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A B S T R A C T

Since the beginning of the structural optimization field, the optimal design was characterized by the least-weight 
configuration. In this sense, all the researchers agreed on adopting the minimum-weight optimization statement 
as the most promising approach to achieve an optimized employment of material. However, especially for steel 
structures, this approach completely fails the primary goal of encouraging standardization of pieces during the 
production phase. Except for rare cases, increasing diversity among structural elements leads to a dramatic in-
crease in the financial cost as well as the environmental impact of the structure because of the material waste 
generated during the cutting procedure.

In this paper, a real-coded Genetic Algorithm has been adopted and the well-known one-dimensional Bin 
Packing Problem has been implemented within the structural optimization process. The Objective Function 
formulation lies in a marked change of the paradigm in which the target function is represented by the amount of 
steel required by the factory instead of the structural cost (e.g. weight). The proposed approach is tested on 
different steel structures moving from 2D truss beams to 3D domes. Addressing the optimal stock of existing 
elements leads to a significant waste reduction of 40% in almost all the investigated case studies.

1. Introduction

In the last decades, the scientific community has been actively 
engaged in addressing the imperative of reducing the costs associated 
with structures through the strategic management of material selection, 
fabrication methods, and maintenance expenses [1]. Over the past 
decade, within the context of structural optimization, there has been a 
significant focus on the minimization of material costs, with the over-
arching goal of creating slender structures that optimize resource utili-
zation [2]. Conventional practice among researchers and practitioners 
in this field involves the optimization of structural design costs, while 
concurrently adhering to safety guidelines stipulated by relevant stan-
dard regulations [3]. It is noteworthy that a substantial portion of the 
expenditures can be attributed to material wastage resulting from the 
cutting process, particularly in the context of metal structures. To 
clarify, failing to incorporate a meticulously designed cutting strategy to 
reduce waste during construction can undermine the efficiency of cost 

optimization. In the context of the solid waste stream, construction and 
demolition residues would comprise approximately 23% of the total 
volume. This translates to an annual production of over 100 million 
metric tonnes [4]. Similar waste proportions have been reported in 
various other nations, corroborating the United States’ estimates. A 
notable portion of this waste results from inefficient material utilization, 
representing an avoidable fraction of waste generation [5]. Enhanced 
efficiency in material usage would consequently diminish the quantity 
of surplus materials, reduce unnecessary workmanship, and minimize 
the associated costs such as waste disposal and transportation fees. 
Certainly, effective resource utilization serves the greater global inter-
est, extending beyond the immediate concerns of industrialists. 
Improper disposal of waste generated from stock-cutting operations can 
potentially contribute to environmental pollution, while unchecked 
wastefulness poses a significant risk to the exhaustion of our planet’s 
invaluable resources [6]. Cutting losses arise when normal steel lengths 
are shortened to fit the project’s required lengths, frequently becoming 
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the predominant source of steel waste. Indeed, a significant amount of 
the created steel waste according to Adham et al. ([7]) is related to 
cutting losses, which are mostly caused by:

• dividing an order into separate, smaller orders typically results in 
more waste due to fewer cutting alternatives;

• using inefficient cutting patterns in the cutting schedule results in the 
generation of avoidable waste that could be avoided through better 
stock-cutting planning;

• using the optimum cutting patterns may result in unavoidable waste 
that is the minimum waste generated if the optimum cutting patterns 
are used.

With the aim of minimizing waste, the Cutting Stock Problem (CSP) 
is an essential research topic to focus on to reduce waste in the con-
struction industry.

The innovative aspects introduced in the present study are focused 
on an optimization procedure aimed at minimizing structural waste, and 
to reduce the amount of material stock produced by the factory. This 
approach introduces a paradigm change considering constructability 
issues as cutting patterns during the production phase, contrasting with 
the conventional minimum-weight optimization approach. Suitable 
applications have been developed to highlight the feasibility and ben-
efits of the proposed approach, paving the path to more efficient and 
sustainable manufacturing practices.

This paper presents the following organization: In section 2, a 
comprehensive state-of-the-art devoted to the introduction of cutting 
and packing problems has been provided with a specific focus on the 
most promising applications in civil engineering. In sections 3 and 4, the 
mathematical formulation of the CSP and the structural optimization 
framework have been described, respectively. Finally, sections 5, 6 and 
7 have been devoted to the description and discussion of the optimiza-
tion outputs for each case study. In the last section, the outcomes of the 
research and its future developments have been summarized.

2. State of the art

2.1. Cutting and packing problems: Definition and evolution

The domain of Cutting and Packing (C&P) problems encompasses a 
wide array of scenarios involving the arrangement and allocation of 
both tangible and conceptual entities, i.e. Cutting Problems [8], Knap-
sack Problems, one and two-dimensional Bin Packing Problem [9,10], 
[11], Container and Vehicle Loading Problems [12,13], Pallet Loading 
[14,15], Assembly Line Balancing [16–18], Capital Budgeting [19], etc. 
within different disciplines [20]. Notably, despite their apparent di-
versity, all these problems share a common underlying logical frame-
work, as demonstrated in Belov’s seminal work [21].

One of the most prominent challenges within this domain pertains to 
the Bin Packing Problem (BPP), which seeks to ascertain the optimal 
arrangement for accommodating a maximal quantity of items within a 
given container (referred to as bins), while accommodating an identical 
inventory of goods. The BPP can be stated considering n items, each with 
an integer weight wj(j = 1…, n) and an infinite number of identical bins 
with integer capacity c. The objective is to minimize the number of bins 
required for accommodating all the products, while ensuring that the 
cumulative weight assigned to each bin remains within the specified 
limit [22]. The majority of other Combinatorial Optimization Problems 
(COP) are either variations (e.g., the Pallet Loading Problem) or exten-
sions (e.g., the Cutting Stock Problem) of the Basic Bin Packing Problem.

Specifically, in civil engineering, addressing the issue of minimizing 
waste during the steel element cutting process often involves solving the 
Cutting Stock Problem (CSP). In essence, it aims to determine the 
optimal way to cut required pieces from a stock material with minimal 
trim loss. From a more technical perspective, CSP can be derived from 
the BPP definition as follows. There are m item kinds, each with an 

integer weight wj and an integer demand dj(j = 1,…,m), as well as a huge 
number of identical integer capacity c bins. In the CSP literature, the bins 
are typically referred to as rolls, a word derived from early imple-
mentations in the paper industry, and “cutting” is commonly used rather 
than “packing”. In CSP, the focus shifts from “packing” to “cutting,” with 
the objective of producing dj copies of each item type j, using the fewest 
possible bins, while ensuring that the total weight in each bin does not 
exceed its capacity [22,23].

Furthermore, the cutting stock problem can be categorized as either 
one-dimensional (1D) [24] or two-dimensional (2D) [25]. The 1D-CSP 
involves extracting a specified set of order lengths from stock rods of 
defined lengths, with the goal of minimizing the number of rods used. 
The 2D-CSP, on the other hand, aims to select the most valuable group of 
rectangular objects from a single rectangular plate. In the case of 
irregular shapes, the problem becomes known as nesting, presenting a 
more challenging solution [21]. These problems fall within the topic of 
complex combinatorial optimization, also called NP-HARD problems (i. 
e. non-deterministic Polynomial-time). This class of problems can be 
reduced in NP problems resolvable in polynomial-time [26,27].

Various linear programming, heuristic, and metaheuristic ap-
proaches have been proposed over the years. The first foray into solving 
C&P problems dates back to the 1930s with Kantorovich [28]. While 
Kantorovich’s approach was limited to small-scale cases, it laid the 
groundwork for understanding the problem structure. Numerous heu-
ristic approaches have since emerged, often involving the solution of the 
Linear Programming (LP) problem as a precursor to deriving an integer 
solution [29]. The problem is frequently formulated as an Integer Pro-
gramming (IP) problem [30], with its LP relaxation serving as a foun-
dation for many heuristic algorithms. The relaxation of a (mixed) integer 
linear program entails removing the integrality constraint from each 
variable, thereby allowing the IP problem to be solved as an LP problem. 
This relaxation technique transforms an NP-hard optimization problem 
(IP) into a related problem that can be solved in polynomial time. 
However, when dealing with scenarios where the length of an individual 
item is significantly smaller than the roll length, considering all practical 
cutting patterns that correspond to columns in the LP formulation be-
comes impractical. To address this issue, Gilmore and Gomory (1961) 
[31] introduced a creative method based on resolving the associated 
knapsack problem. Their column generation approach, inspired by 
Dantzig and Wolfe (1960) [32], systematically reduces valid patterns 
and incorporates them into the problem based on their impact on the 
Objective Function (OF). This approach rendered large-scale cutting 
stock problems solvable within a reasonable timeframe.

Subsequently, numerous algorithms have been developed to tackle 
the problem by implementing dynamic use of simply structured cutting 
patterns aiming to represent complex combinations of cuts [33–36]. 
While the most accurate approaches are based on integer linear pro-
gramming, they can be computationally intensive and time-consuming. 
In recent times, several metaheuristic techniques, such as Genetic Al-
gorithms (GA) [37], Simulated Annealing [38] and Tabu Search [39,40], 
have been implemented as more efficient alternatives [41,42].

2.2. Cutting and packing problems in civil engineering

In the context of material consumption, energy utilization, green-
house gas emissions, and waste generation, the construction industry 
stands as a significant contributor coherently to the new sustainable 
challenges of this century [43,44]. Two primary solutions exist for this 
problem: minimizing waste during fabrication or reusing materials from 
other structures [45,46].

While the former approach has not received great attention among 
experts in the civil engineering field, it serves as a central focus of this 
research. The latter option has been extensively explored by Brütting 
et al. [47], who advocate for a circular economy model to reduce costs 
and environmental impact in construction. In a circular economy, goods 
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are kept in use through repair, reuse, and recycling with a particular 
focus on reusing materials due to its energy efficiency compared to 
recycling. In this study, the length and number of stock elements are the 
design variables of the optimization. Hence, the geometry and topology 
of the structure are predetermined by the mechanical and geometric 
properties of available elements.

In the context of this study, a specific terminology is adopted 
defining the member a positional unit or bar within a reticulated struc-
ture, member length the distance between nodes at that specific position. 
On the other hand, referring to the requested stock, the terms element or 
item are also used to describe the individual constituent of a stock ob-
tained after cutting procedures on the commercial piece, called bin, 
produced into the factory. It is worth noting that the elements or items 
obtained as cutting patterns coincide with the members or bars 
composing the structure.

Fig. 1 illustrates two distinct reusing strategies for addressing the 
problem at hand. The first strategy involves a one-to-one assignment of 
elements to positions within the truss, exemplified by Stock A. The 
second approach adopts a bin-packing methodology, wherein multiple 
members can be cut from individual elements, as demonstrated by Stock 
B.

In the initial scenario, referred to as the ‘assignment’, the primary 
objective of the optimization is to minimize inefficiencies by reducing 
the overall length difference distance between individual members and 
the available stock elements. The second scenario focuses on deter-
mining an optimal cutting pattern that minimizes waste on a global 
scale. Both of these scenarios were resolved through the application of a 
Mixed-Integer Linear Programming (MILP) approach.

In the investigated case studies, the structures parametrically change 
their geometrical feature to maximize the reusing ratio of a predefined 
stock. No structural boundaries such as geometric compatibility, nodal 
displacements, deflection limits, and structural safety were considered 
within the problem formulation. Compared to the assignment approach, 
structural optimization by adopting bin-packing better reduces waste 
due to the lower number of cuts.

A new MILP formulation for discrete sizing and topology optimiza-
tion of truss structures has been also recently proposed performing 
significantly better than all other formulations [48]. In their scientific 
endeavours, Brütting et al. also introduced a method to enhance the 
configurational efficiency of stock or kit-of-parts, enabling the reusing of 
its constituent elements across multiple structural contexts. This stra-
tegic consideration led to the proliferation of reusability within a stock 
of items across various structures, consequently resulting in a further 
reduction of waste generation.

Subsequent refinements were made to this foundational framework 
in the context of the assignment problem, as documented in [49]. Here, 
the assignment problem was integrated with topological optimization, 

followed by subsequent shape optimization of the truss system. Notably, 
an absolute ‘buffer’ concept was introduced, allowing for the allocation 
of very short items.

Additionally, in 2020, Brütting et al. continued to advance this 
approach in their work [50], presenting a comprehensive structural 
optimization methodology rooted in the aforementioned principles. In 
this study, a simultaneous analysis and design approach was employed, 
wherein structural analysis was an integral part of the optimization 
formulation. This involved treating member end forces, as well as nodal 
displacements and rotations, as continuous state variables.

Furthermore, an alternative strategy for promoting component reuse 
involves the custom design of a kit of parts, comprising discrete building 
elements pre-engineered to be adaptable for various structural config-
urations, serving diverse purposes.

In one of their more recent publications [51], they leveraged the 
assignment and Constraint Satisfaction Problem techniques to construct 
a kit of parts tailored for three distinct construction types. These kit-of- 
parts components consisted of tubular bars interconnected through 
spherical joints via bolts. The original topology and geometry of the 
structures served as input data. The optimization process unfolded in 
two stages. The initial stage focused on optimizing the structural ge-
ometries, as well as the length and cross-section dimensions of the kit-of- 
parts bars to facilitate their reuse in different structural scenarios. 
Subsequently, in the second stage, the optimization targeted the hole 
patterns for the connection details of the spherical joints, enabling each 
joint to be reused in multiple construction projects.

Minimization of cutting waste for real-world inspired structures has 
been provided by Cui and Lu in [52] who solved a rectangular two- 
dimensional cutting stock problem for steel bridge construction, while 
Araujo et al. [53] present a CSP integrated approach for the construction 
industry, with alternative manufacturing modes, considering different 
bill of materials for the same final product.

3. Proposed approach

Despite the importance of cost-saving and sustainability issues in the 
use of steel profiles through minimizing waste, the integration of cutting 
stock optimal routines within optimization frameworks still remains 
largely unexplored in the research literature. Moreover, the most recent 
adaptive metaheuristic algorithms demonstrate their efficiency in solv-
ing high-order complex combinatorial problems [54].

This work aims to overcome the limitations deriving from the 
optimal design based on the traditional minimum-weight approach and 
suggest an alternative approach reversing the structural design process. 
Additionally, despite previous studies, the problem formulation is not 
constrained to a predefined stock devoted to reusing purposes; on the 
contrary, the number and cross-section of bins requested for the 

Fig. 1. (a) Cantilever truss, (b) stock A obtained by solving the assignment problem, (c) stock B obtained by solving the cutting stock problem (image inspired 
by [47]).
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realization of the structure dynamically change along the optimization 
process.

As an extension of what has already been preliminarily presented in 
the literature [54,55], upon which it is based, the paper includes the 
following additional research: the complete definition of the optimiza-
tion algorithm integrating the CSP, the implementation of the proposed 
approach on a larger number of applications, both 2D and 3D, a 
consistent comparison among different algorithms, as well as between 
the traditional minimum-weight approach and the minimum-waste 
approach.

In detail, a stock-constrained structural optimization is conducted by 
embedding the CSP within a real-coded GA. A guided-random crossover 
has been developed to face the discretized nature of the investigated 
class of problem. The best sizing is achieved towards the identification of 
the optimal grouping strategy of bars for reducing waste and preserving 
the structural safety and the geometric compatibility of the structure. 
Even if, the geometric layout is fixed, the optimizer can choose the best 
clusters of bars to minimize the number of bins produced by the factory.

The proposed approach has been validated on numerical tests such as 
the 10-bar-truss case study and for more challenging applications like a 
2D truss system and spatial reticular dome. For completeness reasons, a 
comparison between the obtained solution by the traditional minimum- 
weight approach and the stock-constrained optimization method is 
discussed.

4. Mathematical formulation of the cutting stock problem

The mathematical formulation of the CSP is herein analyzed by 
adopting the column generation technique to reduce the computational 
cost.

4.1. Bin packing problem

In order to understand how the CSP works it is necessary to exhibit 
the mathematical formulation of the one-dimensional bin packing 
problem. This problem aims to allocate a set of items into the minimum 
number of bins.

For initializing the problem are necessary the following parameters:

• I: set of items, indexed by i
• B: set of bins, indexed by b
• Li: length of item i
• L: length of each bin
• xi,b ∈ {0,1}: unitary if item i is allocated to bin b, 0 otherwise;
• yb ∈ {0,1}: unitary if bin b is used, 0 otherwise

The mathematical formulation of the problem is: 

min
∑

b∈B
yb (1) 

Subjected to the following constraints: 
∑

b∈B

xi,b = 1 ∀i ∈ I (2) 

∑

i∈I
Lixi,b ≤ Lyb ∀b ∈ B (3) 

xi,b ≤ yb ∀i ∈ I, b ∈ B (4) 

xi,b ∈ {0,1} ∀i ∈ I, b ∈ B (5) 

yb ∈ {0,1} ∀b ∈ B (6) 

The principal equation of the bin packing problem (1) simply mini-
mizes the number of bins used to obtain the requested items. The 
mathematical equation was subjected to some constraints. In particular, 

the eq. (2) means that each item must be assigned to a bin (i.e. each item 
should be cut from one of the paper rolls available). Additionally, the 
second condition (3) assures that the length of all items associated with a 
bin should not exceed the length of the bin and the third (4) entails that 
an item can be assigned to a bin if and only if that bin is used. Finally, the 
following two eqs. (5)–(6) express the domains of the two decision 
variables xi,b and yb.

4.2. Column generation

The bin packing problem is a complex combinatorial problem. For 
simplifying this problem the Restricted Master Problem (RMP) and then 
the Column Generating Subproblem (CGS) formulation are used in this 
paper [56]. In the former, the main element composing the structure is 
no longer the bin. As a result, the feasible cutting pattern represents the 
possible arrangement of items in a bin. Since enumerating all feasible 
cutting patterns is prohibitively time-consuming, it generates valid 
patterns iteratively and adds them to the problem according to their 
contribution to the OF (i.e. minimization of the reduced cost).

The first step is to set up the Restrained Master Problem (RMP).
The parameters involved in this step are:

• I: set of unique items (subset of items with unique distinct lengths), 
indexed by i

• P: set of paths, indexed by p
• Li: length of item i
• Qi: quantity needed for item i
• L: length of each bin
• Mi,p: matrix whose element (i, p) defines the number of times item i is 

included in path p
• xp ∈ ℤ: number of times path p is chosen

The mathematical formulation is: 

min
∑

p∈P
xp (7) 

Subjected to: 
∑

p∈P
Mi,pxp ≥ Qi ∀i ∈ I (8) 

xp ∈ ℤ (9) 

The OF of the RMP (7) is the minimization of the number of paths 
used which is strictly correlated with the minimization of the number of 
bins. The OF is subjected to two constraints. First, it needs to select the 
number of paths in a way such that every unique item appears at least as 
many times as needed and this is what is done in (8). The second 
constraint defines the xp domain.

The next step is to write the dual problem. The dual problem is a 
formulation correlated with the principal problem exposed above which 
is the primal. The dual problem is written in such a way that:

- A mostly horizontal constraint matrix becomes a mostly vertical 
constraint matrix (i.e. column generation process);

- A minimization problem (7) becomes a maximization problem (10);
- The objective value coefficients of the primal become constraint 

right-hand side values of the dual;
- The objective value coefficients of the dual are the dual values of the 

primal.

In particular, the dual problem is: 

max
∑

i∈I
Qiλi (10) 

Subjected to the following constraints: 
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∑
Mp,iλi ≤ 1 ∀p ∈ P (11) 

λi ∈ ℤ (12) 

The λi is the dual value referred to a specific item constraint. Each 
dual value gives an indication of how profitable is to add the associate 
item to a new path.

Moreover, to determine the best path to add it is necessary to set up 
the pricing problem where a new decision variable yi ∀i ∈ I represents 
how many times a certain item i appears in the new path. More in detail: 

max
∑

i∈I
λiyi (13) 

Subjected to the following constraints: 
∑

i∈I
Liyi ≤ L (14) 

yi ∈ ℤ (15) 

Where the (14) ensures that the newly added path is feasible and the 
(15) imposes the yi domain.

Forehead, to decide if a certain path should be added to the RMP it 
needs to verify the gain obtained by the addition of the new path with 
the following formula: 

c − z ≤ 0 (16) 

Where c is the original cost from the primal problem and z is the 
reduced cost computed in the pricing problem.

From the primal, it is possible to get c = 1 while from the pricing 
problem z =

∑
i∈Iλiyi. Finally by substituting: 

1 −
∑

i∈I
λiyi ≤ 0 (17) 

Which lastly becomes: 
∑

i∈I
λiyi ≥ 1 (18) 

Until the previous condition is satisfied by the new generate path, 
this one was added to the primal RMP, and the procedure was iterated. 
To make more clear the overall process, the flowchart of the 

implemented algorithm is shown in Fig. 2.

5. Structural optimization procedure

When considering the cutting stock problem in the context of 
structural optimization, the goal is to design a structure that minimizes 
material usage while still satisfying the boundary conditions. This can be 
achieved by determining the optimal cross-section assignment of the 
items composing the stock which are used for the structure assembly. In 
the following sections, the formulation of the optimization problem and 
the integration of CSP within the optimization framework has been 
introduced.

5.1. Problem statement definition

With respect to traditional optimization approaches (i.e [57–60]) in 
which the OF is expressed in terms of the total weight of the structure as 
a sum of the mass of each element (structural mass), in this study the 
target function, W(x), has been evaluated by computing the amount of 
steel requested during the production phase (stock mass). The structural 
cost can be expressed in the following form: 

W(x) = ρ
∑g=k

g=1
ngAg(x)Lg (19) 

where ρ is the steel mass density assumed to be equal for all members 
composing the structure. ng, Ag and Lg are the cardinality, the cross- 
sectional area, and the length of bins belonging to the same group g of 
elements with the same cross-sectional area Ag, respectively. k repre-
sents the total number of groups of elements with the same cross- 
sectional areas which dynamically change according to the stock output.

The design variable vector, x, represents the set of discrete cross- 
sectional areas of each element such that the bins area, Ag, can be 
evaluated. The length of this vector as well as the grouping strategy 
adopted to assign the same section to different members will be declared 
case-by-case.

CSP has been implemented within the optimization process and it 
has been independently solved for all groups of elements with the same 
cross-sectional properties. Finally, the solutions obtained by the CSP 

Fig. 2. Column Generation algorithm for the solution of Cutting Stock Problem.
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routine, complying with the established structural constraints, have 
been adopted for the evaluation of the OF fitness (i.e. number of bins).

The optimum design problem, considered in the present work, is a 
constrained problem. It can be transformed into an unconstrained one 
using a penalty function. Here, the penalty function suggested by Rajeev 
and Krishnamoorthy [61] has been adopted, so the OF of the problem 
can be computed as 

minf(x) = W(x)

[

1+C

(
∑i=ne

i=1
vs

i +
∑j=nj

j=1
vd

j +
∑p=np

p=1
vp

)]

(20) 

subjected to: 

Vt
i =

Ni,ED

Nt,RD
− 1.0 i = 1,2,…ne (21) 

Fig. 3. Structural Optimization via CSP problem algorithm.
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Fig. 4. Detailed CSP algorithm embedded in the structural optimization.
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Vc
i =

Ni,ED

Nc,RD
− 1.0 i = 1,2,…ne (22) 

Vb
i =

Ni,ED

Nb,RD
− 1.0 i = 1, 2,…ne (23) 

Vd
j =

⃒
⃒δj
⃒
⃒

δmax,y
− 1.0 j = 1, 2,…nj (24) 

Vp =
dch

p

ddg − 1.0 p = 1, 2,…np (25) 

where Nt,RD, Nc,RD, Nb,RD are the tension strength, compression strength 
and buckling strength of the specific section calculated according to 
Eurocode 3 [62] (EN 1993-1:2005 and EN 1993–2:2006) while NED 
represents the stress acting to the single member. δ and δmax,y are the 
vertical displacement experienced by the j-th node and the maximum 
value assumed as threshold, respectively. The higher allowable 
displacement depends to the specific application and has been settled 
case-by-case.

In Eq.20, W(x) is calculated by Eq.(19); C is a penalty constant, 
which is equal to 10 in this work; vs

i , vd
j , and vp

i are the violations of 
normalized stress ratio, displacement ratio and size considerations, 
respectively and are computed using Eq.26. 
{

vs
i , v

d
j , vp

}
= max

(
0,
{
Vt

i ,V
c
i ,V

b
i
}
,Vd

j ,Vp

)
(26) 

In this way, the penalty function integrates information related to 
either magnitude of penalization’s level and number of unfeasible in-
dividuals. Especially for the geometric compatibility of trusses (see 
Eq.25), the size constraints is verified by ensuring that the diameter of 
the compression and bottom chords, dch, is always greater than di-
agonals, ddg. The adopted size adaptation among these members is 
functional to constructional consideration and common practice in Civil 
Engineering.

5.2. Flowchart and pseudocode

In this section, the step-by-step pseudocode of the employed algo-
rithm has been described. In addition, two distinct flowcharts have been 
depicted for introducing the principal steps of the algorithm (Fig. 3) and 
for clarifying how the CSP has been implemented within the main 
optimization process (Fig. 4). The optimization framework has been 
realized in Python [63] as well as the Finite Element (FE) code for the 
structural analysis of each case study.

Accordingly to the order depicted in the graphical scheme in Fig. 3, 
the main steps of the optimization process are the following:

STEP 1: Geometry definition and algorithm settings of the optimi-
zation problem: truss topology and number of members, loading sce-
narios, cross-sections and material type (e.g. Young modulus, E, and 
density, ρ) and parameters tuning of the algorithm’s parameters;

STEP 2: Generation of a random initial population with N in-
dividuals (each characterized by a different size variable layout). The 
algorithm works with discrete design variables taken from commercial 
standards (EN 10210).

STEP 3: Performance of the structural analysis for a given loading 
scenario and verification of the structural conformity according to Eq.s 
(21)–(25) (EC3 6.3.3.). The structural analysis is performed by a FE 
code, which adopts the Direct Stiffness Method (DSM) [64].

STEP 4: Evaluation of the single penalty according to Eq.s(21)–(25) 
and computation of the proper level of penalization coherently to Eq.
(26);

STEP 5: Verifying if at least 1% of the entire population is feasible. If 
this condition is not satisfied the reinitialization of the entire population 
(return to STEP 2) can start with a randomic samples selection from a 
reduced catalogue where the 5% of sections with the lowest Area are 

removed. Once the condition is satisfied the original length of the 
catalogue is restored;

STEP 6: At this stage the GA operators are activated. Specifically, the 
roulette wheel selection has been implemented in order to guarantee 
that the two fittest parents are selected for the next steps. Adopting this 
technique, a probability to each parent is assigned and the parents with 
higher fitness are more likely to be chosen for crossover. From each 
couple of parents, 1 child has been obtained towards random crossover. 
Lower and upper bounds are imposed at this stage such that if only a 
gene of the new offspring is not ranged within the imposed interval 
(higher than the maximum value or lower than the minimum value of 
the cross-sections’ catalogue), it is forced to assume maximum or min-
imum value, respectively. Finally, aiming to improve the exploration 
and exploitation ability of the algorithm, a mutation rate of 5% is 
assigned. In this way, new genes are introduced into the population by 
modifying the gene pools of parents in a random way.

STEP 7: Once the geometry layout of the truss is defined and the 
sectional properties are assigned, the number of standard purchased 
commercial bars (i.e. number of bins) and the relative cutting patterns 
for each cross-sectional group g are evaluated. The grouping on the el-
ements is necessary because the items with the same cross-sectional area 
must be allocated in the same bin class for the evaluation of the optimal 
cutting. The CSP allocates the various structural members into the 
standard factory bars in an optimal way, in order to minimize waste. For 
more details, a flow chart of the CSP routine integrated into the main 
optimization process has been reported in Fig. 4.

STEP 8: Evaluation of the OF W(x) according to Eq.(19). The 
calculation of fitness is computed for each solution.

STEP 9: Check of the stagnation condition. This step avoids the al-
gorithm stuck in a local optimum, while trying to search for a global 
optimum. Specifically, this condition verifies if the best solution is the 
same for a predetermined consecutive number of iterations. Whether the 
response is affirmative the optimization process reinitializes the popu-
lation (return to STEP 2). Aiming to maintain promising solutions in the 
population, the best 2% of the best feasible individuals obtained by the 
previous iteration survive to the next one. Otherwise, the optimization 
process continues with the following steps.

STEP 10: This condition simply checks if the stopping criteria are 
reached. Whether the number of the current iteration is lower the pro-
cess comes to STEP 3 otherwise continue with the plotting of the output 
results.

STEP 11: The outputs of the entire optimization process are identi-
fied as the overall mass of purchased steel, the number of bins and bars 
for each cross-sectional class as well as the relative cutting pattern 
relative to the optimal individual.

Fig. 5. Configuration of the in-plane 10-bar truss, measures are expressed in 
inches (in.)

R. Cucuzza et al.                                                                                                                                                                                                                                Automation in Construction 167 (2024) 105724 

8 



6. Case study I: 10 bar-truss

In this section, a straightforward application of the CSP integrated 
into the structural optimization procedure is presented adopting the ten- 
bar truss benchmark from [65]. Despite the simplicity of the case study 
and the minimal assumptions made in the optimization process, it serves 
as an initial demonstration of the proposed approach.

6.1. Model definition and parameters’ setting

Accordingly with Fig. 5, the investigated configuration constitutes a 
statically determined cantilever system with a truss arrangement, 
comprising ten steel bars. This structure is subjected to constraints by 
means of two pinned supports, located at nodes 5 and 6. The analysis is 
conducted under a singular loading scenario denoted as P1, wherein 
equivalent forces of magnitude P1 are symmetrically applied to nodes 2 
and 4.

In order to provide a comprehensive overview of the numerical 
model assumptions pertaining to the material properties and geometric 
characteristics of the truss, Table 1 has been reported.

The design variables of the problem consist of the 10 cross-sectional 
areas associated with the truss components. This approach exclusively 
considers solutions that align with the available cross-sectional area 
options found in the provided standards list. Consequently, a specific set 
of 42 discrete values (as detailed in Table 2) has been used to represent 
the potential cross-sectional areas for each truss member according to 
[65]. In this numerical test, geometric compatibility has not been 
considered since the adopted catalogue is exclusively populated by 
cross-section areas without any information about geometric features of 
the section. The parameters’ settings of the GA algorithm are summa-
rized in Table 3.

6.2. Results and discussion

In this subsection, the results of the Structural Optimization (SO) 
process pertaining to the 10-bar case study are outlined. Specifically, 
two optimization scenarios have been conducted:

• Scenario (a): SO implementing CSP for the minimization of pur-
chased steel bars;

• Scenario (b): SO by adopting a traditional minimum-weight 
approach.

To facilitate a comparison between the two previously mentioned 
approaches, the CSP procedure has been performed at the end of the 
scenario (b) such that the number of bins has been evaluated based on 
the least-weight optimal design. In this way, the optimal design obtained 
from the two distinct approaches can be compared in terms of structural 
weight (i.e. total mass) and waste mass.

Scenario (a). #10 independent runs have been performed and de-
tails of the outcome of each run have been reported in Table A.13 of 
Appendix A. However, the best and worst results as well as the mean and 
the standard deviation calculated among the 10 runs are summarized in 
Table 4.

Even if the CSP has been implemented within the optimization 
process, a residual waste mass, Mwaste, equal to almost 15% of the total 
truss weight, Mtruss, can be observed. As expected, the stock mass, Mstock, 
is rather close to Mtruss validating a full-exploitation of the optimal cut-
ting capability of CSP. It is worth noting that the results obtained by the 
optimal cutting routines strongly depend to the fixed length of the bins 
provided by the factory. With a higher bin length, the optimizer has been 
encouraged to allocate more truss members into a single bin. In the next 
case study, specific consideration for the assumption of the bins length 
will be introduced coherently to the common practice in the industrial 
and civil engineering field.

Other interesting observations pertaining to the functioning of the 
CSP within the context of the SO process, can be derived by Fig.6.

In this Figure, the optimal cutting pattern has been reported aiming 
to give a clear graphical representation of the cross-section assignation 
provided by the optimizer and the residual waste for each bin.

The optimal configuration is characterized by accommodating two 
members per bin, which corresponds to the maximum possible alloca-
tion for a single bar. As expected, for this specific case, the optimizer was 
forced to assign #5 different area properties as a consequence of the 
optimal cutting configuration.

In other words, the optimizer operates on two primary levels: firstly, 
by selecting the most appropriate cutting pattern to maximize the use of 
the bin reducing waste, and secondly, by choosing the minimum cross- 
sectional area for each bar.

Scenario (b). As in the previous scenario, #10 runs have been con-
ducted using the traditional minimum-weight SO approach. Subse-
quently, the mass of the stock, Mstock, was determined by applying the 
CSP to the members composing the optimal truss design. The outcomes 
of these 10 runs have been reported in Table A.14 of Appendix A. Table 5
presents the best solution as well as the mean and the standard deviation 
based on #10 runs.

From these preliminary results, it is evident how the least-weight 
solution lies in a significant increase of mass waste which is almost 
equal to total weight (i.e. structural mass). Even if the investigated case 
study is composed by few members resulting in limited cutting options, 

Table 1 
Model assumption relative to the 10 bar truss.

Parameter Value

Modulus of elasticity of steel E 10,000 ksi
Steel density ρ 0.10 lb/in3

Loading P1 100 kips
Length of purchased bars (bins) Lbin 1020 in
No. of design variables 10
Bounds of design variables (Amin,Amax) [1.62, 33.5] in2

Maximum allowable stress 
(
Nt,RD ,Nc,RD

)
± 25 ksi

Maximum allowable displacement 
(
δx,y
)

± 2 in

Table 2 
Discrete cross-sectional standard area within the design variables are chosen.

Discrete cross-sectional areas A
[
in2]

1.62 1.8 1.99 2.13 2.38 2.62 2.63
2.88 2.93 3.09 3.13 3.38 3.47 3.55
3.63 3.84 3.87 3.88 4.18 4.22 4.49
4.59 4.8 4.97 5.12 5.74 7.22 7.97
11.5 13.5 13.9 14.2 15.5 16 16.9
18.8 19.9 22 22.9 26.5 30 33.5

Table 3 
Optimization algorithm parameters set by the operator.

Parameter Value

Maximum number of iterations 200
Number of individuals per population 200
Catalogue percentage of reduction 5%
Mutations’ probability 1%
Proportional children 1 child for each parent
Stagnation condition 10 iterations

Table 4 
Result of the optimization via CSP related to Scenario (a).

Mstock (OF) [lb] Mtruss [lb] Mwaste [lb]

Best 6825.84 5791.97 1033.87
μ 7320.13 6158.41 1161.73
σ 308.64 257.05 98.37
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these preliminary results demonstrate the benefits of adopting the pro-
posed approach.

In Fig. 7, a stock representation obtained by performing the CSP after 
the minimum-weight optimization approach is depicted. It appears 
evident how the optimizer preferred an optimal design with a high level 
of area diversity instead of reducing waste.

Final comparison: scenario (a) vs scenario (b). Once the results 
obtained by two distinct SO approaches have been introduced, the 
percentage ratio between the structural mass, Mtruss, and mass waste, 

Mwaste, obtained by the two approaches have been reported in Table 6.
Even if a reduction of total mass moving from scenario (a) to scenario 

(b) is recognized, a dramatic increase of the mass waste occurs. Specif-
ically, the Mwaste/Mtruss ratio varies from 17% of scenario (a) up to 136% 
of scenario (b). In other words, the optimal design obtained by the 
minimum-weight approach leads to a mass waste that is almost 1.5 times 
the total mass of steel required for the realization of the steel structure.

Similar considerations can be pointed out with specific regard to the 
Mwaste/Mstock ratio which is the index indicating the effective waste 

Fig. 6. Optimal cutting pattern of the 10 bar truss obtained by scenario (a). The dashed area represents the remaining bin’s length deriving from the cutting process. 
The same colors have been used to identify the relationship between items and the position of the truss members.

Table 5 
Result of the optimization via traditional approach (b).

Mstock [lb] Mtruss (OF) [lb] Mwaste [lb]

Best 13078.44 5545.76 7532.68
μ 12133.92 5632.88 6501.04
σ 1343.16 64.15 1348.10

Fig. 7. Optimal cutting pattern of the 10 bar truss obtained by scenario (b). The dashed area represents the remaining bin’s length deriving from the cutting process. 
The same colors have been used to identify the relationship between items and the position of the truss members.

Table 6 
Performance comparison between CSP approach (scenario-a) and traditional 
approach (scenario b).

Mtruss [lb] Mwaste [lb] Mwaste/Mtruss Mwaste/Mstock

Scenario (a) 5791.97 1033.87 17% 15%
Scenario (b) 5545.76 7532.68 136% 58%
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resulting by the cutting procedures of the stock. The gap between the 
two scenarios reduces, however, scenario (b) still remains the worst 
approach with a waste of 58% of the total stock mass.

Generally, these findings suggest that the algorithm incorporating 
the CSP performs well, as it necessitates fewer purchased bars, with only 
a slight uptick in structural weight. As expected, the number of different 
cross-sections is increased from scenario (a) to scenario (b) (refers to 
Fig. 6–7). If in the former, the optimizer tries to group as much as 
possible the bars for obtaining the maximum cutting performance; in the 
latter, it prefers to differentiate the sectional properties of bars aiming to 
reduce the total structural weight of the truss.

7. Case study II: Warren truss

Within this section, a more complex application example is intro-
duced. The structure under analysis is a Warren truss, widely adopted as 
support of an industrial building’s roof, composed of 23 members.

7.1. Model definition and parameters’ setting

As depicted in Fig. 8, the structure is subjected to symmetric loading 
and a symmetric geometry is assumed. This assumption approximately 
halves the design variables which becomes 12 cross-sectional areas.

In Tables 7, 8 the characteristics of the model properties and the 
setting parameters are summarized. For transportability reasons, the 
maximum bin’s length has been adopted equal to 15 m, while the 
loading scenario is characterized by concentrated forces applied to the 

joints of the bottom chord.
Static action only has been considered in the analysis like (i) non- 

structural distributed loads equal to 4 kN/m2, (ii) snow distributed 
loads equal to 1.5 kN/m2, and (iii) maintenance distributed loads of 0.5 
kN/m2. To obtain the in-plane loading conditions of the truss, an influ-
ence area of 10 m is considered as the theoretical distance between two 
Warren trusses that support the roof system of an ideal industrial 
building. Finally, the mentioned action has been applied to the joint of 
the bottom chord as depicted in Fig. 8. The self-weight of the structure, 
which dynamically changes with the member sizing, has been consid-
ered separately for the FE structural analysis.

The cross-section catalogue is populated by 150 different Circular- 
Hollow Sections (CHS) coherently to the standard regulation EN10210 
with assumed lower and upper bounds set at 137 and 24700 mm2, 
respectively.

7.2. Results and discussion

As shown in the previous case study, two scenarios have been 
investigated aiming to compare the two approaches. The output of the 
optimization results (see Tables A.15- A.16) for each scenario have been 
reported in Appendix A.

Scenario (a). In Table 9, details about the best solution as well as 
average and standard deviation, calculated by considering the 10 runs, 
have been reported.

Implementing CSP into the SO process leads to significant waste- 
saving. It can be observed that with a Mstock and Mtruss equal to 2656 
kg and 2190 kg, respectively, the Mwaste is 466.8 kg. Additionally, a 
significant decrease of the mean, μ, and standard deviation, σ, is 
recognized demonstrating a good convergence capability of the 
algorithm.

In this case, the stock representation (see Fig. 9) shows that the rate 
of exploitation of the bins is the maximum that can be attained.

At first, it is interesting to notice that all the runs give as a result the 
areas’ grouping in three bins’ classes because the two external webs are 
simply allocated in the same group of the upper chord members. As 
observed for the previous case study, the optimizer prefers design so-
lutions with a limited number of different cross sections aiming to in-
crease the possible cutting options for bins with the same sectional 
properties.

Fig. 8. Configuration of the Warren truss under analysis, the numbers indicate the design variables which are 12 for symmetry reasons. Measures are expressed in 
millimetres (mm).

Table 7 
Model assumption relative to the symmetric Warren truss.

Parameter Value

Modulus of elasticity of steel E 210,000 MPa
Steel density ρ 7.85 t/m3

Loading lower chord nodes P1 240 kN
Length of purchased bars (bins) Lbin 15 m
Number of design variables 4
Bounds of design variables (Amin,Amax) [137, 24,700] mm2

Table 8 
Optimization algorithm parameters set by the operator.

Parameter Value

Maximum number of iterations 200
Number of individuals per population 300
Areas excluded if unfeasibility condition isn’t satisfied 5 smaller DV
Mutations’ probability 5%
Proportional children 1 child for each parent
Stagnation condition 20 iterations

Table 9 
Result of the 4 DV Warren optimization via CSP approach (a).

Mstock (OF) [kg] Mtruss [kg] Mwaste [kg]

Best 2656.44 2189.96 466.48
μ 2770.02 2265.11 504.91
σ 98.30 73.80 37.38
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It is worth noting that the grouping strategy follows perfectly the 
engineering practice for which truss beams are basically composed of 3 
cross-sectional clusters: lower chord, upper chord and diagonals. As 
observed by several authors [66,67], this classification is mainly due to 
an almost constant level of stress for all the members belonging to the 
same group.

Scenario (b). In Table 10, the main feature of the best solution and 
the statistics based on #10 runs have been reported.

As expected, the number of different cross-sections employed by the 
optimizer increased to 10 (see Fig. 10). As in the previous case, the 
optimizer aims to distinguish as much as possible the members’ areas in 
order to achieve the least-weight configuration. Additionally, it appears 
evident by the graphical representation of the cutting patterns that the 
mass waste increased significantly due to the cross-section variability of 
the members. As proof of the goodness of the optimal sizing, the final 
layout of the Warren truss has been depicted in Fig.10. According to 
common practice, from the support to the middle span, the assigned 
cross-section Areas decrease along the upper and bottom chords while 
thin and heavy section have been assigned to the tensioned and com-
pressed diagonals, respectively.

Scenario (a) vs Scenario (b). In this last section, an overview of the 
results obtained by adopting the two approaches and a detailed dis-
cussion concerning the differences of the optimal design solution have 
been reported also for this case study.

In Table 11, the percentage ratio of the mass waste with respect to 
the structural mass (i.e. mass of the truss) and the stock mass is reported 
also for this case.

The trend observed in the previous case study is validated again for 
the current application. Specifically, if the waste produced, by adopting 
the CSP approach, leads to 21% of waste for the total mass of the truss 
equal to 2189.96 kg; the minimum-weight design produces a mass of 
waste that is almost 1.5 times the total mass of the truss. The gain ob-
tained by reducing the total mass of the structure is completely loss by 
the mass waste production. Similar considerations can be made by 
calculating the ratio between the amount of mass waste (Mwaste) and the 
mass of stock (Mstock).

As expected, the main discrepancy between the two scenarios can be 
addressed by the different number of sections, which are mainly related 
to the different problem definitions of the optimization process. Addi-
tionally, the section assignment respects the geometric compatibility 
imposed so the feasibility of the connections, between the compression 
and tension chords and the diagonals, is always respected.

A sensitivity analysis has been conducted by extending the two 
mentioned approaches on the same truss typologies with an increasing 
number of spans.

In Fig. 11(a)-(b), the trend of Mtruss, Mstock and Mwaste have been re-
ported for each scenario by investigating the effect of the adopted ap-
proaches on the increase of the number of pieces composing the 
structure. Specifically, truss spans varying between 6 and 22 have been 
investigated.

By observing Fig. 11(a), the results obtained for the Warren truss 
with No.6 spans have been confirmed for all the other scenarios. More in 
detail, by increasing the number of spans (i.e. number of pieces) the gap 
between the Mtruss and the Mstock increases. Especially for the configu-
ration with the number of spans equal to 18, 20 and 22, the Mstock 
exponentially increases. With specific regard to these structures, the 
amount of steel required by the factory is 4 times the structural weight 
(Mtruss). Additionally, even if the number of DVs increases, from the 
Warren configuration with No.12 up to 44 different cross-sections (for 
symmetry reasons), the Mtruss still increases. Since the geometry is fixed 
as well as the total span length, the configuration with the maximum 
number of spans represents the design with the worst structural 

Fig. 9. Optimal cutting pattern of the Warren truss obtained by scenario (a). The dashed area represents the remaining bin’s length deriving from the cutting process. 
The same colors have been used to identify the relationship between items and the position of the truss members.

Table 10 
Result of the symmetric Warren optimization via traditional approach (b).

Mstock [kg] Mtruss (OF) [kg] Mwaste [kg]

Best 4610.62 1864.7 2745.9
μ 4855.4 2049.9 2805.5
σ 222.82 26.38 215.64
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performance due to the non-efficient diagonal inclinations varying be-
tween 65 and 73 degrees. On the other hand, design configurations with 
no. of spans equal to 6, 8 and 10 are characterized by diagonal incli-
nation angles close to the optimal value of 45 degrees.

The results obtained by the proposed CSP approach depicted in 
Fig. 11(b) show an opposite trend. Even if the Mtruss increases for the 

non-efficient diagonal inclination angles, the Mstock values for each 
configuration remain close to the Mtruss resulting in significant waste- 
saving. As expected, the design solutions are characterized by higher 
structural mass than the traditional approach. However, this apparent 
loss of structural weight is successfully counterbalanced by the reduc-
tion of the total Mstock for each scenario. Especially for the most prom-
ising design represented by the truss with no. of spans equal to 10, the 
Mstock is almost half of that one obtained by the traditional approach.

Finally, as observed in Fig. 9, the grouping strategy obtained by the 
CSP approach is maintained independently of the no. of spans. Two 
different sections have been assigned to the elements composing the 
compressed and tensioned chords, while the last section has been 
assigned to the tensioned and compressed diagonals on which the level 
of stress is lower than the formers. This result coherently agrees with the 

Fig. 10. Optimal cutting pattern of the Warren truss obtained by scenario (b). The dashed area represents the remaining bin’s length deriving from the cutting 
process. The same colors have been used to identify the relationship between items and the position of the truss members.

Table 11 
Performance comparison between CSP approach (scenario-a) and traditional 
approach (scenario b).

Mtruss [kg] Mwaste [kg] Mwaste/Mtruss Mwaste/Mstock

Scenario (a) 2189.96 466.48 21% 17%
Scenario (b) 1864.7 2745.9 147% 60%

(a) (b)

Fig. 11. Output of the optimization process following (a) the traditional minimum-weight approach and (b) the CSP approach.
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necessity of lowering the number of different cross-sections aiming to 
ensure an optimal cutting of the stock.

8. Case study III: Spatial reticular dome

In this section, the last case study will be presented. A reticular dome 
realized by steel members, resulting in triangular mesh, will be inves-
tigated. Due to their topology, these structural systems are allowed to 
cover huge spans thanks to their structural behavior and are preferred 
for large-span structures like stadiums or exhibition centers.

8.1. Model definition and parameters’ setting

The adopted reticular dome consists of 102 bars with varying lengths 
and inclinations, all interconnected by 43 joints. The Structural Steel 
adopted is the S275, characterized by a mass density ρ = 7850kg/m3 and 
an elastic modulus E = 210GPa. It is constrained by simple supports at 
each joint of the base.

To delve into more specific details, each level of the structure is 
comprised of circular horizontal hoops and diagonal bars. The first and 
second levels consist of 24 diagonal bars and 12 members composing 
each circular ring. Moving upwards, the third and fourth levels include 
18 and 6 diagonal bars, respectively, interconnected by a horizontal 
hoop consisting of six bars.

The kit-of-parts used for this structure consists of tubular elements 
with a CHS profile, joined together at spherical nodes. Fig. 12 provides a 
perspective and top view of the structure as well as its members’ 
arrangement.

Additionally, in Fig. 13 a graphical representation of the main groups 
of elements composing the structure has been reported. As illustrated in 

previous works (e.g., [68,69]), the optimal grouping strategy operated 
by the optimizer has a crucial role in reducing computational effort and 
achieving the best cutting criteria for minimum waste.

The discrete design variables are determined by choosing cross- 
sectional areas from a standard list (EN 10210) complying with the 
identified grouping strategy. Hence, elements with similar structural 
behavior and belonging to the same cluster have the same cross-sections. 
Lower and upper bounds of the cross-section variability range are set at 
137 and 4000 mm2, respectively. It results in a catalogue composed of 
150 CHS profiles characterized by different diameters and thicknesses.

In the proposed approach, the structure experiences only gravita-
tional actions like structural and non-structural permanent loads, snow 
and maintenance. Structural glass has been chosen as the skin area of the 
dome and a non-structural permanent load equal to 0.2 kN/m2 has been 
adopted. According to the previous case, live loads like snow and 
maintenance have been assumed equal to 1.5 kN/m2 and 0.5 kN/m2, 
respectively. Consequently, all the loads have been applied at the level 
of the joints as concentrated loads according to the corresponding in-
fluence area.

8.2. Results and discussion

As shown for the previous case studies, two scenarios have been 
investigated aiming to compare the two approaches. The output of the 
optimization results (see Tables A.17-A.18) for each scenario has been 
reported in Appendix A.

Scenario (a) vs Scenario (b). The problem statement outlined in the 
previous section serves as the basis for optimizing the dome, and #10 
runs have been performed to evaluate the method’s robustness and ac-
curacy also for this case. Aiming to fully exploit the capability of the 

(a) (b)

Fig. 12. Prospective (a) and top view (b) of the dome.

Fig. 13. Type of elements composing the dome. Members with similar structural behavior are depicted with the same color.
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cutting routine, the length of the bins has been fixed equal to 18 m 
coherently with the information obtained by specialized factories on 
these types of structures. The same trend of the previous case studies has 
been observed by analyzing separately the two scenarios. Hence, to 
simplify the presentation, in this section, only the comparison between 
the two optimization approaches has been introduced and an overview 
of the optimal outcomes has been reported in Table 12. As expected, 
scenario (b) leads to a mass saving of the Mtruss with respect to scenario 
(a) even if the Mstock of the former still remains significantly high. Spe-
cifically, for scenario (b), the Mtruss is equal to 75% of the Mstock resulting 
in a significant waste equal to 30% of the Mtruss. In other words, for the 
realization of the dome, the total waste is almost 1/3 the muss of the 
dome. On the other hand, an evident improvement has been obtained 

following the CSP approach. Scenario (a) leads to a significant reduction 
of the waste equal to only 16.0% of the mass of the dome.

Examining Fig. 14(a)-(b), it becomes clear that the benefits of 
implementing the proposed approach are evident in terms of material 
saving. The optimal design of the dome, achieved through a straight-
forward weight minimization process (scenario b), leads to substantial 
material wastage, as evidenced by the non-optimal cutting pattern of 
bins. Coherently, as observed numerically, the total Mstock obtained by 
scenario (b) is significantly higher than one from scenario (a). As for the 
previous case study, the optimal stock of elements has been achieved by 
an optimized grouping strategy adopted by the optimizer. In scenario 
(b), the optimizer selects 7 distinct cross-sectional areas to enhance the 
structural performance of each group element to achieve the minimum 
weight of the structure. In contrast, in scenario (a), where the CSP is 
resolved during each iteration of the optimization procedure, the total 
number of bins required during production is significantly reduced, and 
the variety of different cross-sections decreases to 4.

The impact of integrating CSP with structural optimization becomes 
clearer when comparing the total number of bins obtained in both sce-
narios. Despite scenario (b) resulting in a lower structural mass 
compared to scenario (a), the reduction in material wastage, derived 
from the CSP approach, overcomes the weight loss.

As computed for the case study of the Warren truss, the sensitivity of 

Table 12 
Outputs of the optimization process obtained from scenario (a) and scenario (b).

Mtruss 

[kg]
Mstock 
[kg]

Mwaste 

[kg]
Mwaste/Mtruss Mwaste/Mstock

Scenario 
(a)

2851.1 3329.7 478.4 16.0% 14.0%

Scenario 
(b)

2773.6 3683.2 909.5 32.8% 24.7%

(a)

(b)

Fig. 14. Optimal cutting pattern obtained by (a) the CSP approach and (b) the minimum-weight approach for the trussed dome. The dashed area represents the 
remaining bin’s length deriving from the cutting process. The same colors are adopted to identify the relationship between the items (i.e. cutting patterns) and their 
position within the structure.
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the optimization problem with respect to the total number of elements 
has been assessed. To achieve this goal, a parametric analysis has been 
performed by varying the level of mesh refinement of the dome when 
geometry (i.e. height and radius of the dome) is fixed. For each case 
study, both the optimization approach has been performed and the re-
sults have been depicted in Fig. 15 (a)-(b).

In both scenarios, the optimal solution has been obtained for the 
dome with 156 no. of elements. Specifically, the waste obtained by the 
minimum-weight approach is almost 1 ton while it is negligible for the 
CSP approach.

Generally, with the exception of the dome with 228 no. of elements, 
the discrepancy between the mass of the dome calculated by both ap-
proaches remains still contained. On the other hand, the difference in 
terms of mass of the stock among the two approaches still remains 
constant to 0.5 tons for each case study.

9. Conclusions and future developments

This paper introduced an optimization procedure to minimize 
structural waste. The minimum amount of material stock produced by 
the factory has been adopted as the OF of the optimization problem. The 
feasibility of the procedure has been tested and the convenience of 
considering constructability issues as cutting patterns during the pro-
duction phase has been verified by comparing it with the results ob-
tained by the common minimum-weight approach. The strategy to adopt 
the cutting stock procedure as an internal routine embedded in a well- 
known optimization algorithm, such as the Genetic Algorithm, allows 
to achieve a significant reduction of the number of bins with a negligible 
increase in the structural weight for each of the investigated case 
studies. More in detail, the main outcomes of the research and the results 
obtained from each scenario can be summarized as follows:

• The benchmark test of the 10-bar truss has been adopted as a pre-
liminary test for checking the goodness of the optimization 
approach. Though the limited number of members composing the 
structure and low potential combinatorial solutions, the proposed 
approach reveals a significant mass saving of the material stock, 
Mstock, with a negligible increase of the truss mass, Mtruss, if compared 
with the weight minimization approach;

• Similar outcomes have also been observed for the Warren truss case 
study where the importance of an optimized grouping strategy for 

achieving minimum stock material has been observed. By limiting 
the number of different sections, the optimizer is guided to allocate 
more items into the same bin resulting in a reduction of Mstock and 
material waste, Mwaste. On the contrary, the problem formulation of 
the minimum-weight approach naturally leads to a huge diversity of 
the members’ cross-sectional properties due to the members’ area 
refinement for achieving the optimal sizing of the structure (i.e. least 
weight). Finally, the parametric analysis by varying the number of 
spans (i.e. number of elements) of the Warren truss allows the 
identification of the best solution in terms of optimal sizing and 
overall layout of the truss. A global minimum of Mstock as well as 
Mwaste has been observed for Warren with no. of span equal to 10;

• An application of a real-world reticular dome has been provided. In 
this case study, the efficiency of the proposed approach has been 
proved again. Even if the discrepancy between the Mstock obtained 
with the proposed approach and the one derived by the minimum 
weight approach is less marked, the reduction in terms of Mwaste with 
respect to the total mass of the dome and total amount of stock re-
mains significant. As for the previous case study, a sensitivity anal-
ysis has been performed by varying the number of elements 
composing the mesh of the dome. The dome with 156 no. of elements 
represents the best design for both approaches. With specific regard 
to the CSP approach, it efficiently reduces the total mass of the stock 
resulting in a negligible cutting waste.

In future works, several improvements could be introduced by add-
ing constructability criteria, such as the total number of pieces employed 
for the minimization of the structural complexity during the construc-
tion process. LCA analysis could be also integrated into the optimization 
process considering environmental parameters for the sustainability 
assessment of the design.

Limitations of the current work, mainly related to the investigated 
application case studies, will be overcome by considering different types 
of structures like steel-concrete mixed bridges and/or box bridges, 
where the sensitivity of the optimal design, varying the connection ty-
pologies (e.g. welded/bolded), could be investigated. Additionally, 
based on the promising approach obtained by the current research, the 
limitation deriving from solving a single-objective size optimization 
problem could be overcome by including changes in the layout 
arrangement through the nodal coordinates relaxation method. 
Including such a new level of complexity will allow to address the 

(a) (b)

Fig. 15. Output of the optimization process following (a) the traditional minimum-weight approach and (b) the CSP approach.
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potentiality of the proposed method with respect to the traditional 
minimum-weight approach.
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Appendix A

In this section, the results obtained from the optimization conducted for scenario (a) and scenario (b) have been reported. The optimal cutting and 
corresponding steel waste produced via CSP and without it as well as the values of cross-section areas have been provided for all the 10 runs of each 
case study. Optimal results have been highlighted in green.

A.1. Case No.1: 10 Bar-truss

Table A.13 
Structural Optimization via CSP results of 10 runs for 10 bar truss - Scenario (a).

Table A.14 
Traditional Structural Optimization results of 10 runs for 10 bar truss - Scenario (b).
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A.2. Case No.2: Warren Truss

Table A.15 
Structural Optimization via CSP results of 10 runs for Warren truss - Scenario (a).

Table A.16 
Traditional Structural Optimization results of 10 runs for Warren truss - Scenario (b).
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A.3. Case No. 3: Spatial Reticular Dome

Table A.17 
Structural Optimization via CSP results of 10 runs for reticular Dome - Scenario (a).

Table A.18 
Traditional Structural Optimization results of 10 runs for reticular dome - Scenario (b).
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