
12 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A looping process for cyberattack mitigation / Bringhenti, Daniele; Pizzato, Francesco; Sisto, Riccardo; Valenza, Fulvio. -
ELETTRONICO. - (In corso di stampa). (Intervento presentato al convegno 2024 IEEE International Conference on
Cyber Security and Resilience tenutosi a London (UK) nel 2-4 September 2024).

Original

A looping process for cyberattack mitigation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992167 since: 2024-09-03T14:59:14Z

IEEE

A looping process for cyberattack mitigation
Daniele Bringhenti, Francesco Pizzato, Riccardo Sisto, Fulvio Valenza

Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—Mitigating cyberattacks in fast times has become
a strong requirement for the security management of modern
virtual computer networks, where attacks are highly mutable
and short-term. Firewalls would still represent an effective
defense line, but the traditional manual approaches for their
configuration are no longer applicable. Besides, even if automatic
approaches for firewall configuration have been recently proposed
in literature, they still require excessive interaction with human
administrators, thus delaying the attack mitigation. Therefore,
this paper proposes a looping autonomous process that mitigates
ongoing attacks by reconfiguring distributed firewalls in a prov-
ably correct and optimized way. This continuously active process
includes a policy extraction engine to extract information from
the alerts produced by monitoring agents and to produce security
policies whose enforcement would stop the detected attack. An
implementation of this multi-step process has been validated in
realistic use cases to assess its efficacy and efficiency in stopping
cyberattacks.

Index Terms—security automation, attack mitigation, firewall

I. INTRODUCTION

In recent years, dynamism and agility have become key
features of next-generation virtual computer networks, thanks
to the proliferation of novel paradigms such as network
softwarization, cloud, and edge computing. Even though they
have been proven significant in enhancing and quickening
network management operations such as service function chain
provisioning, at the same time, they have led to an increase
in network size and complexity. This increase has created
new opportunities for attackers to improve their penetration
strategies. Recent cyberattacks exploit this higher complexity
by rapidly varying how they work to become more difficult to
predict. For instance, the burst Distributed Denial of Service
(DDoS) attacks that targeted Proton in 2022 were character-
ized by multiple mutable attack vectors, which could change
in the span of a few minutes [1].

Different countermeasures can be used to counter cyber-
attacks, such as temporarily blocking all communications
or raising alerts to administrators. Among them, the most
effective response is to promptly reconfigure distributed packet
filtering firewalls so as to block the traffic flows identified
as malicious during the attack. However, the traditional old-
fashioned approaches for firewall configuration cannot cope
with the speedy evolutionary trend of modern attacks. In
fact, they were completely manual, and therefore they were
suitable only for the security management of small-sized
networks, where everything was under the direct control of
a human administrator. Consequently, the literature started
investigating how automation can be leveraged to automate
distributed firewall configuration. In particular, several studies

adopt policy-based management to automate its configuration,
which comprises the definition of the allocation scheme of its
multiple instances and the computation of their filtering rules
[2]. According to that principle, network administrators can
express their desires related to connectivity requirements (i.e.,
what traffic flows must be blocked or allowed) as policies,
which are sentences written with high-level user-friendly lan-
guages, and then automatic tools are in charge of refining them
into the concrete firewall configuration.

Nevertheless, despite the indisputable progress in firewall
configuration automation, the state-of-the-art approaches pro-
posed in literature still require excessive interaction with
human administrators [3], thus delaying the actual deployment
of the automatically computed configuration, required to stop
an ongoing attack. On the one hand, even if the current
algorithms employed by Intrusion Detection Systems (IDSs)
to identify attacks are getting progressively more intelligent,
the administrators must still analyze the IDS log to get the
related information, and subsequently they must define new
policies manually. On the other hand, the firewall configuration
computed by most of the available automatic approaches must
be applied manually by the administrators, e.g., they are
still in charge of issuing all reconfiguration commands. Both
operations are not only slow, but also prone to decision-making
errors, which are also due to the variety of networking tools
used for intrusion detection of firewall implementations.

In view of these limitations of the state of the art, this paper
proposes an autonomous, optimized and provably correct
process where the distributed firewall configuration is automat-
ically recomputed after an attack is detected by IDS solutions
and applied to the network, without requiring a human user to
define personally the new policies for attack management and
to issue the low-level configuration commands. This process
is designed to be continuously active so as to provide prompt
automatic reactions whenever required. A main challenge
here was the design of a policy extraction engine capable
of extracting crucial information from the alerts produced by
monitoring agents and producing a set of security policies that
correctly resolve the detected problem. In order to achieve
optimization and formal correctness assurance, we decided to
use REACT-VEREFOO [4] as firewall reconfiguration module
in the implementation of our approach, as it provides the
features we were interested in.

The remainder of the paper is structured as follows. Section
II discusses related work, underlining its limits with respect
to this proposal. Section III illustrates how the envisioned
continuous firewall reconfiguration mechanism works. Section

Fig. 1: The proposed approach for autonomous attack mitigation

IV describes its implementation and validation. Section V
draws conclusions and discusses future work.

II. RELATED WORK

Mitigating a cyberattack through a distributed firewall is
an activity consisting of three main tasks: attack detection,
reaction, and firewall reconfiguration. Ideally, all these three
operations should be automated, avoiding continuous inter-
ventions from human administrators, who could thus limit
themselves to supervising the automatic process.

The problems of automating the first and third tasks have
already been investigated in the literature, even if in separate
ways. For what concerns attack detection, monitoring sys-
tems have been recently enhanced with intelligent algorithms
such as data-driven techniques [5] and Artificial Intelligence-
powered strategies based on Support Vector Machines [6].
Consequently, they are sufficiently autonomous in identifying
attacks and raising alerts. For what concerns firewall recon-
figuration, the problem of automating it has been addressed
by another class of related work [4], [7]–[11]. Among them,
the most feature-complete is REACT-VEREFOO [4] because
it combines automation, formal verification, and optimization
as the main pillars of its algorithm. Specifically, the optimality
objective it pursues is to maintain the current firewall configu-
ration as stable as possible during the reconfiguration process,
so as to avoid excessive delay in countermeasure provisioning.

However, the second task, i.e., the reaction that should
trigger the firewall reconfiguration when prompted by alerts,
has not yet been automated. Human administrators are still
in charge of analyzing the results produced by the intelligent
monitoring systems (e.g., reading the written log files) in order
to understand what is actually happening in their managed
network. Then, they must manually define the security policies
that a tool such as REACT-VEREFOO requires as input
to know which traffic flows must be blocked or allowed.
Manually performing all these reaction sub-tasks is not only
time-consuming, but also prone to errors, e.g., an administrator
may incorrectly interpret an alert or define a wrong policy.

Our proposal aims to provide full automation for the reac-
tion task, thus building the missing bridges between the other

operations of attack mitigation. Besides, the achievement of
this proposal allowed us to formulate a full-fledged process
composed of multiple agents, each in charge of automating
a specific mitigation sub-task. This process is also flexible
enough to be adapted to different network orchestrators, fire-
wall technologies, and monitoring agents.

III. THE PROPOSED APPROACH

The approach proposed in this paper aims to provide
continuous autonomic reconfiguration of distributed packet
filtering firewalls in virtual computer networks in an optimized
and provably correct way, while avoiding any further human
intervention when the process is fully operational. Fig. 1
illustrates the workflow of this approach, whose main phases
are described in the following.

1) Input preparation: Initially, the network administrator
provides two inputs to the autonomous process, i.e., a set
of Network Security Policies (NSPs) and the description of
the computer network, including its security configuration
required for the satisfaction of all NSPs. Both inputs are
formally modeled in our approach, so that other process
components can later use them to provide formal assurance
about the correctness of the NSP satisfaction.

On the one hand, the first input, i.e., the NSP set, identifies
all traffic flows that must be blocked because potentially
malicious, or the ones that must reach their destination to
provide service connectivity. Each NSP p of this set Pc, named
current NSP set as it includes the NSPs that are currently
satisfied in the network, is formally modeled as a tuple (a,C),
where p.a is the action that must be applied on packets
matching with the condition predicate p.C. This paper uses
the “.” symbol to refer to tuple elements. In greater detail,
p.C is a conjunction of five sub-predicates, each expressing
a condition on a specific field of the five composing the IP
5-tuple. For conciseness, this conjunction is symbolized as
p.C = (IPSrc, IPDst, pSrc, pDst, tProto). An NSP is defined
isolation policy if the action p.a is “deny”, reachability policy
if instead the action p.a is “allow”.

On the other hand, the second input, i.e., the one related
to the administrated network, provides all information about

the current network status, including its topological structure
and the configuration of all network middleboxes or firewalls.
The network is thus modeled as a directed graph G = (N,L),
where N is the node set, L is the link set. Specifically, N
includes different node subsets depending on their function-
ality: E ⊆ N is the set of endpoints (e.g., web clients and
servers), M ⊆ N is the set of network middleboxes (e.g.,
NATs and load balancers), F ⊆ N is the set of already
present firewalls. Each f ∈ F is also characterized by a default
action (“deny” or “allow”) and a set of filtering rules, which
may block or permit specific kinds of traffic depending on
the 5-tuple field values, as these firewalls are packet filters.
Additionally, N includes a particular subset A, including the
so-called Allocation Places (APs). These APs represent all the
logical positions in the virtual network where new firewalls
may be allocated in the future, e.g., if there is the need
to have a new firewall after an attack detection. Each flow
w ∈ W , where W is the set of all flows that may cross the
network G, is modeled as a list of alternating nodes and packet
classes [ns, tsa, na, tab, nb, ..., nz, tzd, nd], where each node ni

in the list represents a node crossed by the flow, whereas the
traffic tij is again a conjunction of five sub-predicates, one
for each IP 5-tuple field, and it represents the class of packets
transmitted from node ni to node nj . Each tij predicate has
the same formal model as the p.C predicate of the NSPs.

The formal models representing these two inputs are de-
fined with a medium-level language independent of low-level
network settings. For example, this language may be based on
XML or JSON, thus abstracting from the settings for specific
firewall implementations.

Besides, the definition of the firewall configuration required
to satisfy the current NSPs for this network may be de-
fined manually by the administrator, or it may be computed
automatically with state-of-the-art tools such as VEREFOO
[2]. In the former case, the administrator must perform more
manual operations. In the latter, he simply feeds the automatic
tool with the information requested for firewall configuration.
Anyhow, this task represents the only human interaction point
with our proposed autonomic methodology.

2) Firewall configuration translation and deployment:
Supposing that all the elements of the network N are already
active Virtual Network Functions (VNFs) in the network (e.g.,
Virtual Machines orchestrated by Open Source MANO or
containers managed by Docker Compose), the missing element
to enforce the requested NSPs Pc consists in provisioning
virtual functions working as firewalls and deploying their
configuration. Nevertheless, as discussed before, their config-
uration is defined in an implementation-agnostic way, so it
cannot be directly applied to the instantiated VNFs. Therefore,
at this stage, our approach includes a translating agent named
Firewall Configuration eXchange (FCX), which can convert
XML/JSON files into the specific commands of different fire-
wall implementations. This agent supports the most commonly
used softwarized firewall technologies: iptables, ipfirewall,
eBPF firewall, Open vSwitch. However, it has been designed to
be flexible enough to be extended easily to other technologies,

thus providing forward compatibility.
After this translation, the configuration settings are passed

on to the network orchestrator, which can thus apply them to
the firewalling VNFs. From this moment, all the current NSPs
are concretely enforced in the network.

3) Attack detection: Some VNFs deployed in the virtual
network are monitoring agents, i.e., IDSs inspecting traffic
flowing through their monitored interfaces to search for po-
tential attacks. The IDS detection engine evaluates the re-
ceived packets against a set of rules expressing the conditions
under which the IDS should assume that a specific attack
is occurring. When the conditions specified in a rule are
met, the IDS triggers an alert by creating a new entry in
its log file, describing all the information deduced by the
IDS through its monitoring activity. Clearly, IDSs can produce
false positives. However, this is intrinsic to their behavior, and
the administrator can remedy the problem by monitoring the
process, detecting the false positives, and applying appropriate
corrections. Besides, as already discussed in Section II, the
literature is rich in proposals about intelligent strategies for
attack detection. So, our study is not interested in researching
a new one, but our approach can support any IDS technology
as long as the IDS produces a log file that the next steps of
our methodology can later use.

4) NSP extraction: A core component of the autonomous
process that we propose is a vigilant agent named Sentinel
Policy Extractor (SPE). The SPE is granted read permission
to the log files written by the IDSs installed in the network, so
that it can periodically check them to search for the inclusion
of new entries related to attack detection. Whenever such an
entry is detected, the SPE extracts crucial information and
produces a set of NSPs that should correctly stop the attack.

The algorithm that we defined for this policy extraction
engine works as follows. First, whenever a log entry about
attack detection is detected, the SPE applies an abstract
model of the alarm to that implementation-specific entry, so
as to retrieve the information representing the formal model
of the traffic (i.e., packet class) tm that causes the alarm.
In particular, as tm = (IPSrc, IPDst, pSrc, pDst, tProto), the
required information is composed of the values for the IP
5-tuple fields. If no information about any of these fields is
missing in the log entry, this means that any possible value
is acceptable for it, and this is represented by the wildcard
* symbol for that field sub-predicate of the traffic model.
Second, starting from tm, the SPE identifies all traffic flows
where this packet class appears, creating a subset Wm of
potentially malicious flows. In fact, it is possible that the
malicious packets can come from multiple sources. The set
of possible flows crossing the network W was part of the
input of the process, so the SPE can derive Wm as follows:
∀w ∈ W. (∃tij ∈ w. tij = tm) =⇒ w ∈ Wm. Third,
for each flow w ∈ Wm such that w = [ns, tsa, na, ...,
tm, ..., nz, tzd, nd], the SPE extracts a policy pw = (tsa.IPSrc,
tzd.IPDst, tsa.pSrc, tzd.pDst,, tsa.tProto). The sub-predicates
of pw related to the source IP address and port are taken from
the initial flow packet class tsa, whereas the sub-predicates

related to the destination fields are taken from the final flow
packet class tzd. The reason why those predicates are not
directly mutated from td is that some packet fields may have
been modified by intermediate nodes such as NATs, while
the conditions of an NSP should be defined over the end-to-
end communication against which protection is required. The
whole set of extracted NSPs is denoted as Pe.

5) NSP merge: After extracting Pe, these NSPs should be
merged with the NSPs in Pc, which are currently satisfied by
the existing firewall configuration. However, this merge must
be performed taking into account that some extracted NSPs
may conflict with the current ones. For example, a traffic flow
that had to reach its destination according to a reachability
policy of Pc must now be blocked because of a newly extracted
isolation policy of Pe.

This problem is addressed by another core architectural
component of our process, named Conflicting Policy Merger
(CPM), whose objective is to create a merged NSP set Pm.
Clearly, the CPM directly includes all the extracted policies
into Pm because their enforcement is strictly required to stop
the attack. Then, for each p ∈ Pc, the CPM checks if it
conflicts with any p′ ∈ Pe to decide if and how to include it.
In particular, two NSPs p and p′ are considered conflicting if
they have different actions and (at least partially) overlapping
conditions, i.e., if p.a = p′.a and p.C ∧ p′.C. Given this
premise, if p ∈ Pc does not conflict with any extracted
NSP, it is directly included by the CPM into the merged set
Pm. Instead, if it conflicts with some p′ ∈ Pe, the CPM
must modify its predicate p.C so that it does not include the
overlapped part anymore, and then it can put the modified NSP
into the merged set. For example, if a reachability policy was
previously applied to the TCP traffic targeting all ports in the
range [50200, 50300] while now an extracted isolation policy
imposes that TCP traffic to 50300 must be blocked because
exploited by an attack, then the original reachability policy
must be modified so that the condition on the destination port
is defined on the restricted interval [50200, 50209].

6) Firewall reconfiguration computation: After the compu-
tation of the merged NSP set Pm, the new firewall configura-
tion (composed of its new allocation scheme and distributed
rule set) is automatically computed. For this operation, our
process uses the most feature-complete algorithm in litera-
ture, REACT-VEREFOO [4]. This algorithm formulates the
firewall reconfiguration problem as a Maximum Satisfiability
Modulo Theories (MaxSMT) through constraint programming.
This formulation provides automation, formal verification, and
optimization. First, the problem is solved automatically by
executing an SMT solver. Second, the output is proved correct
a-priori, as long as all inputs are formally modeled in a
way that captures all the information that may impact the
solution correctness. Third, the presence of some relaxable
clauses, named soft constraints, enables the achievement of
optimization goals. Here, the objective pursued by REACT-
VEREFOO is to modify the firewall configuration while keep-
ing the current one as much as possible (e.g., it is preferable
to maintain all firewalls in their current position and modify

m7
a12e1

a13e2

a14

m8

a15

e3

f10

e4

f11 m9

e5 e6

a16 a17

Endpoint IP address

e1 120.48.0.2
e2 120.48.0.3

Endpoint IP address

e3 42.105.2.2
e4 42.105.2.3

Endpoint IP address

e5 136.10.0.2
e6 136.10.0.3

Fig. 2: Current firewall allocation scheme

Firewall f10
Action IPSrc IPDst pSrc pDst tProto

1 Allow 42.105.2.3 120.48.0.∗ ∗ 30120 UDP
1 Allow 120.48.0.∗ 42.105.2.3 30120 ∗ UDP
3 Allow 42.105.2.3 42.105.2.2 ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall f11
Action IPSrc IPDst pSrc pDst tProto

1 Allow 136.10.0.∗ 120.48.0.2 ∗ ∗ TCP
2 Allow 136.10.0.3 42.105.2.2 ∗ 32456 TCP
3 Allow 42.105.2.2 136.10.0.3 32456 ∗ TCP
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

TABLE I: Current firewall filtering rules

their rule sets, as otherwise a larger time would be needed to
deploy a new VNF to stop the attack).

REACT-VEREFOO is thus simply fed with the description
of the current network and firewall configuration N and with
the merged NSP set Pm. Through its internal algorithm, it pro-
vides a description of the new firewall configuration, expressed
in implementation-independent medium-level language.

This new configuration is parsed by the FCX agent. Then,
the orchestrator deploys new firewalling VNFs if required, and
it applies the low-level firewall configuration settings to the
corresponding VNFs. The attack is thus blocked because all
new policies are enforced successfully, and the administrator
also has formal proof of this achievement thanks to the usage
of REACT-VEREFOO. At this stage, the process starts to
loop because the monitoring agents continue to detect other
attacks, and whenever an alert is raised, the SPE is ready to
extract a new policy and trigger a new reconfiguration. All
operations continue to work without the active intervention of
the human administrator, who can simply supervise and ensure
that everything continues to behave as expected.

IV. IMPLEMENTATION AND VALIDATION

The implementation of this process required defining the
policy language, developing multiple agents, extending ex-
isting tools, and providing the necessary communication in-
terfaces among them. The medium-level language chosen to
represent all policies and firewall configuration is the Medium
Security Policy Language (MSPL), a well-known language
based on XML that has been used and validated in multiple
EU-funded projects such as SECURED and ANASTASIA.
The translator agent FCX has been developed in Java to exploit
the JAXB library, which automates the mapping between XML

Action IPSrc IPDst pSrc pDst tProto

Allow 136.10.0.∗ 120.48.0.2 ∗ ∗ TCP
Allow 42.105.2.3 120.48.0.2 ∗ 30120 UDP
Allow 42.105.2.3 120.48.0.3 ∗ 30120 UDP
Allow 120.48.0.2 42.105.2.3 30120 ∗ UDP
Allow 120.48.0.3 42.105.2.3 30120 ∗ UDP
Allow 42.105.2.3 42.105.2.2 ∗ ∗ ∗
Allow 136.10.0.3 42.105.2.2 ∗ 32456 TCP
Allow 42.105.2.2 136.10.0.3 32456 ∗ TCP
Allow 136.10.0.∗ 136.10.0.∗ ∗ ∗ ∗
Deny 42.105.2.2 42.105.2.3 ∗ ∗ ∗
Deny 42.105.2.3 136.10.0.∗ ∗ ∗ ∗
Deny 136.10.0.∗ 42.105.2.3 ∗ ∗ ∗
Deny 136.10.0.∗ 120.48.0.3 ∗ ∗ ∗
Deny 120.48.0.3 136.10.0.∗ ∗ ∗ ∗

TABLE II: Current network security policies

documents and Java objects, and it can produce low-level
configuration settings for iptables, ipfirewall, Open vSwitch,
and eBPF firewall. The sentinel agent SPE has been developed
in python3, and it can parse log files produced by Snort3
and OSSEC3.7, two extensively adopted IDS implementations.
Similarly, the merging agent CPM has been written in python3.
These agents have interfaces by which they can exchange
data. Finally, the REACT-VEREFOO implementation has been
extended with REST APIs that can be used by other elements
of our architecture (e.g., the CPM agent to trigger a reconfig-
uration), and the orchestrator employed for VNF management
is Docker Compose. However, our process is general enough
to work with other technologies (e.g., Suricata as IDS or Open
Source MANO as orchestrator). It would be enough to modify
or extend the current agent prototypes to support them.

This implementation has been validated in two realistic use
cases within the scope of the SERICS project. The first use
case is about the mitigation of a DoS attack exploiting a
backdoor on TCP port 7597, which may have been opened
by worms such as QAZ. Instead, the second one is related to
a TCP SYN port scan. For space limitation, here we report
only the description of the latter. This use case is based on
the virtual network illustrated in Fig. 2, where each graph
node is containerized as a Docker. The elements with the a
notation are the APs where future firewalls may be included
to stop attacks. Instead, the elements with the f notation are
already allocated firewalls, implemented with iptables. Their
configuration rules, expressed in TABLE I, allow enforcing
all currently desired NSPs, listed in TABLE II. It is worth
noting that there is no one-to-one correspondence between
firewall rules and NSPs for multiple reasons. On the one hand,
in this use case, firewalls employ default actions to provide
whitelisting configuration. On the other hand, the administrator
uses aggregated rules to satisfy multiple NSPs when possible.

In this scenario, the objective is to detect and stop a specific
class of attacks, the TCP SYN port scan, frequently used
to determine the state of TCP ports without establishing a
full connection, so as to understand if there are open ports
exploitable to carry out an attack to the victim node. For this
purpose, the middlebox m8 is made to work as a monitoring
agent, as OSSEC3.7 is installed in the corresponding container,
with the configuration listed in Listing 1.

<rule id="100009" level="1">
<options>no_log</options>
<decoded_as>iptables</decoded_as>
<description>TCP SYN request detected</description>

</rule>
<rule id="100010" level="10" frequency="20" timeframe="60">
<if_matched_sid>100009</if_matched_sid>
<decoded_as>iptables</decoded_as>
<description>TCP SYN port scan detected</description>
<same_source_ip />

</rule>

Listing 1: OSSEC configuration

Rule 100009 matches any TCP SYN request without logging
it. This rule assists rule 100010, which activates when at least
20 TCP SYN requests from the same source IP are identified
within 60 seconds, signaling a potential port scan.

The attack simulation starts by accessing the containerized
en point e5 via a shell:

sudo docker exec -it e5 /bin/sh

The port scan is simulated through a simple command em-
ploying netcat. This method is preferred over just using
nmap to minimize the need for extra software installations
on endpoints. The specific command used for the attack
simulation is the following:

for p in $(seq 1 25); do nc 120.48.0.2 $p; done

This command sends 25 TCP SYN requests to e1, triggering
the rule in OSSEC and resulting in the following alert,
represented by the log entry listed in Listing 2.
{
"rule": {
"comment": "TCP SYN port scan detected",
"sidid": 100010,
"frequency": 20,

},
"protocol": "TCP",
"srcip": "136.10.0.2",
"dstip": "120.48.0.2",
"agent_name": "m8",
"timestamp": "2024 May 13 10:35:57",
"logfile": "/var/log/ulog/syslogemu.log"

}

Listing 2: Log entry notifying the attack detection

As soon as the SPE agent detects that a new log entry has
been written by the IDS, it automatically parses it and extracts
an isolation policy written with the MSPL language, formatted
as the XML object reported in Listing 3.
<PropertyDefinition>

<Property graph="0" name="IsolationProperty"
src="136.10.0.2" dst="120.48.0.2" lv4proto="TCP"/>

</PropertyDefinition>

Listing 3: Extracted NSP

Next, the CPM agent merges the extracted NSP with the
previously enforced NSPs. The only conflict occurs with
the first NSP of the ones listed in TABLE II. In fact, that
reachability policy requested that the TCP traffic from all
endpoints with IP addresses in the 136.10.0.0/24 range must
be able to contact the endpoint with IP address 120.48.0.2.
However, this is not acceptable anymore, because the TCP
traffic from 136.10.0.2 must now be stopped. Therefore, the

Firewall f11
Action IPSrc IPDst pSrc pDst tProto

1 Allow 136.10.0.3 120.48.0.2 ∗ ∗ TCP
2 Allow 136.10.0.3 42.105.2.2 ∗ 32456 TCP
3 Allow 42.105.2.2 136.10.0.3 32456 ∗ TCP
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

TABLE III: Updated firewall filtering rules

CPM modifies the first NSP of TABLE II so that the only
acceptable source IP address is 136.10.0.3, and adds the newly
extracted isolation policy within this list.

REACT-VEREFOO is fed with this merged NSP set to
identify the optimal firewall reconfiguration solution that could
stop the attack. In fact, multiple correct solutions exist. For
example, a human administrator may decide to directly instan-
tiate a new firewalling container in a12, a14, or a16 to block the
malicious traffic selectively. However, the provisioning time
of a new Docker is not negligible, especially because it is
mainly impacted by the image import, which may last tens
of seconds according to [12]. The provisioning time would
be even worse if the administrator used Open Source MANO
instead of the Docker Compose orchestrator used for our test
bed. In fact, according to [13], the Deployment Process Delay
(DPD) introduced by Open Source MANO to deploy and
instantiate a VNF within an already booted VM and set up an
operational network service is 134ms. Instead, as also proved
by its creators in [4], REACT-VEREFOO optimally produces
the reconfiguration solution where no new firewalls are added,
but the filtering rules of the firewall f11 are simply modified.
The new rules are expressed by REACT-VEREFOO in MSPL
with a similar format as Listing 3, but for space limitation are
reported here in compacted form in TABLE III.

Then, the FCX agent translates the MSPL configuration to
iptables commands, producing the script of Listing 4.

#!/bin/sh
cmd="sudo iptables"
${cmd} -F
${cmd} -P INPUT DROP
${cmd} -P FORWARD DROP
${cmd} -P OUTPUT DROP
${cmd} -A FORWARD -p tcp -s 136.10.0.3/32 -d

120.48.0.2/32 --dport ACCEPT
${cmd} -A FORWARD -p tcp -s 136.10.0.3/32 -d

42.105.2.2/32 --dport 32456 -j ACCEPT
${cmd} -A FORWARD -p tcp -s 42.105.2.2/32 -d

136.10.0.3/32 --sport 32456 -j ACCEPT

Listing 4: Translated iptables configuration

As soon as the configuration of f11 is concretely updated,
the attack is successfully stopped. This result has been exper-
imentally confirmed by reapplying the command to perform a
port scan from e5 to e1, which this time turns unsuccessful.

The implementation of this process is also efficient in terms
of performance. The FCX, SPE, and CPM agents require less
than a second each to execute the tasks they are in charge
of. The most time-consuming module is REACT-VEREFOO.
However, as experimentally shown in [4], it takes around 4
seconds to recompute a firewall configuration in front of a
change of 10-20% of 30 original NSPs. Such execution time

is quite lower than the time requested by orchestrators to
instantiate a new VNF, so it neither is a bottleneck nor a
significant delay contribution to attack mitigation.

V. CONCLUSION AND FUTURE WORK

This paper proposed a full-fledged looping process for
attack mitigation, based on an optimized and formally cor-
rect firewall reconfiguration. This process integrates multiple
agents to avoid external human interventions, and provides
an intelligent engine to derive security policies from alerts
raised by monitoring systems. The validation of our prototype
implementation of this process in realistic use cases showed
its efficacy and efficiency in stopping attacks.

Future work envisions extending this process to the mitiga-
tion of attacks for which the reconfiguration of other firewall
types may be required, e.g., web-application firewalls. We will
then investigate possible limitations of the proposed approach,
such as DoS attacks that may be carried out by continuously
triggering firewall reconfiguration. Extensive validation of the
process will also be continued in the SERICS project.

ACKNOWLEDGMENT

This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the EU - NextGenerationEU.

REFERENCES

[1] Proton, “A brief update regarding ongoing DDoS incidents,” 2022,
Available: https://proton.me/blog/a-brief-update-regarding-ongoing-
ddos-incidents, Visited: 2024-05-07.

[2] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated firewall configuration in virtual networks,” IEEE Trans.
Dependable Secur. Comput., vol. 20, no. 2, pp. 1559–1576, 2023.

[3] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,”
ACM Comput. Surv., vol. 56, no. 3, pp. 57:1–57:37, 2024.

[4] F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and
optimized firewall reconfiguration,” in Proc. of IEEE/IFIP Network
Operations and Management Symposium, Seoul, South Korea, 2024.

[5] D. Chou and M. Jiang, “A survey on data-driven network intrusion
detection,” ACM Comput. Surv., vol. 54, no. 9, pp. 182:1–182:36, 2022.

[6] M. Mohammadi, T. A. Rashid, S. H. T. Karim, A. H. M. Aldalwie,
Q. T. Tho, M. Bidaki, A. M. Rahmani, and M. Hosseinzadeh, “A com-
prehensive survey and taxonomy of the svm-based intrusion detection
systems,” J. Netw. Comput. Appl., vol. 178, p. 102983, 2021.

[7] F. Chen, A. X. Liu, J. Hwang, and T. Xie, “First step towards automatic
correction of firewall policy faults,” ACM Trans. Auton. Adapt. Syst.,
vol. 7, no. 2, pp. 1–24, 2012.

[8] N. B. Youssef and A. Bouhoula, “A fully automatic approach for
fixing firewall misconfigurations,” in Proc. of 11th IEEE Int. Conf. on
Computer and Information Technology, 2011, pp. 461–466.

[9] K. Adi, L. Hamza, and L. Pene, “Automatic security policy enforcement
in computer systems,” Comput. Secur., vol. 73, pp. 156–171, 2018.

[10] W. T. Hallahan, E. Zhai, and R. Piskac, “Automated repair by example
for firewalls,” Formal Methods Syst. Des., vol. 56, no. 1, pp. 127–153,
2020.

[11] M. Cheminod, L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A
comprehensive approach to the automatic refinement and verification of
access control policies,” Comput. Secur., vol. 80, pp. 186–199, 2019.

[12] B. Xavier, T. Ferreto, and L. C. Jersak, “Time provisioning evaluation of
kvm, docker and unikernels in a cloud platform,” in Proc. of IEEE/ACM
16th International Symposium on Cluster, Cloud and Grid Computing,
Cartagena, Colombia, 2016, 2016, pp. 277–280.

[13] G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. P. Costa, “Bench-
marking open source NFV MANO systems: OSM and ONAP,” Comput.
Commun., vol. 161, pp. 86–98, 2020.

