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On the dynamic behavior of the network SIR
epidemic model

Martina Alutto, Leonardo Cianfanelli, Giacomo Como, Member, IEEE , Fabio Fagnani

Abstract— We study a susceptible-infected-recovered
(SIR) epidemic model on a network of n interacting subpop-
ulations. We analyze the transient and asymptotic behavior
of the infection dynamics in each node of the network. In
contrast to the classical scalar epidemic SIR model, where
the infection curve is known to be unimodal (either always
decreasing over time, or initially increasing until reaching
a peak and from then on monotonically decreasing and
asymptotically vanishing), we show the possible occur-
rence of multimodal infection curves in the network SIR
epidemic model with n ≥ 2 subpopulations. We then focus
on the special case of rank-1 interaction matrices, modeling
subpopulations of homogeneously mixing individuals with
different activity rates, susceptibility to the disease, and
infectivity levels. For this special case, we find n invariants
of motion and provide an explicit expression for the limit
equilibrium point. We also determine necessary and suffi-
cient conditions for stability of the equilibrium points. We
then establish an upper bound on the number of changes
of monotonicity of the infection curve at the single node
level and provide sufficient conditions for its multimodality.
Finally, we present some numerical results revealing that, in
the case of interaction matrices with rank larger than 1, the
single nodes’ infection curves may display multiple peaks.

Index Terms— Network epidemic models, Susceptible-
Infected-Recovered model, infection curves, invariants of
motion, limit equilibrium points, stability.

I. INTRODUCTION

The emergence of the COVID-19 pandemic has renewed
a huge interest on mathematical models of epidemics. These
have proven to be effective tools both for forecasting the
spread of infection in the population and for supporting the
design of containment rules such as social distantiation and
lockdown policies. One of the simplest and most studied
of these models is the susceptible-infected-recovered (SIR)
epidemic model introduced almost one century ago [1]–[4].

In the classical SIR epidemic model, a population is split
into three compartments: the susceptible individuals, who have
not been infected yet and can still catch the disease, the
infected individuals, who are currently carrying the pathogen
and may transmit the disease, and the recovered individuals,
who have healed from the infection and are forever immune.
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The rate of new infections is assumed to be proportional to the
product between the mass of the susceptible individuals and
that of the infected individuals, due to pairwise interactions
between them. A crucial index in the analysis of the classical
SIR epidemic model is the reproduction number R(t), a time-
dependent scalar quantity describing the average number of
new infections that an infected individual is currently causing.
Specifically, the fraction of infected individuals at time t is
decreasing when R(t) < 1, while it is increasing for R(t) > 1.
As the reproduction number can be proved to be monotonically
decreasing in time and to eventually achieve values below 1,
the infection curve in the classical SIR epidemic model is
necessarily unimodal. Precisely, if R(0) ≤ 1, then the fraction
of infected individuals is always monotonically decreasing and
vanishes asymptotically. On the other hand, if R(0) > 1, then
the infection curve is initially increasing up to reaching a peak
value at the time t̂ when R(t̂ ) = 1 and is monotonically
decreasing from then on, again vanishing as time gets large.
This dichotomy has been shown to hold true also for gener-
alizations of the classical SIR epidemic model accounting for
more complex interaction mechanisms [5], [6]. It is also at
the basis of several control strategies, including some recently
proposed in the context of the COVID-19 pandemic, see, e.g.,
[7] and [8].

The classical SIR epidemic model relies on a number of
homogeneity assumptions on the population regarding the
individuals’ mixing and contact frequency, their aptitude to
contract and spread the infection, as well as the time needed
to recover. As these assumptions can hardly be met in realistic
scenarios, this has motivated the introduction of network
versions of the epidemic models [9]–[11]. In this framework,
the nodes of the network represent either single individuals or
subpopulations of indistinguishable individuals. In the latter
case, different subpopulations correspond to, e.g., different
geographical areas or age groups [12]–[16]. In this paper, we
study network SIR epidemic models whereby the nodes of the
network are identified with n subpopulations of homogeneous
individuals. The features of these subpopulations are encoded
into an interaction matrix A, whose entries Aij represent the
rate of new infections in subpopulation i due to the presence
of infected individuals in subpopulation j and may incorporate
the peculiar susceptibility of individuals in i, the infectivity of
individuals in j, the size of subpopulation j and the rate of
interactions among members of the two subpopulations.

Most of the literature on network epidemic models focuses
on variants of the so called susceptible-infected-susceptible
(SIS) epidemic model, differing from the SIR epidemic model
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in that recovered individuals are again susceptible. In the
seminal paper [17], a fundamental analysis of the network
SIS epidemic model was carried on, showing the existence of
a bifurcation: when the dominant eigenvalue λmax(A) of the
interaction matrix is less than or equal to the recovery rate
γ, the disease-free state is a globally asymptotically stable
equilibrium point, whereas when λmax(A) > γ there exists
an endemic equilibrium point that attracts all initial states
except for the disease-free state, which remains an unstable
equilibrium point. It is worth pointing out that the network SIS
epidemic model with n subpopulations is an n-dimensional
monotone system [18], a key property that is at the basis of
the results proved in [17]. More recently, generalizations of the
network SIS epidemic model have been considered accounting
for, e.g., high-order interactions [19], coupling with opinion
dynamics [20], [21], or competing viruses [22], [23].

In contrast to the aforementioned network SIS epidemic
model, the network SIR epidemic model with n subpopu-
lations is a 2n-dimensional dynamical system and it is not
monotone. Such higher dimensionality and lack of monotonic-
ity imply significant analytical challenges. In fact, despite its
numerous applications, the network SIR epidemic model is
much less studied in the literature. Recent papers such as
[24] use calibrated network SIR epidemic models to examine
the impact of age-targeted mitigation policies for the COVID-
19 pandemic showing how such policies (even with just two
age groups) can outperform uniform intervention policies in
terms of both mortality rates and economic productivity. While
most of the studies on the network SIR epidemic model are
empirical, there are two notable exceptions. In [15], the authors
find a network reproduction number that is a decreasing
function of time and plays a role similar to the classical SIR
epidemic model: when this reproduction number is less than
or equal to 1, then a certain aggregate infection index (a
linear combination of the fraction of infected individuals in the
various subpopulations) decreases, whereas when this number
is above 1, this aggregate infection index will first increase
and, once the reproduction number becomes smaller than 1,
it will start decreasing to 0. However, this aggregate infection
index is defined through weights that depend on the initial
state and are possibly time varying and this severely limits
its applicability. In [25], a network SIR epidemic model with
symmetric rank-1 interaction matrices is studied, assuming
that individuals are equally susceptible and contagious, have
different activity rates, and there is no homophily in the
society. It is shown that heterogeneity may make the system
reach herd immunity with an aggregate of infected individuals
smaller than in the scalar SIR epidemic model. To the best
of our knowledge, no results are available on the stability of
equilibria, invariants of motion, or the behavior of the infection
curve for the single nodes, which is relevant in understanding
the effectiveness of targeted interventions.

This paper provides novel theoretical contributions to the
understanding of the dynamic behavior of the network SIR
epidemic model with n nodes. We focus on rank-1 interaction
matrices, a relevant special case previously studied in [24],
[25]. Our contribution is four-fold. First, we individuate a
novel weighted aggregate infection index always exhibiting a

unimodal behavior as function of time. Second, we determine
n invariants of motion that allow us to derive the limit
equilibrium point as function of the initial state and to analyze
the stability of such equilibrium points. Third, we analyze
the transient behavior at the single node level, proving that
the infection curve at every node can undertake at most
two changes of monotonicity before the reproduction number
gets below 1, and since then it is monotonically decreasing.
Fourth, we exhibit a class of network SIR epidemic models
with just two nodes where the infection curve at one of the
two nodes effectively presents a bimodal behavior with two
peaks. Some of the results appeared in a preliminary form in
[26], where the analysis was restricted to two-nodes networks
with homogeneous subpopulations and contained no results
on invariants of motion, nor any characterization of the limit
equilibrium points and their stability.

The rest of the paper is organized as follows. In Section II
we introduce the network SIR epidemic model and summa-
rize some known results. Our main results are presented in
Sections III (unimodality in the weighted aggregate infection
curve, invariants of motion, limit values, and stability) and IV
(dynamic behavior at the single node level). In Section V, we
illustrate numerical simulations on more general networks. In
Section VI, we discuss future research lines.

A. Notation
We briefly gather here some notational conventions adopted

throughout the paper. We denote by R and R+ the sets of real
and nonnegative real numbers. The all-1 vector and the all-0
vector are denoted by 1 and 0 respectively. The transpose of a
matrix A is denoted by AT . For x in Rn, let ||x||1 =

∑
i |xi|

and ||x||∞ = maxi |xi| be its l1- and l∞- norms, while [x]
denotes the diagonal matrix whose diagonal coincides with
x. For an irreducible matrix A in Rn×n+ , we let λmax(A)
and vmax(A) denote respectively the dominant eigenvalue of
A and the corresponding left eigenvector normalized in such
a way that 1′vmax(A) = 1, which has positive entries and
is unique due to the Perron-Frobenius theorem. Inequalities
between two vectors x and y in Rn are meant to hold true
entry-wise, i.e., x ≤ y means that xi ≤ yi for every i, whereas
x < y means that xi < yi for every i, and x � y means that
xi ≤ yi for every i and xj < yj for some j.

II. NETWORK SIR EPIDEMIC MODEL

In this section, we introduce the network SIR epidemic
model and gather some known results that will prove useful
in the sequel. We model networks as finite weighted directed
graphs G = (V, E , A), where V = {1, 2, . . . , n} is the set of
nodes, E ⊆ V×V is the set of directed links, and A in Rn×n+ is
a nonnegative weight matrix, to be referred as the interaction
matrix, with the property that Aij > 0 if and only if there
exists a link (i, j) in E directed from node i to node j. A
network is connected if its interaction matrix A is irreducible.

In a network SIR epidemic model, n interacting subpopula-
tions i = 1, . . . , n are identified with the nodes of a network
G = (V, E , A). For every subpopulation i, the time-varying
variables xi = xi(t), yi = yi(t) and zi = zi(t) represent the
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fractions of susceptible, infected, and recovered individuals,
respectively, so that sum xi + yi + zi = 1 remains constant
in time. The entries Aij of the interaction matrix account for
the contact frequency between individuals of subpopulation
i and individuals of subpopulation j, the susceptibility of
subpopulation i, and the infectivity and size of subpopulation
j. Finally, a positive scalar parameter γ models the recovery
rate, which is assumed to be homogeneous across the network.

The network SIR epidemic model with interaction matrix
A in Rn×n+ and recovery rate γ > 0 is then the autonomous
system of ordinary differential equations{

ẋi = −xi
∑
j Aijyj

ẏi = xi
∑
j Aijyj − γyi

i = 1, . . . , n . (1)

We omit the equation for the evolution of the fraction of
recovered individuals zi = 1 − xi − yi, as it can be directly
determined by (1). The network SIR epidemic model (1) can
then be more compactly rewritten in the following vectorial
form

ẋ = −[x]Ay , ẏ = [x]Ay − γy , (2)

where x and y in Rn+ denote the vectors of the fraction
of susceptible and infected individuals, respectively, in the
different subpopulations. The following result gathers some
basic properties of the network SIR epidemic model.

Proposition 1: Consider the network SIR epidemic model
(2) with irreducible interaction matrix A in Rn×n+ and recovery
rate γ > 0. Then,

(i) the set

S =
{

(x, y) ∈ [0, 1]2n : x+ y ≤ 1
}

is positively invariant;
(ii) the set of equilibrium points in S is

S∗ = {(x∗,0) : x∗ ∈ [0, 1]n} ;

(iii) an equilibrium point (x∗,0) in S∗ is unstable if
λmax([x∗]A) > γ .

Moreover, for every initial state (x(0), y(0)) in S:
(iv) for every i = 1, . . . , n, xi(t) is non-increasing for t ≥ 0,

and xi(0) > 0 if and only if xi(t) > 0 for every t ≥ 0;
(v) if y(0)  0, then y(t) > 0 for every t > 0;

(vi) there exists x∗ in Rn+ such that 0 ≤ x∗ ≤ x(0) and

lim
t→+∞

x(t) = x∗ , lim
t→+∞

y(t) = 0 . (3)

Proof: See [15].

In the special case when n = 1, so that the interaction
matrix reduces to a positive scalar value A = β > 0, the
network SIR epidemic model (2) reduces to the classical scalar
SIR epidemic model

ẋ = −βxy , ẏ = (βx− γ)y . (4)

For the scalar SIR epidemic model (4), further results are
available, including the following fundamental one.

Proposition 2: Consider the scalar SIR epidemic model (4),
with β > 0, γ > 0, and initial state (x(0), y(0)) such that
0 < x(0) ≤ 1− y(0) ≤ 1. Then,

0 2 4 6 8 10

time

0

0.05

0.1

0.15

0.2

Fig. 1: Numerical simulation of the network SIR epidemic
model with n = 2 nodes with interaction matrix A = 11T ,
recovery rate γ = 1, and initial state y1(0) = 1−x1(0) = 0.15
and y2(0) = 1− x2(0) = 0 satisfying (6)-(7).

(i) the quantity β(x+ y)− γ log x is an invariant of motion;
(ii) x∗ = lim

t→+∞
x(t) is the unique solution of the equation

βx∗ − γ log x∗ = β(x(0) + y(0))− γ log x(0) , (5)

in the interval (0, γ/β].
Moreover, if y(0) > 0, then:
(iii) if βx(0) ≤ γ, then y(t) is strictly decreasing for t ≥ 0;
(iv) if βx(0) > γ, then there exists a peak time t̂ > 0 such

that y(t) is strictly increasing for t in [0, t̂] and strictly
decreasing for t in [t̂,+∞).
Proof: See [27, Chapter 2.4].

We now provide a simple example of a network SIR epi-
demic model with just n = 2 nodes where the infection curve
at the single node level achieves multiple peaks. This contrasts
the unimodality of the infection curve in the scalar SIR
epidemic model determined by the dichotomy in Proposition
2(iii)–(iv).

Example 1: Consider the network SIR epidemic model (1)
with n = 2 subpopulations, interaction matrix A = 11T , and
unitary recovery rate γ = 1. Let the initial state be

y1(0) = 1− x1(0) = ε , y2(0) = 1− x2(0) = 0 , (6)

for some ε > 0 such that
1− ε
2− ε

(1− log(2− ε)) > ε . (7)

The range of such values of ε is nonempty since the function

g(ε) =
1− ε
2− ε

(1− log(2− ε))− ε

is continuous in the interval [0, 1] and g(0) = 1
2 (1−log 2) > 0.

Observe that, with these initial states, we have

ẏ1(0) = x1(0)(y1(0) + y2(0))− y1(0) = −ε2 < 0 , (8)

which implies that y1(t) is strictly decreasing for sufficiently
small t > 0. We now show that y1(t) cannot remain decreasing
for all values of t ≥ 0, but will necessarily become strictly
increasing in a certain time range, before eventually starting
to decrease again and vanish as t grows large.
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Towards this goal, first observe that the aggregate variables
x = x1 + x2 and y = y1 + y2 satisfy an autonomous scalar
SIR epidemic model

ẋ = −x y , ẏ = (x− 1)y . (9)

Then, since ẏ(0) = (x(0) − 1)y(0) > 0 , Proposition 2(iv)
implies that there exists a peak time t̂ > 0 at which ˙̄y(t̂ ) = 0,
i.e., x(t̂ ) = 1. This fact, Proposition 2(i), and (6) imply that

y(t̂ ) = x(0)+y(0)−x(t̂ )+log
x(t̂ )

x(0)
= 1− log(2−ε) . (10)

Since ẋ2 = −x2y and x2(0) = 1, we have that

x2(t̂ ) = exp

(
−
∫ t̂

0

y(t)dt

)
=
x(t̂ )

x(0)
=

1

2− ε
, (11)

where the second equality follows from integrating the first
equation in (9) and the last one follows from (6). It then
follows from (10) and (11) that

ẏ2(t̂ ) = x2(t̂ )y(t̂ )− y2(t̂ ) =
1− log(2− ε)

2− ε
− y2(t̂ ) . (12)

Now, assume by contradiction that ẏ1(t) ≤ 0 for all t ≥ 0.
In particular, this would imply that y1(t̂ ) ≤ y1(0) = ε, so that

y2(t̂ ) = y(t̂ )− y1(t̂ ) ≥ 1− log(2− ε)− ε .

by (10). Recalling that ẏ(t̂ ) = 0, substituting the above in the
righthand side of (12), and using (7), we would then get

ẏ1(t̂ ) = ẏ(t̂ )− ẏ2(t̂ ) ≥ 1− ε
2− ε

(1− log(2− ε))− ε > 0 ,

thus contradicting the assumption that ẏ1(t) ≤ 0 for t ≥ 0.
It then follows that there must exist some values of time
t ≥ 0 such that ẏ1(t) > 0. Together with (8) and the fact
limt→+∞ y1(t) = 0 by Proposition 1(vi), this implies that
the infection curve t 7→ y1(t) is multimodal. In fact, the
results to be presented in Section IV imply that such behavior
is necessarily as illustrated in Figure 1, i.e., y1(t) is strictly
decreasing in an interval [0, ť1], until reaching a positive local
minimum point ť1 > 0, it is then strictly increasing in an
interval [ť1, t̂1] until reaching a second peak at some time
t̂1 > ť1, and is eventually strictly decreasing for t ≥ t̂1.

Notice that the network SIR epidemic model considered in
this example can be interpreted as a scalar SIR epidemic model
where a single population of individuals has been split into
two equally sized subpopulations having distinct initial states.
Specifically, all the initially infected individuals belong to the
first subpopulation, while the second one initially contains
only susceptible individuals. The parameters are chosen such
that if the two subpopulations were isolated, the first one would
undertake an exponential decrease to a disease-free state.
However, because of the presence of the second subpopulation,
the infection can further spread and eventually hit back the first
subpopulation, making it undergo a second wave of infection
with a second peak (the first one being at time 0).

III. THE NETWORK SIR EPIDEMIC MODEL WITH RANK-1
INTERACTION MATRICES

In this section, we study the network SIR epidemic model
in the special case when the interaction matrix A is irreducible
and has rank-1, as per the following equivalent assumption.

Assumption 1: The interaction matrix A satisfies

A = abT , (13)

for two vectors a > 0 and b > 0 in Rn.
For a rank-1 interaction matrix A = abT , the network SIR

epidemic model’s equations (1) can be rewritten as{
ẋi = −aixiȳ
ẏi = aixiȳ − γyi

i = 1, . . . , n , (14)

where

ȳ =

n∑
j=1

bjyj (15)

is the weighted aggregate of infected individuals that drives
the rate of new infections in all subpopulations.

Remark 1: The vectors a and b in Assumption 1 can be
given the following epidemiological interpretation. On the
one hand, the i-th entry ai of vector a accounts for the
susceptibility level and the activity rate of subpopulation i.
On the other hand, the i-th entry bi of vector b accounts
for the infectivity level, the activity rate, and the size of
subpopulation i. Assumption 1 then boils down to that the
contact frequency between individuals of subpopulation i
and those of subpopulation j is proportional to the activity
rates of the two subpopulations. Therefore, ȳ represents the
aggregate of infected individuals weighted by their infectivity
and activity rates. This model can capture the effect of targeted
containment policies as proposed in [24]. However, it cannot
take into account the presence of homophily in the interactions.

Notice that the class of network SIR epidemic models
satisfying Assumption 1 encompass the ones studied in [25]
where authors require that A is both rank-1 and symmetric.

A. Unimodality of the weighted aggregate infection curve
In this subsection, we study the dynamics of the weighted

aggregate of infected individuals ȳ, showing that under As-
sumption 1 this quantity always exhibits a unimodal behavior.
For our analysis, it is convenient to introduce two different
weighted aggregates of susceptible individuals:

x̄ =

n∑
j=1

bjxj , x̃ =

n∑
j=1

ajbjxj . (16)

The following result describes the dynamics of the weighted
aggregates x̄ and ȳ of susceptible and, respectively, infected
individuals. In particular, it shows that the logarithmic time
derivative of ȳ equals the difference between the weighted
aggregate of susceptible individuals x̃ and the recovery rate γ.

Lemma 1: Consider the rank-1 connected network SIR epi-
demic model (14). Then,

ẋ = −yx̃ , ẏ = y (x̃− γ) . (17)
Proof: See Appendix I.
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The following is the main result of this subsection. It shows
that the weighted aggregate infection curve t 7→ ȳ(t) is always
unimodal and that there is a dichotomy determining the shape
of this curve as a function of the initial value of the weighted
aggregate of infected individuals x̃(0).

Theorem 1: Consider the rank-1 connected network SIR
epidemic model (14). Let the initial state (x(0), y(0)) in S
be such that

0 � x(0) ≤ 1− y(0) � 1 . (18)

Then, x̃(t) is strictly decreasing for t ≥ 0 and

lim
t→+∞

x̃(t) < γ . (19)

Moreover:
(i) if

x̃(0) ≤ γ , (20)

then y(t) is strictly decreasing for t ≥ 0;
(ii) if

x̃(0) > γ , (21)

then there exists t̂ > 0 such that y(t) is strictly increasing
on [0, t̂] and strictly decreasing on [t̂,+∞).
Proof: By the way x̃ is defined in (16) and using the

equations in (14), we can express its time derivative as

˙̃x =

n∑
j=1

ajbj ẋj = −y
n∑
j=1

a2jbjxj . (22)

Now, the rightmost inequality in (18) and Proposition 1(v)
imply that y(t) > 0 for every t > 0, whereas the leftmost
inequality in (18) and Proposition 1(iv) imply that there exists
some i in {1, . . . , n} such that xi(t) > 0 for every t ≥ 0.
From (22), and since a > 0 and b > 0, we get that

˙̃x(t) = −y(t)

n∑
j=1

a2jbjxj(t) ≤ −a2i bixi(t)y(t) < 0 , (23)

for every t > 0. Inequality (23) implies that t 7→ x̃(t) is strictly
decreasing for t ≥ 0. Now, let

x̃(∞) = lim
t→+∞

x̃(t) .

If x̃(0) ≤ γ, then x̃(∞) < x̃(0) ≤ γ, so that (19) is satisfied.
On the other hand, if x̃(0) > γ, assume by contradiction that
x̃(∞) ≥ γ. Then x̃(t) > γ for every t ≥ 0, so that, by (17),

ẏ(t) = y(t) (x̃(t)− γ) ≥ 0 , ∀t ≥ 0 .

The above would imply that y(t) is nondecreasing, so that

lim
t→+∞

y(t) ≥ y(0) > 0 ,

thus contradicting Proposition 1(vi). Hence, we have x̃(∞) <
γ also when x̃(0) > γ, thus completing the proof of the first
part of the statement.

(i) If x̃(0) ≤ γ, by point (i) we have that x̃(t) < γ for
t > 0. Hence, (17) implies that

ẏ(t) = y(t) (x̃(t)− γ) < 0 ∀t > 0 ,

thus showing that y(t) is strictly decreasing for t ≥ 0.

(ii) If x̃(0) > γ, by point (i), x̃(t) is strictly decreasing and

lim
t→+∞

x̃(t) < γ .

Then, there necessarily exits a time t̂ > 0 such that x̃(t) > γ
for 0 ≤ t < t̂, x̃(t̂) = γ, and x̃(t) < γ for t > t̂. It then
follows from (17) that y(t) is strictly increasing for t in [0, t̂]
and strictly decreasing for t in [t̂,+∞), thus proving (ii).

Remark 2: It is proven in [15] that, for general irreducible
interaction matrices, if λmax([x(τ)]A) < γ for some τ ≥ 0,
then the weighted aggregate vmax(τ)T y(t) is monotonically
decreasing to 0, whereas, if λmax([x(0)]A) > γ, then for
small times vmax(0)T y(t) grows exponentially fast. Notice
that vmax(τ)T y(t) explicitly depends on x(τ): in particular,
vmax(0)T y(t) may not be unimodal in general. For rank-1
interaction matrices A = abT , we have vmax(t) = b for t ≥ 0,
so that vmax(τ)T y(t) = y(t) is unimodal by Theorem 1.

B. Invariants of motion, limit equilibria, and stability
In this subsection, we study invariants of motion, limit

equilibria, and stability for the rank-1 network SIR epidemic
model (14). We start with the following technical result.

Lemma 2: Fix two vectors a > 0 and b > 0 in Rn. Then,
for every (x, y) in S \ {(x,0) : x̃ ≥ γ},

(i) the equation

ξ =

n∑
i=1

bixi exp(ai(ξ − x− y)/γ) , (24)

admits exactly one solution in the interval [0, x] that is
denoted by ξ = ϕ(x, y);

(ii) ϕ(x, y) = x if and only if y = 0 or x = 0;
(iii) ϕ(x, y) = 0 if and only if x = 0;
(iv) ϕ(x, y) is continuous on S \ {(x,0) : x̃ ≥ γ}.

Proof: See Appendix II.

Our next result generalizes Proposition 2(i)–(ii), as it char-
acterizes n invariants of motion as well as the dependence of
the limit equilibrium point on the initial state for the network
SIR epidemic model with irreducible rank-1 interaction matrix.

Theorem 2: Consider the rank-1 connected network SIR
epidemic model (14). Then:

(i) for every i = 1, . . . , n, the quantity

hi = xi exp(−ai(x+ y)/γ) (25)

is an invariant of motion;
(ii) for every initial state (x(0), y(0)) in S,

lim
t→+∞

x(t) = Φ(x(0), y(0)) , (26)

where, for every (x, y) in S and 1 ≤ i ≤ n,

Φi(x, y) = xi exp
(
ai
(
ϕ(x, y)− x− y

)
/γ
)
,

where ϕ(x, y) is defined as in Lemma 2(i);
(iii) an equilibrium point (x∗,0) in S∗ is stable if

x̃∗ =

n∑
j=1

ajbjx
∗
j < γ . (27)



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Proof: (i) Equations (14) and (17) imply that

ḣi =
(
ẋi − aixi

(
ẋ+ ẏ

)
/γ
)

exp(−ai(x+ y)/γ)

= (−aixiy + aixiy) exp(−ai(x+ y)/γ)

= 0 ,

thus proving (i).
(ii) It follows from Proposition 1(vi) that (3) holds true for

some 0 ≤ x∗ ≤ x(0), so that point (i) implies that

hi(x(0), y(0)) = hi(x(t), y(t))
t→+∞−→ hi(x

∗, 0) . (28)

Let x∗ =
∑
i bix

∗
i . It then follows from (25) and (28) that

x∗i exp(−aix∗/γ) = hi(x
∗, 0)

= hi(x(0), y(0))

= xi(0) exp(−ai(x(0) + y(0))/γ) ,

so that

lim
t→+∞

xi(t) = x∗i = xi(0) exp(ai(x̄
∗ − x(0)− y(0))/γ) .

Multiplying both sides of the above by bi and summing up
over i = 1, . . . , n shows that x∗ is indeed a solution of (24).
Now, observe that Proposition 1(iv) ensures that x̄(t) is non-
increasing in t, so that necessarily x∗ belongs to the interval
[0, x(0)]. By Lemma 2(i), ϕ(x(0), y(0)) is the unique solution
of (24) in [0, x(0)], so that necessarily x∗ = ϕ(x(0), y(0)),
thus completing the proof of point (ii).

(iii) Let (x∗,0) be an equilibrium point satisfying (27). By
Proposition 1(ii), we have Φ(x∗,0) = x∗, while Lemma 2(iv)
implies that Φ(x, y) − x is continuous in the point (x∗,0).
Hence, for every ε > 0 there exists δε > 0 such that

||(x, y)− (x∗,0)||∞ < δε =⇒ ||Φ(x, y)− x||∞ < ε/2 .
(29)

Observe that it is not restrictive to assume that

δε ≤ εmin {1/2, b∗/||b||1} , b∗ = mini bi . (30)

For ε > 0, consider an initial state (x(0), y(0)) in S such that

||x(0)− x∗||∞ < δε , ||y(0)||∞ < δε . (31)

Observe that Proposition 1(iv) and point (ii) imply that

Φ(x(0), y(0)) ≤ x(t) ≤ x(0) , ∀t ≥ 0 . (32)

Therefore,

||x(t)− x∗||∞ ≤ ||x(t)− x(0)||∞ + ||x(0)− x∗||∞
≤ ||Φ(x(0), y(0))− x(0)||∞ + δε

< ε/2 + ε/2
= ε ,

(33)

where the first inequality follows from from the triangle
inequality, the second one from (32) and (31), and the third one
from (29) and (30). On the other hand, Theorem 1(i) implies
that 0 ≤ y(t) ≤ y(0) for all t ≥ 0, so that

||y(t)||∞ ≤
y(t)

b∗
≤ y(0)

b∗
≤ ||b||1

b∗
||y(0)||∞ <

||b||1
b∗

δε ≤ ε ,
(34)

the last two inequalities implied by (31) and (30), respectively.
Finally, (33)–(34) imply that ||(x(t), y(t)) − (x∗,0)||∞ < ε,
thus proving stability of the equilibrium point (x∗,0).

Remark 3: Invariants of motion have already been used in
the literature on scalar epidemic models in order to determine
the limit value of the fraction of susceptible individuals as
well as the peak value of the fraction of infected individuals:
see, e.g., [28], [29]. For the classical scalar SIR epidemic
model and its variant with equal death and birth rates, this has
even lead to exact analytical solutions (4) [30]. The novelty
of Theorem 2(i) is that it addresses a network SIR epidemic
model with n subpopulations, that is a 2n-dimensional system
and determines n invariants of motion for it. Theorem 2(ii)
then uses the form of such invariants of motion to characterize
the functional dependance of the limit equilibrium point on
the initial state, while Theorem 2(iii) builds on this to provide
sufficient conditions for stability.

Remark 4: Theorem 2(iii) complements Proposition 1(iii).
Indeed, if the interaction matrix A satisfies Assumption 1, then

λmax([x∗]A) = λmax([x∗]ab′) = b′x∗ = x̃∗ .

Hence, for connected rank-1 network SIR epidemic models,
an equilibrium point (x∗,0) is stable if x̃∗ < γ and unstable if
x̃∗ > γ (no equilibrium point can be asymptotically stable as
they form a continuum). Notice that, while Proposition 1(iii) is
an immediate consequence of the linearization in [15, Theorem
5.2(ii)], Theorem 2(iii) is not since such linearization always
has 0 as an eigenvalue with multiplicity n.

IV. DYNAMIC BEHAVIOR OF THE INFECTION IN THE
SINGLE SUBPOPULATIONS

In this section, we analyze the infection curves of the
sigle subpopulations for the connected rank-1 network SIR
epidemic model.

A. A classification of possible dynamic behaviors
We first define the quantities

wi = x̃− γ − aiy , i = 1, . . . , n , (35)

measuring how the rate of new infections in each subpopu-
lation is changing in time. Indeed, from the second equation
in (14) observe that the rate of new infections in node i is
described by the quantity fi = aixiȳ. Moreover,

ḟi
fi

=
˙̄y

ȳ
+
ẋi
xi

= x̃− γ − aiȳ = wi.

Hence, wi is the logarithmic derivative of the rate of new
infections in node i. Let also

t̂ = inf{t ≥ 0 : x̃(t) ≤ γ} (36)

denote the peak time of the weighted aggregate of infected
individuals ȳ, and observe that Theorem 1 implies that t̂ <
+∞. Also, for every i = 1, . . . , n, let

ti = inf{t≥0 : wi(t)≤0} = inf{t≥0 : x̃(t)≤γ + aiy(t)}

be the first time instant at which the rate of new infections in
node i starts decreasing, and notice that

ti ≤ t̂ , (37)
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and ti ≤ tj if and only if aj ≤ ai. Hence, it is possible to
order these time instants from the entries of vector a.

The following are two useful technical results.
Lemma 3: Consider the rank-1 network SIR epidemic

model (14) and every initial state (x(0), y(0)) such that y(0) 
0. Then, for every i = 1, . . . , n,

(i) ẇi(t) < −aiywi(t) for every t ≥ 0;
(ii) wi(t) is strictly decreasing for 0 ≤ t ≤ ti;

(iii) wi(t) < 0 for every t > ti;
(iv) for every t ≥ 0,

ÿi(t) = aixi(t)y(t)wi(t)− γẏi(t) ; (38)

(v) if ẏi(t) = 0 for some t ≥ ti, then t cannot be a local
minimum point of yi(t).

Proof: See Appendix III.

Proposition 3: Consider the connected rank-1 network SIR
epidemic model (14) with initial state (x(0), y(0)) in S such
that y(0)  0. Then, for every i = 1, . . . , n,

(i) yi(t) admits at most one local minimum time ťi ≥ 0.
Moreover, if such local minimum time ťi exists,
(ii) it satisfies

0 ≤ ťi ≤ ti , (39)

with ťi = ti = 0 if and only if wi(0) ≤ 0 and ẏi(0) > 0;
(iii) it cannot occur after any stationary local maximum point

of yi(t).

Proof: If wi(0) ≤ 0, then ti = 0 and Lemma 3(v) implies
that no stationary point t ≥ 0 of yi(t) can be a local minimum
point. It follows that the only local minimum point of yi(t) can
possibly be ťi = 0, which is the case if and only if ẏi(0) > 0.
Hence the claims are proved in the special case wi(0) ≤ 0.

On the other hand, if wi(0) > 0, then ti > 0 and the interior
extremum theorem and Lemma 3(v) imply that there cannot
be any minimum points of yi(t) in the interval [ti,+∞).
This proves point (ii). We are then left with studying local
minimum points of yi(t) in the interval [0, ti). Let s ≥ 0 be a
stationary local maximum point of yi(t), and let u in (s, ti) be
a (necessarily stationary) local minimum point of yi(t). Then,

ẏi(s) = ẏi(u) = 0 , (40)

and
ÿi(s) ≤ 0 , ÿi(u) ≥ 0 . (41)

Notice that we cannot have yi(s) = 0 or otherwise yi(t) = 0
in a neighborhood of s (as s is a local maximum point for
yi(t)) thus contradicting Proposition 1(v). Hence, we get

0 ≥ ÿi(s)/yi(s)

= aixi(s)y(s)wi(s)/yi(s)− γẏi(s)/yi(s)
= γwi(s)

> γwi(u)

= aixi(u)y(u)wi(u)/yi(u)− γẏi(u)/yi(u)

= ÿi(u)/yi(u)

≥ 0 ,

(42)

where the first and the last inequalities above follow from (41),
the first and the last identities follow from (38), the other two
identities from (40) and the fact that, by the second equation
in (14), aixi(t)ȳ(t) = γyi(t) when ẏi(t) = 0, and the strict
inequality in the middle holds true because of Lemma 3(ii). As
(42) is a contradiction, this shows that a local minimum point
u < ti of yi(t) cannot follow any stationary local maximum
point s ≥ 0 of yi(t), thus proving point (iii).

Finally, to prove point (i), assume by contradiction that there
exist two distinct local minimum points r < u of yi(t) in
the interval [0, ti). Then, there would necessarily exist a local
maximum point of yi(t) in the interval (r, u). But, since s >
r ≥ 0, such local maximum point would also be stationary,
thus violating point (iii). Therefore, there cannot exist two
distinct local minimum points r < u of yi(t) in the interval
[0, ti), thus completing the proof of point (i).

Remark 5: Equations (39) and (37) imply that the local
minimum point of yi can never occur after the peak of the
weighted aggregate of infected individuals ȳ. Hence, if at some
time τ ≥ 0 both ẏ(τ) ≤ 0 (so that y has peaked at some time
t̂ ≤ τ ) and ẏi(τ) < 0 (so that the epidemic in i is currently
regressing), then yi(t) will remain decreasing for all t ≥ τ .

As a consequence of Proposition 3, we get the following
result classifying the possible dynamic behaviors of the frac-
tion of infected individuals in the single populations of the
network SIR epidemic model with rank-1 interaction matrix.
This classification is based on the study of the sign of two
quantities:

ẏi(0) = aixi(0)y(0)− γyi(0), wi(0) = x̃(0)− γ − aiy(0).

Theorem 3: Consider the connected rank-1 network SIR
epidemic model (14) with initial state (x(0), y(0)) in S such
that y(0)  0. Then, for every i = 1, . . . , n,

(i) if
ẏi(0) ≤ 0 , (43)

and
wi(0) ≤ 0 , (44)

then yi(t) is strictly decreasing for t ≥ 0;
(ii) if

ẏi(0) > 0 , (45)

or if
ẏi(0) = 0 , (46)

and
wi(0) > 0 , (47)

then there exists a peak time t̂i > 0 such that yi(t) is
strictly increasing on [0, t̂i] and strictly decreasing on
[t̂i,+∞);

(iii) if
ẏi(0) < 0 , (48)

and
wi(0) > 0 , (49)

then either yi(t) is strictly decreasing for t ≥ 0 or there
exist a local minimum time ťi and a peak time t̂i such
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that 0 < ťi < t̂i and yi(t) is strictly decreasing on [0, ťi],
strictly increasing on [ťi, t̂i], and strictly decreasing on
[t̂i,+∞);
Proof: (i) If (44) holds true, then ti = 0. On the other

hand, (43) and Proposition 3(ii) rule out the possibility that
there exists any minimum point for yi(t). Therefore, yi(t) is
strictly decreasing for t ≥ 0.

(ii) If (45) holds true, then Proposition 3(i) implies that
ťi = 0 is the only minimum point of yi(t). On the other hand,
if (46) and (47) both hold true, then it follows from (38) that

ÿi(0) = aixi(0)y(0)wi(0)− γẏi(0) = γy2(0)wi(0) > 0 ,

(where the second identity follows from the fact that, by the
second equation in (14), aixi(t)ȳ(t) = γyi(t) when ẏi(t) = 0)
thus implying that also in this case ťi = 0 is a local minimum
point for yi(t).

Since y(0)  0 and, by Proposition 3(i), yi(t) cannot have
another local minimum points besides ťi = 0, it follows that
exists a peak time t̂i > 0 such that yi(t) is strictly increasing
for t in [0, t̂i] and strictly decreasing for t in [t̂i,+∞).

(iii) From (48), 0 is a nonstationary local maximum point
of yi(t). Since, by Proposition 3(i), yi(t) can have at most one
local minimum point, and by Proposition 1(vi),

lim
t→+∞

yi(t) = 0 < yi(0) , (50)

it follows that either yi(t) is strictly decreasing for t ≥ 0 (in
case there is no local minimum point) or, if a local minimum
point ťi > 0 exists, then there exists also a peak time t̂i > ťi so
that yi(t) is strictly increasing on [0, t̂i] and strictly decreasing
on [t̂i,+∞).

The previous result provides a classification of the behavior
of infection curves of the single subpopulations. In particular,
observe that if ẏi(0) = 0, then the behavior of the single
infection curves depends only on the sign of wi(0): in this
case, Theorem 3 provides a tight condition.

In Theorem 3, each condition is considered from the per-
spective of the single subpopulation i. However, note that if
(43) is true for all i = 1, . . . , n, meaning that the infection
curves are initially decreasing, then they will decrease forever.
Indeed, multiplying both sides of (43) by bi and summing over
i, we would get x̃(0) < γ so that wi(0) < 0 for all i.

B. Sufficient conditions for multimodal infection curves
We now consider a particular class of rank-1 interaction

matrices in the form

A = β1bT , (51)

with β > 0 and 1T b = 1. This is a special case of the one
studied in Section IV where the vector a has all equal entries
and the entries of b sum up to 1.

Remark 6: This model corresponds to a scenario in which
all individuals have the same susceptibility to the disease but
different infectivity level. E.g., individuals wearing medical
masks become infected with the same probability but spread
the disease differently. Note that a simple case of this class
of matrices is A = 11T , studied in Example 1. The network

SIR epidemic model with this interaction matrix is of interest
for control applications, c.f. [24]. Indeed, even if the dynamics
at the nodes are homogeneous and thus the infection spreads
at the same rate, it may be convenient to divide individuals
into multiple groups, e.g., to study the effects of differentiated
control policies, especially in cases whereby the cost of
applying a control and epidemic cost for the diffusion of the
disease may differ depending on the age of the individuals.

We observe that, for rank-1 interaction matrices in the form
(51), the dynamics become

ẋi = −βxiȳ, ẏi = βxiȳ − γyi , (52)

for every i = 1, . . . , n, and

ẋ = −βx y, ẏ = y (βx− γ) , (53)

since x and x̃ differ in a constant term only. The next
result provides sufficient conditions for multimodality of the
infection curve at the single node level and encompasses
Example 1. We first need to define auxiliary functions

gi(ε) =
1− ε

1− biε

(
1− γ

β
+
γ

β
log

γ

β(1− biε)

)
− ε . (54)

Notice that

gi(0) = 1− γ

β
+
γ

β
log

γ

β
, gi(1) = −1 .

As a consequence, when γ/β < 1, gi admits zeroes in [0, 1]
and we put

εi = min {ε ∈ [0, 1] : gi(ε) = 0} . (55)

Proposition 4: Consider the rank-1 network SIR epidemic
model (14) with a = β1 and 1T b = 1. Consider a subpopula-
tion i in {1, . . . , n} and an initial state (x(0), y(0)) in S that
satisfy the following conditions:

x(0) + y(0) = 1 , (56)
βxi(0)ȳ(0)− γyi(0) < 0 , (57)

βx(0) > γ , (58)
0 < yi(0) < εi . (59)

Then, there exist a local minimum time ťi and a peak time
t̂i such that 0 < ťi < t̂i and yi(t) is strictly decreasing on
[0, ťi], strictly increasing on [ťi, t̂i], and strictly decreasing on
[t̂i,+∞).

Proof: From (57) and (52) it follows that ẏi(0) < 0,
which implies that yi(t) is strictly decreasing for sufficiently
small t > 0. On the other hand, (53) and (58) imply that ȳ(t)
is strictly increasing for sufficiently small t > 0. Since x and
y satisfy the scalar autonomous SIR epidemic model (53), this
implies that y(t) has a peak at some time t̂ > 0 and

x(t̂) = γ/β . (60)

From Proposition 2(i) we obtain that the peak value of the
weighted aggregate of infected individuals is

y(t̂ ) = x(0) + y(0)− x(t̂) +
γ

β
log

x(t̂)

x(0)

= 1− γ

β
+
γ

β
log

γ

βx(0)
,

(61)
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where the second equality follows from (56) and (60). More-
over, (52) and (53) imply that xi(t)/xi(0) = x(t)/x(0), for
i = 1, . . . , n, and t ≥ 0. Therefore, using (60) we obtain

xi(t̂) =
γ

β

xi(0)

x(0)
, (62)

We now prove that yi(t) cannot remain decreasing for all t >
0. Assume by contradiction that ẏi(t) ≤ 0 for all t in [0, t̂]. In
particular, this implies that yi(t̂) ≤ yi(0). This together with
(62) and (61) imply that

0 ≥ ẏi(t̂ )

= βxi(t̂ )ȳ(t̂ )− γyi(t̂ )

= γ
xi(0)

x(0)

(
1− γ

β
+
γ

β
log

γ

βx(0)

)
− γyi(t̂ )

≥ γ

[
xi(0)

x(0)

(
1− γ

β
+
γ

β
log

γ

βx(0)

)
− yi(0)

]
.

(63)
Notice that, because of the assumptions on b, we have that
x(0) = 1 − y(0) ≤ 1 − biyi(0). Since the last expression in
(63) is decreasing in x(0) and xi(0) = 1− yi(0), we get that

γgi(yi(0)) ≤ 0 . (64)

By (58), we necessarily have that γ/β < 1. This implies that
gi(0) > 0 and, with (64), that yi(0) ≥ εi, thus violating (55).
This contradiction implies that yi(t) cannot remain decreasing
for all t > 0. The claim then follows from Theorem 3.

Remark 7: Observe that the set of model parameters and
initial states that satisfy the assumptions of Proposition 4 is
nonempty. To prove this, consider a network with n nodes,
interaction matrix as in (51) with parameters β > γ and

b1 < min

{
γ

β
, 1− γ

β

}
, (65)

Fix an initial state (x(0), y(0)) in S such that 0 < y1(0) < ε1
and yj(0) = 0 for 2 ≤ j ≤ n. Notice that y(0) =
b1y1(0). A straightforward check shows that (57) and (58) are
automatically satisfied putting no further restriction on y1(0).
Therefore, all assumptions of Proposition 4 are satisfied.

Remark 8: Observe that under the assumptions of Proposi-
tion 4 we can provide an upper bound for stationary infection
peaks of a node i. Let t̂i be the peak time of node i, so that
ẏi(t̂i) = 0. By (52), this implies that

yi(t̂i) =
β

γ
xi(t̂i)y(t̂i) . (66)

Since the weighted aggregate of infected individuals is limited
above by its infection peak value, i.e. y(t) ≤ y(t̂ ) for t ≥ 0,
and the fraction of susceptible individuals is monotonically
decreasing, we have that

yi(t̂i) ≤ βxi(0)

γ
y(t̂)

=
βxi(0)

γ

(
x(0) + y(0)− x(t̂) + γ log

x(t̂ )

x(0)

)
= xi(0)

(
β

γ
− 1 + log

γ

x(0)

)
,

where the first equivalence follows from (61) and the last one
from (60) and (56).
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Fig. 2: Numerical simulations of the network SIR epidemic
model with n = 5 nodes and rank-1 interaction matrix.

V. NUMERICAL SIMULATIONS

In this section, we present the result of some numerical
simulations of the network SIR epidemic model. Some more
numerical simulations are reported in [26].

We start by reporting the infections curves of a network
SIR epidemic model with n = 5 nodes and rank-1 interaction
matrix. In Figure 2, the interaction matrix is A = abT with
a = (0.1, 0.25, 0.6, 1, 0.2) and b = (0.45, 0.4, 0.6, 0.65, 0.01),
and the recovery rate is γ = 0.6. The initial state has entries
x1(0) = 0.85, x2(0) = 0.999, x3(0) = 0.8, x4(0) = 1,
x5(0) = 0.75, and y(0) = 1 − x(0). The top plot in Figure
2 shows that the infection curves of nodes 1 and 3 are both
multimodal with two changes of monotonicity: for both i = 1
and i = 3, the fraction of infected individuals yi(t) is strictly
decreasing for times t in [0, ťi], it is strictly increasing in
[ťi, t̂i], and it is strictly decreasing for t in [t̂i,+∞). The
bottom plot displays the weighted aggregate infection curve
t 7→ y(t), which is unimodal with a peak in t̂, as proved in
Theorem 1. Notice also that, as consequence of Proposition
3(ii) (cf. Remark 5), ťi ≤ t̂ for i = 1, 3, namely the local
minimum of the infection curve in each of the two nodes
cannot occur after the peak time of the weighted aggregate
of infected individuals.

In Figure 3, we report numerical simulations of a network
SIR epidemic model with n = 4 nodes, recovery rate γ = 0.5,
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Fig. 3: Numerical simulation of the network SIR epidemic
model with n = 4 nodes and full-rank interaction matrix.

and interaction matrix

A =


0.05 0.07 0.05 0.05

0.0001 0.8 0.0001 0.0001
0.0001 0.0001 0.1 0.0001
0.01 0.01 0.01 0.9

 .

The initial state has entries x1(0) = x2(0) = x4(0) = 1,
y1(0) = y2(0) = y4(0) = 0, and x3(0) = 0.9 = 1−y3(0), i.e.,
all subpopulations are initially completely susceptible except
for subpopulation 3 that has 10% of infected individuals. It
can be observed that the infection curve in the first node
displays three peaks. Moreover, we observe the presence of
delays among the peaks in different nodes. This simulation
shows that the limitation of the number of peaks to two is
a peculiar feature of rank-1 interaction matrices, while for
general networks, even with a limited number of nodes, mul-
tiple peaks may emerge. This is an interesting feature of the
network SIR epidemic model especially since actual epidemic
data often displays multimodal infection curves with multiple
peaks occurring at different times in different subpopulations.
(See, e.g., [31] for COVID-19 infection curves in the different
countries.)

VI. CONCLUSION

In this paper, we have studied the network SIR epidemic
model, focusing on the special case of rank-1 interaction

matrices. We have identified n invariants of motion and built
on them to find explicit expression for the limit equilibrium
point as a function of the initial state and to analyze the
stability of the equilibrium points. We have then proved that,
in contrast to the scalar SIR model, in the network SIR
epidemic model the infection curve associated to a single
subpopulation may be multimodal, and we have established
sufficient conditions for the occurrence of this phenomenon.
Furthermore, we have characterized all the possible behaviors
that the dynamics may exhibit at single node level, showing
that the infection curve in a single node can undergo two
changes of monotonicity at most. Finally, we have conducted
a numerical analysis showing that for more general interaction
matrices the network SIR epidemic model may exhibit more
than two peaks at single node level.

We are aware that the phenomenon of multiple waves
of infection cannot be fully explained by the heterogeneity
introduced by the network and is also largely determined
by the adaptive behavior and endogenous response of in-
dividuals to the epidemic, as well as by the phenomenon
of waving immunity [32]. For example, some papers have
studied models that take into account how individuals adapt
their behavior, resulting in a modification of the parameters
of the model at macroscopic level [5], [6], or in relation to
loss of immunity over time [33], [34]. Other works study
the epidemics dynamics coupled with an evolutionary game-
theoretic decision-making mechanism concerning some indi-
vidual behaviors [35], [36]. We also acknowledge the many
possible extensions of the network SIR epidemic model to
more than three compartments to keep track for instance of
the many forms of infection and possibly vaccination [37]–
[39]. Future work aims to include in the model more complex
phenomena to fully describe the occurrence of multiple peaks
in epidemic models.

REFERENCES

[1] W. O. Kermack and A. G. McKendrick, “A contribution to the mathemat-
ical theory of epidemics,” Proceedings of the Royal Society of London.
Series A, vol. 115, no. 772, pp. 700–721, 1927.

[2] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review,
vol. 42, pp. 599–653, 2000.

[3] A. G. McKendrick, “Applications of mathematics to medical problems,”
Proceedings of the Edinburgh Mathematical Society, vol. 44, pp. 98–
130, 1925.

[4] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology
of Infectious Diseases: Model Building, Analysis and Interpretation.
Wiley, 2000.

[5] V. Capasso and G. Serio, “A generalization of the Kermack-McKendrick
deterministic epidemic model,” Mathematical Biosciences, vol. 42, no. 1,
pp. 43–61, 1978.

[6] M. Alutto, G. Como, and F. Fagnani, “On SIR epidemic models with
feedback-controlled interactions and network effects,” in 60th IEEE
Conference on Decision and Control, 2021, pp. 5562–5567.

[7] L. Cianfanelli, F. Parise, D. Acemoglu, G. Como, and A. Ozdaglar,
“Lockdown interventions in the SIR model: Is the reproduction number
the right control variable?” in 60th IEEE Conference on Decision and
Control, 2021, pp. 4254–4259.

[8] L. Miclo, D. Spiro, and J. Weibull, “Optimal epidemic suppression under
an ICU constraint,” Journal of Mathematical Economics, vol. 101, p.
102669, 2022.

[9] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Reviews of Modern Physics,
vol. 87, pp. 925–979, 2015.



ALUTTO et al.: ON THE DYNAMIC BEHAVIOR OF THE NETWORK SIR EPIDEMIC MODEL 11
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APPENDIX I
PROOF OF LEMMA 1

By taking the time derivative of both sides of the first
equation in (15) and substituting the first one in (14), we get

ẋ =

n∑
j=1

bj ẋj = −ȳ
n∑
j=1

bjajxj = −yx̃ ,

thus proving the first equation in (17). Analogously, by taking
the time derivative of both sides of the second equation in (15)
and substituting the second equation in (14), we get

ẏ =

n∑
j=1

bj ẏj = ȳ

n∑
j=1

bjajxj − γy = y (x̃− γ) ,

thus proving the second equation in (17).

APPENDIX II
PROOF OF LEMMA 2

For x = 0, equation (24) reduces to ξ = 0, which has a
unique solution ϕ(0, y) = 0 = x. This proves claims (i)–(ii)
in the special case x = 0 and the “if” part of claim (iii). For
x  0, consider the function g : R+ → R defined by

g(ξ) =

n∑
j=1

bjcj exp(ajξ/γ)− ξ ,

where cj = xj exp(−aj(x + y)/γ), for 1 ≤ j ≤ n. Observe
that equation (24) is equivalent to g(ξ) = 0. We have that:
(a) g(ξ) is differentiable and strictly convex in ξ ≥ 0;
(b) g(0) =

∑
j bjcj > 0 and g(ξ)

ξ→+∞−→ +∞;
(c) g(x) =

∑
j bjxj exp(−ajy/γ) − x ≤

∑
j bjxj − x = 0,

with equality if and only if y = 0;
(d) if y = 0 then g′(x) =

∑
j ajbjxj/γ − 1 = x̃/γ − 1 < 0.

Points (a)–(c) imply that g(ξ) has at least one and at most two
zeros. By (b), ϕ(x, y) > 0 for x  0, proving the “only if”
part of (iii). For y  0, by points (b)–(c), g(ξ) has one zero
in (0, x) and another one in (x,+∞), proving claim (i) and
the “only if” part of claim (ii). For y = 0, (b)–(d) imply that
g(ξ) has no zeros in [0, x) and g(x) = 0, proving claims (i)
and the “if” part of claim (ii). Finally, since g′(ϕ(x, y)) < 0
for y  0, the Implicit Function Theorem implies that ϕ(x, y)
is differentiable for (x, y) in S such that x  0. Continuity
of ϕ(x, y) on the whole space S \ {(x,0) : x̃ ≥ γ} then
follows upon noting that 0 ≤ ϕ(x, y) ≤ x

x→0−→ 0, so that
ϕ(x, y)

x→0−→ 0 = ϕ(0, y).

https://ourworldindata.org/covid-cases
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APPENDIX III
PROOF OF LEMMA 3

(i) From the first equation (14), we have that

˙̃x =
∑
i

aibiẋi = −y
∑
i

a2i bixi ≤ 0 . (67)

By Proposition 1(v), the assumption y(0)  0 implies that

y(t) > 0 , ∀t > 0 , (68)

so that in particular

y(t) =
∑
j

bjyj(t) > 0 , ∀t ≥ 0 . (69)

It then follows from (35),(17), (67), and (69) that

ẇi = ˙̃x−aiẏ = ˙̃x−aiy(x̃−γ) = ˙̃x−aiywi−a2i y2 < −aiywi ,
thus proving the claim.

(ii) For 0 ≤ t ≤ ti, we have wi(t) ≥ 0 so that, by point
(i) and (69), we have that ẇi(t) < −aiy(t)wi(t) ≤ 0 . This
implies that wi(t) is strictly decreasing for 0 ≤ t ≤ ti.

(iii) It follows from (i) that, for every t∗i ≥ 0 such that
wi(t

∗
i ) = 0, we have ẇi(t∗i ) < −aiy(t∗i )wi(t

∗
i ) = 0 , so that

wi(t) < 0 for t > t∗i . If wi(0) ≤ 0 so that ti = 0, this implies
that wi(t) < 0 for all t > 0 = ti. On the other hand, wi(0) > 0
so that ti > 0, it follows that wi(t) < 0 for all t > ti.

(iv) Taking the derivative of both sides of the second line
in (14) and substituting the first line of (14) and (17) yield

ÿi = ai (ẋiȳ + xi ˙̄y)− γẏi
= aixiy (x̃− γ − aiy)− γẏi = aixiywi − γẏi ,

thus proving (38).
(v) Assume by contradiction that t ≥ ti is a local minimum

point of yi(t) with ẏi(t) = 0. By (38), we then have

ÿi(t) = aixi(t)y(t)wi(t)− γẏi(t) = γyi(t)wi(t) , (70)

where the last identity holds true since, by the second equation
in (14), ẏi(t) = 0 is equivalent to

aixi(t)ȳ(t) = γyi(t) . (71)

Equations (70) and (68) imply that

sgn(ÿi(t)) = sgn(wi(t)) . (72)

Now, recall that by point (iii) we have wi(t) ≤ 0 for every
t ≥ ti. If wi(t) < 0, then equation (72) implies that ÿi(t) < 0,
so that t cannot be a local minimum point for yi(t). On the
other hand, if wi(t) = 0, by point (i) and (69) we get that

ẇi(t) < −aiy(t)wi(t) = 0 , (73)

while (72) implies that ÿi(t) = 0. Hence, taking the derivative
of both sides of (38), by (71) and wi(t) = 0, we get

...
y i(t) = aixi(t)y(t)ẇi(t) + ai( ˙(xi(t)y(t)))wi(t)− γÿi(t)

= γyi(t)ẇi(t)

< 0 ,

where the last inequality follows from (68) and (73). Together
with ẏi(t) = ÿi(t) = 0, the above implies that t is an
inflection point for yi(t), hence it particular it is not a local
minimum point. We have thus proven that yi(t) cannot have
any stationary minimum points in the interval [ti,+∞).
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