ge) and (F,G) have the same associated monad (whence CGeFe = CGF) and the
respective comparison functors are related by the equality KGeFe ◦ H = KGF .

D

KGF

H

G

De

KGeFe
GeCGF = CGeFe

UGF UGeFe

C Id

F 


C

Fe 


Proof Given ε : FG → IdD we have Hε : HFG → H . By the universal property of the
coidentifier, since (FeGe) ◦ H = HFG and IdDe ◦ H = H , we have (HFG)e = FeGe

and He = IdDe and hence there is a unique natural transformation εe : FeGe → IdDe such
that εeH = Hε (see Lemma 1.6). Since Ge ◦ Fe = Ge ◦ H ◦ F = G ◦ F, it makes sense to
define ηe := η. Then

GeεeH ◦ ηeGeH = GeHε ◦ ηeGeH = Gε ◦ ηG = IdG = IdGeH .

Since H is the identity on objects, we deduce that Geεe ◦ ηeGe = IdGe . Moreover

εeFe ◦ Feηe = εeH F ◦ HFηe = HεF ◦ HFη = H IdF = IdHF = IdFe .

Since Ge ◦ Fe = G ◦ F, GeεeFe = GeεeH F = GeHεF = GεF and ηe = η we have that
the adjunctions (Fe,Ge) and (F,G) have the same associated monad. Thus CGeFe = CGF .
Note that

KGeFe H X = (GeH X ,GeεeH X) = (GeH X ,GeHεX) = (GX ,GεX) = KGF X ,

KGeFe H f = GeH f = G f = KGF f

so that KGeFe ◦ H = KGF . ��

By Lemma 3.19, the adjunctions (Fe := H ◦ F,Ge) and (F,G) have the same associated
monad (whence CGeFe = CGF ) and the respective comparison functors are related by the
equality KGeFe ◦ H = KGF . Since the functor (KGF )e : De → CGF of Proposition 3.18 is
uniquely determined by the equality (KGF )e ◦ H = KGF , we get (KGF )e = KGeFe . Since
Ge is separable, by [16, Proposition 3.5], we get that KGeFe is an equivalence up to retracts.
Thus (KGF )e is an equivalence up to retracts as desired.

In a similar way, given an adjunction (F,G) with F semiseparable, we can conclude that
K FG is a reflection up to retracts if we know that

(
K FG

)
e is an equivalence up to retracts.

This is a consequence of the following dual of Lemma 3.19.

Lemma 3.20 Let Fe : Ce → D be a functor. If F := Fe ◦ H : C → D has a right adjoint G
with unit η and counit ε, then Ge := H ◦G is a right adjoint of Fe with unit ηe and counit εe
uniquely defined by the identities ηeH = Hη and εe = ε. Moreover the adjunctions (Fe,Ge)

and (F,G) have the same associated comonad (whence DFeGe = DFG) and the respective
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cocomparison functors are related by the equality K FeGe ◦ H = K FG.

D Id

G

D

GeDFG = DFeGe

U FG U FeGe

C H

K FG

F 


Ce

K FeGe

Fe 


3.2 Idempotent Completion of Kleisli Category

As another application of the results about conditions up to retracts, we now focus on the
Kleisli construction for a monad (�,m : �� → �, η : IdC → �) on a category C. Recall
that a �-module is free when it is isomorphic to one of the form V�C = (�C,mC ), for
some object C ∈ C, and the full subcategory of C� generated by the free �-modules is
equivalent to the so-called Kleisli category �-FreeC of free �-modules (see [29]). Explicitly
the objects of �-FreeC are those of C and a morphism f : C � D in �-FreeC is a morphism
f : C → �(D) in C; the composite of two morphisms f : C � D, g : D � E in �-FreeC
is given in C by the composite

C
f �(D)

�(g) ��(E)
mE �(E),

and the identity C � C on an object C of �-FreeC is the unit ηC : C → �(C) in C. There
is (see [12, Proposition 4.1.6]) a fully faithful functor

J� : �-FreeC → C�, C �→ (�C,mC ), [ f : C � D] �→ mD ◦ �( f ),

that fits into the following diagram

C
V�

V ′�
�-FreeC

U ′�

J�
C�,

U� (2)

where the adjunction (V�,U�) restricts to an adjunction (V ′�,U ′�) between C and �-FreeC ,
that is,U ′� = U� ◦ J� and J� ◦ V ′� = V� (see [12, Corollary 4.1.7]). Explicitly U ′� and V ′�
are given by

U ′� : �-FreeC → C, C �→ �(C), f �→ mD ◦ �( f ), (3)

V ′� : C → �-FreeC, C �→ C, f �→ ηD ◦ f (4)

In the next result we investigate the functor J� in case the monad � is separable.

Proposition 3.21 Let (�,m, η) be a separable monad on a category C. Then, the canonical
functor J� : �-FreeC → C� is an equivalence up to retracts. In particular �-Free�

C ∼= C�
�.

Proof By [10, 2.9 (1)] the separability of themonad (�,m, η) is equivalent to the separability
of the forgetful functor U� : C� → C, hence, by Rafael Theorem this is also equivalent to
the fact that the counit β : V�U� → IdC� of the adjunction (V�,U�) is a split natural
epimorphism. Thus, we get that V� is surjective up to retracts and hence so is J� in view
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of the equality V� = J� ◦ V ′�. But J� is also fully faithful, hence it is an equivalence up to
retracts by Lemma 2.4. ��

Now, given an adjunction F 
 G : D → C, with unit η, counit ε, consider the diagram
(2) for the associated monad (GF,GεF, η). Then, (see [12, Proposition 4.2.1]) there is the
so-called Kleisli comparison functor

LGF : GF-FreeC → D, C �→ F(C), f �→ εFD ◦ F( f ),

such that KGF ◦ LGF is the functor JGF : GF-FreeC → CGF , C �→ (GFC,GεFC ),
f �→ GεFD ◦ GF( f ).

C

VGF

V ′
GF

F

GF-FreeC
U ′
GF

LGF
D

H

G

KGF
CGF

UGF

De
(KGF )e

(5)

Moreover, G ◦ LGF = U ′
GF and LGF ◦ V ′

GF = F , where U ′
GF : GF-FreeC → C is

defined as in (3), i.e. by setting U ′
GF (C) = GF(C), U ′

GF ( f ) = GεFD ◦ GF( f ), for every
object C and every morphism f : C � D in GF-FreeC , and V ′

GF : C → GF-FreeC as in
(4), i.e. it is the identity map on objects and, for every morphism f : C → D in C, it is given
by V ′

GF ( f ) = ηD ◦ f . In particular, since KGF ◦ LGF = JGF and JGF is faithful, then the
functor LGF : GF-FreeC → D is faithful too. Moreover, a morphism h : F(C) → F(D)

in D corresponds by adjunction with the morphism f := Gh ◦ ηC : C → GF(D) in C, i.e.
a morphism f : C � D in GF-FreeC such that LGF ( f ) = h, hence LGF is full as well.

The next step is to show that, given an adjunction, the semiseparability of the right adjoint
provides an equivalence between the associated Kleisli and Eilenberg–Moore categories,
after idempotent completion. As a consequence, these categories are also equivalent up to
retracts to the coidentifier category associated to the semiseparable right adjoint.

Proposition 3.22 Let F 
 G : D → C be an adjunction, and consider the diagram
(5). Assume G is a semiseparable functor. Then, the composite functor KGF ◦ LGF :
GF-FreeC → CGF is an equivalence up to retracts. Moreover, also the composite H ◦ LGF :
GF-FreeC → De is an equivalence up to retracts and hence GF-Free�

C ∼= D�
e

∼= C�
GF .

Proof ByTheorem1.8 (i), sinceG is semiseparable, then the associatedmonad (GF,GεF, η)

is separable. Since the composite functor KGF ◦LGF : GF-FreeC → CGF equals the canon-
ical functor JGF : GF-FreeC → CGF , by applying Proposition 3.21, we get that it is an
equivalence up to retracts.

Moreover, by Proposition 3.18 there is a unique functor (KGF )e : De → CGF such that
(KGF )e ◦ H = KGF and UGF ◦ (KGF )e = Ge, and in particular (KGF )e is an equivalence
up to retracts, so the fact that H ◦ LGF is an equivalence up to retracts follows from the
equality (KGF )

�
e ◦ (H ◦ LGF )� = (KGF ◦ LGF )�. ��

As a consequence of Proposition 3.22, we recover [7, Lemma 2.10] (see also [6, Theorem
5.17 (d)] in the setting of idempotent complete suspended categories), inwhich theKleisli and
the Eilenberg–Moore comparison functors LGF : GF-FreeC → D and KGF : D → CGF

result to be equivalences up to retracts, whenever the counit ε : FG → IdD of the adjunction
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(F,G) admits a natural section, i.e. if there is a natural transformation ξ : IdD → FG such
that ε ◦ ξ = IdIdD .

Explicitly we have the following:

Corollary 3.23 (cf. [7, Lemma 2.10]) Let F 
 G : D → C be an adjunction with G
separable. Then, the functors LGF : GF-FreeC → D and KGF : D → CGF are both
equivalences up to retracts. Moreover, if D is idempotent complete, then G is monadic, i.e.
KGF : D → CGF is an equivalence.

Proof Since G is a separable functor, then, by Corollary 1.4, the associated idempotent
natural transformation e : IdD → IdD is the identity IdIdD , and hence the quotient functor
H : D → DId is an equivalence. Thus, by Proposition 3.22, LGF : GF-FreeC → D results
to be an equivalence up to retracts. Concerning KGF , it is an equivalence up to retracts, in
view of Corollary 3.6. Furthermore, it is an equivalence if D is idempotent complete, by
Corollary 3.7. ��
Remark 3.24 A similar result has been obtained in the setting of idempotent complete trian-
gulated categories in [17, Theorem 1.6] where G is only required to be conservative, which
is always satisfied by a separable functor (Remark 2.7).

3.3 Pre-Triangulated Categories

Our aim here is to extend to semiseparable functors a result obtained by P. Balmer for
separable functors in the context of pre-triangulated categories. First we need to recall the
required definitions. Following [6, Definition 1.1], by a suspended category (C, �) we mean
an additive category C endowed with an autoequivalence � : C ∼→ C, called the suspension.
As in loc. cit., for simplicitywe consider� as an isomorphism i.e.�−1◦� = IdC = �◦�−1.

If C and D are suspended categories, as in [6, Remark 2.7], when we say that F 
 G :
D → C is an adjunction of functors commuting with suspension we mean that both F and
G commute with suspension and we tacitly assume that the unit η and counit ε commute
with suspension as well. In this case the monad (GF,GεF, η) is stable, meaning that the
functor GF : C → C, the multiplication GεF and the unit η commute with suspension, see
[6, Definition 2.1].

Let (C, �) and (C′, �′) be suspended categories. By adapting [6, Definition 3.7], if a
functor G : C′ → C commutes with the suspension, i.e. G ◦ �′ = � ◦ G, we say that G
is stably semiseparable if it is semiseparable through some PG

X ,Y : HomC (GX ,GY ) →
HomC′ (X , Y ) that commutes with suspension, i.e. such that the diagram

HomC(GX ,GY )

F�
GX ,GY

PG
X ,Y

HomC′(X , Y )

F�′
X ,Y

HomC(�GX , �GY ) HomC(G�′X ,G�′Y )
PG

�′X ,�′Y
HomC′(�′X , �′Y )

is commutative. In order to simplify the notation all suspensions will be denoted by the same
letter � from now on.

Given a suspended category (C, �), by a (candidate) triangle in C (with respect to �) we
mean a diagram of the form

X
u

Y
v

Z
w

�X .
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A pre-triangulated categoryC is a suspended category (C, �) togetherwith a class of triangles
(with respect to�) called distinguished triangles subject to the axioms listed in [6, Definition
1.3]. This definition is equivalent to the one given in [34, Definition 1.1.2] (see the comment
after [6, Definition 1.3]): We just point out that the requirement that � : C → C is additive,
included in [34, Definition 1.1.2], is superfluous as � is part of an adjunction and, if F 

G : C → D is an adjunction with C and D additive, then both F and G are additive, see e.g.
[36, Corollary 1.3].

A functor between pre-triangulated categories is called exact if it commutes with the
suspension and preserves distinguished triangles. It is well-known that an exact functor of
pre-triangulated categories is additive.4

In order to prove the main result of this section, namely Theorem 3.28, we need the
following further results concerning the coidentifier, see Subsect. 1.2.

Lemma 3.25 Let C be a category and let e : IdC → IdC be an idempotent natural transfor-
mation.

(1) If C is pointed (i.e. it has a zero object) so is the coidentifier Ce.
(2) If C is (pre)additive so is the coidentifier Ce and the functor H : C → Ce is an additive

functor.

Proof Recall that Ce is the quotient category C/∼where the congruence relation∼ is defined,
for all f , g : A → B by setting f ∼ g if and only if eB ◦ f = eB ◦ g.

(1) Clearly a zero object in C is zero also in Ce.
(2) If C is (pre)additive, for any A, B ∈ C the set HomC(A, B) is an abelian group

via a binary operation +. Note that ∼ is an additive congruence relation. In fact, for all
f , g, f ′, g′ : A → B, if f ∼ f ′ and g ∼ g′, then eB ◦ f = eB ◦ f ′ and eB ◦ g = eB ◦ g′
so that eB ◦ ( f + g) = eB ◦ f + eB ◦ g = eB ◦ f ′ + eB ◦ g′ = eB ◦ (

f ′ + g′) and hence
f + g ∼ f ′ + g′. As a consequence it is well-known that the quotient is also (pre)additive
and the quotient functor H is an additive functor. ��
Lemma 3.26 Let C be a category and let e : IdC → IdC be an idempotent natural trans-
formation. If C has an endofunctor � such that �e = e�, then the coidentifier Ce has an
endofunctor �e such that H ◦ � = �e ◦ H, where H : C → Ce is the quotient functor.
Moreover, �e is an additive functor whenever � is.

Proof We have H�e = He� = IdH ◦ � = IdH� so that, by Lemma 1.6, there is a unique
functor �e : Ce → Ce such that H ◦ � = �e ◦ H . Since H acts as the identity on objects,
we get that �e acts as � on objects. Moreover �e f = �eH f = H� f = � f . Since
�e

(
f + g

) = �e
(
f + g

) = � ( f + g) = � f + �g = � f + �g = �e f + �eg, we get
that �e is an additive functor if so is �. ��
Lemma 3.27 Let F : C → D be a stably semiseparable functor. Then, the associated idem-
potent natural transformation commutes with the suspension.

Proof By definition, F is semiseparable through some PF such that PF
�X ,�Y ◦ F�

FX ,FY =
F�
X ,Y ◦PF

X ,Y . Consider the associated idempotent natural transformation e : IdC → IdC which
is defined by setting eX := PF

X ,X (IdFX ) for every X in C. Then�eX = F�
X ,XPF

X ,X (IdFX ) =
PF

�X ,�XF�
FX ,FY (IdFX ) = PF

�X ,�X� (IdFX ) = PF
�X ,�X (Id�FX ) = PF

�X ,�X (IdF�X ) =
e�X and hence �e = e�, i.e. e commutes with the suspension. ��
4 See e.g. https://stacks.math.columbia.edu/tag/05QY.
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We are now ready to prove our announced semi-analogue of Balmer’s [6, Theorem 4.1].

Theorem 3.28 Let C be a pre-triangulated category and let D be an idempotent complete
suspended category. Let F 
 G : D → C be an adjunction of functors commuting with
the suspension. Suppose that the stable monad GF : C → C is an exact functor and that
G is a stably semiseparable functor. Then, the coidentifier De is idempotent complete and
pre-triangulated with distinguished triangles being exactly the ones whose image through
the functor Ge : De → C (determined by the factorization G = Ge ◦ H) is distinguished in
C. Moreover, with respect to this pre-triangulation, both functors Ge : De → C and its left
adjoint Fe : C → De become exact.

Proof Since G is stably semiseparable, by Lemma 3.27, the associated idempotent natural
transformation e : IdC → IdC commuteswith the suspension, i.e. e� = �e. ByLemma3.25,
the coidentifier De is additive and, by Lemma 3.14, it is idempotent complete. By Lemma
3.26, the coidentifierDe has an endofunctor�e such that H ◦� = �e◦H . From�e = e� we
deduce e�−1 = �−1e so thatwe alsohave an endofunctor�−1

e such thatH◦�−1 = �−1
e ◦H .

We compute �e ◦ �−1
e ◦ H = �e ◦ H ◦ �−1 = H ◦ � ◦ �−1 = H = IdDe ◦ H and hence

�e ◦ �−1
e = IdDe in view of Lemma 1.6. Similarly �−1

e ◦ �e = IdDe , so that �e is an
isomorphism.

Since G is semiseparable, by Theorem 1.7 it factorizes as G = Ge ◦ H for a
unique separable functor Ge : De → C. Moreover, Ge is separable via PGe defined by
PGe
H X ,HY := FH

X ,Y ◦ PG
X ,Y for all X , Y in D. Since G commutes with the suspension,

we have Ge ◦ �e ◦ H = Ge ◦ H ◦ � = G ◦ � = � ◦ G = � ◦ Ge ◦ H and hence
Ge ◦�e = � ◦Ge, i.e. Ge commutes with the suspension as well. Now consider the compos-
ite functor Fe = H ◦ F : C → De, which is the left adjoint of Ge with unit ηe and counit εe
given as in Lemma 3.19. Then, �e ◦ Fe = �e ◦ H ◦ F = H ◦ � ◦ F = H ◦ F ◦ � = Fe ◦ �

so that Fe commutes with the suspension too. Note that εe�eH = εeH� = Hε� =
H�ε = �eHε = �eεeH so that εe�e = �eεe. Moreover ηe� = η� = �η = �ηe.
Thus also the unit and counit of the adjunction (Fe,Ge) commute with the suspensions.
Hence Fe 
 Ge is what we called an adjunction of functors commuting with suspension.
By Lemma 3.19, the adjunctions (Fe,Ge) and (F,G) have the same associated monad. As
a consequence, we get that Ge ◦ Fe is a stable monad and an exact functor by assump-
tion. We have F�e

H X ,HYPGe
H X ,HY = F�e

H X ,HYFH
X ,YPG

X ,Y = F�e H
X ,Y PG

X ,Y = FH�
X ,YPG

X ,Y =
FH

�X ,�YF�
X ,YPG

X ,Y = FH
�X ,�YPG

�X ,�YF�
GX ,GY = PGe

H�X ,H�YF�
GeH X ,GeHY=PGe

�e H X ,�e HY

F�
GeH X ,GeHY for all X , Y in D. Since H is surjective on objects, this means F�e

X ,YPGe
X ,Y =

PGe
�e X ,�eY

F�
GeX ,GeY

for all X , Y in De, i.e. that Ge is a stably separable functor.
Then we can apply [6, Theorem 4.1] to the adjunction Fe 
 Ge : De → C. As a

consequence, the coidentifier De is pre-triangulated with distinguished triangles � being
exactly the ones whose image Ge(�) through the functor Ge : De → C is distinguished
in C. Moreover, with respect to this pre-triangulation, both functors Ge : De → C and
Fe : C → De become exact. ��
Remark 3.29 In [6, Definition 2.4], it is claimed that, when C is a suspended category and
� an additive stable monad on it, then the Eilenberg–Moore category C� inherits a structure
of suspended category such that V� 
 U� : C� → C is an adjunction of additive functors
commuting with suspension. Explicitly, the suspension �� : C� → C� is defined on objects
by setting �� (C, μ) := (�C, �μ) and on morphisms by �� f := � f .

Given a monad � on a triangulated category C, in [17] the authors investigate whether the
Eilenberg–Moore category C� inherits the structure of triangulated category from C. They
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also claim this seems to rarely occur in Nature, quoting [6] as a particular occurrence. In the
following result CGF inherits the structure of pre-triangulated category from C.

Corollary 3.30 Let C be a pre-triangulated category and let D be an idempotent complete
suspended category. Let F 
 G : D → C be an adjunction of functors commuting with
suspension. Suppose that the stable monad GF : C → C is an exact functor and that G
is a stably semiseparable functor. Then, the Eilenberg–Moore category CGF is idempotent
complete and pre-triangulated with distinguished triangles being exactly the ones whose
image through the forgetful functor UGF : CGF → C is distinguished in C. Moreover, with
respect to this pre-triangulation, both the functor UGF : CGF → C and its left adjoint VGF :
C → CGF become exact. Furthermore, there is a unique exact equivalence of categories
(KGF )e : De → CGF such that (KGF )e ◦ H = KGF and UGF ◦ (KGF )e = Ge.

Proof By Proposition 3.18, there is a unique functor (KGF )e : De → CGF such that
(KGF )e ◦ H = KGF and UGF ◦ (KGF )e = Ge. Moreover, since D is idempotent com-
plete, then the functor (KGF )e is an equivalence of categories. By Lemma 3.14, De is
idempotent complete so that also CGF becomes idempotent complete. Note that, since C
is pre-triangulated, it is suspended. Since F 
 G : D → C is an adjunction of func-
tors commuting with suspension, the monad (GF,GεF, η) is stable. Moreover the functor
GF : C → C is additive being an exact functor between pre-triangulated categories. Thus, by
Remark 3.29, the Eilenberg–Moore category CGF inherits a structure of suspended category
through the suspension �GF such that VGF 
 UGF : CGF → C is an adjunction of addi-
tive functors commuting with suspension. Also the comparison functor KGF : D → CGF

commutes with suspension. Note that the monad (GF,GεF, η) is separable in view of The-
orem 1.8. By construction this separability is given by the section σ := Gγ F : GF →
GFGF where γ : Id → FG is defined by γX := PX ,FGX (ηGX ). We noticed it is sta-
ble. Thus σ�X = GγF�X = GPF�X ,FGF�X (ηGF�X ) = GP�FX ,�FGFX (η�GFX ) =
GP�FX ,�FGFX (�ηGFX ) = G�PFX ,FGFX (ηGFX ) = G�γFX = �GγFX = �σX and
hence σ commutes with suspension, obtaining that it is a stably separable monad in the sense
of [6, Definition 3.5]. By [6, Proposition 3.11], this means that UGF : CGF → C is a stably
separable functor.

Then [6,Theorem4.1], applied to the adjunction (VGF ,UGF ), yields a pre-triangulation on
CGF with distinguished triangles� being exactly the ones such thatUGF (�) is distinguished
in C. Moreover, with respect to this pre-triangulation, both functors UGF and VGF become
exact.

Coming back to the equivalence of categories (KGF )e : De → CGF , note that �GF ◦
(KGF )e ◦ H = �GF ◦ KGF = KGF ◦� = (KGF )e ◦ H ◦� = (KGF )e ◦�e ◦ H and hence
�GF ◦ (KGF )e = (KGF )e ◦ �e, i.e. (KGF )e commutes with suspension.

Since an exact functor of pre-triangulated categories is additive, the functor Ge is additive
as it is exact in view of Theorem 3.28. Thus, given morphisms f , g : D → D′ in D, we
have

UGF
(
(KGF )e

(
f
) + (KGF )e (g)

) = UGF (KGF )e
(
f
) +UGF (KGF )e (g)

= Ge
(
f
) + Ge (g) = Ge

(
f + g

)

= UGF
(
(KGF )e

(
f + g

))

so that (KGF )e
(
f
) + (KGF )e (g) = (KGF )e

(
f + g

)
and hence (KGF )e is additive. To

check that (KGF )e is exact, it remains to prove that it preserves distinguished triangles. Let
� be a distinguished triangle in De. Then, by Theorem 3.28, Ge (�) is distinguished in
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C. Since UGF ◦ (KGF )e = Ge, we get that UGF
(
(KGF )e (�)

)
is distinguished in C. By

definition of pre-triangulation on CGF we obtain that (KGF )e (�) is distinguished in CGF .
Thus (KGF )e is exact. ��
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